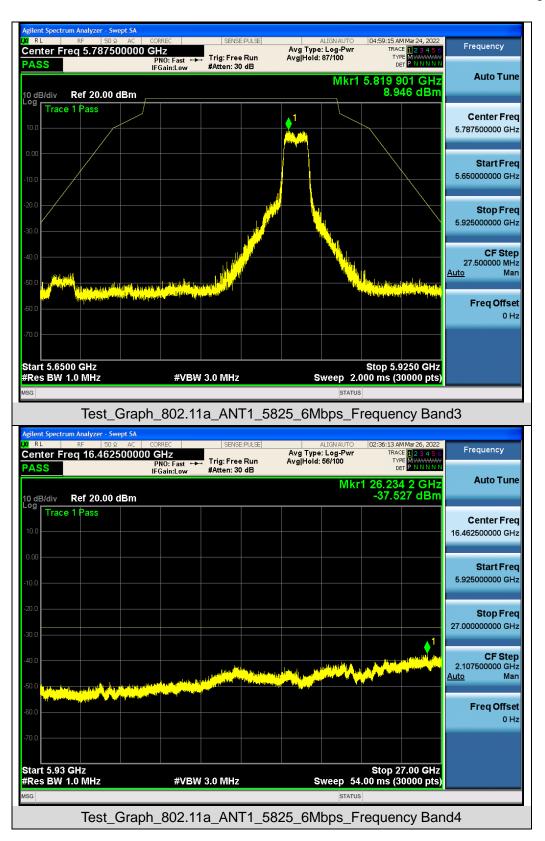
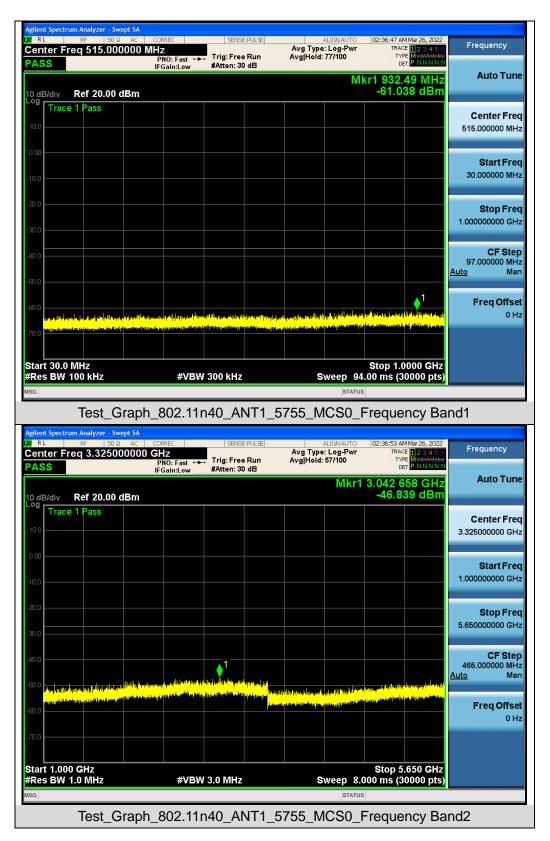
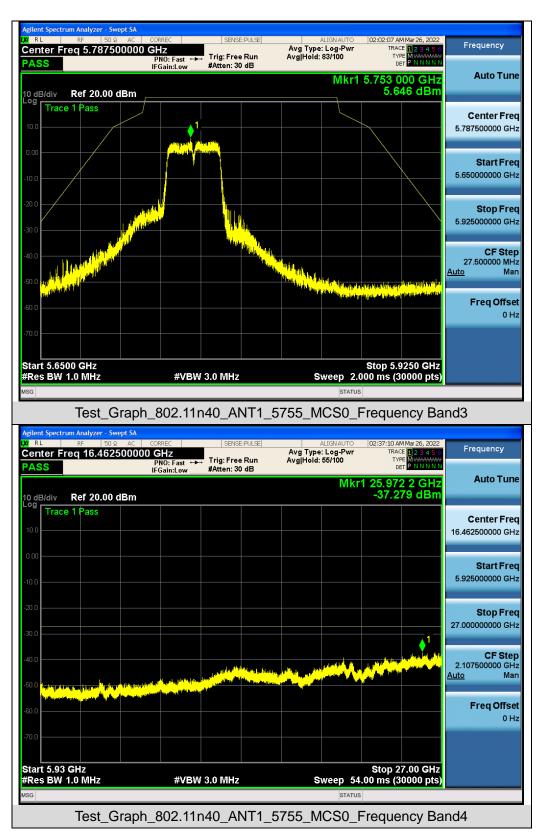
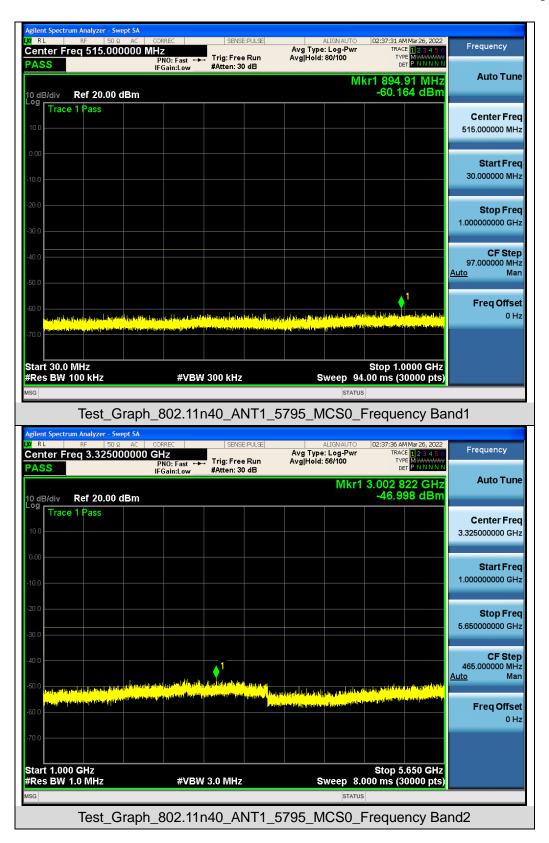
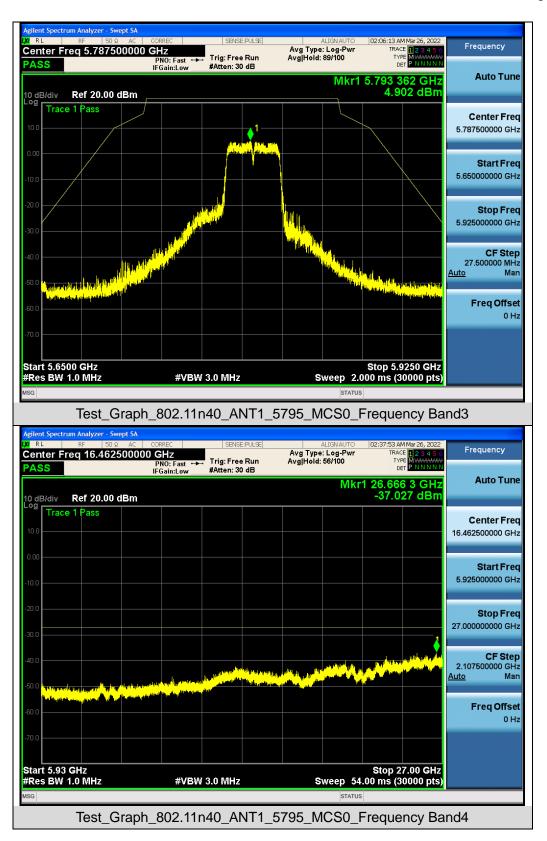

Test Graphs of Spurious Emissions outside of the 5.725-5.85 GHz band for transmitters operating in the 5.725-5.85 GHz band

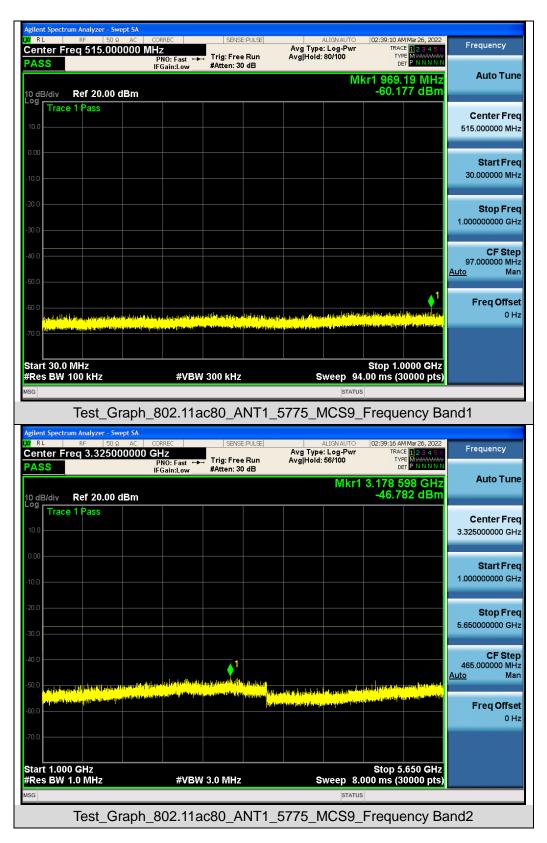


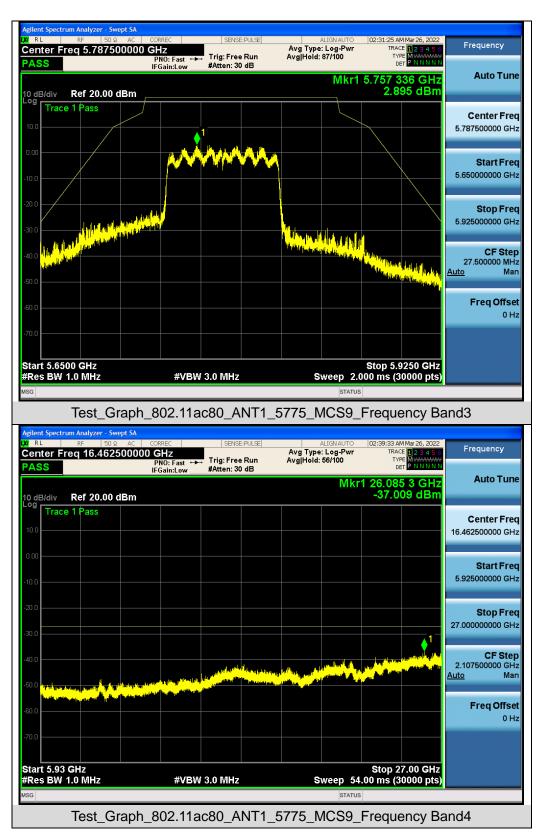




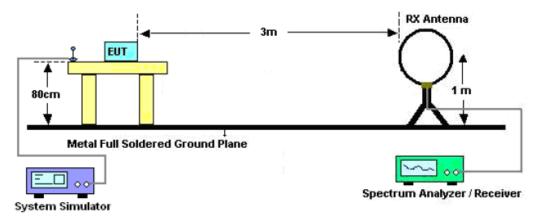




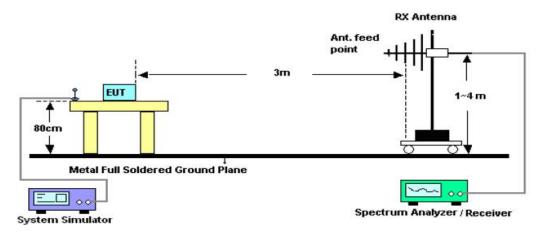




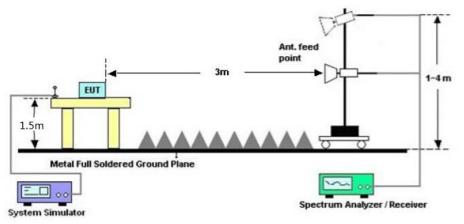
11. RADIATED EMISSION


11.1. MEASUREMENT PROCEDURE

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3M VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.
- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.



11.2. TEST SETUP


Radiated Emission Test-Setup Frequency Below 30MHz

RADIATED EMISSION TEST SETUP 30MHz-1000MHz

RADIATED EMISSION TEST SETUP ABOVE 1000MHz

11.3. LIMITS AND MEASUREMENT RESULT

15.209(a) Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission,

the test records reported below are the worst result compared to other modes.

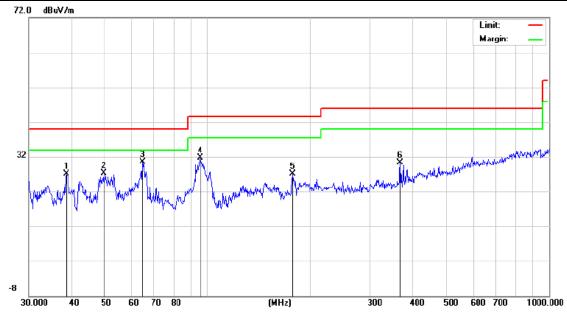
11.4. TEST RESULT

Radiated emission below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5180MHz	Antenna	Horizontal

Radiated emission from 30MHz to 1000MHz


										Limit:	
										Margin	: <u> </u>
			3			_	5 §				
2			1				Ť Ť	6			www.
	Marintantakan takan	2 X		¥			opusal	Martino	white	nh french were	uww.
	1	MIMIL		LA.	1 horten hore and	hele delle where					
Mr. J. Holer	And a state of the		"MLMM	w. (North Martin Martin	lann ac is . the					
							1 1				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		44.5868	5.96	15.47	21.43	40.00	-18.57	peak
2		62.2128	7.91	17.62	25.53	40.00	-14.47	peak
3	*	83.2298	18.65	14.60	33.25	40.00	-6.75	peak
4		96.7749	10.90	15.76	26.66	43.50	-16.84	peak
5		316.5890	8.27	24.31	32.58	46.00	-13.42	peak
6		366.8231	9.65	23.93	33.58	46.00	-12.42	peak

RESULT: PASS

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5180MHz	Antenna	Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		38.7518	11.75	15.40	27.15	40.00	-12.85	peak
2		49.7068	12.86	14.42	27.28	40.00	-12.72	peak
3	*	64.6594	12.45	17.98	30.43	40.00	-9.57	peak
4		95.4270	16.82	14.91	31.73	43.50	-11.77	peak
5		177.5091	9.00	18.01	27.01	43.50	-16.49	peak
6		366.8231	10.21	20.14	30.35	46.00	-15.65	peak

RESULT: PASS

Note: All adapters are tested. All antennas tested, All test channels had been tested. The 802.11a20 at 5180MHz is the worst case for adapter 1 and recorded in the test report.

Factor = Antenna Factor + Cable loss - Amplifier gain, Margin= Level-Limit.

The "Factor" value can be calculated automatically by software of measurement system.

Radiated emission above 1GHz

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5180MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ–Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
10360.42	47.56	9.14	56.70	68.20	-11.50	peak
15440.063	41.22	10.22	51.44	74.00	-22.56	AVG
15440.063	32.52	10.22	42.74	54.00	-11.26	peak
Remark:						
Factor = Anter	na Factor + Cab	le Loss – Pre-a	amplifier.			

RADIATED EMISSION ABOVE 1GHZ–Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
10360.42	48.21	9.14	57.35	68.20	-10.85	peak
15440.063	42.03	10.22	52.25	74.00	-21.75	AVG
15440.063	31.58	10.22	41.80	54.00	-12.20	peak
Remark:	1		1			
Factor = Anter	na Factor + Cab	le Loss – Pre-a	amplifier.			

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5200MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ–Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
10400.042	48.33	9.14	57.47	68.20	-10.73	peak
15600.063	41.58	10.22	51.80	74.00	-22.20	AVG
15600.063	32.48	10.22	42.70	54.00	-11.30	peak
Remark:						
Factor = Anter	nna Factor + Cabl	e Loss – Pre-a	mplifier.			

RADIATED EMISSION ABOVE 1GHZ–Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
10400.042	47.63	9.14	56.77	68.20	-11.43	peak
15600.063	41.25	10.22	51.47	74.00	-22.53	AVG
15600.063	31.63	10.22	41.85	54.00	-12.15	peak
Remark:						
Factor = Anten	na Factor + Cabl	e Loss – Pre-a	mplifier.			

Report No.: AGC12060220301FE06 Page 109 of 130

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5240MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
10480.042	48.33	9.27	57.60	68.20	-10.60	peak
15720.063	42.36	10.38	52.74	74.00	-21.26	AVG
15720.063	33.28	10.38	43.66	54.00	-10.34	peak
Remark:						
Factor = Anter	na Factor + Cabl	e Loss – Pre-a	mplifier.			

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
10480.042	46.85	9.27	56.12	68.20	-12.08	peak
15720.063	42.00	10.38	52.38	74.00	-21.62	AVG
15720.063	31.58	10.38	41.96	54.00	-12.04	peak
Remark:						
Factor = Anter	nna Factor + Cab	le Loss – Pre-ai	mplifier.			

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5745MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ–Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
11490.042	46.38	9.42	55.80	74.00	-18.20	peak
11490.042	38.53	9.42	47.95	54.00	-6.05	AVG
17235.063	40.25	10.51	50.76	68.20	-17.44	peak
Demerly						
Remark:						
Factor = Anter	na Factor + Cabl	e Loss – Pre-a	amplifier.			

RADIATED EMISSION ABOVE 1GHZ–Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
11490.042	45.63	9.42	55.05	74.00	-18.95	peak
11490.042	37.88	9.42	47.30	54.00	-6.70	AVG
17235.063	41.14	10.51	51.65	68.20	-16.55	peak
Remark:						
Factor = Anten	na Factor + Cabl	e Loss – Pre-a	mplifier.			

Report No.: AGC12060220301FE06 Page 111 of 130

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5785MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
11570.042	46.39	9.42	55.81	74.00	-18.19	peak
11570.042	36.63	9.42	46.05	54.00	-7.95	AVG
17355.063	41.38	10.51	51.89	68.20	-16.31	peak
Remark:						
Factor = Anter	ina Factor + Cabl	le Loss – Pre-a	mplifier.			

RADIATED EMISSION ABOVE 1GHZ-Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
11570.042	48.58	9.42	58.00	74.00	-16.00	peak
11570.042	36.93	9.42	46.35	54.00	-7.65	AVG
17355.063	42.58	10.51	53.09	68.20	-15.11	peak
Remark:						
Factor = Anter	na Factor + Cab	e Loss – Pre-a	mplifier.			

Report No.: AGC12060220301FE06 Page 112 of 130

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5825MHz	Antenna	Horizontal/Vertical

RADIATED EMISSION ABOVE 1GHZ-Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
11650.042	47.85	9.62	57.47	74.00	-16.53	peak	
11650.042	39.12	9.62	48.74	54.00	-5.26	AVG	
17475.063	42.35	10.75	53.10	68.20	-15.10	peak	
Remark:			•				
Factor = Antenna Factor + Cable Loss – Pre-amplifier.							

RADIATED EMISSION ABOVE 1GHZ–Vertical

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type		
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type		
11650.042	48.52	9.62	58.14	74.00	-15.86	peak		
11650.042	37.48	9.62	47.10	54.00	-6.90	AVG		
17475.063	42.11	10.75	52.86	68.20	-15.34	peak		
Remark:								
Factor = Antenna Factor + Cable Loss – Pre-amplifier.								

Note: All adapters are tested. All antennas are tested. All test modes had been pre-tested. The 802.11a20 is the worst case for adapter 1 and recorded in the test report.

Other frequencies radiation emission from 1GHz to 40GHz at least have 20dB margin and not recorded in the test report.

Factor = Antenna Factor + Cable loss - Amplifier gain, Margin= Limit-Level.

The "Factor" value can be calculated automatically by software of measurement system.

Test result for band edge emission at restricted bands-Ant 1

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5180MHz	Antenna	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Report No.: AGC12060220301FE06 Page 114 of 130

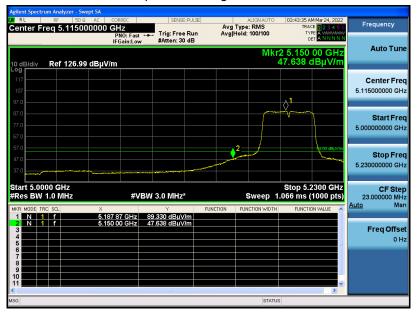
EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5180MHz	Antenna	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.


Report No.: AGC12060220301FE06 Page 115 of 130

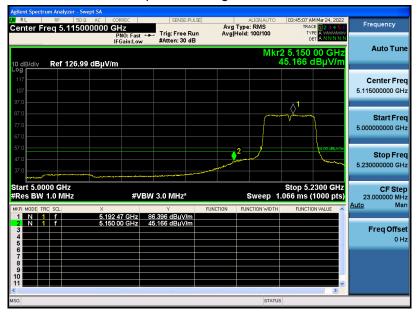
EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n40 5190MHz	Antenna	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.


Report No.: AGC12060220301FE06 Page 116 of 130

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n40 5190MHz	Antenna	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd

Report No.: AGC12060220301FE06 Page 117 of 130

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11ac80 5210MHz	Antenna	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

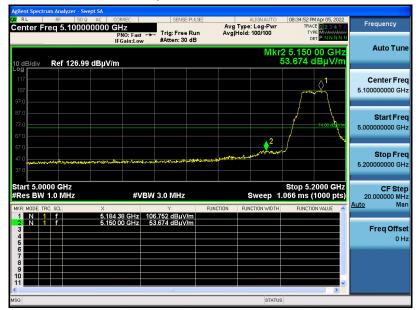
Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86–755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

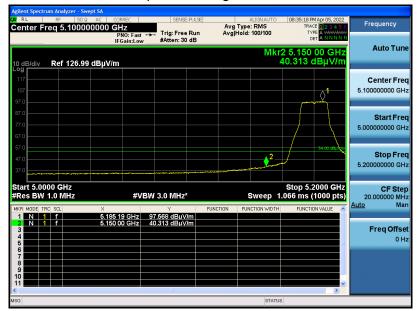
Report No.: AGC12060220301FE06 Page 118 of 130

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11ac80 5210MHz	Antenna	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement



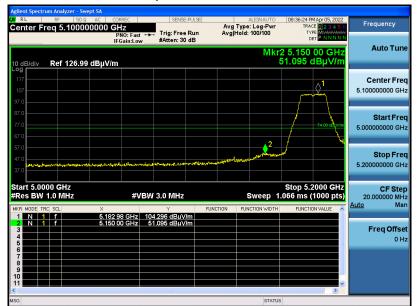

Test result for band edge emission at restricted bands-Ant 2

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5180MHz	Antenna	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS


Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Report No.: AGC12060220301FE06 Page 120 of 130

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11a20 5180MHz	Antenna	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Report No.: AGC12060220301FE06 Page 121 of 130

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n40 5190MHz	Antenna	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Report No.: AGC12060220301FE06 Page 122 of 130

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11n40 5190MHz	Antenna	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Report No.: AGC12060220301FE06 Page 123 of 130

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11ac80 5210MHz	Antenna	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

Attestation of Global Compliance(Shenzhen)Co., Ltd Attestation of Global Compliance(Shenzhen)Std & Tech Co., Ltd Tel: +86–755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/

Report No.: AGC12060220301FE06 Page 124 of 130

EUT	Mini PC	Model Name	GM11i7T
Temperature	25°C	Relative Humidity	60%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	802.11ac80 5210MHz	Antenna	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement

RESULT: PASS

Note: 1. All the 20MHz bandwidth modulation had been tested, the 802.11a20 at 5180MHz was the worst case and record in his test report. All the 40MHz bandwidth modulation had been tested, the 802.11N40 at 5190MHz was the worst case and record in his test report. All the 80MHz bandwidth modulation had been tested, the 802.11AC80 at 5210MHz was the worst case and record in his test report.

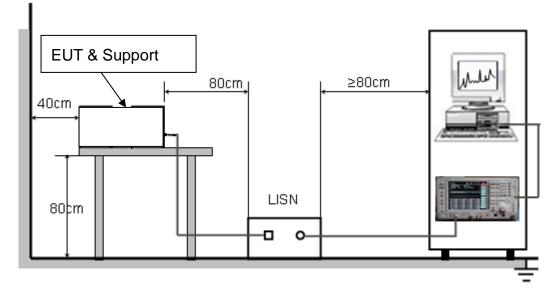
2. The factor had been edited in the "Input Correction" of the Spectrum Analyzer.

3. Only the data of band edge emission at the restricted band 4.5GHz-5.15GHz and 5.35GHz-5.46GHz record in the report. Other restricted band 7.25GHz-7.77GHz were considered as ambient noise. No recording in the test report.

4. The sideband standard of U NII-3 frequency band is not defined, the transmitted signal does not fall in the restricted band, and the edge signal is far away from the edge of other restricted bands, and it is not recorded in the report.

12. LINE CONDUCTED EMISSION TEST

12.1. LIMITS OF LINE CONDUCTED EMISSION TEST


Frequency	Maximum RF Line Voltage	
	Q.P (dBµV)	Average (dBµV)
150kHz~500kHz	66-56	56-46
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Note:

1. The lower limit shall apply at the transition frequency.

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50MHz.

12.2. BLOCK DIAGRAM OF LINE CONDUCTED EMISSION TEST

