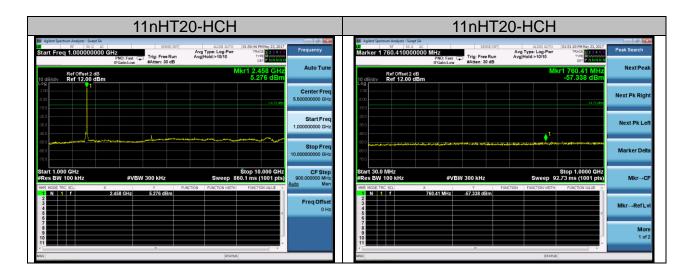
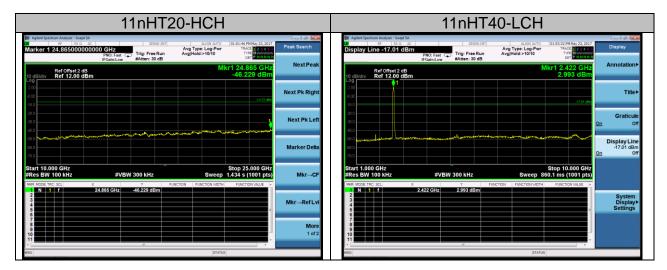

Report No.: AGC03219170301FE04 Page 23 of 43

11G-MCH		11G-HCH
Marker 1 24.68800000000 GHz SENSE INT ALION AUTO (012456 PHIler 23, 2017 Marker 1 24.68800000000 GHz Frig: Free Run Avg Type Log-Pwr THACE T 23.33 PRO: Fac: Trig: Free Run Avg Type Log-Pwr THACE T 23.33 Ficiatiow Fridate To dB Comparison Third: Trig: Free Run	Peak Search	Mit Aginer Spectrum Anaginer Sangt SA Strict Science Strict Science Strict Science Mit Aginer Spectrum Anaginer Sangt SA Strict Science All ON AUTO (01.97-22) PHIlary 22, 2027 Start Freq 1.0000000 GHz Frequency Avg Type: Log-Per The Science Frequency PROS-Science Trig: Free Run Avg Type: Log-Per The Science Frequency
Ref Offset 2 dB Mkr1 24.880 GHz 10 dBdiv Ref 12.00 dBm -46.665 dBm -46.665 dBm	Next Peak	Ref Offset2 dB Mkr1 2,467 GHz to gBidiv Ref 12,00 dBm 3.409 dBm
200	Next Pk Right	2:00 Center Freq 3:00 Center Freq 5:50000000 GHz
	Next Pk Left	0.00
All D	Marker Delta	Stop Freq 1000000000000000000000000000000000000
Start 10.000 GHz Stop 25.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.434 s (1001 pts)	Mkr→CF	Start 1.000 GHz Stop 10.000 GHz CF Step s0000000 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 860.1 ms (1001 pts) 0.0000000 MHz Sweep 860.1 ms (1001 pts) 0.0000000 MHz
NOM NOE T Y FUNCTION FUNCTION	Mkr→RefLvi	Mort Hote The Sk. X Y FUNCTION FUNCTION HIGH FU
	More 1 of 2	
MSG STATUS		MEQ STATUS


11G-	HCH	11G-HCH
Biter Spectrum Analyzer - Swept SA SC SENSE-INTI Biter Spectrum Analyzer - Swept SA SENSE-INTI SENSE-INTI Kor 1 8833.6000000000 MHz Fast Trig: Free Run FRoin.Low Free Run Staten: 30 dB	ALION AUTO 0139-34 PM May 23, 2017 Avg Type: Log-Pwr TRACE D 2 a c T AvgHold:>1010 0 TRACE D 2 a c T	Agiter Spectrum Avager - Seigt Sa Spect Spectrum Autority and Spectrum Control of Hodd Spectrum Peak Spectrum Var 50 dit
Ref Offset 2 dB B/div Ref 12.00 dBm	Mkr1 883.60 MHz -57.800 dBm	Ref Offset 2 dB Mkr1 24.970 GHz 10 dB/dly Ref 12.00 dBm -47.280 dBm -47.280 dBm
	Next Pk Ri	2.00 Next Pk Right
	Next Pk I	All and a second
	Marker D	
rt 30.0 MHz s BW 100 kHz #VBW 300 kHz	Stop 1.0000 GHz Sweep 92.73 ms (1001 pts) Mkr-	
MODE TRC SCL X Y FU N 1 f 883.60 MHz -57.800 dBm	INCTION FUNCTION WIDTH FUNCTION VALUE	MAR MODE TRCI SCL X Y FUNCTION IF FUNCTION WIDTH FUNCTION WILLE A
	Mkr→Ref	Mkr-RefLvi
	M	


Report No.: AGC03219170301FE04 Page 24 of 43

11nHT20-LCH		11nHT20-MCH
Marker Stetow Auger Jewert M. Stoc 1011 RUOR 2010 614-255 PMMv 22,2017 Marker 1 20,5900000000000 CH2 PRO 1544 Stoc 1011 Avg Type Log-Perr Avg/Hold:-1010 Thick Packager Tope Free Run Focalistow Dot open 2 of D Mkr1 20,590 CH2 Mkr1 20,590 CH2	Peak Search	Bit Agent Section Stoc Linit Autor Autor View Section Stoc Linit Autor Autor View Section Bit Find Agent Section Stoc Linit Autor Autor View Log-Per Trice Free Run Retains to Bit Agent Section Aug Type Log-Per Trice Free Run Retains to Bit Agent Section Aug Type Log-Per Trice Free Run Retains to Bit Agent Section Aug Type Log-Per Trice Free Run Retains to Bit Agent Section Aug Type Log-Per Trice Free Run Retains to Bit Agent Section March 12 4.351 Gent Agent Section Autor Tune
Ref Office 2 dB	Next Pk Right	Ref Orget 2 dB INK1 2 431 372 10 dBlok Ref 12.00 dBm 2 d0 2 d1 2 d0 1
	Next Pk Left	130 300 400
	Marker Delta	Stop Freq 70.0 Stop Freq 10.00000000 GHz
Start 10.000 GHz Stop 25.000 GHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.434 s (1001 pts)	Mkr→CF	Start 1.000 GHz Stop 10.000 GHz CF Step 90000000 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 860.1 ms (1001 pts) Auto Auto
NR NOC TIC: 50. X Y FUETON FUETON	Mkr→RefLvl	WM RUSE THE SQL X Y FUNCTION FUNCTION VALUE 2 1 7 2.431 GHz 2.376 dBm FUNCTION VALUE Function Value 2 1 7 2.431 GHz 2.376 dBm Function Value Function Value 2 1 1 7 2.431 GHz 2.376 dBm Function Value Fireq Offset 3 1 </td
	More 1 of 2	

11nHT20-MCH	11nHT20-MCH			
Bit Agent water - 1915, 6100,000,000, MHz State EMPI 4,104,407 (01455) PMwr 23,207 Marker 1 915, 6100,000,000, MHz State EMPI 4,104,407 (01455) PMwr 23,207 Marker 1 915, 610,000,000, MHz Trig: Pres Run (EGainLow) Trig: Pres Run #Atten: 30 dB Avg Type: Log-Per Type: Log-Per Trig: Pres Run Det Mitter	M Aglere Spectra Angly - Sang Sang Schole EMI			
Ref Offset2 dB MIK/1 915.61 MHz Log -57.722 dBm 200 - 400 -	Ref 0ffset 2 dB MKr1 20.535 GH2 10 dBraity Ref 12.00 dBm -46.185 dBm 200			
110	180			
800 Automatical and a state of the state of	ABO Marker Delta			
Start 30.0 MHz Stop 10000 CHz #Res BW 100 kHz #VBW 300 kHz Sweep 92.73 ms (1001 pts) MkrCF Www.uscs.tics.ci	Start 10.000 CHz Stop 25.000 CHz #Res BW 100 kHz #VBW 300 kHz Sweep 1.434 s (1001 pts) MRICF MRI MOG THC SC. X Y FUNCTION / PUNCTON WORTH FUNCTON WORT			
1 N 1 f 91561 MHz -57.722 dBm	1 N 1 f 20.635 GHz 46.185 dBm 2 3 4 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			
7 8 9 10 10 11	7 9 9 10 11			
uso status	NEG			

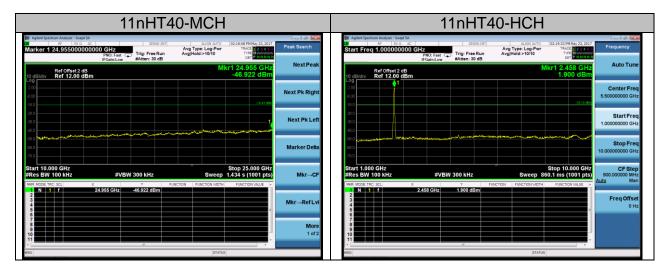
	11nHT4	0-LCH		11nHT4	10-LCH			
III Agilent Spectrum Analyzer - Swept SA III RF S0 Ω AC Marker 1 896.210000000 N	SENSE:INT PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO 01:53:46 PM May 23, 2017 Avg Type: Log-Pwr TRACE 12:3:45 Avg Hold:>10/10 TYPE Det	Peak Search		HZ D: Fast ain:Low HZ Trig: Free Run #Atten: 30 dB	ALIGN AUTO 02:15: Avg Type: Log-Pwr 1 Avg Hold:>10/10	21 PM May 23, 2017 TRACE 2 2 3 4 5 6 TYPE MUNICIPAL OF PINNINN	Peak Search
Ref Offset 2 dB 10 dB/div Ref 12.00 dBm		Mkr1 896.21 MHz -57.584 dBm	NextPeak	Ref Offset 2 dB 10 dB/div Ref 12.00 dBm			3.800 GHz .193 dBm	NextPea
2.00 4.00 -18.0		-17.01 ditt	Next Pk Right	200 			-17.01 dBm	Next Pk Rig
-28.0 			Next Pk Left	-28.0 		and the second second second second second	1	Next Pk Le
-58.0 -88.0 -78.0	944447 94494 - 148 ⁹ 14 ⁻ 14 ⁴ ¹ 1	and and the second state of the	Marker Delta	-58.0 -58.0 -78.0				Marker De
Start 30.0 MHz #Res BW 100 kHz	#VBW 300 kHz	Stop 1.0000 GHz Sweep 92.73 ms (1001 pts)	Mkr→CF	Start 10.000 GHz #Res BW 100 kHz	#VBW 300 kHz	Sweep 1.434	25.000 GHz s (1001 pts)	Mkr→C
	96.21 MHz -57.584 dBm		Mkr→RefLvl	1 N 1 f 23.800 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				Mkr→RefL
7 8 9 10 11			More 1 of 2	7 8 9 10				Ma 1 o
MSG		STATUS		MSG		STATUS		

Peak Search

Next Pk Righ

Next Pk Le


Marker Del


Mkr→RefL

Mkr→CF

More 1 of 2

Stop 25.000 GHz p 1.434 s (1001 pts)

11nHT40-HCI			1	IO-HCH	11nHT4		
SENSE:INT ALIGN AL PND: Fast IFGain2.ow Fatten: 30 dB		Peak Search		ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>10/10		2 AC	Agilent Spectrum Analyzer - Si RF 51 arker 1 462.6200
	10 dB/div Ref Offset 2 dB Ref 12.00 dBm	Next Peak	Akr1 462.62 MHz -57.717 dBm	Mk		dB dBm	Ref Offset dB/div Ref 12.0
	200 400 -180	Next Pk Right	-10.10 cBm				00 100 80
and a star of a strange s	-280	Next Pk Left					80
	-58.0	Marker Delta	nanga ana kina minina ana pasana	ana ya kafanya anga manini kafa na juga Manani anga ka	under the state of the second	Louises granger and a second	80
#VBW 300 kHz Swe	Start 10.000 GHz #Res BW 100 kHz #*	Mkr→CF	Stop 1.0000 GHz 92.73 ms (1001 pts)		/BW 300 kHz	#V	tart 30.0 MHz Res BW 100 kHz
Y FUNCTION FUNCTION FUNCTION 940 GHz 45.957 dBm	MRR MODE TRC: SCL X 1 1 f 24.940 GHz 3 3 3 3 4 5 5 5	Mkr→RefLvl	H FUNCTION VALUE	NCTION FUNCTION WIDTH		× 462.62 MHz	N 1 f 2 3 4 5 5 4 6 6
	7 8 9 10 11	More 1 of 2					7 8 9 0
	< MSG		υs	STATUS			a

10. MAXIMUM CONDUCTED OUTPUT POWER SPECTRAL DENSITY

10.1 MEASUREMENT PROCEDURE

- (1). Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- (2). Set the EUT Work on the top, the middle and the bottom operation frequency individually.
- (3). Set SPA Trace 1 Max hold, then View.

Note: The method of AVGPSD in the KDB 558074 item 10.3 was used in this testing.

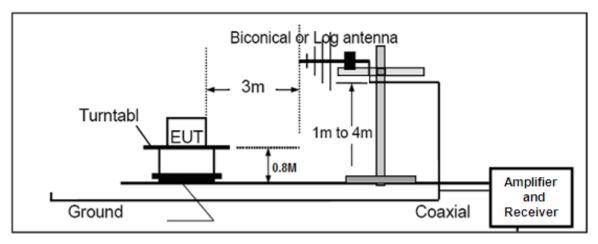
10.2 TEST SET-UP (BLOCK DIAGRAM OF CONFIGURATION)

Refer To Section 8.2.

10.3 MEASUREMENT EQUIPMENT USED

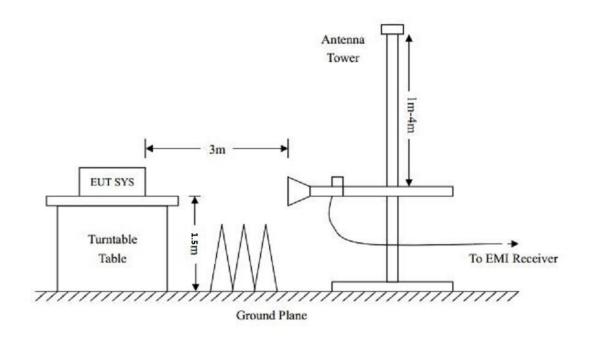
Refer To Section 6.

10.4 LIMITS AND MEASUREMENT RESULT


Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
	LCH	-6.030	8	PASS
11B	MCH	-5.644	8	PASS
	НСН	-6.941	8	PASS
	LCH	-12.296	8	PASS
11G	MCH	-10.328	8	PASS
	НСН	-8.836	8	PASS
	LCH	-13.260	8	PASS
11nHT20	MCH	-10.135	8	PASS
	НСН	-8.031	8	PASS
	LCH	-11.965	8	PASS
11nHT40	MCH	-12.846	8	PASS
	НСН	-12.295	8	PASS

11. RADIATED EMISSION

11.1. MEASUREMENT PROCEDURE


- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8.If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

11.2. TEST SETUP

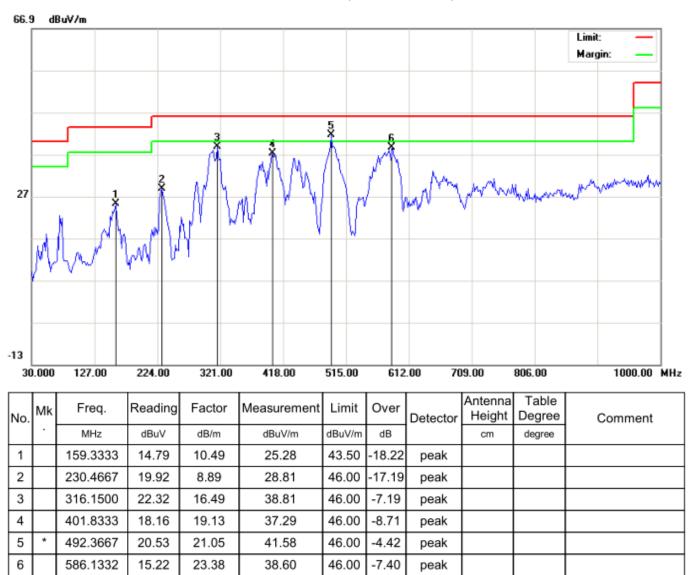
RADIATED EMISSION TEST SETUP 30MHz-1000MHz

11.3. LIMITS AND MEASUREMENT RESULT

15.209(a) Limit in the below table has to be followed

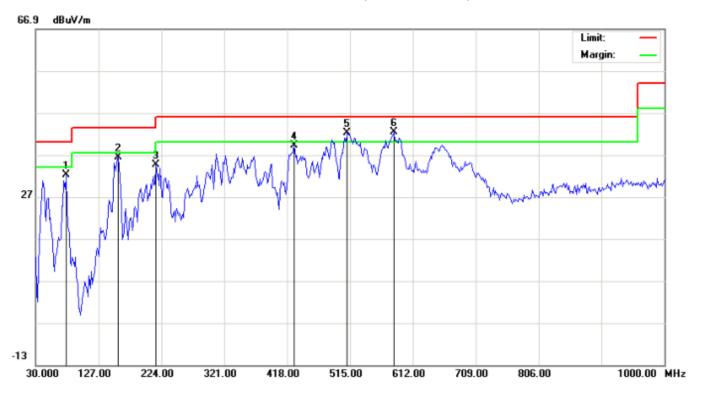
Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested For restricted band radiated emission,


the test records reported below are the worst result compared to other modes.

11.4. TEST RESULT

RADIATED EMISSION BELOW 30MHZ


No emission found between lowest internal used/generated frequencies to 30MHz.

RADIATED EMISSION BELOW 1GHZ

RADIATED EMISSION TEST- (30MHZ-1GHZ) -HORIZONTAL

RESULT: PASS

RADIATED EMISSION TEST- (30MHZ-1GHZ) -VERTICAL

No.	Mk	Freq.	Reading	Factor	Measurement	Limit	Over	Detector	Antenna Height	Table Degree	Comment
	·	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		cm	degree	
1		76.8833	29.60	2.57	32.17	40.00	-7.83	peak			
2		157.7167	20.99	15.32	36.31	43.50	-7.19	peak			
3		215.9167	24.07	10.56	34.63	43.50	-8.87	peak			
4		429.3167	19.33	19.96	39.29	46.00	-6.71	peak			
5	!	510.1500	20.82	21.40	42.22	46.00	-3.78	peak			
6	*	582.9000	19.85	22.64	42.49	46.00	-3.51	peak			

RESULT: PASS

Note: 1. Factor=Antenna Factor + Cable loss, Margin= Result -Limit.

2. The "Factor" value can be calculated automatically by software of measurement system.

3. All test modes had been pre-tested. The 802.11b at low channel is the worst case and recorded in the report.

RADIATED EMISSION ABOVE 1GHZ

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	Common		
TX 11b 2412MHz									
4824	40.73	10.44	51.17	74	-22.83	Pk	Horizontal		
4824	30.62	10.44	41.06	54	-12.94	AV	Horizontal		
7236	40.90	10.39	51.29	74	-22.71	pk	Horizontal		
7236	30.96	10.39	41.35	54	-12.65	AV	Horizontal		
4824	41.04	10.39	51.43	74	-22.57	Pk	Vertical		
4824	28.79	10.39	39.18	54	-14.82	AV	Vertical		
7236	41.63	10.68	52.31	74	-21.69	Pk	Vertical		
7236	29.50	10.68	40.18	54	-13.82	AV	Vertical		
			TX 11b 2437M	Hz					
4874	41.81	10.39	52.20	74	-21.80	Pk	Horizontal		
4874	31.77	10.39	42.16	54	-11.84	AV	Horizontal		
7311	40.65	12.68	53.33	74	-20.67	Pk	Horizontal		
7311	26.69	12.68	39.37	54	-14.63	AV	Horizontal		
4874	43.68	10.39	54.07	74	-19.93	Pk	Vertical		
4874	30.74	10.39	41.13	54	-12.87	AV	Vertical		
7311	41.45	12.68	54.13	74	-19.87	Pk	Vertical		
7311	27.69	12.68	40.37	54	-13.63	AV	Vertical		
			TX 11b 2462M	Hz					
4924	41.34	10.39	51.73	74	-22.27	pk	Horizontal		
4924	28.84	10.39	39.23	54	-14.77	AV	Horizontal		
7386	40.57	12.68	53.25	74	-20.75	pk	Horizontal		
7386	28.23	12.68	40.91	54	-13.09	AV	Horizontal		
4924	43.84	10.39	54.23	74	-19.77	pk	Vertical		
4924	30.65	10.39	41.04	54	-12.96	AV	Vertical		
7386	40.61	12.68	53.29	74	-20.71	pk	Vertical		
7386	28.73	12.68	41.41	54	-12.59	AV	Vertical		

RESULT: PASS

Note:

1. Factor = Antenna Factor + Cable Loss – Pre-amplifier.

2. Emission Level = Meter Reading + Factor

3. Margin = Emission Leve - Limit

4. All test modes had been pre-tested. The 802.11b mode is the worst case and recorded in the report.

No recording in the test report at least have 20dB margin.

12. BAND EDGE EMISSION

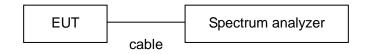
12.1. MEASUREMENT PROCEDURE

1)Radiated restricted band edge measurements

The radiated restricted band edge measurements are measured with an EMI test receiver connected to the receive antenna while the EUT is transmitting

2)Conducted Emissions at the bang edge

a)The transmitter output was connected to the spectrum analyzer


b)Set RBW=100kHz,VBW=300kHz

c)Suitable frequency span including 100kHz bandwidth from band edge

12.2. TEST SET-UP

Radiated same as 11.2

Conducted set up

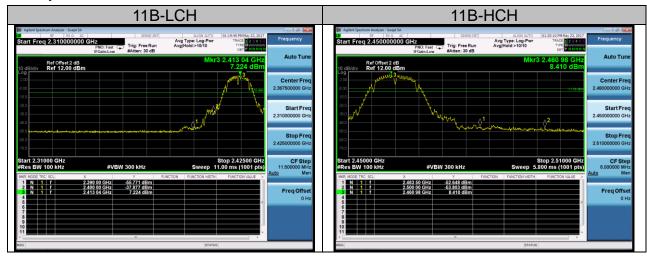
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	Comment			
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре				
TX 11b 2412MHz										
2399.9	66.20	-13	53.20	74	-20.80	pk	Horizontal			
2399.9	55.70	-13	42.70	54	-11.30	AV	Horizontal			
2400	66.55	-12.99	53.56	74	-20.44	pk	Horizontal			
2400	51.41	-12.99	38.42	54	-15.58	AV	Horizontal			
2399.9	65.87	-12.97	52.90	74	-21.10	pk	Vertical			
2399.9	54.11	-12.97	41.14	54	-12.86	AV	Vertical			
2400	64.79	-12.94	51.85	74	-22.15	pk	Vertical			
2400	54.27	-12.94	41.33	54	-12.67	AV	Vertical			
			TX 11b 2	2462MHz						
2483.5	65.93	-12.78	53.15	74	-20.85	pk	Horizontal			
2483.5	55.46	-12.78	42.68	54	-11.32	AV	Horizontal			
2483.6	65.77	-12.77	53.00	74	-21.00	pk	Horizontal			
2483.6	54.01	-12.77	41.24	54	-12.76	AV	Horizontal			
2483.5	66.70	-12.76	53.94	74	-20.06	pk	Vertical			
2483.5	54.47	-12.76	41.71	54	-12.29	AV	Vertical			
2483.6	66.63	-12.72	53.91	74	-20.09	pk	Vertical			
2483.6	52.28	-12.72	39.56	54	-14.44	AV	Vertical			

12.3. Radiated Test Result

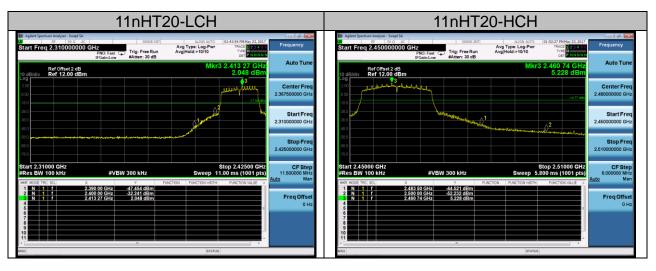
RESULT: PASS

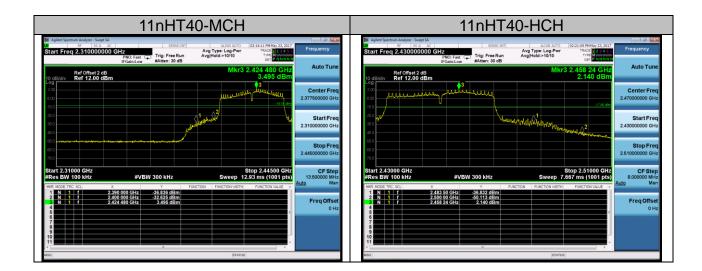
Note: Scan with 11b,11g,11n, the worst casw is 11b Mode

Factor=Antenna Factor + Cable loss - Amplifier gain,


Emission Level = Meter Reading + Factor

Margin= Emission Level -Limit.

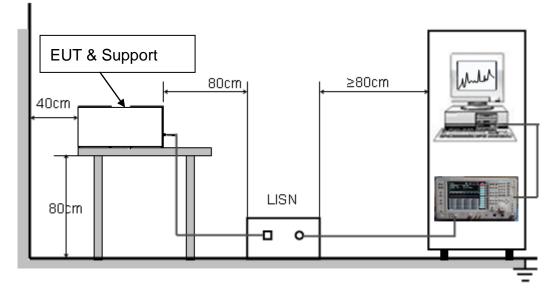

The "Factor" value can be calculated automatically by software of measurement system.


12.4. Conducted Test Result

Test Graph

13. FCC LINE CONDUCTED EMISSION TEST

13.1. LIMITS OF LINE CONDUCTED EMISSION TEST


Frequency	Maximum RF Line Voltage							
Frequency	Q.P.(dBuV)	Average(dBuV)						
150kHz~500kHz	66-56	56-46						
500kHz~5MHz	56	46						
5MHz~30MHz	60	50						

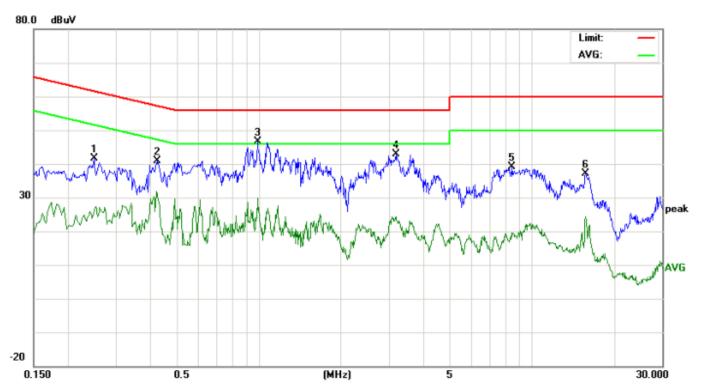
Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

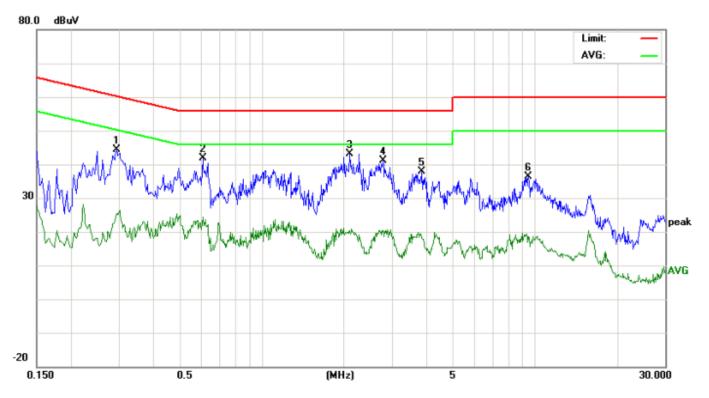
13.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

13.3. PRELIMINARY PROCEDURE OF LINE CONDUCTED EMISSION TEST


- The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. When the EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10 (see Test Facility for the dimensions of the ground plane used). When the EUT is a floor-standing equipment, it is placed on the ground plane which has a 3-12 mm non-conductive covering to insulate the EUT from the ground plane.
- 2. Support equipment, if needed, was placed as per ANSI C63.10.
- 3. All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. All support equipments received AC120V/60Hz power from a LISN, if any.
- 5. The EUT received charging voltage by adapter which received 120V/60Hzpower by a LISN..
- 6. The test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7. Analyzer / Receiver scanned from 150 kHz to 30MHz for emissions in each of the test modes.
- 8. During the above scans, the emissions were maximized by cable manipulation.
- 9. The test mode(s) were scanned during the preliminary test.

Then, the EUT configuration and cable configuration of the above highest emission level were recorded for reference of final testing.

13.4. FINAL PROCEDURE OF LINE CONDUCTED EMISSION TEST

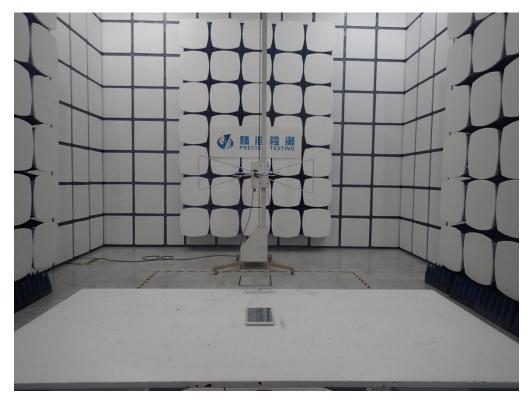

- 1. EUT and support equipment was set up on the test bench as per step 2 of the preliminary test.
- A scan was taken on both power lines, Line 1 and Line 2, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. If EUT emission level was less –2dB to the A.V. limit in Peak mode, then the emission signal was re-checked using Q.P and Average detector.
- 3. The test data of the worst case condition(s) was reported on the Summary Data page.

13.5. TEST RESULT OF LINE CONDUCTED EMISSION TEST

LINE CONDUCTED EMISSION TEST LINE 1-L

No. Freq.		Reading_Level (dBuV)		Correct Factor	Measurement (dBuV)			Limit (dBuV)		Margin (dB)		P/F	Comment	
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.2493	31.42		15.88	10.27	41.69		26.15	61.78	51.78	-20.09	-25.63	Р	
2	0.4258	30.40		20.64	10.35	40.75		30.99	57.33	47.33	-16.58	-16.34	Р	
3	0.9887	36.14		19.48	10.37	46.51		29.85	56.00	46.00	-9.49	-16.15	Р	
4	3.1722	32.44		13.82	10.54	42.98		24.36	56.00	46.00	-13.02	-21.64	Р	
5	8.4548	28.88		7.92	10.34	39.22		18.26	60.00	50.00	-20.78	-31.74	Р	
6	15.7167	26.92		14.16	10.11	37.03		24.27	60.00	50.00	-22.97	-25.73	Р	

Line Conducted Emission Test Line 2-N


No. Freq.		Reading_Level (dBuV)		Correct Measurement Factor (dBuV)		Limit (dBuV)		Margin (dB)		P/F	Comment			
	(MHz)	Peak	QP	AVG	dB	Peak	QP	AVG	QP	AVG	QP	AVG		
1	0.2940	33.98		15.13	10.29	44.27		25.42	60.41	50.41	-16.14	-24.99	Р	
2	0.6100	31.49		14.10	10.31	41.80		24.41	56.00	46.00	-14.20	-21.59	Р	
3	2.1099	32.94		10.01	10.27	43.21		20.28	56.00	46.00	-12.79	-25.72	Р	
4	2.7820	30.65		9.78	10.50	41.15		20.28	56.00	46.00	-14.85	-25.72	Р	
5	3.8620	27.31		7.90	10.45	37.76		18.35	56.00	46.00	-18.24	-27.65	Р	
6	9.4938	25.88		8.32	10.38	36.26		18.70	60.00	50.00	-23.74	-31.30	Р	

APPENDIX A: PHOTOGRAPHS OF TEST SETUP

LINE CONDUCTED EMISSION TEST SETUP

RADIATED EMISSION TEST SETUP

----END OF REPORT----