

FCC Test Report (Spot Check)

Report No.: RF170905C13F

FCC ID: PY318400432

Original FCC ID: PY317200377

Test Model: RBS50Y

Received Date: Nov. 26, 2018

Test Date: Dec. 20 ~ Dec. 26, 2018

Issued Date: Jan. 03, 2019

Applicant: NETGEAR, INC.

Address: 350 East Plumeria Drive San Jose, CA 95134

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

(R.O.C.)

Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City

33383, TAIWAN (R.O.C.)

FCC Registration / 788550 / TW0003

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Report No.: RF170905C13F Page No. 1 / 40 Report Format Version: 6.1.1 Reference No.: 181126C13

Table of Contents

R	Release Control Record4				
1	C	ertificate of Conformity	5		
2	S	ummary of Test Results	6		
	2.1 2.2	Measurement Uncertainty Modification Record			
3	G	eneral Information			
	3.1	General Description of EUT	7		
	3.2	Description of Test Modes	9		
	3.2.1	Test Mode Applicability and Tested Channel Detail			
	3.3	Duty Cycle of Test Signal			
	3.4	Description of Support Units			
	3.4.1	Configuration of System under Test			
	3.5	General Description of Applied Standards			
4	Т	est Types and Results			
	4.1	Radiated Emission and Bandedge Measurement	14		
		Limits of Radiated Emission and Bandedge Measurement			
		Test Instruments			
		Test Procedures Deviation from Test Standard			
		Test Setup			
		EUT Operating Conditions.			
		Test Results			
	4.2	Conducted Emission Measurement			
		Limits of Conducted Emission Measurement			
		Test Instruments			
	4.2.3	Test Procedures	25		
		Deviation from Test Standard			
		Test Setup			
		EUT Operating Conditions			
		Test Results			
	4.3	6dB Bandwidth Measurement			
		Limits of 6dB Bandwidth Measurement			
			30		
		Test Procedure			
		Deviation fromTest Standard			
		EUT Operating Conditions			
		Test Result			
	4.4	Conducted Output Power Measurement	32		
	4.4.1	Limits of Conducted Output Power Measurement	32		
		Test Setup			
		Test Instruments			
		Test Procedures			
		Deviation from Test Standard			
		EUT Operating Conditions Test Results			
	4.4.7	Power Spectral Density Measurement			
		Limits of Power Spectral Density Measurement			
		Test Setup			
		Test Instruments			
		Test Procedure			
		Deviation from Test Standard			
		EUT Operating Condition			

4.5.7	Test Results	36
4.6	Conducted Out of Band Emission Measurement	37
4.6.1	Limits of Conducted Out of Band Emission Measurement	37
4.6.2	Test Setup	37
	Test Instruments	
4.6.4	Test Procedure	37
4.6.5	Deviation from Test Standard	37
4.6.6	EUT Operating Condition	37
4.6.7	Test Results	37
5 P	ictures of Test Arrangements	39
Append	ix – Information of the Testing Laboratories	40

Release Control Record

Issue No.	Description	Date Issued
RF170905C13F	Original release	Jan. 03, 2019

Page No. 4 / 40 Report Format Version: 6.1.1

Report No.: RF170905C13F Reference No.: 181126C13

1 Certificate of Conformity

Product: Orbi Router, Orbi Satellite, Orbi AC3000 Tri-band WiFi System

Brand: NETGEAR

Test Model: RBS50Y

Sample Status: Engineering sample

Applicant: NETGEAR, INC.

Test Date: Dec. 20 ~ Dec. 26, 2018

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Celine Chou / Senior Specialist

Approved by: Jan. 03, 2019

Bruce Chen / Project Engineer

Report No.: RF170905C13F Reference No.: 181126C13

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)				
FCC Clause	l lest Item		Remarks		
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -17.09dB at 0.16172MHz.		
15.205 / 15.209 / 15.247(d)	15.209 / Radiated Emissions and Band Edge		Meet the requirement of limit. Minimum passing margin is -3.6dB at 4874.00MHz.		
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.		
15.247(a)(2)	6dB bandwidth	Pass	Meet the requirement of limit.		
15.247(b)	Conducted power	Pass	Meet the requirement of limit.		
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.		
15.203	Antenna Requirement	Pass	Antenna connector is i-pex (MHF) not a standard connector.		

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.94 dB
Radiated Emissions up to 1 GHz	30MHz ~ 200MHz	3.63 dB
Radiated Emissions up to 1 GHz	200MHz ~1000MHz	3.64 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB
Radiated Emissions above 1 GHZ	18GHz ~ 40GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Orbi Router, Orbi Satellite, Orbi AC3000 Tri-band WiFi System
Brand	NETGEAR
Test Model	RBS50Y
Sample Status	Engineering sample
Power Supply Rating	12Vdc from adapter
Madulatian Tuna	CCK, DQPSK, DBPSK for DSSS
Modulation Type	64QAM, 16QAM, QPSK, BPSK for OFDM
Modulation Technology	DSSS, OFDM
	802.11b:11/5.5/2/1Mbps
Transfer Rate	802.11g: 54/48/36/24/18/12/9/6Mbps
	802.11n: up to 300Mbps
Operating Frequency	2412 ~ 2462MHz
Number of Channel	802.11b, 802.11g, 802.11n (HT20): 11
Number of Channel	802.11n (HT40): 7
Output Dower	CDD Mode: 799.834mW
Output Power	Beamforming Mode: 557.186mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	Adapter
Cable Supplied	N/A

Note:

- 1. Exhibit prepared for FCC Spot Check Verification report, the format, test items and amount of spot—check test data are decided by applicant's engineering judgment, for more details pleae refer to declaration letter exhibit.
- 2. The differences compared with the original report (BV ADT report no.: RF170905C13 and RF170905C13A) is removing BT LE function to apply a new FCC ID: PY318400432. Therefore, test item for conducted power had been re-tested, the other test items only for 802.11b mode channel 6 had been re-tested. Refer to original report for the other test data.
- 3. The EUT incorporates a MIMO function. Physically, the EUT provides 2 completed transmitters and 2 receivers.

Modulation Mode	Beamforming Mode	TX Function
802.11b	Not Support	2TX
802.11g	Not Support	2TX
802.11n (HT20)	Support (CDD / NSS1)	2TX
802.11n (HT40)	Support (CDD / NSS1)	2TX

^{*} For 802.11n, CDD mode and Beamforming mode are presented in power output test item. For other test items, CDD mode is the worst case for final tests after pretesting.

4. The following RF Modules are for the EUT.

	· · · · · · · · · · · · · · · · · · ·				
Brand Model		RF Module	Band		
	R RBS50Y	Module 1	2.4G		
			UNII-1		
NETGEAR			UNII-2A		
			UNII-2C		
		Module 2	UNII-3		

RF Module Filter		Position	Remark
Madulad	1st	TFL1,TFL2	pin to pin & Same design
Module 1	2nd	TFL1,TFL2	pin to pin & Same design
Marakata O	1st	BHPF1,BHPF2,BHPF3,BHPF4	pin to pin & Same design
Module 2	2nd	BHPF1,BHPF2,BHPF3,BHPF4	pin to pin & Same design

RF Module	RF Switch	Position	Remark
	1st	AS1,AS2,TS1,TS2	pin to pin & Same design
Module 1	2nd	AS1,AS2,TS1,TS2	pin to pin & Same design

5. The EUT uses following antennas.

Ant. Type	Dipole				
Connecter Type			i-pex(MHF)		
Directional Antenna Gain (dBi)					
Item	2.4G	UNII-1	UNII-2A	UNII-2C	UNII-3
-	5.31	5.97	5.41	8.74	7.57

6. The EUT consumes power from the following adapters.

c. The Let concurred power from the following adaptere.			
Adapter 1 (US)	Adapter 1 (US)		
Brand	NETGEAR		
Model	AD2110F10		
P/N	332-10999-01		
Input Power	100-120Vac, 50/60Hz, 1.0A		
Output Power	12Vdc, 2.5A		
Power Line	3m power cable without core attached on adapter		

Adapter 2 (US)					
Brand	NETGEAR				
Model	2ADF030F1 NA				
P/N	332-11000-01				
Input Power	100-120Vac, 50/60Hz, 1.0A				
Output Power	12Vdc, 2.5A				
Power Line	3m power cable without core attached on adapter				

3.2 Description of Test Modes

11 channels are provided for 802.11b, 802.11g and 802.11n (HT20):

	, ,	,	
Channel	Frequency	Channel	Frequency
1	2412MHz	7	2442MHz
2	2417MHz	8	2447MHz
3	2422MHz	9	2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz		

7 channels are provided for 802.11n (HT40):

Channel	Frequency	Channel	Frequency
3	2422MHz	7	2442MHz
4	2427MHz	8	2447MHz
5	2432MHz	9	2452MHz
6	2437MHz		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applic	able to		Decariation			
Mode	RE≥1G	RE<1G	PLC	APCM	Description			
Α	V	V	\checkmark	√	Powered by adapter 1			
В	-	√	√	-	Powered by adapter 2			

Where RE≥1G: Radiated Emission above 1GHz & Bandedge

RE<1G: Radiated Emission below 1GHz

Measurement

PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
Α	802.11b	1 to 11	6	DSSS	DBPSK	1.0

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
A, B	802.11b	1 to 11	6	DSSS	DBPSK	1.0

Power Line Conducted Emission Test:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
A, B	802.11b	1 to 11	6	DSSS	DBPSK	1.0

6dB Bandwidth, Power Spectral Density and Conducted Out of Band Emission Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)
Α	802.11b	1 to 11	6	DSSS	DBPSK	1.0

Report No.: RF170905C13F Page No. 10 / 40 Report Format Version: 6.1.1

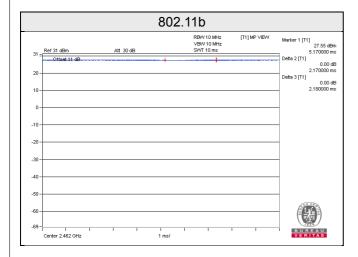
Conducted Output Power Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

\boxtimes	Following of	channel(s)	was ((were)	selected	for the	final	test as	listed below.

EUT Configure Mode	Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Data Rate (Mbps)					
			CDD Mode		-						
Α	802.11b	1 to 11	1, 6, 11	DSSS	DBPSK	1.0					
Α	802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6.0					
Α	802.11n (HT20)	1 to 11	1, 6, 11	OFDM	BPSK	6.5					
Α	802.11n (HT40)	3 to 9	3, 6, 9	OFDM	BPSK	13.5					
	Beamforming Mode										
Α	802.11n (HT20)	1 to 11	1, 6, 11	OFDM	BPSK	6.5					
А	802.11n (HT40)	3 to 9	3, 6, 9	OFDM	BPSK	13.5					

Test Condition:


Applicable to	Environmental Conditions	Input Power	Tested by
RE≥1G 25 deg. C, 70% RH		120Vac, 60Hz	Noah Chang
RE<1G	25 deg. C, 70% RH	120Vac, 60Hz	Luis Lee
PLC	22 deg. C, 66% RH	120Vac, 60Hz	Adair Peng
APCM	25 deg. C, 60% RH	120Vac, 60Hz	Ted Chang

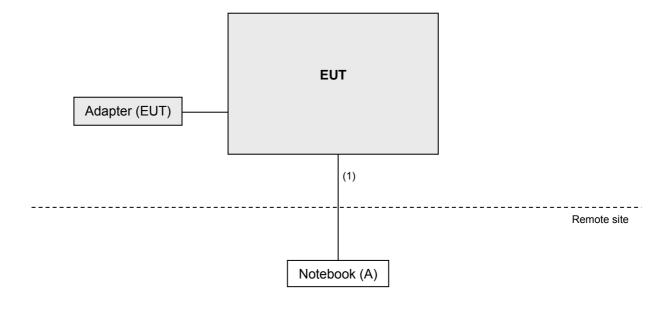
Report No.: RF170905C13F Page No. 11 / 40 Report Format Version: 6.1.1

3.3 Duty Cycle of Test Signal

802.11b: Duty cycle of test signal is 100%, duty factor is not required.

3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Notebook	DELL	E5410	6RP2YM1	FCC DoC Approved	-

Note

- 1. All power cords of the above support units are non-shielded (1.8m).
- 2. Item A acted as a communication partner to transfer data.

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	RJ45, Cat5e	1	3	N	0	-

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)
KDB 558074 D01 15.247 Meas Guidance v05
KDB 662911 D01 Multiple Transmitter Output v02r01
ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

Report No.: RF170905C13F Page No. 13 / 40 Report Format Version: 6.1.1

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 30dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Report No.: RF170905C13F Page No. 14 / 40 Report Format Version: 6.1.1

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESIB7	100187	May 29, 2018	May 28, 2019
Spectrum Analyzer ROHDE & SCHWARZ	,		Sep. 25, 2018	Sep. 24, 2019
BILOG Antenna SCHWARZBECK	VULB9168	9168-155	Nov. 21, 2018	Nov. 20, 2019
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-1170	Nov. 25, 2018	Nov. 24, 2019
HORN Antenna SCHWARZBECK	BBHA 9170	BBHA9170241	Nov. 25, 2018	Nov. 24, 2019
Loop Antenna TESEQ	HLA 6121	45745	Jun. 14, 2018	Jun. 13, 2019
Preamplifier Agilent (Below 1GHz)	8447D	2944A10631	Aug. 08, 2018	Aug. 07, 2019
Preamplifier KEYSIGHT (Above 1GHz)	83017A	MY53270295	Jul. 02, 2018	Jul. 01, 2019
RF signal cable HUBER+SUHNER	SUCOFLEX 104	MY 13380+295012/04	Aug. 08, 2018	Aug. 07, 2019
RF signal cable HUBER+SUHNER	SUCOFLEX 104	Cable-CH4-03 (250724)	Aug. 08, 2018	Aug. 07, 2019
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	NA	NA	NA
Antenna Tower inn-co GmbH	MA 4000	010303	NA	NA
Antenna Tower Controller BV ADT	AT100	AT93021703	NA	NA
Turn Table BV ADT	TT100	TT93021703	NA	NA
Turn Table Controller BV ADT	SC100	SC93021703	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Pre-amplifier (18GHz-40GHz) EMC	EMC184045B	980175	Nov. 14, 2018	Nov. 13, 2019
USB Wideband Power Sensor KEYSIGHT	U2021XA	MY55050005/MY5519000 4/MY55190007/MY55210 005	Jul. 17, 2018	Jul. 16, 2019

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

^{2.} The test was performed in HwaYa Chamber 4.

^{3.} The FCC Designation Number is TW0003. The number will be varied with the Lab location and scope as attached.

^{4.} The IC Site Registration No. is 7450F-4.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

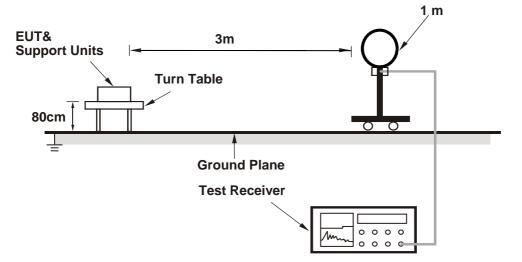
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

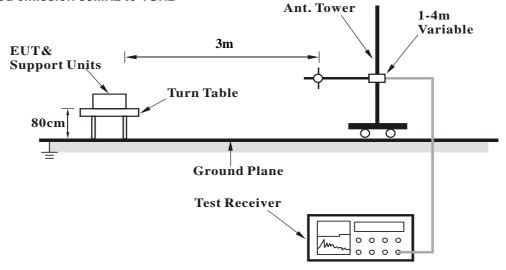
Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard

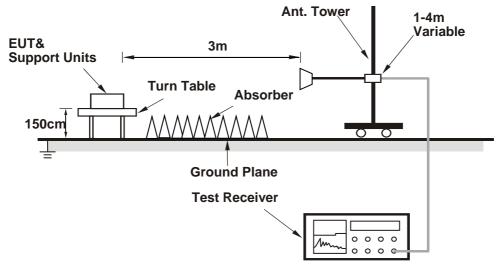

No deviation.

Report No.: RF170905C13F Page No. 16 / 40 Report Format Version: 6.1.1



4.1.5 Test Setup

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Prepared a notebook to act as a communication partner and placed it outside of testing area.
- c. The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency.
- d. The communication partner sent data to EUT by command "PING".

Report No.: RF170905C13F Reference No.: 181126C13

4.1.7 Test Results

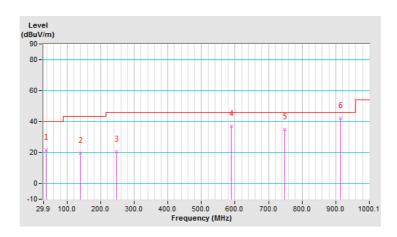
Above 1GHz Data:

802.11b

CHANNEL	TX Channel 6	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2437.00	107.9 PK			1.05 H	49	74.1	33.8	
2	*2437.00	104.4 AV			1.05 H	49	70.6	33.8	
3	4874.00	57.2 PK	74.0	-16.8	1.00 H	311	44.0	13.2	
4	4874.00	50.4 AV	54.0	-3.6	1.00 H	311	37.2	13.2	
		ANTENI	NA POLARIT	Y & TEST DI	STANCE: VE	RTICAL AT	3 M		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2437.00	123.1 PK			1.56 V	347	89.3	33.8	
2	*2437.00	119.4 AV			1.56 V	347	85.6	33.8	
3	4874.00	55.1 PK	74.0	-18.9	2.02 V	41	41.9	13.2	
4	4874.00	49.8 AV	54.0	-4.2	2.02 V	41	36.6	13.2	

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency

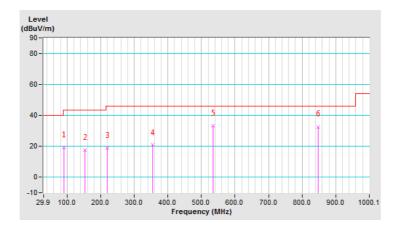

Below 1GHz worst-case data:

802.11b

CHANNEL	TX Channel 6	DETECTOR	Ougai Back (OB)	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)	
TEST MODE	А			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	37.66	21.9 QP	40.0	-18.1	1.50 H	154	31.6	-9.7		
2	138.56	19.5 QP	43.5	-24.0	1.50 H	117	28.8	-9.3		
3	247.22	20.5 QP	46.0	-25.5	1.01 H	262	30.0	-9.5		
4	588.74	37.2 QP	46.0	-8.8	1.50 H	233	40.2	-3.0		
5	747.85	34.8 QP	46.0	-11.2	1.01 H	353	33.9	0.9		
6	914.72	42.0 QP	46.0	-4.0	1.50 H	159	38.2	3.8		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range $9kHz \sim 30MHz$: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report

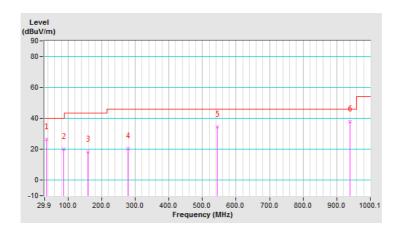


Report Format Version: 6.1.1

CHANNEL	TX Channel 6	DETECTOR	Ougai Back (OD)	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)	
TEST MODE	А			

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	90.05	19.4 QP	43.5	-24.1	1.50 V	121	33.6	-14.2		
2	154.09	17.5 QP	43.5	-26.0	1.50 V	262	26.1	-8.6		
3	220.06	18.7 QP	46.0	-27.3	1.50 V	282	29.7	-11.0		
4	353.95	20.7 QP	46.0	-25.3	1.01 V	6	28.0	-7.3		
5	534.40	33.3 QP	46.0	-12.7	1.50 V	220	37.7	-4.4		
6	846.81	32.6 QP	46.0	-13.4	1.01 V	147	30.1	2.5		

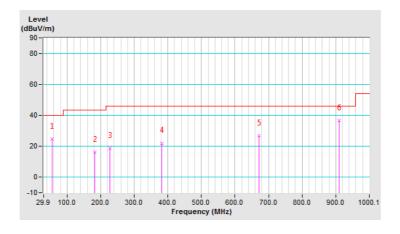
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range $9kHz \sim 30MHz$: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report



CHANNEL	TX Channel 6	DETECTOR	Ougai Book (OD)	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)	
TEST MODE	В			

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	35.72	26.6 QP	40.0	-13.4	1.00 H	13	36.9	-10.3		
2	86.17	20.0 QP	40.0	-20.0	2.00 H	155	34.2	-14.2		
3	159.91	18.3 QP	43.5	-25.2	1.50 H	123	27.2	-8.9		
4	278.27	20.7 QP	46.0	-25.3	1.00 H	129	29.1	-8.4		
5	544.11	34.6 QP	46.0	-11.4	1.50 H	121	38.9	-4.3		
6	939.95	38.0 QP	46.0	-8.0	1.00 H	232	34.0	4.0		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range $9kHz \sim 30MHz$: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report



CHANNEL	TX Channel 6	DETECTOR	Overi Book (OD)	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)	
TEST MODE	В			

		ANTENI	NA POLARIT	Y & TEST DI	STANCE: VE	RTICAL AT	3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	55.13	24.7 QP	40.0	-15.3	1.00 V	108	33.9	-9.2
2	183.19	16.4 QP	43.5	-27.1	2.00 V	39	27.0	-10.6
3	227.82	18.9 QP	46.0	-27.1	1.00 V	192	29.8	-10.9
4	381.11	22.0 QP	46.0	-24.0	1.00 V	13	28.9	-6.9
5	672.17	26.8 QP	46.0	-19.2	1.00 V	13	27.9	-1.1
6	910.84	36.6 QP	46.0	-9.4	1.00 V	13	32.9	3.7

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz
- 4. Margin value = Emission Level Limit value
- 5. The emission levels were very low against the limit of frequency range $9kHz \sim 30MHz$: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report

Report Format Version: 6.1.1

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Fraguenov (MHz)	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

4.2.2 Test Instruments

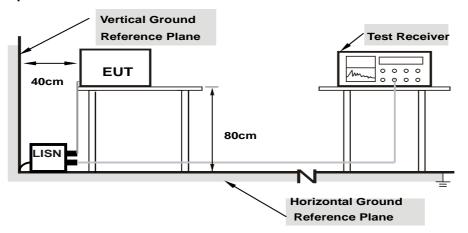
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
Test Receiver ROHDE & SCHWARZ	ESCI	100613	Dec. 10, 2018	Dec. 09, 2019
RF signal cable Woken	5D-FB	Cable-cond1-01	Sep. 05, 2018	Sep. 04, 2019
LISN ROHDE & SCHWARZ (EUT)	ENV216	101826	Feb. 26, 2018	Feb. 25, 2019
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100311	Aug. 19, 2018	Aug. 18, 2019
Software ADT	BV ADT_Cond_ V7.3.7.4	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Shielded Room 1.
- 3. The VCCI Site Registration No. is C-2040.

^{2.} The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.3 Test Procedures


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

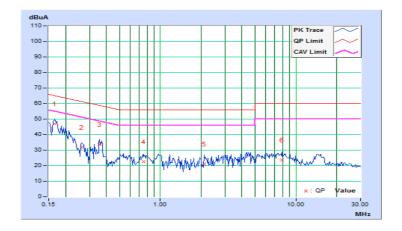
Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.

4.2.7 Test Results

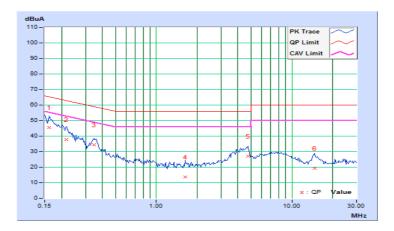

Worst-case data:

802.11b

Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
Test Mode	A		

	Erog	Corr.	Reading Value		Emissio	Emission Level		Limit		Margin	
No	No Freq. Fa		[dB ((uV)]	[dB ((uV)]	[dB (uV)]		(dB)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16562	9.73	37.24	23.98	46.97	33.71	65.18	55.18	-18.21	-21.47	
2	0.26328	9.73	22.19	10.75	31.92	20.48	61.33	51.33	-29.41	-30.85	
3	0.35703	9.74	23.93	15.80	33.67	25.54	58.80	48.80	-25.13	-23.26	
4	0.75547	9.71	13.03	7.00	22.74	16.71	56.00	46.00	-33.26	-29.29	
5	2.11719	9.74	11.34	4.82	21.08	14.56	56.00	46.00	-34.92	-31.44	
6	7.86328	9.85	13.85	8.06	23.70	17.91	60.00	50.00	-36.30	-32.09	

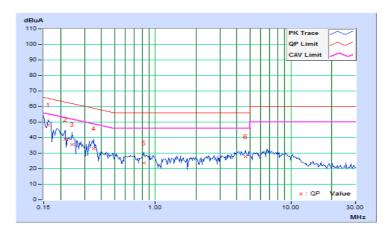
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



Phase	Neutral (N)	I DETECTOR FUNCTION	Quasi-Peak (QP) / Average (AV)
Test Mode	A		

	Frog	Corr.	Reading Value		Emissio	Emission Level		nit	Margin	
No	Freq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB ((uV)]	(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16172	9.72	35.90	18.90	45.62	28.62	65.38	55.38	-19.76	-26.76
2	0.21641	9.73	28.00	14.39	37.73	24.12	62.96	52.96	-25.23	-28.84
3	0.34531	9.74	24.52	16.72	34.26	26.46	59.07	49.07	-24.81	-22.61
4	1.64063	9.73	4.01	1.33	13.74	11.06	56.00	46.00	-42.26	-34.94
5	4.73438	9.82	17.11	5.33	26.93	15.15	56.00	46.00	-29.07	-30.85
6	14.66406	10.00	9.23	5.59	19.23	15.59	60.00	50.00	-40.77	-34.41

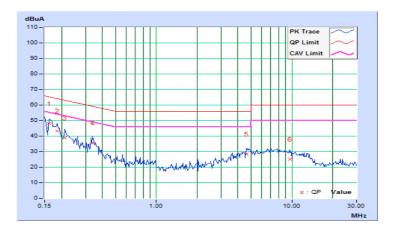
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
Test Mode	В		

	From	Corr.	Reading Value		Emission Level		Limit		Margin	
No	No Freq. Fa		[dB ((uV)]	[dB ((uV)]	[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16172	9.73	38.56	23.39	48.29	33.12	65.38	55.38	-17.09	-22.26
2	0.21641	9.72	29.22	15.03	38.94	24.75	62.96	52.96	-24.02	-28.21
3	0.24375	9.73	25.97	13.38	35.70	23.11	61.97	51.97	-26.27	-28.86
4	0.35313	9.74	23.29	15.56	33.03	25.30	58.89	48.89	-25.86	-23.59
5	0.82188	9.70	13.93	8.40	23.63	18.10	56.00	46.00	-32.37	-27.90
6	4.63281	9.80	18.09	11.46	27.89	21.26	56.00	46.00	-28.11	-24.74

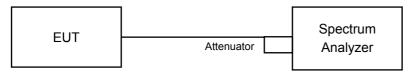
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)
Test Mode	В		

	From	Corr.	Reading Value		Emissio	Emission Level		Limit		Margin	
No	No Freq. Fact		[dB	(uV)]	[dB ((uV)]	[dB	(uV)]	(d	B)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.16172	9.72	38.44	22.99	48.16	32.71	65.38	55.38	-17.22	-22.67	
2	0.18516	9.73	33.61	18.56	43.34	28.29	64.25	54.25	-20.91	-25.96	
3	0.21250	9.73	29.26	16.01	38.99	25.74	63.11	53.11	-24.12	-27.37	
4	0.33750	9.74	25.72	17.43	35.46	27.17	59.26	49.26	-23.80	-22.09	
5	4.62891	9.82	18.77	11.06	28.59	20.88	56.00	46.00	-27.41	-25.12	
6	9.65625	9.90	15.11	9.58	25.01	19.48	60.00	50.00	-34.99	-30.52	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

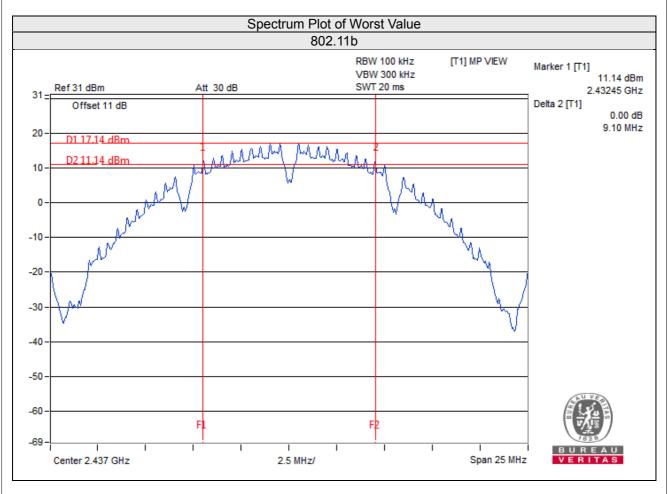
- a. Set resolution bandwidth (RBW) = 100kHz.
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.3.5 Deviation fromTest Standard

No deviation.

4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.


Report No.: RF170905C13F Page No. 30 / 40 Report Format Version: 6.1.1

4.3.7 Test Result

802.11b

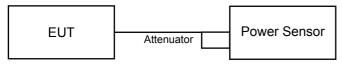
Channel	Frequency	6dB Bandv	vidth (MHz)	Minimum Limit	Pass / Fail
Chamile	(MHz)	Chain 0	Chain 1	(MHz)	rass/raii
6	2437	9.10	9.10	0.5	Pass

4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

Per KDB 662911 D01 Multiple Transmitter Output Method of conducted output power measurement on IEEE 802.11 devices,


Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths ≥ 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less for 20-MHz channel widths with N_{ANT} ≥ 5.

For power measurements on all other devices: Array Gain = $10 \log(N_{ANT}/N_{SS}) dB$.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as item 4.3.6.

Report No.: RF170905C13F Page No. 32 / 40 Report Format Version: 6.1.1

4.4.7 Test Results

CDD Mode

802.11b

Channel Frequency		Average Power (dBm)		Total Power Total Power Lim	iotal rowel lotal rowel		Total Power Limit	
Chamilei	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Fail	
1	2412	24.99	25.01	632.412	28.01	30.00	Pass	
6	2437	26.00	26.03	799.834	29.03	30.00	Pass	
11	2462	24.38	24.19	537.032	27.30	30.00	Pass	

802.11g

Channel Frequency		Average Po	ower (dBm)					10tai r 0wei Totai r 0wei Liitiit		Pass /
Channel	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Fail			
1	2412	19.36	19.44	174.181	22.41	30.00	Pass			
6	2437	25.33	25.40	688.652	28.38	30.00	Pass			
11	2462	19.15	19.21	165.577	22.19	30.00	Pass			

802.11n (HT20)

Channel Frequence		Average Po	ower (dBm)	Total Power Total Power Limit				Limit	Pass /
Channel	(MHz)	Chain 0	Chain 1	(mW)	(dBm) (dBm)	Fail			
1	2412	20.42	20.48	221.820	23.46	30.00	Pass		
6	2437	25.36	25.39	690.240	28.39	30.00	Pass		
11	2462	18.50	18.53	142.233	21.53	30.00	Pass		

802.11n (HT40)

Channel	Frequency	Average Power (dBm)		Total Power	Total Power	Limit	Pass /
Channel	(MHz)	Chain 0	Chain 1	(mW)	(dBm) (dBm)	(dBm)	Fail
3	2422	18.15	18.53	136.458	21.35	30.00	Pass
6	2437	19.48	19.53	178.649	22.52	30.00	Pass
9	2452	18.50	18.57	142.889	21.55	30.00	Pass

Beamforming Mode

802.11n (HT20)

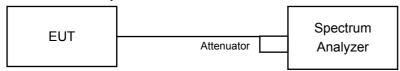
Channel	Frequency	quency Average Power (dBm)		Total Power	Total Power	Limit	Pass /
Chamilei	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	m) (dBm)	Fail
1	2412	20.42	20.48	221.820	23.46	30.00	Pass
6	2437	24.40	24.49	557.186	27.46	30.00	Pass
11	2462	18.50	18.53	142.233	21.53	30.00	Pass

Note: Directional gain = 5.31dBi < 6dBi, so the limit no need to be reduced.

802.11n (HT40)

Channel Frequency		Average Po	ower (dBm)	Total Power Total Power		Limit	Pass /
Channel	(MHz)	Chain 0	Chain 1	(mW)	(dBm)	(dBm)	Fail
3	2422	17.67	17.92	120.504	20.81	30.00	Pass
6	2437	19.48	19.53	178.649	22.52	30.00	Pass
9	2452	18.50	18.57	142.889	21.55	30.00	Pass

Note: Directional gain = 5.31dBi < 6dBi, so the limit no need to be reduced.



4.5 Power Spectral Density Measurement

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set instrument center frequency to DTS channel center frequency.
- b. Set span to at least 1.5 times the OBW.
- c. Set RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d. Set VBW ≥3 x RBW.
- e. Detector = power averaging (RMS) or sample detector (when RMS not available).
- f. Ensure that the number of measurement points in the sweep $\geq 2 \times \text{span/RBW}$.
- g. Sweep time = auto couple.
- h. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- i. Use the peak marker function to determine the maximum amplitude level.

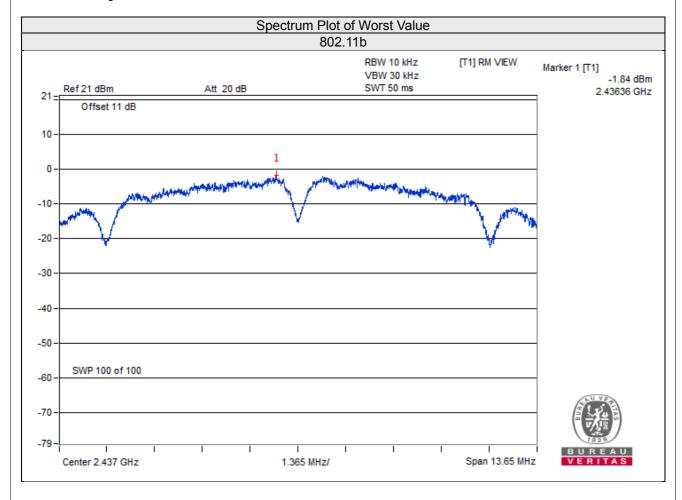
4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition

Same as item 4.3.6

 Report No.: RF170905C13F
 Page No. 35 / 40
 Report Format Version: 6.1.1

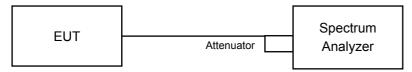

4.5.7 Test Results

802.11b

TX chain	Channel	Frequency (MHz)	PSD (dBm/10kHz)	10 log (N=2) dB	Total PSD (dBm/10kHz)	Limit (dBm/3kHz)	Pass / Fail
0	6	2437	-2.49	3.01	0.52	8.00	Pass
1	6	2437	-1.84	3.01	1.17	8.00	Pass

Note:

- 1. Method 1 of power density measurement of KDB 662911 is using for calculating total power density. Total power density is summing entire spectra across corresponding frequency bins on the various outputs by computer.
- 2. Directional gain = 5.31dBi < 6dBi, so the limit no need to reduced.



4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below -30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

- a. Set the RBW = 100 kHz.
- b. Set the VBW ≥ 300 kHz.
- c. Detector = peak.
- d. Sweep time = auto couple.
- e. Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental FBW.

MEASUREMENT PROCEDURE OOBE

- a. Set RBW = 100 kHz.
- b. Set VBW ≥ 300 kHz.
- c. Detector = peak.
- d. Sweep = auto couple.
- e. Trace Mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum amplitude level.

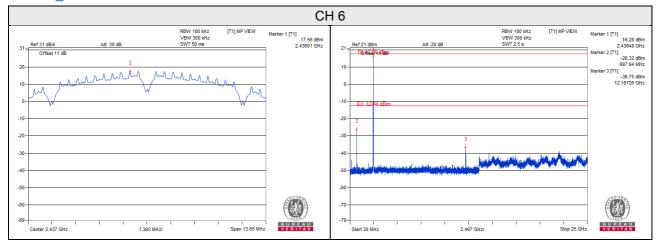
4.6.5 Deviation from Test Standard

No deviation.

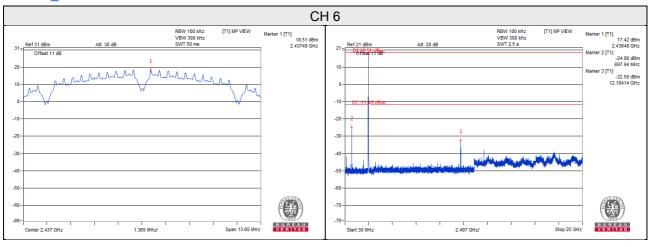
4.6.6 EUT Operating Condition

Same as item 4.3.6

4.6.7 Test Results


The conducted emission test is performed on each TX port of operating mode without summing or adding 10log (N) since the limit is relative emission limit.

The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement.


Report No.: RF170905C13F Page No. 37 / 40 Report Format Version: 6.1.1

802.11b_Chain 0

802.11b_Chain 1

5 Pictures of Test Arrangements
Please refer to the attached file (Test Setup Photo).

Report No.: RF170905C13F Page No. 39 / 40 Report Format Version: 6.1.1 Reference No.: 181126C13

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Tel: 886-3-6668565 Fax: 886-2-26051924 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---