

4740 Discovery Drive | Lincoln, NE 68521 tel- 402.323.6233 | tel -888.657.6860 | fax - 402.323.6238 info@nceelabs.com | http://nceelabs.com

FCC Test Report Amended

Prepared for:

Lynq Technologies

Address:

4760 Walnut St Ste 108 Boulder, CO 80301

Product:

LNQ2900

FCC ID: IC ID: 2ARHMLNQ2900 24896-LNQ2900

Test Report No:

R20220216-20-E1B

Approved by:

eo Wu

Blake Winter EMC Test Engineer iNARTE EMC-50662-E

DATE:

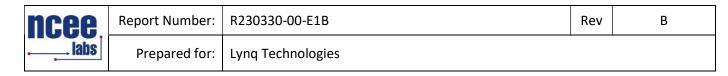
July 1, 2024

Total Pages:

41

The Nebraska Center for Excellence in Electronics (NCEE) authorizes the above-named company to reproduce this report provided it is reproduced in its entirety for use by the company's employees only. Any use that a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. NCEE accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. This report applies only to the items tested.

ncee labs	Report Number:	R230330-00-E1B	Rev	В
	Prepared for:	Lynq Technologies		


REVISION PAGE

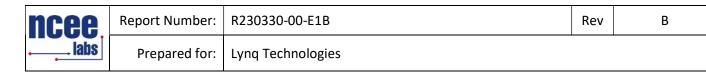
Rev. No.	Date	Description
		Issued by BWinter
0	4 April 2024	Reviewed by KVepuri
		Prepared by BWinter
		Revision A by BWinter
A	18 April 2024	 Page 9, unrestricted band edge, change relative units from dBm or dBuV to dB because it is relative.
		Revision B by BWinter
В	1 July 2024	
		Cover Page: add FCC ID and IC ID.

Incee labs	Report Number:	R230330-00-E1B	Rev	В
	Prepared for:	Lynq Technologies		

CONTENTS

Revi	sion Pa	ge	2
1.0	Sum	nmary of test results	4
2.0	EUT	Description	5
	2.1	Equipment under test	5
	2.2	Description of test modes	5
	2.3	Description of support units	5
3.0	Lab	oratory and General Test Description	6
	3.1	Laboratory description	6
	3.2	Test personnel	6
	3.3	Test equipment	7
	3.4	General Test Procedure and Setup for Radio Measuremnts	8
4.0	Res	ults	9
	4.1	Output Power	10
	4.2	Bandwidth	11
	4.3	Duty Cycle	12
	4.4	Radiated emissions	13
	4.5	Conducted Spurious Emissions	20
	4.6	Band edges	27
	4.7	Power Spectral Density	29
	4.8	Conducted AC Mains Emissions	30
		asurement Uncertainty	
Anne	ex B: Sam	nple Field Strength Calculation	33
Арр	endix C	– Graphs and Tables	34
REP		ND	41

1.0 SUMMARY OF TEST RESULTS


The worst-case measurements were reported in this report. Summary of test results presented in this report correspond to the following section:

FCC Part 15.247

The EUT has been tested according to the following specifications:

(1) US Code of Federal Regulations, Title 47, Part 15

APPLIED STANDARDS AND REGULATIONS					
Standard Section	Test Type	Result			
FCC Part 15.247(b)(3)	Peak output power	Pass			
FCC Part 15.247(a)(2)	Bandwidth	Pass			
FCC Part 15.209	Receiver Radiated Emissions	Pass			
FCC Part 15.209 (restricted bands), 15.247 (unrestricted)	Transmitter Radiated Emissions	Pass			
FCC Part 15.247(e)	Power Spectral Density	Pass			
FCC Part 15.209, 15.247(d)	Band Edge Measurement	Pass			
FCC Part 15.207	Conducted Emissions	Pass			

2.0 EUT DESCRIPTION

2.1 EQUIPMENT UNDER TEST

Summary and Operating Condition:

Manufacturer	Lynq Technologies
EUT	Lynq LNQ2900
EUT Received	10 November 2023
EUT Tested	22 November 2023- 19 March 2024
Serial No.	NCEE 011481 (Radiated Measurements) NCEE 011480 (Conducted Measurements)
Operating Band	902 – 928 MHz
Device Type	LORA DTS
Power Supply / Voltage	USB Power Supply, SN P161400162A1

NOTE: For more detailed features description, please refer to the manufacturer's specifications or user's manual.

2.2 DESCRIPTION OF TEST MODES

The following channels were tested:

Channel	Frequency
Low	902.5 MHz
Mid	915 MHz
High	927.4 MHz

These are the only representative channels tested in the frequency range according to FCC Part 15.31. See the operational description for a list of all channel frequencies and designations.

2.3 DESCRIPTION OF SUPPORT UNITS

USB Power Supply.

3.0 LABORATORY AND GENERAL TEST DESCRIPTION

3.1 LABORATORY DESCRIPTION

All testing was performed at the following Facility:

The Nebraska Center for Excellence in Electronics (NCEE Labs) 4740 Discovery Drive Lincoln, NE 68521

A2LA Certificate Number:	1953.01
FCC Accredited Test Site Designation No:	US1060
Industry Canada Test Site Registration No:	4294A-1
NCC CAB Identification No:	US0177

Environmental conditions varied slightly throughout the tests.

3.2 TEST PERSONNEL

No.	PERSONNEL	TITLE	ROLE
1	Karthik Vepuri	Test Engineer	Review
2	Blake Winter	Test Engineer	Testing and Report

Notes:

All personnel are permanent staff members of NCEE Labs. No testing or review was sub-contracted or performed by sub-contracted personnel.

ncee.	Report Number:	R230330-00-E1B	Rev	В
labs	Prepared for:	Lynq Technologies		

3.3 **TEST EQUIPMENT**

DESCRIPTION AND MANUFACTURER	MODEL NO.	SERIAL NO.	LAST CALIBRATION DATE	CALIBRATION DUE DATE
Keysight MXE Signal Analyzer (44GHz)**	N9038A	MY59050109	July 17, 2023	July 17, 2025
Keysight MXE Signal Analyzer (26.5GHz)**	N9038A	MY56400083	July 17, 2023	July 17, 2025
SunAR RF Motion	JB1	A091418	July 26, 2023	July 26, 2024
ETS EMCO Red Horn Antenna	3115	00218576	July 31, 2023	July 31, 2024
ETS EMCO Amplifier*	3115-PA	00218576	January 22, 2024	January 22, 2026
Trilithic High Pass Filter*	6HC330	23042	June 5, 2023	June 5, 2025
ETS – Lindgren- VSWR on 10m Chamber***	10m Semi- anechoic chamber- VSWR	4740 Discovery Drive	July 30, 2020	July 30, 2024
NCEE Labs-NSA on 10m Chamber*	10m Semi- anechoic chamber-NSA	NCEE-001	May 25, 2022	May 25, 2024
TDK Emissions Lab Software	V11.25	700307	NA	NA
RF Cable (preamplifier to antenna)*	MFR-57500	90-195-040	June 5, 2023	June 5, 2025
RF Cable (antenna to 10m chamber bulkhead)*	FSCM 64639	01E3872	June 5, 2023	June 5, 2025
RF Cable (10m chamber bulkhead to control room bulkhead)*	FSCM 64639	01E3864	June 5, 2023	June 5, 2025
RF Cable (control room bulkhead to test receiver)*	FSCM 64639	01F1206	June 5, 2023	June 5, 2025
N connector bulkhead (10m chamber)*	PE9128	NCEEBH1	June 5, 2023	June 5, 2025
N connector bulkhead (control room)*	PE9128	NCEEBH2	June 5, 2023	June 5, 2025

*Internal Characterization

2 Year Cal Cycle *4 Year Cal Cycle

Notes:

All equipment is owned by NCEE Labs and stored permanently at NCEE Labs facilities.

ncee.	Report Number:	R230330-00-E1B	Rev	В
labs	Prepared for:	Lynq Technologies		

3.4 GENERAL TEST PROCEDURE AND SETUP FOR RADIO MEASUREMNTS

Measurement type presented in this report (Please see the checked box below):

Conducted \boxtimes

The conducted measurements were performed by connecting the output of the transmitter directly into a spectrum analyzer using an impedance matched cable and connector soldered to the EUT in place of the antenna. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Figure 1 - Bandwidth Measurements Test Setup

Radiated 🛛

All the radiated measurements were taken at a distance of 3m from the EUT. The information regarding resolution bandwidth, video bandwidth, span and the detector used can be found in the graphs provided in Appendix C. All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

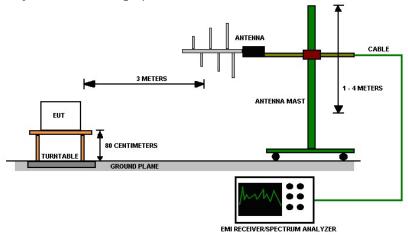
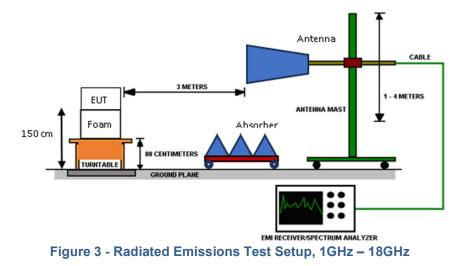



Figure 2 - Radiated Emissions Test Setup, 30MHz – 1GHz

ncee.	Report Number:	R230330-00-E1B	Rev	В
	Prepared for:	Lynq Technologies		

4.0 RESULTS

		DTS Radi	o Measurements	5		
CHANNEL	Occupied Bandwidth (kHz)	6 dB Bandwidth (MHz)	Peak OUTPUT POWER (dBm)	Peak OUTPUT POWER (mW)	PSD (dBm)	RESULT
Low	495.5	503.1	26.61	458.1	7.42	PASS
Mid	495.8	503.2	26.62	459.2	7.02	PASS
High	495.8	503.3	26.71	468.8	7.45	PASS
Occupied Band	dwidth = N/A; 6dB B		500 KHZ	Output Power Lir = 8 dBm	mit = 30 dBr	n; PSD Limit
		Unrestric	cted Band-Edge			
CHANNEL	Band edge /Measurement Frequency (MHz)	Relative Highest out of band level (dB)	Relative Fundamental (dB)	Delta (dB)	Min Delta (dB)	Result
Low	902.0	55.00				
	002.0	-55.96	-32.19	23.77	20.00	PASS
High	928.0	-55.96 72.67	-32.19 106.81	23.77 34.14	20.00	PASS PASS
High	928.0	72.67		34.14		
High CHANNEL	928.0	72.67	106.81	34.14		
	928.0 R Band edge /Measurement Frequency	72.67 Radiated Peak Highest out of band level (dBµV	106.81 Restricted Banc Measurement	34.14 I-Edge Limit (dBµV/m	20.00	PASS
CHANNEL	928.0 R Band edge /Measurement Frequency (MHz)	72.67 Radiated Peak Highest out of band level (dBµV /m @ 3m)	106.81 Restricted Banc Measurement Type*	34.14 I-Edge Limit (dBµV/m @ 3m)	20.00 Margin	PASS Result

4.1 OUTPUT POWER

Test Method: Power measurements were performed using ANSI C63.10, Section 11.9.2.2.2.

Limits of power measurements:

For FCC Part 15.247 Device:

The maximum allowed output power is 30 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup: Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the output power plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. The measurements are listed in the tables in section 4.0.

4.2 **BANDWIDTH**

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of bandwidth measurements:

For FCC Part 15.247 Device:

The 99% occupied bandwidth is for informational purposes only. The 6dB bandwidth of the signal must be greater than 500 kHz.

Test procedures:

Details can be found in section 3.4 of this report.

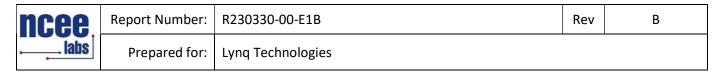
Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:


Details can be found in section 2.1 of this report.

Test results:

PASS

Comments:

- 1. All the bandwidth plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. The measurements are listed in the tables in section 4.0.

4.3 DUTY CYCLE

The transmitter had a duty cycle of >98%.

4.4 RADIATED EMISSIONS

Test Method: ANSI C63.10-2013, Section 6.5, 6.6

Limits for radiated emissions measurements:

Emissions radiated outside of the specified bands shall be applied to the limits in 15.209 as followed:

FREQUENCIES (MHz)	FIELD STRENGTH (μV/m)	MEASUREMENT DISTANCE (m)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	3
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dB μ V/m) = 20 * log * Emission level (μ V/m).

3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits by more than 20dB under any condition of modulation.

4. The EUT was tested for spurious emissions while running off of battery power.

Test procedures:

a. The EUT was placed on the top of a rotating table above the ground plane in a 10 meter semianechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The table was 0.8m high for measurements from 30MHz-1Ghz and 1.5m for measurements from 1GHz and higher.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna was a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are used to make the measurement.

d. For each suspected emission, the EUT was arranged to maximize its emissions and then the antenna height was varied from 1 meter to 4 meters and the rotating table was turned from 0 degrees to 360 degrees to find the maximum emission reading.

e. The test-receiver system was set to use a peak detector with a specified resolution bandwidth. For spectrum analyzer measurements, the composite maximum of several analyzer sweeps was used for final measurements.

f. If the emission level of the EUT in peak mode was 6dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise, the emissions that did not have 6 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. The EUT was maximized in all 3 orthogonal positions. The results are presented for the axis that had the highest emissions.

ncee.	Report Number:	R230330-00-E1B	Rev	В
	Prepared for:	Lynq Technologies		

Test setup:

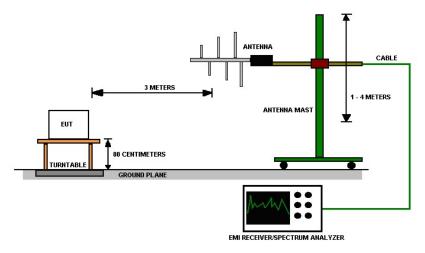
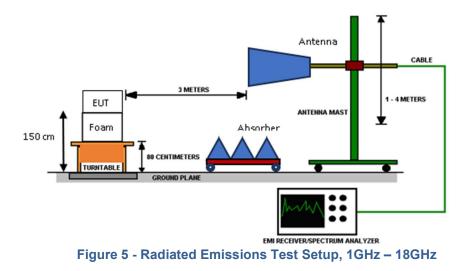
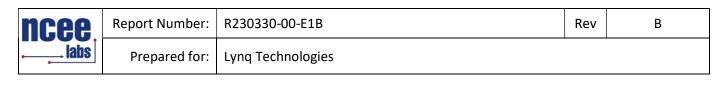



Figure 4 - Radiated Emissions Test Setup, 30MHz – 1GHz

NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequencies below 1GHz.

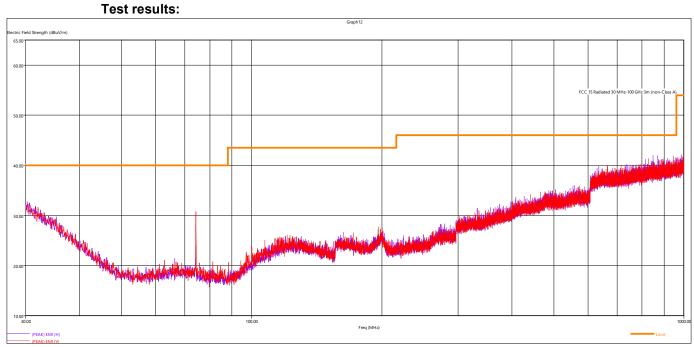
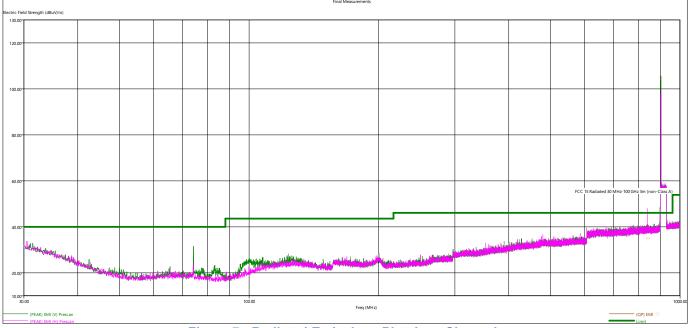
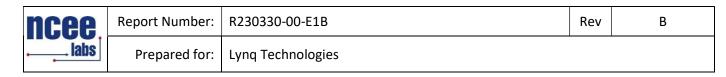

2. The resolution bandwidth was 1 MHz for all measurements and at frequencies above 1GHz, A peak and RMS detector was used for all measurements above 1GHz. Measurements were made with an EMI Receiver.

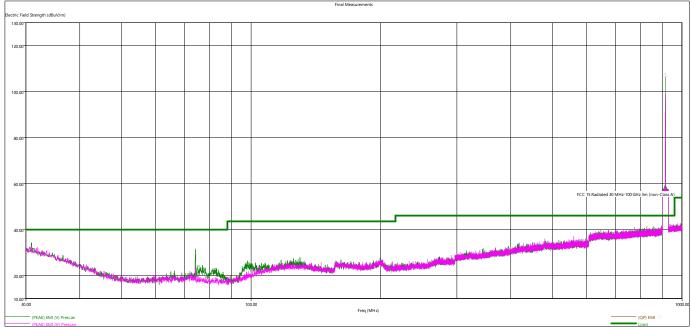
Deviations from test standard:

No deviation.

EUT operating conditions

Details can be found in section 2.1 of this report.


Figure 6 - Radiated Emissions Plot, Receive

No peak emissions were within 6dB of the limit, and the emissions from this plot are not tabulated.

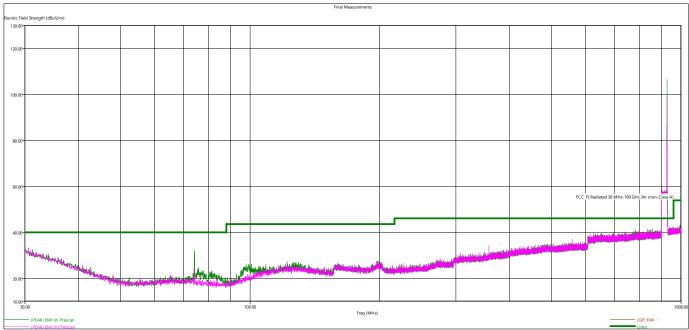


Figure 9 - Radiated Emissions Plot, High Channel

REMARKS:

- 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission level

В

Prepared for: Lynq Technologies

	Quasi-Peak Measurements, 30 MHz – 1GHz, DTS												
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel						
MHz	dBµV/m	dBµV/m	dB	cm.	deg.								
841.329840	35.02	46.02	11.00	303.74	54.75	Н	Low						
899.770800	46.90	46.02	-0.88	190.07	198.75	V	Low						
902.525040	104.62	46.02	-58.60	191.68	201.75	V	Low						
915.160560	107.10	46.02	-61.08	125.00	350.00	V	Mid						
927.180000	106.50	46.02	-60.48	125.00	350.00	V	High						
930.380400	47.61	46.02	-1.59	173.47	206.75	V	High						

Prepared for: Lynq Technologies

	Peak N	leasureme	ents, 1GH	lz – 18G⊦	lz, DTS		
Frequency	Level	Limit	Margin	Height	Angle	Pol	Channel
MHz	dBµV/m	dBµV/m	dB	cm.	deg.		
1805.314000	39.33	73.98	34.65	196.94	359.50	Н	Low
3610.354000	43.44	73.98	30.54	99.98	27.75	Н	Low
6316.518000	52.90	73.98	21.08	200.04	63.75	Н	Low
8121.476000	48.68	73.98	25.30	300.22	6.75	Н	Low
9023.922000	51.59	73.98	22.39	300.16	27.25	V	Low
1829.982000	38.30	73.98	35.68	267.14	0.00	Н	Mid
6403.284000	49.58	73.98	24.40	400.04	6.75	Н	Mid
3660.000000	44.58	73.98	29.40	200.04	332.00	V	Mid
9150.386000	51.91	73.98	22.07	200.10	176.25	V	Mid
5564.760000	47.26	73.98	26.72	400.10	14.25	Н	High
3708.746000	46.97	73.98	27.01	300.22	357.75	V	High
9272.320000	52.73	73.98	21.25	200.10	168.25	V	High

The worst-case is shown in the plot and table above.

All other measurements were found to be at least 6 dB Below the limit.

	Av	erage Me	asuremer	nts, 1GHz	: – 18GHz	z, DTS	
Frequency	Level	Limit	Margin	Height	Angle	Pol	Ch.
MHz	dBµV/m	dBµV/m	dB	cm.	deg.		
1805.314000	31.61	53.98	21.48	196.94	359.50	Н	Low
3610.354000	32.50	53.98	21.48	99.98	27.75	Н	Low
6316.518000	40.32	53.98	19.27	200.04	63.75	Н	Low
8121.476000	34.71	53.98	17.01	300.22	6.75	Н	Low
9023.922000	36.97	53.98	21.48	300.16	27.25	V	Low
1829.982000	30.77	53.98	23.21	267.14	0.00	Н	Mid
6403.284000	34.67	53.98	19.31	400.04	6.75	Н	Mid
3660.000000	34.13	53.98	19.85	200.04	332.00	V	Mid
9150.386000	37.76	53.98	16.22	200.10	176.25	V	Mid
5564.760000	34.87	53.98	19.11	400.10	14.25	Н	High
3708.746000	35.45	53.98	18.53	300.22	357.75	V	High
9272.320000	38.72	53.98	15.26	200.10	168.25	V	High

The worst-case is shown in the plot and table above.

All other measurements were found to be at least 6 dB Below the limit.

В

4.5 CONDUCTED SPURIOUS EMISSIONS

Test Method: ANSI C63.10-2013, Section 6.7 Limits of spurious emissions:

From FCC Part 15.247:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

Test procedures:

The highest emissions level was measured and recorded. All spurious measurements were evaluated to 30dB below the fundamental. More details can be found in section 3.4 of this report. The line shown in the plots is a reference line placed at -20dBm.

Deviations from test standard:

NA

Test setup:

Test setup details can be found in section 3.4 of this report.

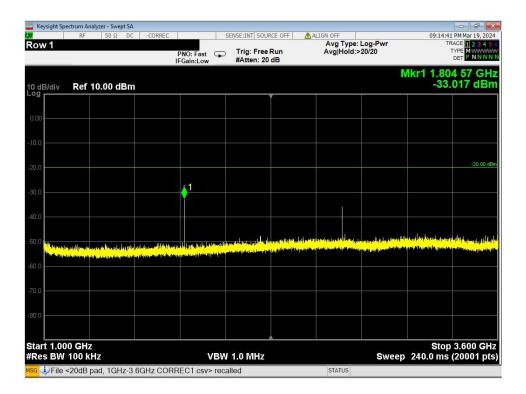
EUT operating conditions:

Details can be found in section 2.1 of this report.

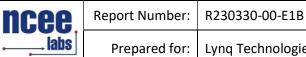
Test results:

Data rates and channels were investigated, and worst case was reported, no emissions exceeded the limits.

There was no distinguishable difference between low and high data rate.


В

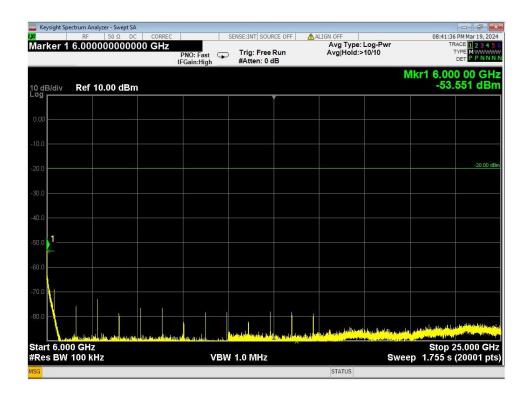
Rev



Keysight Sp	ectrum Analyzer - Swept S								
oflow	RF PRESEL 50 Ω D el 30.00 dBm	C CORREC	SE	NSE:INT SOURC	E OFF AL	IGN OFF Avg Type: I	og-Pwr		PM Mar 19, 20
	ar 50.00 dBm		l:Fast 🖵 in:Low	Trig: Free R #Atten: 20 d		Avg Hold: 6		8	
dB/div	Ref 30.00 dBr	n						Mkr1 90 26.	2.42 MF 338 dB
^{yg}			le la	Ť					1
0.0									
).0									
.0									
									-20.00 c
.0									
.0									
									1
.0									
							I mant	and a second problem	Mary Junature
dula the	for the set of the set	a dama di kanda biya.	atis di tanga indi si				Matematic stations	Indexes and the plant of	The second s
.0 <mark>Marketall</mark>	Colory & Color Descent of Color States		itel, as caractelised						
	300 GHz							Stop 1	.0000 GI
	100 kHz		VBW	1.0 MHz			Sweep	90.67 ms	(20001 pi
i						STATUS			

Figure 10 - Conducted Spurious Emissions, DTS, 30MHz – 1GHz, Low Channel

Figure 11 - Conducted Spurious Emissions, DTS, 1GHz – 3.6GHz, Low Channel


Start 3.600 GHz #Res BW 100 kHz

Prepa	red for:	Lynq Te	chnologie	es				
🔐 Keysight Sp	ectrum Analyzer - Swe	pt SA						
<mark>x</mark> nput Me	RF 50 Ω ch Atten 0 c		PNO: Fast G	Trig: Free Run #Atten: 0 dB	ALIGN OFF Avg Typ Avg Hold	e: Log-Pwr l:>10/10	TF	PM Mar 19, 2024 ACE 1 2 3 4 5 6 TYPE M WWWW DET P P N N N N
10 dB/div Log	Ref 0.88 dE	im					Mkr1 3.60 -54.	9 36 GHz 436 dBm
-9.12								
-19.1								-20.00 dBm
-29.1								
-39.1								

Figure 12 - Conducted Spurious Emissions, DTS, 3.6GHz – 6GHz, Low Channel

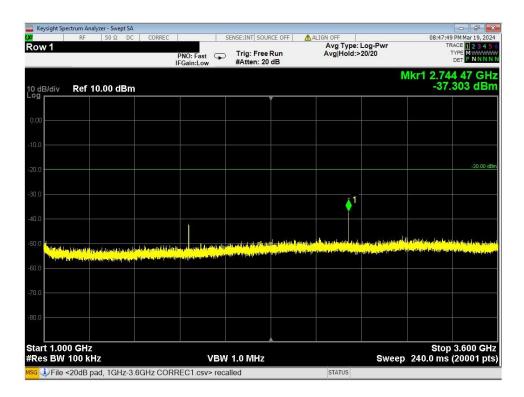
STATUS

VBW 1.0 MHz

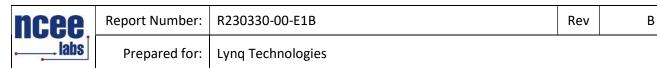
Figure 13 - Conducted Spurious Emissions, DTS, 6GHz – 25GHz, Low Channel

Rev

Stop 6.000 GHz Sweep 222.7 ms (20001 pts)


Rev

В


Lynq Technologies

	RF PRESI	EL 50 Ω	DC	CORREC		SE	ENSE:INT SOUR	RCE OFF	ALIGN C					lar 19, 20
ef Lev	el 30.0	0 dBm			PNO: Fast FGain:Low	₽	Trig: Free #Atten: 20	Run dB		vg Type: I g Hold:>		T	TYPE	1234 MWWW PSNN
dB/div	Ref	30.00 d	Bm									Mkr1 91 28	15.2 .919	7 MH 9 dB
													1	
1.0														
.0														
.0														
.0														
.0														
0.0	ىتىلغان باترە	le alighter better	dan silanin	n de la	A lumulh mprinte	en like	alla sittle dall de		a tana a tanàn Mandra dia mandritra				4	R. L. Reflace
.0	<mark>himin an chin</mark>	Contraction of the option of t	hand of the last		i i Pithoni _{ta} dri se ji t									
	300 GH / 100 k				<u>ر</u>	BW	1.0 MHz				Sween	Stop 90.67 ms	1.00	00 GI
CS DA							110 11112			TATUS	Gweep	oolon Illis		and b

Figure 14 - Conducted Spurious Emissions, DTS, 30MHz – 1GHz, Mid Channel

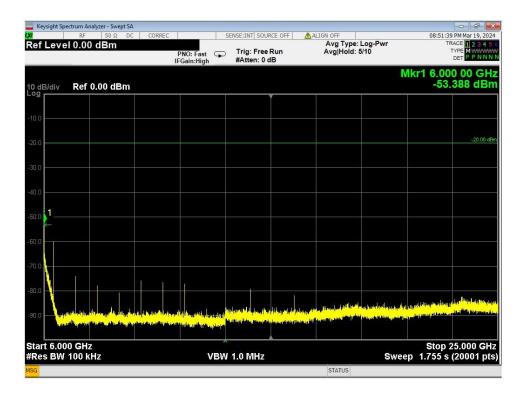


Figure 15 - Conducted Spurious Emissions, DTS, 1GHz – 3.6GHz, Mid Channel

Keysight Spe	ctrum Analyzer - Swept S								
		DC CORREC		SENSE:INT SOUR	ICE OFF	LIGN OFF			4 PM Mar 19, 20
put Me	ch Atten 0 dB		PNO: Fast 🕞 FGain:High	Trig: Free #Atten: 0 c		Avg Type: Avg Hold:>			TYPE MWWW DET P P N N
dB/div	Ref 0.88 dBm	n					N	lkr1 5.48 -53.	9 88 GH 993 dB
g									
12									
.1									-20.00
.1									
9.1									
3.1							â -	l	
							•		
100									
0.1				1					
				- 1. AU	Second and				
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a. I. d. don mid a birdi in	Phylab old a million	hi bid Mandaha a		White part of the	l sk likestillet strengt	Address Courses Laboration		haadaaltihaat
Call State La	top-man land a shift to top-of	The Install Congrature Ball	a faith a statistic state of	on both bits	and the state of the line.	and the state of the second		antice and the state of the sta	period and the period
9.1					1				
art 3.60				1. 199. 95. Percent					6.000 GI
tes BW	100 kHz		VBV	V 1.0 MHz			Sweep	222.7 ms	(20001 p
à						STATUS			

Figure 16 - Conducted Spurious Emissions, DTS, 3.6GHz – 6GHz, Mid Channel

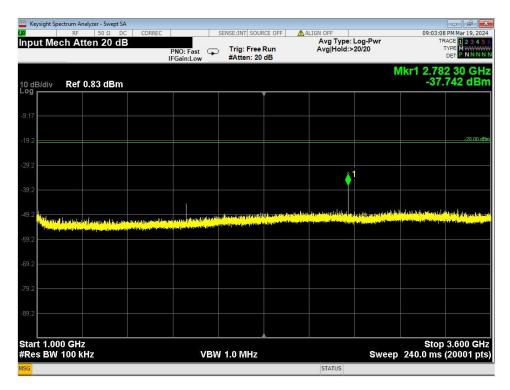
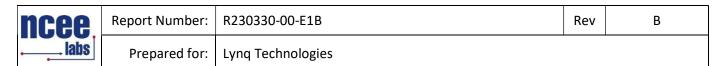


Figure 17 - Conducted Spurious Emissions, DTS, 6GHz – 25GHz, Mid Channel



	ectrum Analyzer - Swept SA					211-11-12-11			- 6
	RF PRESEL 50 Ω DC	CORREC	S	ENSE:INT SOUR	CE OFF	LIGN OFF		09:05:26 P	
ef Leve	l 30.00 dBm	PNO: F IFGain:	Fast 🖵 :Low	Trig: Free #Atten: 20		Avg Type: Avg Hold:>		TY	2 3 4 PE MWWW ET P S N N
dB/div	Ref 30.00 dBm							Mkr1 927. 28.8	20 MI 51 dB
									1
.0									
.0									
0									
0									
.0									-20.00
0									
.0									
0	in m. A. da a dana a daha	وورو مرور والمرور والم	والمراجع والمراجع		in the state of the second	literation and the liter		annik is en en hillen	
. Charles		die een gebeure die die beste die een gebeure gebeure gebeure die die beste die beste die beste die beste die b	and a local state of the	and the second	an an ann an Anna Anna Anna Anna Anna A	in the second			
	00 GHz 100 kHz		VBW	1.0 MHz			Sweep	Stop 1.0 90.67 ms (2	0000 G 0001 p
1						STATUS			

Figure 18 - Conducted Spurious Emissions, DTS, 30MHz-1GHz, High Channel

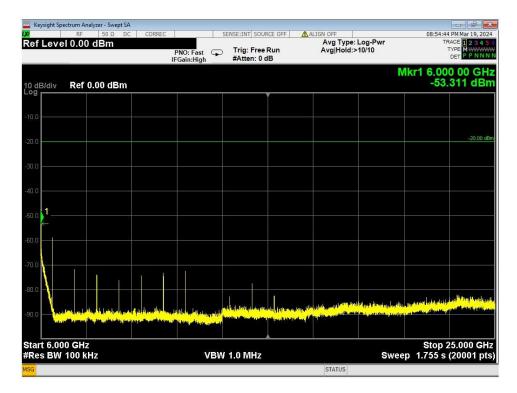


Figure 19 - Conducted Spurious Emissions, DTS, 1GHz – 3.6GHz, High Channel

Keysight Sp	ectrum Analyzer - Swept SA	4							
1	RF 50 Ω D0	CORREC		SENSE:INT SOUR	ICE OFF	LIGN OFF			PM Mar 19, 20
nput Me	ch Atten 0 dB		'NO: Fast 😱 Gain:High	Trig: Free #Atten: 0 d		Avg Type: Avg Hold:>	10/10	1	ACE 1 2 3 4 TYPE M WWW DET P P N N
0 dB/div	Ref 0.88 dBm						N	lkr1 5.56 -51.	3 20 GH 653 dB
12									
0.1									-20.00
11		2							
0.1									
.1									
en <mark>ukangal</mark>	and a fatelite dette in the second	a			lithers to be deside.	and the state of the	ر مى بۇرىيىلىلىرىن بەر يىرىمىلىلىدۇ.		يعداده وطور الم
Allonye Aq 0.1	nan anis di kanani di kabilana _{da} n		A REAL PROPERTY OF	and the of the states of the	Martin gjakan	Program Participante and Participante and Participante and Participante and Participante and Participante and P			
art 3.60 Res BW	00 GHz 100 kHz		VBW	/ 1.0 MHz			Sweep	Stop 222.7 ms	6.000 G (20001 p
G						STATUS			

Figure 20 - Conducted Spurious Emissions, DTS, 3.6GHz – 6GHz, High Channel

Figure 21 - Conducted Spurious Emissions, DTS, 6GHz – 25GHz, High Channel

4.6 BAND EDGES

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of band-edge measurements:

For FCC Part 15.247 Device:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

Test procedures:

The highest emissions level beyond the band-edge was measured and recorded. All band edge measurements were evaluated to the general limits in Part 15.209. More details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Test setup details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the band edge plots can be found in Appendix C.
- 2. If the device falls under FCC Part 15.247 (Details can be found in summary of test results), compliance is shown in the unrestricted band edges by showing minimum delta of 20 dB between peak and the band edge.
- 3. The restricted band edge compliance is shown by comparing it to the general limit defined in Part 15.209. The limit shown in the graph accounts for the antenna gain of the device.

4.7 **POWER SPECTRAL DENSITY**

Test Method: All the radio measurements were performed using the sections from ANSI C63.10, details about the section used can be found in the spectrum analyzer titles on the graph.

Limits of power measurements:

For FCC Part 15.247 Device:

The maximum PSD allowed is 8 dBm.

Test procedures:

Details can be found in section 3.4 of this report.

Deviations from test standard:

No deviation.

Test setup:

Details can be found in section 3.4 of this report.

EUT operating conditions:

Details can be found in section 2.1 of this report.

Test results:

Pass

Comments:

- 1. All the Power Spectral Density (PSD) plots can be found in Appendix C.
- 2. All the measurements were found to be compliant.
- 3. The measurements are listed in the tables in section 4.0.

В

4.8 CONDUCTED AC MAINS EMISSIONS

Test Method: ANSI C63.10-2013, Section(s) 6.2

Limits for conducted emissions measurements:

	FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)					
	<u> </u>	Quasi-peak	Average				
	0.15-0.5	66 to 56	56 to 46				
	0.5-5	56	46				
	5-30	60	50				

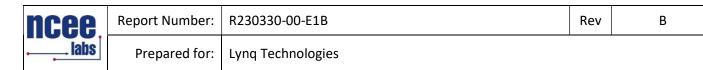
Notes:

1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

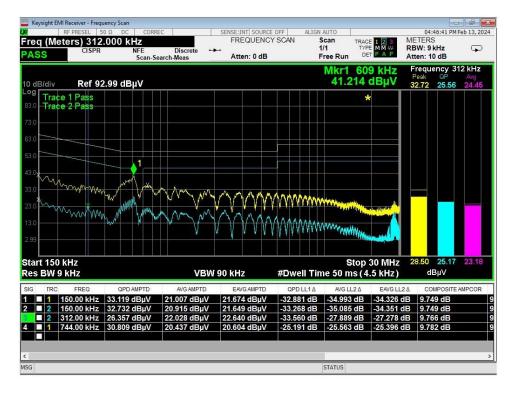
Test Procedures:

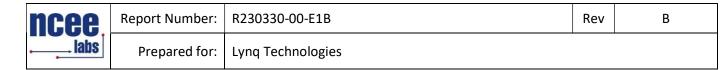

- a. The EUT was placed 0.8m above a ground reference plane and 0.4 meters from the conducting wall of a shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). The LISN provides 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference as well as the ground.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels over 10dB under the prescribed limits are not reported.
- d. Results were compared to the 15.207 limits.

Deviation from the test standard:

No deviation

EUT operating conditions:


Details can be found in section 2.1 of this report. USB power supply was used for AC Conducted Emissions.


Test Results:

. Figure 22 - Conducted Emissions, Line

ANNEX A: MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels apply to tests performed in this test report:

Test	Frequency Range	NCEE Labs Uncertainty Value (dB)	Maximum Uncertainty Values per CISPR 16-4-2:2011/A1:2018
AC Line Conducted Emissions	150kHz - 30MHz	3.03	3.60
Radiated Emissions, 3m	30MHz - 1GHz	4.19	5.34
Radiated Emissions, 3m	1GHz – 18GHz	5.08	5.48

Expanded uncertainty values are calculated to a confidence level of 95%.

NCEE Labs meets the maximum uncertainty requirements per CISPR 16-4-2:2011/A1:2018, and therefore does not require a minimum passing margin to state that an EUT is less than the field strength limits of the applicable CISPR, IEC or EN limit per CISPR 16-4-2:2011/A1:2018, Section 4.1.

NCEE Labs employs tilting when testing at 3m test distance. The maximum uncertainty associated with this method is used.

Maximum uncertainty values show the worse-case of all test distances used.

ncee.	Report Number:	R230330-00-E1B	Rev	В
	Prepared for:	Lynq Technologies		

ANNEX B: SAMPLE FIELD STRENGTH CALCULATION

Radiated Emissions

The field strength is calculated in decibels (dB) by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = R + AF - (-CF + AG)

where FS = Field Strength

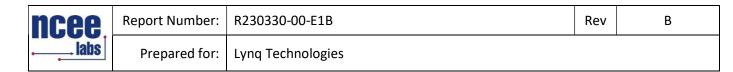
R = Receiver Amplitude Receiver reading in $dB\mu V$

- AF = Antenna Factor
- CF = Cable Attenuation Factor
- AG = Preamplifier Amplifier Gain

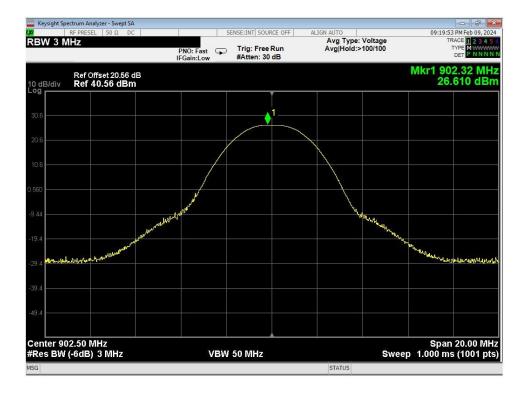
Assume a receiver reading of 55.00 dB μ V is obtained. The Antenna Factor of 12.00 and a Cable Factor of 1.10 is added. The Amplifier Gain of 20 dB is subtracted, giving a field strength of 48.10 dB μ V/m.

 $FS = 55.00 + 12.00 - (-1.10 + 20.00) = 48.1 dB\mu V/m$

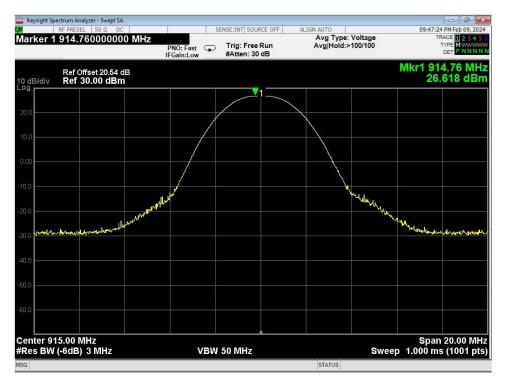
The 48.1 dB μ V/m value can be mathematically converted to its corresponding level in μ V/m.


Level in μ V/m = Common Antilogarithm [(48.1 dB μ V/m)/20]= 254.1 μ V/m

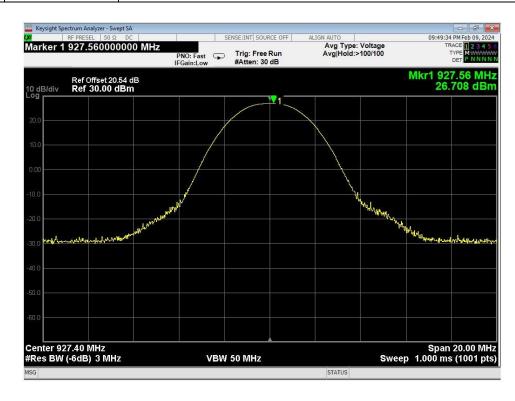
Conducted Emissions


Receiver readings are compared directly to the conducted emissions limits in decibels (dB) by adding the cable loss and LISN insertion loss to the receiver reading. The basic equations with a sample calculation is as follows;

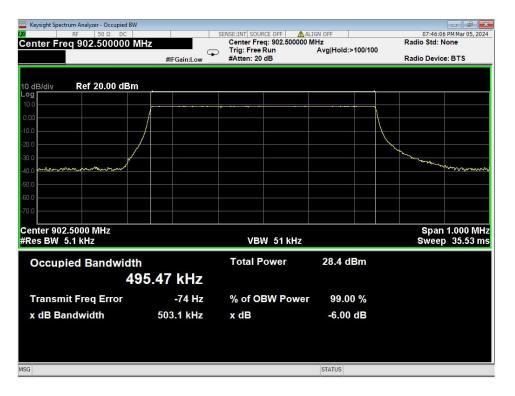
FS = R + IL - (-CF)

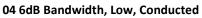

- where V = Conducted Emissions Voltage Measurement
 - $R = Receiver reading in dB\mu V$
 - IL = LISN Insertion Loss
 - CF = Cable Attenuation Factor

APPENDIX C – GRAPHS AND TABLES

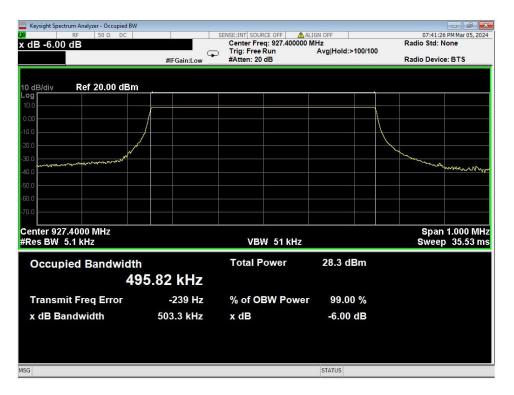


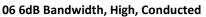
01 Average Power, Low, Conducted




02 Average Power, Mid, Conducted

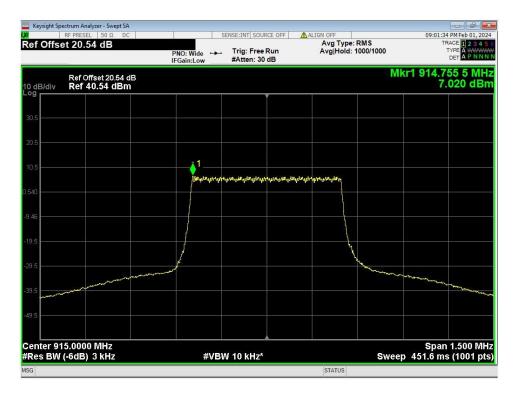
03 Average Power, High, Conducted





Keysight Spectrum Analyzer - Occupied B	w			
Center Freq 915.000000	MHz	SENSE:INT SOURCE OFF ALL Center Freg: 915.000000 M		07:43:57 PM Mar 05, 2024 Radio Std: None
Contor Freq 515.00000	Ģ	Trias Free Dun	Avg Hold:>100/100	Radio Device: BTS
	#IFGain:Low	#Atten: 20 dB		Radio Device: B I S
teres - storier at sol				
10 dB/div Ref 20.00 dBi	n			
10.0				
0.00				
-10.0	_/		1	
-20.0				
-30.0				
-30.0 -40.0 Abover man and a second				ward from the ward the second
-50.0				
-50.0				
-70.0				
-70.0				
Center 915.0000 MHz				Span 1.000 MHz
#Res BW 5.1 kHz		VBW 51 kHz		Sweep 35.53 ms
Occupied Bandwid	the	Total Power	28.3 dBm	
		Total Tower	20.5 0.5	
4	95.83 kHz			
Transmit Freq Error	-233 Hz	% of OBW Power	99.00 %	
x dB Bandwidth	503.2 kHz	x dB	-6.00 dB	
	303.2 KHZ	X UB	-0.00 uB	
Parriera II.			11	
MSG			STATUS	

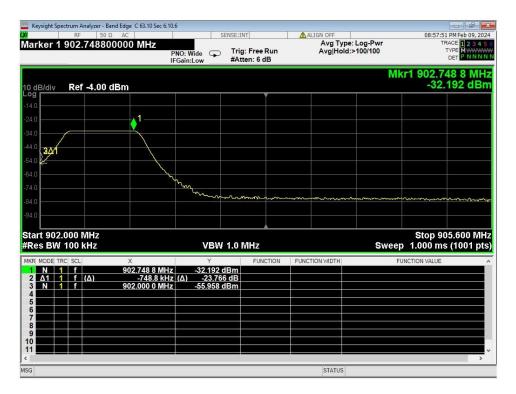
05 6dB Bandwidth, Mid, Conducted

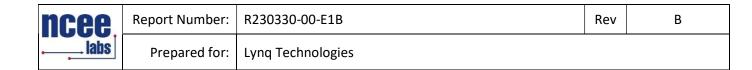


Prepared for: Lynq Technologies

F	F PRESEL 50 Q DC	5	ENSE:INT SOURCE OFF	ALIGN OFF	08:49:13 PMI	Feb 01, 20
arker 1 S	902.744500000 M	IHZ PNO: Wide ↔ IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type: RMS Avg Hold: 1000/10	00 TYPE DET	1 2 3 4 5 A www A P N N 1
) dB/div	Ref Offset 20.56 dB Ref 40.56 dBm				Mkr1 902.744 7.42	5 MH 3 dBi
0.6						
).6						
.6						
50		Mahadhadhad	เสาร์สาร์สาร์สาร์สาร์สาร์สาร์สาร์สาร์สาร์	nur ny man fan f		
44						
.4						
.4				hours		
.4	and had the for the state of th				when when when when when when when when	
4						
	2.5000 MHz				Span 1.	500 MI
es BW (·	-6dB) 3 kHz	#VBV	/ 10 kHz*	discourse all	Sweep 451.6 ms (1	001 pi

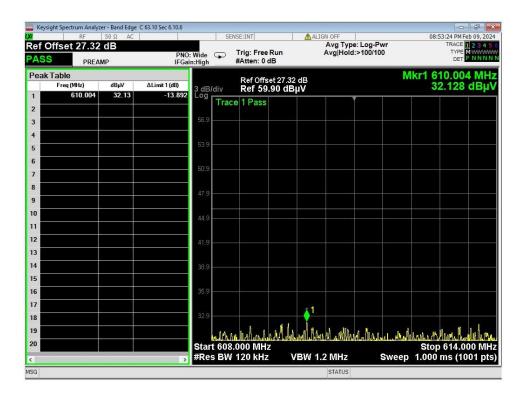
07 PSD, Low, Conducted


08 PSD, Mid, Conducted

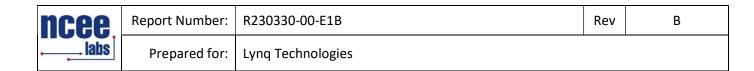

Prepared for: Lynq Technologies

Keysight Spi	ectrum Analyzer - Swept SA RF PRESEL 50 Ω DC	CENCEJINE	SOURCE OFF	ALIGN OFF	09:20:13 PM Feb 01, 20:
enter F	req 927.400000 MH	Z PNO:Wide → Trig:F	Free Run h: 30 dB	Avg Type: RMS Avg Hold: 1000/1000	0 TRACE 1 2 3 4 TYPE A WWW DET A P N N
) dB/div	Ref Offset 20.52 dB Ref 40.52 dBm				Mkr1 927.641 5 MH 7.452 dB
0.5					
1.5					
),5				∳ ¹	
20		///*#1/*#1/*#1/*#1/*#1/*#1/*#1/*#1/*#1/*	holmoly and a state of the second	Papartite Atlantic Atlantic	
48					
.5					
9.5				Server and	
.5					
9.5					
	27.4000 MHz (-6dB) 3 kHz	#VBW 10 ki	Hz*	S	Span 1.500 MI weep 451.6 ms (1001 pt
G				STATUS	

09 PSD, High, Conducted



10 Lower Bandedge, Unrestricted, Radiated



	RF	50 Ω	Edge C 63.10 Sec 6.10 DC CORREC		NSE:INT		ALIGN OFF			5 PM Feb 09, 2
larker 1		255280 Reamp		PNO: Wide 😱 FGain:Low	Trig: Free R #Atten: 20 c		Avg Type: Avg Hold:>	Log-Pwr •100/100	т	TYPE NWW DET PNNN
0 dB/div	Ref	110.00	dBµV			8		Mk	r1 927.2 106.8	55 3 MI 312 dBj
og 100						-1-				
0.0 0.0									June of the second	marray
0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	vanna							
).0).0										
0.0										
0.0 tart 926.	4450	B.41.1-	8						0 4 020	
Res BW				VBW	1.0 MHz			Sweep	Stop 923 1.000 ms	s.0000 iv s (1001 p
	RC SCL		× 927.255 3 MHz	Y 106.812 di	FUNC	TION	FUNCTION WIDTH	FUI	NCTION VALUE	
2 Δ1 1 3 N 1 4	f	(Δ)	744.7 kHz 928.000 0 MHz	(Δ) -34.139	dB					
6 1 1										
9										
							li and a second second			
3							STATUS			

11 Higher Bandedge, Unrestricted, Radiated

12 Lower Bandedge, Restricted, Radiated

Keysight Spectrum Analyzer - Band Edge RF 50 Ω DC	SENSE:INT	ALIGN OFF	10:20:36 PM Feb 09, 20
arker 1 977.160000000		Avg Type: Log-Pwr	TRACE 2 2 4 TYPE M WWW DET P N N N
Ref Offset 32.68 dl dB/div Ref 99.67 dBµV			Mkr1 977.16 Mi 38.839 dBj
Trace 1 Pass			
.7			
.7			
.7			
.7	^1		
nalykan hannalvanan an 7	meriliphing and million of the operation of the operation of the	and a second and a second and a second and a second s	her with a share the set of the s
7			
57			
art 0.96000 GHz			Stop 1.00000 G
es BW 100 kHz	VBW 100 kHz	Swee	ep 3.733 ms (1001 p
		STATUS	

13 Higher Bandedge, Restricted, Radiated

ncee.	Report Number:	R230330-00-E1B	Rev	В
labs	Prepared for:	Lynq Technologies		

REPORT END