

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

Т	EST REPOR	I			
Report No: CTC20211260E06					
FCC ID:	2AYD5-I21M02				
Applicant	Imin Technology Pte Ltd				
Address	11 Bishan Street 21, #03-05	11 Bishan Street 21, #03-05 Bosch Building, Singapore 573943			
Manufacturer	Imin Technology Pte Ltd				
Address	11 Bishan Street 21, #03-05	Bosch Building, Singapore 573943			
Product Name:	Mobile POS				
Trade Mark:	iMin				
Model/Type reference:	I21M02				
Listed Model(s):					
Standard:	Standard FCC CFR Title 47 Part 15 Subpart C Section 15.225				
Date of receipt of test sample:	Jul. 20, 2021				
Date of testing	Jul. 21, 2021 ~ Aug. 09, 202	1			
Date of issue	Aug. 26, 2021				
Result:	PASS				
Compiled by:		 (
(Printed name + signature)	Terry Su	Perry Ju			
Supervised by: (Printed name + signature)	Miller Ma	Tenny Su Miller Ma			
Approved by:		- <u>+</u> /			
(Printed name + signature)	Walter Chen with chis				
Testing Laboratory Name: CTC Laboratories, Inc.					
Address					
This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver.					

Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Table of Contents

Page

1.	TEST	SUMMARY	. 3
1	.1.	Test Standards	.3
1.	.2.	REPORT VERSION	.3
1		TEST DESCRIPTION	
1		Test Facility	
1		Measurement Uncertainty	
1	.6.	Environmental conditions	6
1	.7.	EUT OPERATION STATE	6
1.	GENE	RAL INFORMATION	. 7
1	.1.	CLIENT INFORMATION	.7
1.		GENERAL DESCRIPTION OF EUT	
1.		ACCESSORY EQUIPMENT INFORMATION	
1	.4.	Measurement Instruments List	8
2.	TEST	ITEM AND RESULTS	. 9
2	.1.	CONDUCTED EMISSION	.9
2.		RADIATED EMISSION	
2.	.3.	20dB Bandwidth	20
2.	.4.	FIELD STRENGTH OF THE FUNDAMENTAL	22
2.		FREQUENCY STABILITY	
2.	.6.	ANTENNA REQUIREMENT	27

EN

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.225: Operation within the band 13.110-14.010MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	Aug. 10, 2021	Original
02	Aug. 23, 2021	Update application, manufacturer address
03	Aug. 26, 2021	Increase the trademark

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 百百百家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

1.3. Test Description

FCC Part 15.225				
Test Item	Standard Section	Result	Test Engineer	
Conducted Emission	15.207	Pass	Terry Su	
Radiated Emissions	15.209&15.225(d)	Pass	Terry Su	
Field Strength of the Fundamental	15.209&15.225(d)	Pass	Terry Su	
Occupied Bandwidth and 20dB Bandwidth	15.215	Pass	Terry Su	
Antenna requirement	15.203	Pass	Terry Su	
Frequency Stability	15.225(e)	Pass	Terry Su	

Note: N/A: Not applicable.

The measurement uncertainty is not included in the test result.

1.4. Test Facility

Address of the report laboratory

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025:2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained inour files. Registration 951311, Aug 26, 2017.

1.5. Measurement Uncertainty

中国国家认证认

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

CTC Laboratories, Inc.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

1.7. EUT Operation state

The EUT has been tested under typical operating condition. The Applicant provides software to control the EUT for staying in continuous transmitting mode for testing.

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 不可 anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

1. GENERAL INFORMATION

1.1. Client Information

Applicant:	Imin Technology Pte Ltd	
Address:	11 Bishan Street 21, #03-05 Bosch Building, Singapore 573943	
Manufacturer:	Imin Technology Pte Ltd	
Address:	11 Bishan Street 21, #03-05 Bosch Building, Singapore 573943	

1.2. General Description of EUT

Product Name:	Mobile POS	
Trade Mark:	iMin	
Model/Type reference:	I21M02	
Listed Model(s):	N/A	
Power supply:	5Vdc/2A from AC/DC Adapter 7.4Vdc from 2600mAh Li-ion Battery	
Adapter Model:	TPA-46050200UU Input:100-240V~ 50/60Hz 0.3A Output: 5Vdc/2A	
Hardware version:	N/A	
Software version:	N/A	
RF Parameter		
Operation frequency:	13.56MHz	
Antenna type:	FPC Antenna	

1.3. Accessory Equipment information

Equipment Information				
Name	Model	S/N	Manufacturer	
1	1	1	1	
Cable Information				
Name	Shielded Type	Ferrite Core	Length	
1	1	1	1	
Test Software Information				
Name	1	1	1	
nfc-tools-pro-v3.4cn -2017-03-07.apk	/	1	1	

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

1.4. Measurement Instruments List

Tonsc	Tonscend JS0806-2 Test system				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
1	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 25, 2021
2	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Mar. 15, 2022
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 25, 2021
4	Signal Generator	Agilent	E8257D	MY46521908	Dec. 25, 2021
5	Power Sensor	Agilent	U2021XA	MY5365004	Dec. 25, 2021
6	Power Sensor	Agilent	U2021XA	MY5365006	Dec. 25, 2021
7	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Dec. 25, 2021
8	Climate Chamber	TABAI	PR-4G	A8708055	Dec. 25, 2021
9	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec. 25, 2021
10	Climate Chamber	ESPEC	MT3065	/	Dec. 25, 2021
11	300328 v2.2.2 test system	TONSCEND	v2.6	1	/

Radiated emission(3m chamber 2)					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated Until
1	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	9168-1013	Jan.12, 2022
2	Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-647	Dec. 24, 2021
3	Spectrum Analyzer	R&S	FSU26	100105	Dec. 25, 2021
4	Spectrum Analyzer	R&S	FSV40-N	101331	Mar. 15, 2022
5	Pre-Amplifier	SONOMA	310	186194	Dec. 25, 2021
6	Low Noise Pre-Amplifier	EMCI	EMC051835	980075	Dec. 25, 2021
7	Test Receiver	R&S	ESCI7	100967	Dec. 25, 2021
8	Loop Antenna	LAPLAC	RF300	9138	Dec. 25, 2021
9	Loop Antenna	ETS	6507	146	Dec. 25, 2021

Note:1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

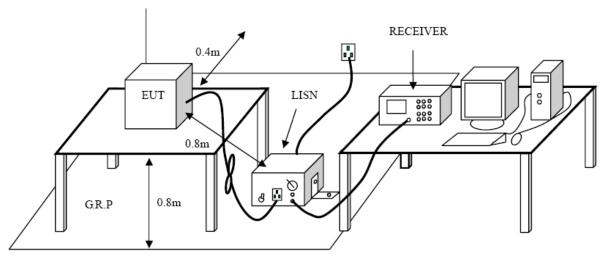
2. TEST ITEM AND RESULTS

2.1. Conducted Emission

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS-Gen 7.2:

	Limit (dBuV)		
Frequency range (MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

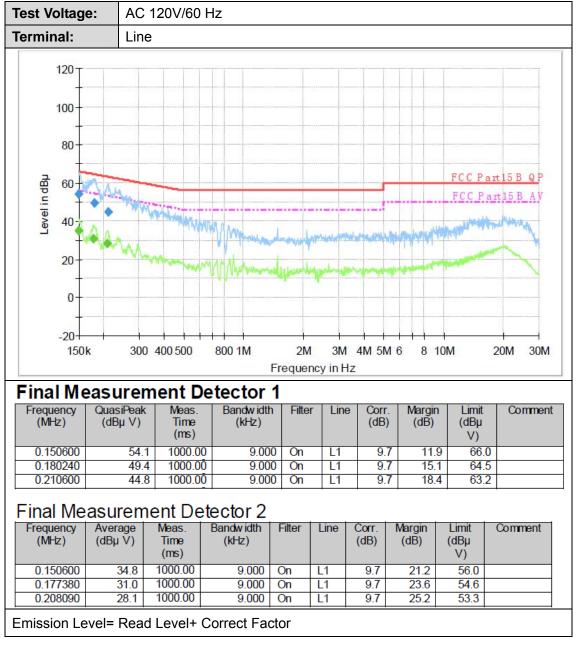
(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

CTC Laboratories, Inc.


2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

Test Mode:

Please refer to the clause 1.7.

Test Results

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China

ling, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

est Voltage:	AC 2	120V/60	Hz						
erminal:	Neu	tral							
120 T	· · · · · · · · · · · · · · · · · · ·								
	- <u> </u>	<u> </u>						<u> </u>	
100-									
80									
률 60+									art15BQP
ng 60 40+	Air.							FCC P	art15B AV
a 40-	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW							I	And the state of t
		WEARAN	The American	Inductor	-	1 demilia	And make the	Hillion .	
20	AA .		A ANNI	al. hi an	Leura		T		
20	- AN MA	monuna	Mhs Malhaham	10 and	water and	many	1 martin		
0				ull a					
UT									
-20	200	400 500	900 1M	214	2M			0.04	20M 20M
	300	400 500	800 1M	2M		4M 5N	16 8 1	OM	20M 30M
-20 150k			I	Frequen			16 8 1	OM	20M 30M
-20 150k	surem	nent D	etector	Frequen	icy in Ha	z			
-20 150k Final Mea	asurem QuasiPeak	nent D	etector Bandwidth	Frequen	icy in Ha	z Corr	. Margin	Limit	20M 30M
-20 150k	surem	nent D	etector	Frequen	icy in Ha	z	. Margin		
-20 150k	asurem QuasiPeak	Meas. Time (ms)	Petector Bandwidth (KHz) 0 9.000	Frequen 1 Filter	icy in Ha	z Corr	. Margin) (dB)	Limit (dBµ V)	Comment
-20 150k Final Mea Frequency (MHz) 0.150600 0.178800	QuasiPeak (dBµ V) 48.4 45.3	Meas. Time (ms) 1000.00	Petector Bandwidth (kHz) 0 9.000 0 9.000	Frequen Filter 0 On 0 On	Line	Z Corr (dB) 10. 10.	. Margin) (dB) 0 17.0 0 19.2	Limit (dBµ V) 6 66. 2 64.	Comment
-20 150k Final Mea Frequency (MHz) 0.150600	QuasiPeak (dBµ V) 48.4	Meas. Time (ms)	Petector Bandwidth (kHz) 0 9.000 0 9.000	Frequen Filter 0 On 0 On	Line	Z Corr (dB) 10.	. Margin) (dB) 0 17.0 0 19.2	Limit (dBµ V) 6 66.0 2 64.3	Comment
-20 150k Final Mea Frequency (MHz) 0.150600 0.178800 0.208090	as urem QuasiPeak (dBµ V) 48.4 45.3 43.2	Meas. Time (ms) 1000.00 1000.00	Bandwidth 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000	Frequen Filter 0 On 0 On	Line	Z Corr (dB) 10. 10.	. Margin) (dB) 0 17.0 0 19.2	Limit (dBµ V) 6 66. 2 64.	Comment
-20 150k Final Mea Frequency (MHz) 0.150600 0.178800 0.208090 Final Mea	asurem QuasiPeak (dBμ V) 48.4 45.3 43.2 sureme	Meas. Time (ms) 1000.00 1000.00 1000.00 ent De	Bandwidth 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000	Frequen 1 N Filter 0 On 0 On 0 On	Line N N N	z Corr (dB) 10. 10. 10.	. Margin (dB) 0 17.0 0 19.2 0 20.1	Limit (dBµ V) 6 66. 2 64. 1 63.	Comment
-20 150k Final Mea Frequency (MHz) 0.150600 0.178800 0.208090 Final Mea Frequency /	ASUREM QuasiPeak (dBµ V) 48.4 45.3 43.2 SUREM(Average	Meas. Time (ms) 1000.00 1000.00 1000.00 1000.00 ent De Meas.	Bandwidth Bandwidth 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000	Frequen Filter 0 On 0 On	Line	z Corr (dB) 10. 10. 10.	. Margin (dB) 0 17.0 0 19.2 0 20.1	Limit (dBµ V) 6 66. 2 64. 1 63. Limit	Comment
-20 150k Final Mea Frequency (MHz) 0.150600 0.178800 0.208090 Final Mea Frequency /	asurem QuasiPeak (dBμ V) 48.4 45.3 43.2 sureme	Meas. Time (ms) 1000.00 1000.00 1000.00 1000.00 ent De Meas. Time	Bandwidth 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000	Frequen 1 N Filter 0 On 0 On 0 On	Line N N N	z Corr (dB) 10. 10. 10.	. Margin (dB) 0 17.0 0 19.2 0 20.1	Limit (dBµ V) 6 66. 2 64. 1 63. Limit (dBµ	Comment
-20 150k Final Mea Frequency (MHz) 0.150600 0.178800 0.208090 Final Mea Frequency (MHz)	ASUREM QuasiPeak (dBµ V) 48.4 45.3 43.2 SUREM Average (dBµ V)	Meas. Time (ms) 1000.00 1000.00 1000.00 1000.00 ent De Meas. Time (ms)	etector 2 Bandw idth (kHz) 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000	Frequen 1 0 On 0 On 0 On Filter	Line Line	z Corr (dB) 10. 10. 10. 10. (dB)	. Margin (dB) 0 17.0 0 19.2 0 20.1 Margin (dB)	Limit (dBµ V) 6 66. 2 64. 1 63. 1 63.	Comment
-20 150k Final Mea Frequency (MHz) 0.150600 0.178800 0.208090 Final Mea Frequency /	ASUREM QuasiPeak (dBµ V) 48.4 45.3 43.2 SUREM(Average	Meas. Time (ms) 1000.00 1000.00 1000.00 1000.00 ent De Meas. Time	Bandwidth Bandwidth 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000 0 9.000	Frequen 1 N Filter 0 On 0 On 0 On	Line N N N	z Corr (dB) 10. 10. 10.	. Margin (dB) 0 17.0 0 19.2 0 20.1	Limit (dBµ V) 6 66. 2 64. 1 63. Limit (dBµ	Comment
-20 150k Final Mea Frequency (MHz) 0.150600 0.178800 0.208090 Final Mea Frequency (MHz) (ASUREM QuasiPeak (dBμ V) 48.4 45.3 43.2 SUREM(Average (dBμ V) 29.6	Meas. Time (ms) 1000.00 1000.00 1000.00 ent De Meas. Time (ms) 1000.00	etector 2 Bandw idth (kHz) 0 9.000 0 9.000 0 9.000 etector 2 Bandw idth (kHz) 9.000	Frequen 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Line N Line N N	z Corr (dB) 10. 10. 10. (dB) 10.0	Margin (dB) 0 17.0 0 19.2 0 20.1 Margin (dB) 26.4	Limit (dBµ V) 6 66. 2 64. 1 63. 1 63. Limit (dBµ V) 56.0	Comment

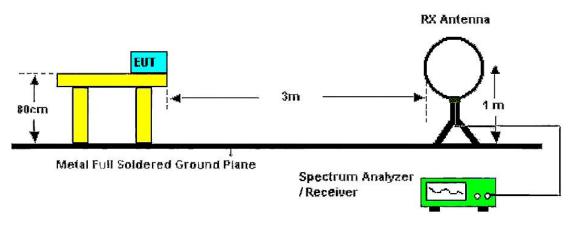
CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

2.2. Radiated Emission

Limit

FCC Part 15.209									
Frequency	Field Streng Limitation		Field Strength Limitation at 3m Measurement Dist						
(MHz)	(uV/m)	Dist	(uV/m)	(dBuV/m)					
0.009 - 0.490	2400 / F(KHz)	300m	10000 * 2400/F(KHz)	20log 2400/F(KHz) + 80					
0.490 - 1.705	24000 / F(KHz)	30m	100 * 24000/F(KHz)	20log 24000/F(KHz) + 40					
1.705 – 30.00	30	30m	100* 30	20log 30 + 40					
30.0 - 88.0	100	3m	100	20log 100					
88.0 - 216.0	150	3m	150	20log 150					
216.0 - 960.0	200	3m	200	20log 200					
Above 960.0	500	3m	500	20log 500					

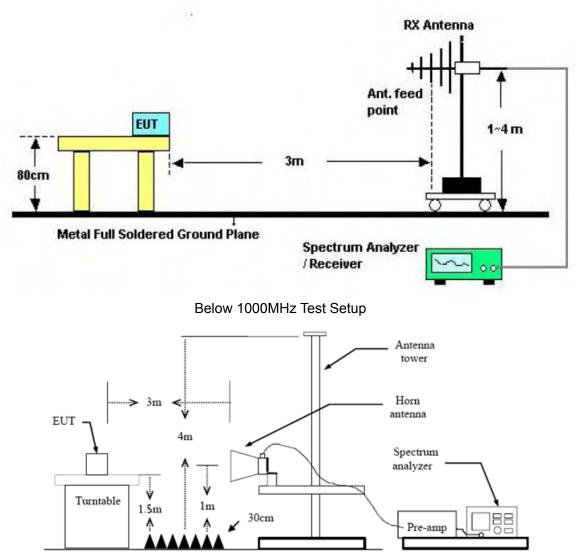

NOTE:

- (1) The tighter limit shall apply at the boundary between two frequency range.
- (2) Limitation expressed in dBuV/m is calculated by 20log Emission Level (uV/m).
- (3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of $L_{d1} = L_{d2} * (d_2/d_1)^2$.
 - Example:

F.S Limit at 30m distance is 30uV/m , then F.S Limitation at 3m distance is adjusted as L_{d1} = L_1 = 30uV/m * (10)² = 100 * 30 uV/m

(4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor(if use) Margin Level = Measurement Value - Limit Value

Test Configuration



Below 30MHz Test Setup

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

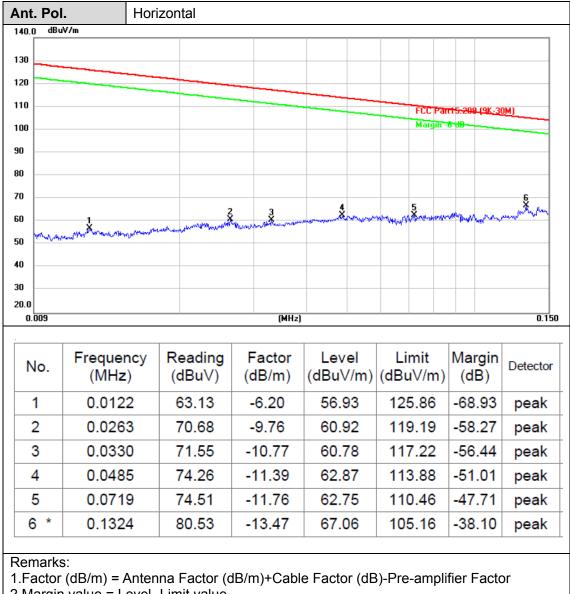
RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10^{th} harmonic:

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn


RBW=1MHz, VBW=3MHz Peak detector for Peak value. RBW=1MHz, VBW=3MHz RMS detector for Average value.

Test Mode

Please refer to the clause 1.7.

Test Result

9 KHz~150 KHz

2.Margin value = Level -Limit value

中国国家认证认可监督管理委员会

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

2/F., Building 1 and 1-2/F., Building 2, Jiaguan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Fax: (86)755-27521011 Tel.: (86)755-27521059 Http://www.sz-ctc.org.cn

nt. Po	-	tical					
40.0 dBu	uV/m						
30							
20							
10					FCC Pa	1 15:209 (9K-3	OM1
00					Margin -		
o							
o							
o					F		6 X
o		3	4		wyuntani	man	manutureter
o hund	and man and the second	and an all marked	montenter				
o							
0.0							
0.009			(MHz)			0.15
	Frequency	Reading	Factor	Level	Limit	Margin	
No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)		(dB)	Detector
1	0.0114	61.48	-5.99	55.49	126.45	-70.96	peak
2	0.0154	62.60	-7.00	55.60	123.84	-68.24	peak
3	0.0262	68.70	-9.73	58.97	119.22	-60.25	peak
4	0.0328	71.56	-10.76	60.80	117.27	-56.47	peak
_							

Remarks:

EN

5

6 *

0.0719

0.1327

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

-11.76

-13.47

64.75

68.56

110.46

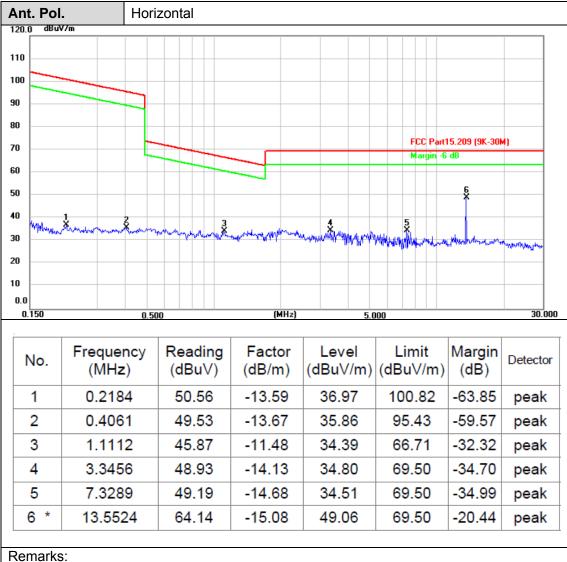
105.14

-45.71

-36.58

peak

peak


76.51

82.03

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

150 KHz~30 MHz

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 日目家认证认可监督管理委员会 For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

nt. Po	Ι.	Ver	tical									
0.0 dBu	₩/m											
o												
0												
·												
		-								CC Part1 argin -6	5.209 (9K-30k	0
										iargin o		
											é	
	ı		2		3						Ĩ	
wiger th	hand a ward	anderson	mx n	WANNAM A	William to what	handle	A. Mara	5				Mame
								ManylAlly	Antonio Maria	nother cont	-	htter i se
.0		0.5				(MHz)		5.0	00			30.00
0.100		0.5	00			(-112)		5.0	00			30.00
	Freque	ncv	Rea	dina	Fact	or	Lev	el	Lin	nit	Margin	
No.	(MHz	-	(dB	-	(dB/r		(dBu\				(dB)	Detecto
1	0.271	·	53.		-13.6	-	40.3		` 98.			maak
-											-58.55	peak
2	0.657	'5	51.	36	-13.7	72	37.	64	71.	25	-33.61	peak
3	1.330	6	49.	55	-11.1	11	38.4	44	65.	15	-26.71	peak
4	2.735	5	50.	06	-14.0	07	35.	99	69.	50	-33.51	peak
5	4.696	2	47.	56	-14.1	12	33.4	44	69.	50	-36.06	peak
												-

Remarks:

EN

6 *

13.4792

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

-15.08

49.93

69.50

-19.57

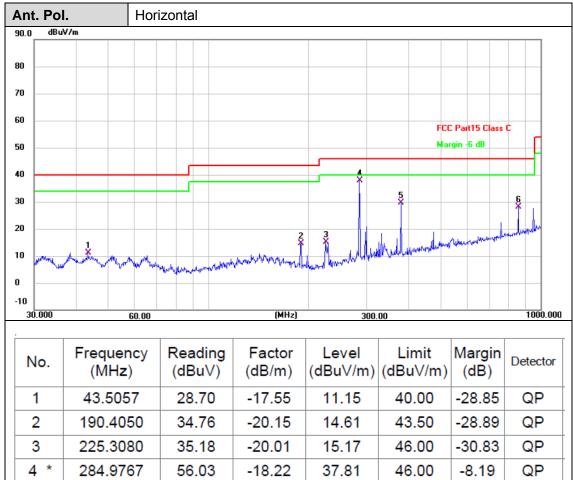
peak

65.01

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会

-16.32

-17.97


46.00

46.00

QP

QP

30MHz-1GHz

Remarks:

=È

5

6

379.9141

857.0247

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

-16.18

-8.81

29.68

28.03

45.86

36.84

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 不可 anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

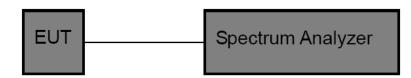
Ant. Pol		Vert	ical					
90.0 dBu	√/m							
30								
70								
50						FCC	Part15 Class	C
50						Mar	gin -6 dB	
10								
30					4	5		6
20		-			3	1	Muchandendente	
	mal Market Market	Å				us allow how the	Walkbalan	
	and the second	The V	Mar Haller March	and an and a second state of the second state of the second states of the second states of the second states of	ward when walk a sure			
)								
10								
30.000		50.00		(MHz)	300	00		1000.00
30.000		60.00		(MHz)	300.	00		1000.00
			Reading		1		Margin	
^{30.000} No.	Frequer (MHz	су	Reading (dBu∀)	(мн _{z)} Factor (dB/m)	Level	₀₀ Limit (dBuV/m)	Margin (dB)	1000.00
No.	Frequer (MHz)	ncy)	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	(dB)	Detector
No. 1	Frequer (MHz) 65.572	ncy) 27	(dBuV) 32.85	Factor (dB/m) -19.57	Level (dBuV/m) 13.28	Limit (dBuV/m) 40.00	(dB) -26.72	Detector QP
No. 1 2	Frequer (MHz)	ncy) 27	(dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	(dB)	Detector
No. 1	Frequer (MHz) 65.572	ncy) 27 50	(dBuV) 32.85	Factor (dB/m) -19.57	Level (dBuV/m) 13.28	Limit (dBuV/m) 40.00	(dB) -26.72	Detector QP
No. 1 2	Frequer (MHz) 65.572 190.405	ncy) 27 50 30	(dBuV) 32.85 40.56	Factor (dB/m) -19.57 -20.15	Level (dBuV/m) 13.28 20.41	Limit (dBuV/m) 40.00 43.50	(dB) -26.72 -23.09	Detector QP QP
No. 1 2 3	Frequer (MHz) 65.572 190.409 225.308	ncy) 27 50 30 67	(dBuV) 32.85 40.56 35.67	Factor (dB/m) -19.57 -20.15 -20.01	Level (dBuV/m) 13.28 20.41 15.66	Limit (dBuV/m) 40.00 43.50 46.00	(dB) -26.72 -23.09 -30.34	Detector QP QP QP

Remarks:

EN

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 日中国国家认证认可监督管理委员会


2.3. 20dB Bandwidth

<u>Limit</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.215

Intentional radiators must be designed to ensure that the 20dB emission bandwidth in the specific band. 13.553~13.567MHz.

Test Configuration

Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- 2. Spectrum Setting:
 - (1) Set RBW \geq 1% of the 20dB bandwidth.
 - (2) Set the video bandwidth (VBW) \ge RBW.
 - (3) Detector = Peak.
 - (4) Trace mode = Max hold.
 - (5) Sweep = Auto couple.

Test Mode

Please refer to the clause 1.7.

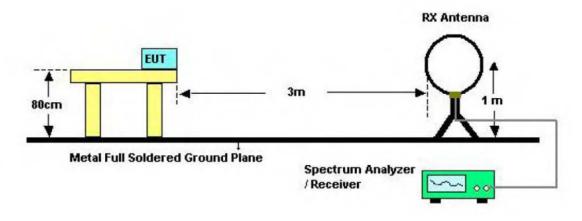
Test Results

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 不可 anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

Channel Frequency(MHz)	F _L >13.553	F _H <13.567	20dB Bandwidth (kHz)	Result
13.56	13.559	13.561	2.475	PASS
Spect Ref Le Att SGL ● 1Pk V 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm -70 dBm -60 dBm -70 dBm -80 dBm -10 dBm -50 dBm -50 dBm -10 dBm -10 dBm -50 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm -50 dBm -10 dBm -10 dBm -10 dBm -50 dBm -10 dBm	rum vel 5.00 dBm 25 dB SWT 1.9 ms VI ew D1 -22.070 dBm D1 -22.070 dBm 56 MHz	BW 1 kHz BW 1 kHz Mode Auto FFT M2 M2[1] M1[1] M4 d1 691 pts Function -0.39 dB -2.07 dBm Tead	-2.07 dBm 13.5603040 MHz -22.02 dBm 13.5590880 MHz 000000000000000000000000000000000000	

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 下 中国国家认证认可监督管理委员会

2.4. Field Strength of the Fundamental


Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.225(a)(b)(c)

Fundamental frequency(MHz)	Field strength of fundamental (uV/m @30m)	Field strength of fundamental (dBuV/m @3m)
13.553-13.567	15848	124.0
13.410-13.553&13.567-13.710	334	90.5
13.110-13.410&13.710-14.010	106	80.5

Note: Limit dBuV/m @3m =Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.

Test Configuration

Below 30MHz Test Setup

Test Procedure

1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.

2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is 4. repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

Test Mode

Please refer to the clause 1.7.

中国国家认证认

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaguan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn For anti-fake verification, please visit the official website of Certification and

Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

可监督管理委员会

Test Result

nt.	Pol.	Hori	izontal					
20.0	dBuV/m							
ן י							FCC Pa	t15.225
							Margin	6 dB
- י								
- נ								
ן נ				3				
0 -								
	1		2	mann	monter	5	6	
,	where where a second	مى ئەمەلىيەرىر	war simple marched	AN MARKAN AND .	Martin Martin	www.autoriteliter.com.org.co	h have a start and the second	ward work
0.0								
13.1	110 13.20	13.29	13.38	13.47 (MHz) 13.65	13.74 13	.83 13.	92 14
			D "					
No	D. Frequer		Reading	Factor			Margin	Detector
	. (MHz	·	(dBuV)	(dB/m)	(dBuV/m)		(dB)	
1	13.263	30	44.08	-15.09	28.99	80.50	-51.51	peak
2	* 13.388	31	45.38	-15.08	30.30	80.50	-50.20	peak
	13.560	00	64.97	-15.08	49.89	124.00	-74.11	peak
3	13.671	16	43.75	.75 -15.08 28.67 90.50		90.50	-61.83	peak
3	13.07							•
4			44 53	-15 07	29 46	80 50	-51 04	peak
	13.744	15	44.53 43.63	-15.07 -15.07	29.46 28.56	80.50 80.50	-51.04 -51.94	peak peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor 2.Margin value = Level -Limit value

CTC Laboratories, Inc.

2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 Fax: (86)755-27521011 Http://www.sz-ctc.org.cn

EN

nt	. Pol	I .		Ver	tical									
20.0	dBu	V/m												
10														
00														
₽														
0													FCC Pa Margin	rt15.225 -6 dB
								3						
								Ň						
Ի						•								
י	mm	mm	*~~	~ My my	han	2 Mirmin	mm	mm	Amaria	mon mar	mm	man	56	manertundyan
•														
0.0														
13	.110	13.2	0	13.29	13.	38 1	3.47	(MHz	:) 13.	.65	13.74	13.	83 13	.92 14.
		-			_		_					••		
Ν	o .			ency	1	ading		ctor				mit	Margin	Detector
			(MH	Z)	(ar	BuV)	(ae	8/m)	(dBu	v/m)	(аві	uV/m)	(dB)	
1		1	3.21	62	44	1.32	-15	5.09	29.	23	80).50	-51.27	peak
2	*	1	3.38	99	45	5.18	-15	5.08	30.10		80).50	-50.40	peak
3	3	1	3.56	00	64	1.40	-15	5.08	49.	32	12	4.00	-74.68	peak
4	Ļ	1	3.75	808	45	5.12	-15	5.07	30.	05	80).50	-50.45	peak
5	5	1	3.86	51	43	3.95	-15	5.07	28.	88	80	.50	-51.62	peak
6	6	1	3.88	76	44	1.67	-15	5.07	29.	60	80).50	-50.90	peak
C					1		L		1		1		1	1

2.Margin value = Level -Limit value

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 日 中国国家认证认可监督管理委员会



2.5. Frequency Stability

<u>Limit</u>

The frequency tolerance of the carrier signal shall be maintained within $\pm 0.01\%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.

Test Configuration

Test Procedure

- 1. The equipment under test was connected to an external power supply.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- 4. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25° C operating frequency as reference frequency.

5. Turn EUT off and set the chamber temperature to -10° C. After the temperature stabilized for approximately 30 minutes recorded the frequency.

6. Repeat step measure with 10° increased per stage until the highest temperature of +40° reached.

Test Mode

Please refer to the clause 1.7

Test Result

Test Env	vironment	Frequency	Frequency	l insit	Desult
Voltage	Temperature(°C)	Reading(MHz)	Error(%)	Limit	Result
	0	13.56012	0.0009%	±0.01%	Pass
	10	13.56008	0.0006%	±0.01%	Pass
DC 7.40V	20	13.56007	0.0005%	±0.01%	Pass
DC 7.40V	30	13.56011	0.0008%	±0.01%	Pass
	40	13.56005	0.0004%	±0.01%	Pass
	50	13.56013	0.0010%	±0.01%	Pass
DC 8.14V	25	13.56018	0.0013%	±0.01%	Pass
DC 6.66V	25	13.56016	0.0012%	±0.01%	Pass

CTC Laboratories, Inc. 2/F., Building 1 and 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Longhua District, Shenzhen, Guangdong, China Tel.: (86)755-27521059 中国国家认证认可监督管理委员会 日 中国国家认证认可监督管理委员会 Accreditation Administration of the People's Republic of China : http://yz.cnca.cn

2.6. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

The directional gain of the antenna less than 6dBi, please refer to the below antenna photo.