Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ Report No.: AGC11034230802FR01 Page 66 of 182 # 9. Power Spectral Density Measurement ### 9.1 Provisions Applicable The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. #### 9.2 Measurement Procedure ⊠For Peak power spectral density test: - 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD. - 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator - 3. Set the RBW = 20 kHz. - 4. Set the VBW \geq [3 × RBW]. - 5. Set the Span ≥ [1.5 × DTS bandwidth]. - 6. Sweep time=Auto couple. - 7. Detector function=Peak. - 8. Trace Mode=Max hold. - When the measurement bandwidth of Maximum PSD is specified in 3 kHz, add a constant factor 10*log(3kHz/20kHz) = -8.23 dB to the measured result. - 10. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. - 11. The indicated level is the peak output power, after any corrections for external attenuators and cables. - For Average power spectral density test: - 1. The testing follows the ANSI C63.10 Section 11.10.5 Method AVPSD. - 2. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator. - 3. Set Span to at least 1.5 times the OBW. - 4. Set RBW to:3 kHz ≤ RBW ≤ 100 kHz. - 5. Set VBW≥[3×RBW]. - 6. Sweep Time=Auto couple. - 7. Detector function=RMS (i.e., power averaging). - 8. Trace average at least 100 traces in power averaging (rms) mode. - 9. When the measurement bandwidth of Maximum PSD is specified in 3 kHz, add a constant factor 10*log(3kHz/20kHz) = -8.23 dB to the measured result. - 10. Determine according to the duty cycle of the equipment: when it is less than 98%, follow the steps below. - 11. Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%. - 12. Record the test results in the report. Report No.: AGC11034230802FR01 Page 67 of 182 # 9.3 Measurement Setup (Block Diagram of Configuration) #### 9.4 Measurement Result | Test Data of Conducted Output Power Spectral Density-Antenna 1 | | | | | | | |--|--------------------|------------------------------|-----------------------------|---------------------|--------------|--| | Test Mode | Test Channel (MHz) | Power density
(dBm/20kHz) | Power density
(dBm/3kHz) | Limit
(dBm/3kHz) | Pass or Fail | | | 802.11b | 2412 | -3.266 | -11.505 | ≤8 | Pass | | | | 2437 | -3.063 | -11.302 | ≪8 | Pass | | | | 2462 | -3.228 | -11.467 | ≤8 | Pass | | | 802.11g | 2412 | -5.899 | -14.138 | ≤8 | Pass | | | | 2437 | -5.312 | -13.551 | ≤8 | Pass | | | | 2462 | -5.458 | -13.697 | ≤8 | Pass | | | | 2412 | -6.016 | -14.255 | ≤8 | Pass | | | 802.11n20 | 2437 | -6.060 | -14.299 | ≤8 | Pass | | | | 2462 | -6.334 | -14.573 | ≤8 | Pass | | | 802.11n40 | 2422 | -8.926 | -17.165 | ≤8 | Pass | | | | 2437 | -8.848 | -17.087 | ≤8 | Pass | | | | 2452 | -8.901 | -17.14 | ≤8 | Pass | | | 802.11ax20 | 2412 | -6.160 | -14.399 | ≤8 | Pass | | | | 2437 | -6.406 | -14.645 | ≤8 | Pass | | | | 2462 | -6.226 | -14.465 | ≤8 | Pass | | | 802.11ax40 | 2422 | -9.695 | -17.934 | ≤8 | Pass | | | | 2437 | -9.636 | -17.875 | ≤8 | Pass | | | | 2452 | -9.632 | -17.871 | ≤8 | Pass | | | Test Data of Conducted Output Power Spectral Density-Antenna 2 | | | | | | | |--|-----------------------|------------------------------|-----------------------------|---------------------|--------------|--| | Test Mode | Test Channel
(MHz) | Power density
(dBm/20kHz) | Power density
(dBm/3kHz) | Limit
(dBm/3kHz) | Pass or Fail | | | 802.11b | 2412 | -3.730 | -11.969 | ≤8 | Pass | | | | 2437 | -3.387 | -11.626 | ≤8 | Pass | | | | 2462 | -3.564 | -11.803 | ≤8 | Pass | | | 802.11g | 2412 | -5.936 | -14.175 | ≤8 | Pass | | | | 2437 | -5.808 | -14.047 | ≤8 | Pass | | | | 2462 | -6.135 | -14.374 | ≤8 | Pass | | | 802.11n20 | 2412 | -6.405 | -14.644 | ≤8 | Pass | | | | 2437 | -6.006 | -14.245 | ≤8 | Pass | | | | 2462 | -6.209 | -14.448 | ≤8 | Pass | | | 802.11n40 | 2422 | -9.591 | -17.83 | ≪8 | Pass | | | | 2437 | -9.369 | -17.608 | ≤8 | Pass | | | | 2452 | -9.422 | -17.661 | ≤8 | Pass | | | 802.11ax20 | 2412 | -6.873 | -15.112 | ≪8 | Pass | | | | 2437 | -6.780 | -15.019 | ≤8 | Pass | | | | 2462 | -7.121 | -15.36 | ≤8 | Pass | | | 802.11ax40 | 2422 | -10.137 | -18.376 | ≪8 | Pass | | | | 2437 | -10.059 | -18.298 | ≤8 | Pass | | | | 2452 | -10.195 | -18.434 | ≤8 | Pass | | | Test Data of Conducted Output Power Spectral Density-MIMO | | | | | | | |---|-----------------------|------------------------------|-----------------------------|---------------------|--------------|--| | Test Mode | Test Channel
(MHz) | Power density
(dBm/20kHz) | Power density
(dBm/3kHz) | Limit
(dBm/3kHz) | Pass or Fail | | | 802.11n20 | 2412 | -3.196 | -11.435 | ≤7.04 | Pass | | | | 2437 | -3.023 | -11.262 | ≤7.04 | Pass | | | | 2462 | -3.261 | -11.500 | ≤7.04 | Pass | | | 802.11n40 | 2422 | -6.235 | -14.474 | ≤7.04 | Pass | | | | 2437 | -6.090 | -14.329 | ≤7.04 | Pass | | | | 2452 | -6.143 | -14.382 | ≤7.04 | Pass | | | 802.11ax20 | 2412 | -3.492 | -11.731 | ≤7.04 | Pass | | | | 2437 | -3.579 | -11.818 | ≤7.04 | Pass | | | | 2462 | -3.640 | -11.879 | ≤7.04 | Pass | | | 802.11ax40 | 2422 | -6.900 | -15.139 | ≤7.04 | Pass | | | | 2437 | -6.832 | -15.071 | ≤7.04 | Pass | | | | 2452 | -6.894 | -15.133 | ≤7.04 | Pass | | # **Test Graphs of Conducted Output Power Spectral Density** **Stop Freq** 2.424255000 GHz **CF Step** 2.451000 MHz Freq Offset 0 Hz Scale Type Mar <u>Auto</u> Log Span 24.51 MHz Sweep 58.47 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11g_ANT1_2412_6Mbps_PSD #VBW 62 kHz Center 2.41200 GHz #Res BW 20 kHz Test_Graph_802.11g_ANT1_2462_6Mbps_PSD #VBW 62 kHz Span 24.49 MHz Sweep 58.41 ms (1000 pts) Log Center 2.46200 GHz #Res BW 20 kHz Test_Graph_802.11n20_ANT1_2437_MCS0_PSD #VBW 62 kHz Span 26.31 MHz Sweep 62.74 ms (1000 pts) Log Center 2.43700 GHz #Res BW 20 kHz Freq Offset 0 Hz Scale Type Log Span 54.51 MHz Sweep 130.0 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11n40_ANT1_2422_MCS0_PSD #VBW 62 kHz Center 2.42200 GHz #Res BW 20 kHz Test_Graph_802.11ax20_ANT1_2437_MCS0_PSD Scale Type Log Span 56.92 MHz Sweep 135.7 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11ax40_ANT1_2422_MCS0_PSD #VBW 62 kHz Center 2.42200 GHz #Res BW 20 kHz Test_Graph_802.11ax40_ANT1_2452_MCS0_PSD Freq Offset 0 Hz Scale Type Log Span 24.49 MHz Sweep 58.41 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11g_ANT2_2412_6Mbps_PSD #VBW 62 kHz Center 2.41200 GHz #Res BW 20 kHz Scale Type Log Span 24.50 MHz Sweep 58.41 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11g_ANT2_2462_6Mbps_PSD #VBW 62 kHz Center 2.46200 GHz #Res BW 20 kHz Test_Graph_802.11n20_ANT2_2437_MCS0_PSD #VBW 62 kHz Scale Type Log Span 54.51 MHz Sweep 130.0 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11n40_ANT2_2422_MCS0_PSD #VBW 62 kHz Center 2.42200 GHz #Res BW 20 kHz Test_Graph_802.11n40_ANT2_2452_MCS0_PSD Test_Graph_802.11ax20_ANT2_2437_MCS0_PSD Test_Graph_802.11ax40_ANT2_2422_MCS0_PSD Scale Type Log Span 56.92 MHz Sweep 135.7 ms (1000 pts) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Test_Graph_802.11ax40_ANT2_2452_MCS0_PSD #VBW 62 kHz Center 2.45200 GHz #Res BW 20 kHz Report No.: AGC11034230802FR01 Page 87 of 182 ## 10. Conducted Band Edge and Out-of-Band Emissions ### 10.1 Provisions Applicable In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power. #### 10.2 Measurement Procedure Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. Use the following spectrum analyzer settings: - Step 1: Measurement Procedure In-Band Reference Level - 1. Set instrument center frequency to DTS channel center frequency. - 2. Set the span to ≥ 1.5 times the DTS bandwidth. - 3. Set the RBW = 100 kHz. - 4. Set the VBW \geq 3 x RBW. - Detector = peak. - 6. Sweep time = auto couple. - 7. Trace mode = max hold. - 8. Allow trace to fully stabilize. - 9. Use the peak marker function to determine the maximum PSD level. - 10. Note that the channel found to contain the maximum PSD level can be used to establish the reference level. - Step 2: Measurement Procedure Out of Band Emission - 1. Set RBW = 100 kHz. - 2. Set VBW ≥ 300 kHz. - 3. Detector = peak. - 4. Sweep = auto couple. - 5. Trace Mode = max hold. - 6. Allow trace to fully stabilize. - Use the peak marker function to determine the maximum amplitude level. Note: The cable loss and attenuator loss were offset into measure device as an amplitude offset. # 10.3 Measurement Setup (Block Diagram of Configuration) Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com. Tel: +86-755 2523 4088 E-mail: agc@agccert.com Web: http://www.agccert.com/ #### 10.4 Measurement Results ### Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands Test_Graph_802.11b_ANT1_2412_1Mbps_Lower Band Emissions | Center Freq | 13.741750000 GHz | 10.0 | 10 09:32:07 AM Sep 06, 2023 Center Freq 13.741750000 GHz PNO: Fast PIGain:Low Avg Type: Log-Pwr Avg|Hold: 6/10 Trig: Free Run #Atten: 30 dB **Auto Tune** Mkr1 24.097 8 GHz -49.705 dBm 10 dB/div Ref 20.00 dBm Center Freq 13.741750000 GHz Start Fred 2.483500000 GHz 25.000000000 GHz **CF Step** 2.251650000 GHz <u>Auto</u> Mar Freq Offset 0 Hz Scale Type Start 2.48 GHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.152 s (30000 pts) Log #VBW 300 kHz Test_Graph_802.11ax20_ANT1_2412_MCS0_Higher Band Emissions 09:40:32 AM Sep 06, 2023 Center Freq 13.741750000 GHz PNO: Fast PIGain:Low Avg Type: Log-Pwr Avg|Hold: 6/10 Trig: Free Run #Atten: 30 dB **Auto Tune** Mkr1 24.458 8 GHz -49.290 dBm 10 dB/div Ref 20.00 dBm Center Freq 13.741750000 GHz Start Fred 2.483500000 GHz 25.000000000 GHz **CF Step** 2.251650000 GHz <u>Auto</u> Mar Freq Offset 0 Hz Scale Type Start 2.48 GHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.152 s (30000 pts) Log #VBW 300 kHz Test_Graph_802.11ax40_ANT1_2422_MCS0_Higher Band Emissions Keysight Spectrum Analyzer - Swept SA Center Freq 13.741750000 GHz PNO: Fast PIGain:Low Avg Type: Log-Pwr Avg|Hold: 6/10 Trig: Free Run #Atten: 30 dB **Auto Tune** Mkr1 24.266 7 GHz -50.059 dBm 10 dB/div Ref 20.00 dBm Center Freq 13.741750000 GHz Start Fred 2.483500000 GHz 25.000000000 GHz **CF Step** 2.251650000 GHz <u>Auto</u> Mar Freq Offset 0 Hz Scale Type Start 2.48 GHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.152 s (30000 pts) Log #VBW 300 kHz Test_Graph_802.11ax40_ANT1_2437_MCS0_Higher Band Emissions Keysight Spectrum Analyzer - Swept SA Center Freq 13.750000000 GHz PN0: Fast IFGain:Low Avg Type: Log-Pwr Avg|Hold: 6/10 Trig: Free Run #Atten: 30 dB **Auto Tune** Mkr1 24.217 0 GHz -49.758 dBm 10 dB/div Ref 20.00 dBm Center Freq 13.750000000 GHz Start Fred 2.500000000 GHz 25.000000000 GHz **CF Step** 2.250000000 GHz <u>Auto</u> Mar Freq Offset 0 Hz Scale Type Start 2.50 GHz #Res BW 100 kHz Stop 25.00 GHz Sweep 2.152 s (30000 pts) Log #VBW 300 kHz Test_Graph_802.11ax40_ANT1_2452_MCS0_Higher Band Emissions