FCC TEST REPORT

CATEGORY: Mobile

PRODUCT NAME: 802.11g Wireless LAN USB Module

FCC ID.: NDD9573170504

FILING TYPE: Certification

MODEL NAME (BRAND NAME): EW-7317ULg (EDIMAX) / GWU-17LG (GLP)

APPLICANT: EDIMAX TECHNOLOGY CO., LTD.

No. 3, Wu Chuan 3rd Road, Wu-Ku Industrial Park, Taipei

Hsien, Taiwan, R.O.C.

MANUFACTURER: Same as applicant

ISSUED BY: SPORTON INTERNATIONAL INC.

6F, No. 106, Sec. 1, Hsin Tai Wu Rd., His Chih, Taipei Hsien,

Taiwan, R.O.C.

Statements:

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

Certificate or Test Report could not be used by the applicant to claim the product endorsement by CNLA and any agency of U.S. government.

The test equipment used to perform the test is calibrated and traceable to NML/ROC or NIST/USA.

Report No.: FR560805

1190 ILAC MRA

Table of Contents

HISTORY OF THIS TEST REPORT	II
CERTIFICATE OF COMPLIANCE	
1. GENERAL DESCRIPTION OF EQUIPMENT UNDER TEST	1
1.1. Applicant	
1.2. Manufacturer	
1.3. Basic Description of Equipment under Test	
1.4. Features of Equipment under Test	
1.5. Antenna Description	1
1.6. Table for Carrier Frequencies	2
2. TEST CONFIGURATION OF THE EQUIPMENT UNDER TEST	3
2.1. Connection Diagram of Test System	3
2.2. Test Mode Description	3
2.3. Description of Test Supporting Units	3
3. GENERAL INFORMATION OF TEST	4
3.1. Test Facility	4
3.2. Standards for Methods of Measurement	4
3.3. DoC Statement	4
3.4. Frequency Range Investigated	4
3.5. Test Distance	4
3.6. Test Software	4
4. LIST OF MEASUREMENTS	6
4.1. Summary of the Test Results	6
5. TEST RESULT	7
5.1. Test of 6dB Spectrum Bandwidth	7
5.2. Test of Maximum Peak Conducted Output Power	12
5.3. Test of Peak Power Spectral Density	
5.4. Test of Band Edges Emission	
5.5. Test of AC Power Line Conducted Emission	
5.6. Test of Spurious Radiated Emission	
5.7. Antenna Requirements	
5.8. RF Exposure	
6. LIST OF MEASURING EQUIPMENTS USED	
7. COMPANY PROFILE	
7.1. Certificate of Accreditation	
7.2. Test Location	44
8. CNLA CERTIFICATE OF ACCREDITATION	45
APPENDIX A PHOTOGRAPHS OF FUT	Δ1 ~ Δ3

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255:

HISTORY OF THIS TEST REPORT

Received Date: June 08, 2005
Test Date: June 21, 2005

Original Report Issue Date: June 23, 2005

Report No.: FR560805

■ No additional attachment.

☐ Additional attachment were issued as following record:

Description

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255: Page No. : ii

Issued Date : June 23, 2005

CERTIFICATE OF COMPLIANCE

with

47 CFR FCC Part 15 Subpart C

PRODUCT NAME: 802.11g Wireless LAN USB Module

MODEL NAME (BRAND NAME) : EW-7317ULg (EDIMAX) / GWU-17LG (GLP)

APPLICANT: EDIMAX TECHNOLOGY CO., LTD.

No. 3, Wu Chuan 3rd Road, Wu-Ku Industrial Park, Taipei

Hsien, Taiwan, R.O.C.

MANUFACTURER: Same as applicant

I HEREBY CERTIFY THAT:

The measurements shown in this test report were made in accordance with the procedures given in ANSI C63.4-2003 and all test are performed according to 47 CFR FCC Part 15 Subpart C. Testing was carried out on June 21, 2005 at SPORTON International Inc. LAB.

Wayne Hsu / Supervisor Sporton International Inc.

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255: Page No. : iii

Issued Date : June 23, 2005

Report No.: FR560805

1. General Description of Equipment under Test

1.1. Applicant

EDIMAX TECHNOLOGY CO., LTD.

No. 3, Wu Chuan 3rd Road, Wu-Ku Industrial Park, Taipei Hsien, Taiwan, R.O.C.

1.2. Manufacturer

Same as applicant

1.3. Basic Description of Equipment under Test

This product is a WLAN USB module with 802.11b/g wireless solution. The technical data has been listed on section "Features of Equipment under Test".

1.4. Features of Equipment under Test

Items	Description
Type of Modulation	DSSS (CCK / DQPSK / DBPSK) OFDM (16QAM / 64QAM / DQPSK / DBPSK)
Number of Channels	11
Frequency Band	2400 MHz ~ 2483.5 MHz
Carrier Frequency Range	2412.0 MHz ~ 2462.0 MHz
Carrier Frequency	See section 1.6 for details
Data Rate	1, 2, 5.5, 11 Mbps - DSSS 6, 12, 18, 24, 36, 48, 54 Mbps - OFDM
Max. Conducted Output Power	DSSS : 18.44 dBm OFDM : 14.70 dBm
Antenna Type	See section 1.5 for details
Communication Type	Half-Duplex
Testing Duty Cycle	100.00%
Power Rating (DC/AC, Voltage)	5VDC from host
Test Power Source	110.00V AC
Temperature Range (Operating)	-10 ~ 50 °C

1.5. Antenna Description

No.	Antenna Type	Gain (dBi)
1	High Gain Antenna	8.00

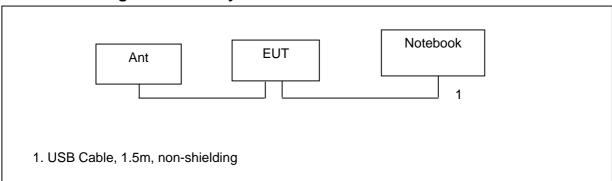
SPORTON International Inc.

Page No. : 1 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005

FAX: 886-2-2696-2255

1.6. Table for Carrier Frequencies

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
01	2412 MHz	05	2432 MHz	09	2452 MHz	-	-
02	2417 MHz	06	2437 MHz	10	2457 MHz	-	-
03	2422 MHz	07	2442 MHz	11	2462 MHz	-	-
04	2427 MHz	08	2447 MHz	-	-	-	-


TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 2 of 45

Report No.: FR560805

2. Test Configuration of the Equipment under Test

2.1. Connection Diagram of Test System

2.2. Test Mode Description

- 1. For DSSS modulation, CCK (11 Mbps) is the worst case on all test items.
- 2. For OFDM modulation, BPSK (6 Mbps) is the worst case on all test items.
- 3. According to ANSI C63.4-2003: If frequency range of EUT is more than 10 MHz, we have to test the lowest, middle and highest channels of EUT.
- 4. Spurious emission below 1GHz is independent of channel selection and modulation types. So only channel 06 was tested.
- 5. For AC conduction emission, the EUT linked with AP wirelessly.

2.3. Description of Test Supporting Units

Support unit	Brand	Model No.	FCC ID	
Notebook COMPAQ		PP2150 (1500)	DoC	

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 3 of 45

Report No.: FR560805

Report No.: FR560805

3. General Information of Test

3.1. Test Facility

Test Site Location : No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiag, Tao

Yuan Hsien, Taiwan, R.O.C.

: TEL 886-3-327-3456 : FAX 886-3-318-0055

Test Site No : 03CH03-HY / TH01-HY / CO04-HY

3.2. Standards for Methods of Measurement

Here is the list of the standards followed in this test report.

ANSI C63.4-2003

47 CFR FCC Part 15 Subpart C

3.3. DoC Statement

This EUT is also classified as a device of computer peripheral Class B which DoC has to be followed. It has been verified according to the rule of 47 CFR part 15 Subpart B, and found that all the requirements has been fulfilled.

3.4. Frequency Range Investigated

Radiated emission test: from 9 kHz to 10th carrier harmonic

3.5. Test Distance

The test distance of radiated emission (9kHz~1GHz) test from antenna to EUT is 3 M. The test distance of radiated emission (1GHz~10th carrier harmonic) test from antenna to EUT is 3 M.

3.6. Test Software

During testing, Channel & Power Controlling Software: This was provided by the manufacturer and is able to let the test engineer select the operating channel as well as the RF output power. The parameters for channel selection is trying to offer the test engineer the ability to fix the operating channel for testing, both normal data and continuously transmitting modes are allowed, and that for RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

SPORTON International Inc.

TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

Page No.

: 4 of 45

Power Parameter Table

Software Version : ZYDAS ZD1211 R&D TOOL

Power Set CH01 / DSSS : 5B
Power Set CH06 / DSSS : 5B
Power Set CH11 / DSSS : 5A
Power Set Ch01 / OFDM : 41
Power Set Ch06 / OFDM : 3F
Power Set Ch11 / OFDM : 3C

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 5 of 45

Issued Date : June 23, 2005

4. List of Measurements

4.1. Summary of the Test Results

Applied Standard: 47 CFR FCC Part 15 Subpart C						
Paragraph	Paragraph FCC Section Description of Test					
5.1	15.247(a)(2)	6dB Spectrum Bandwidth	Pass			
5.2	15.247(b)(3)	Maximum Peak Conducted Output Power	Pass			
5.3	15.247(e)	Peak Power Spectral Density	Pass			
5.4	15.247(d)	Band Edges Emission	Pass			
5.5	15.207	AC Power Line Conducted Emission	Pass			
5.6	15.247(d)	Spurious Radiated Emission	Pass			
5.7	15.203/15.247(b)/(c)	Antenna Requirement	Pass			
5.8	2.1091	Maximum Permissible Exposure	Pass			

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 6 of 45

Report No.: FR560805

Report No.: FR560805

5. Test Result

5.1. Test of 6dB Spectrum Bandwidth

5.1.1. Applicable Standard

Section 15.247(a)(2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

5.1.2. Measuring Instruments

Item 18 of the table on section 6.

5.1.3. Description of Major Test Instruments Setting

Spectrum Analyzer - R&S FSP30

Attenuation · Auto

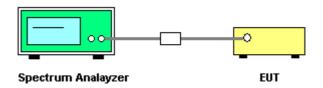
Center Frequency : 2412 MHz / 2437 MHz / 2462 MHz

Span Frequency : > 6dB Bandwidth

 RB
 : 100 kHz

 VB
 : 100 kHz

 Detector
 : Peak


 Trace
 : Max Hold

 Sweep Time
 : Auto

5.1.4. Test Procedures

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz. Trace to Max hold and Detector PK.
- 3. The 6dB bandwidth is the spectrum width with level higher than 6dB below the peak level.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

5.1.5. Test Setup Layout

5.1.6. Test Criteria

All test results complied with the requirements of 15.247(a)(2). Measurement Uncertainty is 1x10⁻⁵.

SPORTON International Inc.

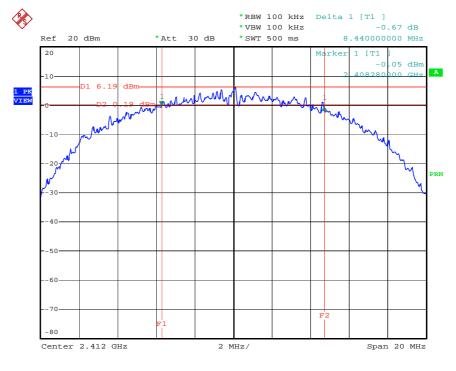
Page No.

: 7 of 45

FAX: 886-2-2696-2255

Report No.: FR560805

5.1.7. Test Result

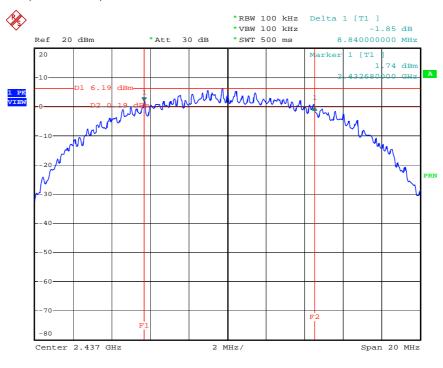

Temperature: 26°CRelative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Sam Lee

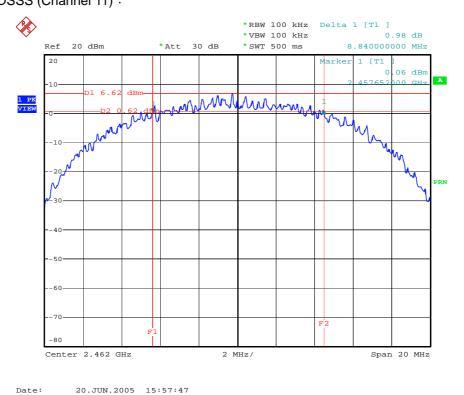
Modulation Type	Channel No.	Frequency (MHz)		
DSSS	01	2412 MHz	8.44	0.5
DSSS	06	2437 MHz	8.84	0.5
DSSS	11	2462 MHz	8.84	0.5
OFDM	01	2412 MHz	16.56	0.5
OFDM	06	2437 MHz	16.56	0.5
OFDM	11	2462 MHz	16.52	0.5

Modulation Type: DSSS (Channel 01):


Date: 20.JUN.2005 15:23:36

Page No.

: 8 of 45

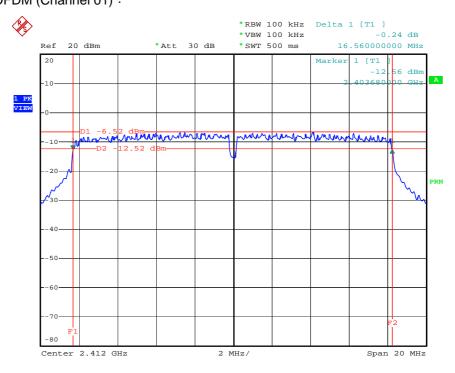

Report No.: FR560805

Modulation Type: DSSS (Channel 06):

Date: Modulation Type: DSSS (Channel 11):

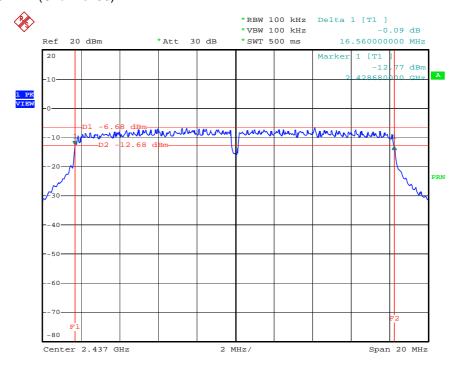
20.JUN.2005 15:34:57

Date:


TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

Page No.

: 9 of 45


Report No.: FR560805

Modulation Type: OFDM (Channel 01):

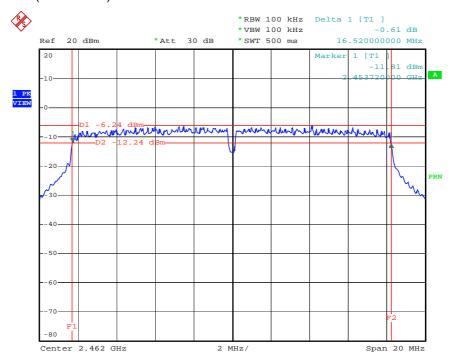
Date: 20.JUN.2005 15:38:16

Modulation Type: OFDM (Channel 06):

20.JUN.2005 15:47:27 Date:

FAX: 886-2-2696-2255

Page No. : 10 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005


Report No.: FR560805

Page No.

: 11 of 45

: June 23, 2005

Modulation Type: OFDM (Channel 11):

Date: 20.JUN.2005 15:48:49

TEL: 886-2-2696-2468 Issued Date FAX: 886-2-2696-2255

Report No.: FR560805

5.2. Test of Maximum Peak Conducted Output Power

5.2.1. Applicable Standard

Section 15.247(b)(3): The maximum peak output power shall not exceed 1 watt (30dBm). Except as shown below, if transmitting antennas of directional gain greater than 6 dBi are used the peak output power from the intentional radiator shall be reduced below the above stated values by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


5.2.2. Measuring Instruments

Item 19, 21 of the table on section 6.

5.2.3. Test Procedures and Test Instruments Setting

- 1. The transmitter output was connected to the peak power meter through an attenuator.
- 2. Repeated point 1 for the middle and highest channel of the EUT.

5.2.4. Test Setup Layout

5.2.5. Test Criteria

All test results complied with the requirements of 15.247(b)(3). Measurement Uncertainty is 1.5dB.

SPORTON International Inc.

Page No.

: 12 of 45

5.2.6. Test Result of Conducted Power

Temperature: 26°CRelative Humidity: 64%

• Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Sam Lee

Modulation Type	Channel No.	Frequency (MHz)	Output Power (dBm)	Limits (dBm)
DSSS	01	2412 MHz 18.02		30
DSSS	06	2437 MHz	18.21	30
DSSS	11	2462 MHz	18.44	30
OFDM	01	2412 MHz	14.40	30
OFDM	06	2437 MHz	14.25	30
OFDM	11	2462 MHz	14.70	30

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 13 of 45

Report No.: FR560805

Report No.: FR560805

5.3. Test of Peak Power Spectral Density

5.3.1. Applicable Standard

Section 15.247(e): For digital modulation systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

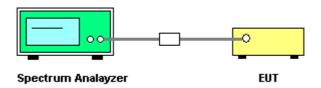
5.3.2. Measuring Instruments

Item 18 of the table on section 6.

5.3.3. Description of Major Test Instruments Setting

 Spectrum Analyzer : R&S FSP30

Attenuation Auto


Center Frequency 2412 MHz / 2437 MHz / 2462 MHz

: 1.5MHz Span Frequency RΒ : 3 kHz VΒ 30 kHz Detector : Peak Trace : Max Hold Sweep Time 500s

5.3.4. Test Procedures

- 1. The transmitter output is connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 3kHz and VBW to 30kHz. Set Detector to Peak, Trace to Max Hold.
- 3. Mark the frequency with maximum peak power as the center of the display of the spectrum.
- 4. Set the span to 1.5MHz and the sweep time to 500s and record the maximum peak value.
- 5. Repeated points 1~4 for the middle and highest channel of the EUT.

5.3.5. Test Setup Layout

5.3.6. Test Criteria

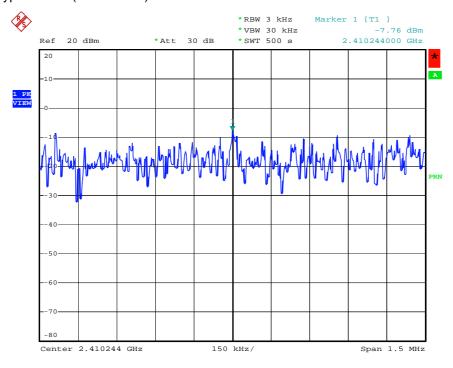
All test results complied with the requirements of 15.247(e). Measurement Uncertainty is 1.5dB.

SPORTON International Inc.

Page No. : 14 of 45 TEL: 886-2-2696-2468 : June 23, 2005 Issued Date FAX: 886-2-2696-2255

Report No.: FR560805

5.3.7. Test Result

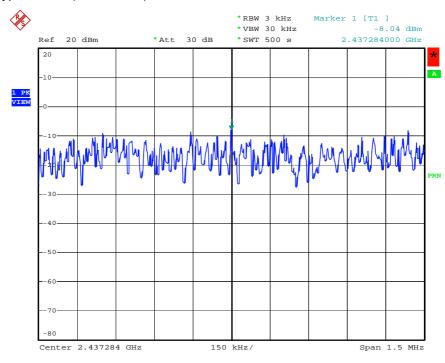

Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Sam Lee

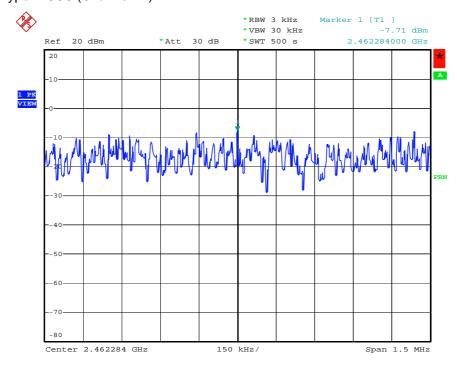
Modulation Type	Channel No.	Frequency (MHz)	Power Density (dBm)	Limits (dBm)
DSSS	01	2412 MHz	2412 MHz -7.76	
DSSS	06	2437 MHz	-8.04	8
DSSS	11	2462 MHz	-7.71	8
OFDM	01	2412 MHz	-20.16	8
OFDM	06	2437 MHz	-21.12	8
OFDM	11	2462 MHz	-20.64	8

Modulation Type: DSSS (Channel 01):



20.JUN.2005 15:26:50 Date:

Page No. : 15 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

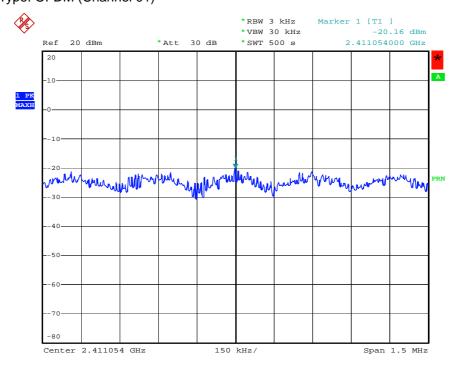

Issued on June 23, 2005 Report No.: FR560805

Modulation Type: DSSS (Channel 06):

Date: 20.JUN.2005 15:28:40

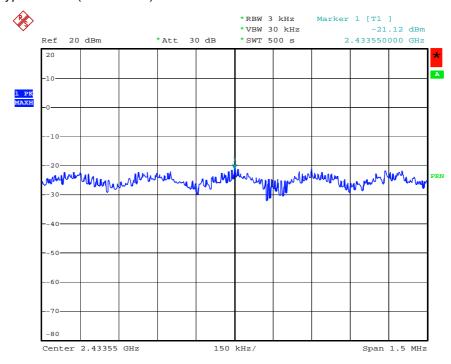
Modulation Type: DSSS (Channel 11):

Date: 20.JUN.2005 15:30:13

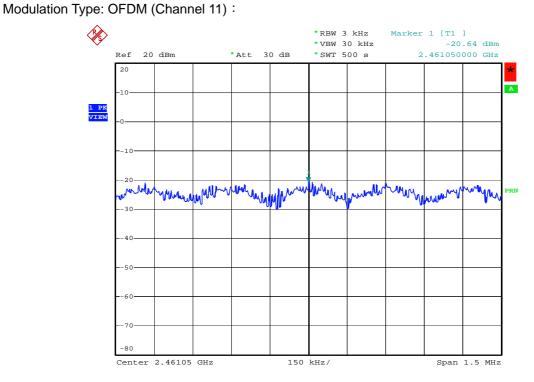

TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

Page No.

: 16 of 45


Report No.: FR560805

Modulation Type: OFDM (Channel 01):


Date: 20.JUN.2005 15:40:28

Modulation Type: OFDM (Channel 06):

20.JUN.2005 15:42:21 Date:

Page No. : 17 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

Date: 20.JUN.2005 16:07:22

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 18 of 45

Report No.: FR560805

Report No.: FR560805

5.4. Test of Band Edges Emission

5.4.1. Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

5.4.2. Measuring Instruments

Item 6~17 of the table on section 6 for radiated measurement. Item 18 of the table on section 6 for conducted measurement.

5.4.3. Description of Major Test Instruments Setting

 Spectrum Analyzer R&S FSP30 (Conducted Measurement)

Attenuation Auto

Center Frequency 2412 MHz / 2462 MHz

Span Frequency 100MHz RΒ 100 kHz VΒ 100 kHz Detector Peak Trace Max Hold

Sweep Time Auto

Spectrum Analyzer R&S FSP40 (Radiated Measurement)

Attenuation Auto

Center Frequency : 2412 MHz / 2462 MHz

Span Frequency 100MHz

RΒ 1 MHz for PK value / 1 MHz for AV value **VB** 1 MHz for PK value / 10 Hz for AV value

Detector Peak Trace Max Hold Sweep Time Auto

5.4.4. Test Procedures and Test Instruments Setting

Conducted Measurement

1. The transmitter is set to the lowest channel.

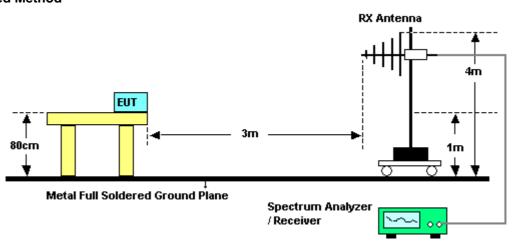
- 2. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
- 3. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100MHz bandwidth from lower band edge. Then detector set to peak and max hold this trace.

SPORTON International Inc.

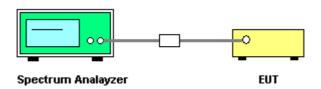
Page No. : 19 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005

FAX: 886-2-2696-2255

Report No.: FR560805


- 4. The lowest band edges emission was measured and recorded.
- 5. The transmitter set to the highest channel and repeated 2~4.

Radiated Measurement


- 1. Configure the EUT according to ANSI C63.4-2003.
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For band edge emission in restriction bands, use 10Hz VBW and 1MHz RBW for reading under AV and use 1MHz VBW and 1 MHz RBW for reading under PK.

5.4.5. Test Setup

Radiated Method

Conducted Method

5.4.6. Test Criteria

All test results complied with the requirements of 15.247(d). Measurement Uncertainty is 1x10⁻⁵.

SPORTON International Inc.

Page No. : 20 of 45 TEL: 886-2-2696-2468 : June 23, 2005 **Issued Date** FAX: 886-2-2696-2255

Report No.: FR560805

5.4.7. Test Result of Radiated Emission

 Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

 Test Engineer: Sam Lee Modulation Type: DSSS

Test Channel: CH 01 / 2412 MHz

	Freq	Level	Over Limit		Limit Line	Factor		Preamp Factor	Remark
	MHz	dBuV/m	dB	dB dBuV	dBuV/m	dB	dB	dB	
1	2385.620	60.59	-13.41	30.47	74.00	30.12	1.90	0.00	Peak
2 0	2385.620	52.92	-1.08	22.80	54.00	30.12	1.90	0.00	Average

Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Sam Lee Modulation Type: DSSS

Test Channel: CH 01 / 2412 MHz

	Freq	Level	Over Limit	26	Limit Line	Factor		Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
3	2483.660	56.19	-17.81	25.86	74.00	30.33	1.96	0.00	Peak
4	2483.660	45.18	-8.82	14.85	54.00	30.33	1.96	0.00	Average

Page No. : 21 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

Report No.: FR560805

Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Sam Lee Modulation Type: OFDM

Test Channel: CH 01 / 2412 MHz

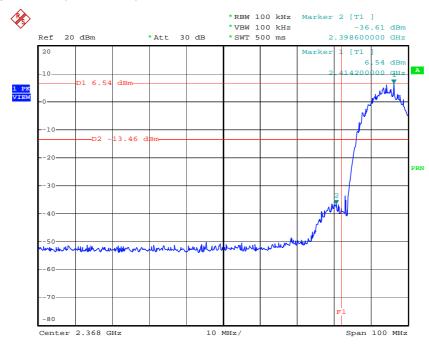
		Freq	Freq Level	Over Limit	120	Limit Line			Preamp Factor	Remark
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
1		2389.610	66.89	-7.11	36.77	74.00	30.12	1.90	0.00	Peak
2	0	2389.610	50.90	-3.10	20.78	54.00	30.12	1.90	0.00	Average

Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

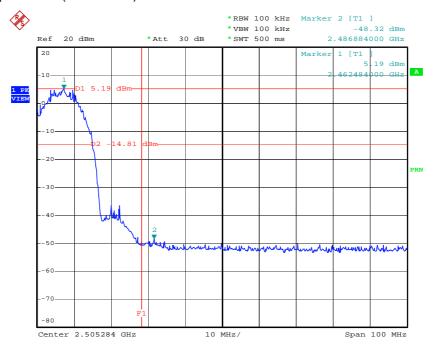
Test Engineer: Sam Lee Modulation Type: OFDM

Test Channel: CH 01 / 2412 MHz


		Freq	Level	Over Limit	Read Level	Limit Line	Factor		Preamp Factor	Remark
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
3		2483.660	61.11	-12.89	30.78	74.00	30.33	1.96	0.00	Peak
4	0	2483.660	47.26	-6.74	16.93	54.00	30.33	1.96	0.00	Average

Page No. : 22 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

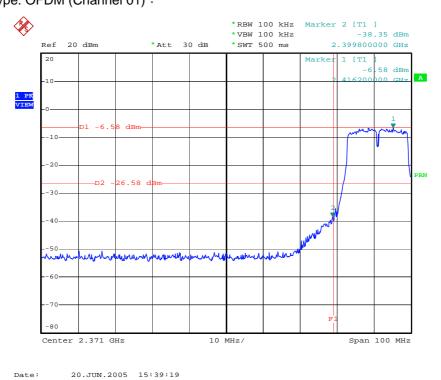
Report No.: FR560805


Test Result of Conducted Emission

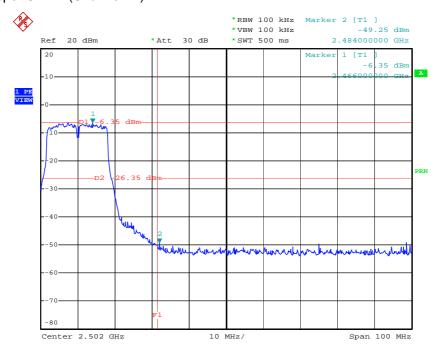
Modulation Type: DSSS (Channel 01):

Date: 20.JUN.2005 15:24:45

Modulation Type: DSSS (Channel 11):



20.JUN.2005 15:33:14 Date:


Page No. : 23 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

Report No.: FR560805

Modulation Type: OFDM (Channel 01):

Modulation Type: OFDM (Channel 11):

Date: 20.JUN.2005 15:49:51

TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

Page No.

: 24 of 45

Report No.: FR560805

: 25 of 45

5.5. Test of AC Power Line Conducted Emission

5.5.1. Applicable Standard

Section 15.207: For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency (MHz)	QP Limit (dBuV)	AV Limit (dBuV)
0.15~0.5	66~56	56~46
0.5~5	56	46
5~30	60	50

5.5.2. Measuring Instruments

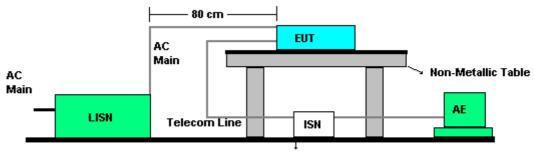
Please reference item 1~5 in chapter 6 for the instruments used for testing.

5.5.3. Description of Major Test Instruments Setting

 Test Receiver : R&S ESCS 30

Attenuation : 10 dB

Start Frequency : 0.15 MHz Stop Frequency : 30 MHz IF Bandwidth : 9 KHz


5.5.4. Test Procedures

- 1. Configure the EUT according to ANSI C63.4-2003.
- 2. The EUT has to be placed 0.4 meter far from the conducting wall of the shielding room and at least 80 centimeters from any other grounded conducting surface.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN)
- 4. All the support units are connected to the other LISNs. The LISN should provide 50uH/50ohms coupling impedance.
- 5. The frequency range from 150 KHz to 30 MHz was searched.
- 6. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 7. The measurement has to be done between each power line and ground at the power terminal for each RF channel. Only one RF channel has to be investigated since this test is independent with the RF channel selection.

SPORTON International Inc.

Page No. TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

5.5.5. Test Setup Layout

Metal Full Soldered Ground Plane

5.5.6. Test Criteria

All test results complied with the requirements of 15.207. Measurement Uncertainty is 2.54dB.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 26 of 45

Report No.: FR560805

5.5.7. Test Result of Conducted Emission

Test Mode: Normal
Temperature: 26°C
Relative Humidity: 64%
Test Engineer: Sky Wu

Line to Ground

	Freq	and the company of the company of the second		Over Limit Limit Line		LISN Factor	Cable Loss	Remark	
	MHz	dBuV	dB	dBuV	dBuV	dB	dB	S 	
1	0.1597870	43.36	-22.12	65.48	42.84	0.06	0.46	QP	
2	0.1597870	33.78	-21.70	55.48	33.26	0.06	0.46	Average	
3	0.2197870	13.46	-39.37	52.83	13.17	0.06	0.23	Average	
4	0.2197870	30.39	-32.44	62.83	30.10	0.06	0.23	QP	
5	0.3268460	17.95	-31.58	49.53	17.58	0.06	0.31	Average	
6	0.3268460	27.63	-31.90	59.53	27.26	0.06	0.31	QP	
7	0.6419600	13.62	-32.38	46.00	12.92	0.11	0.59	Average	
8	0.6419600	24.73	-31.27	56.00	24.03	0.11	0.59	QP	
9	3.261	19.41	-36.59	56.00	18.95	0.18	0.28	QP	
10	3.261	13.19	-32.81	46.00	12.73	0.18	0.28	Average	
11	13.271	34.47	-25.53	60.00	33.16	0.21	1.10	QP	
12	13.271	28.62	-21.38	50.00	27.31	0.21	1.10	Average	

Neutral to Ground

	Freq	Level	Over Limit	Limit Line	Read Level	LISN Factor	Cable Loss	Remark
	MHz	dBuV	dB	dBuV	dBuV		dB	:
1	@0.1606670	37.00	-18.43	55.43	36.43	0.11	0.46	Average
2	@0.1606670	44.63	-20.80	65.43	44.06	0.11	0.46	QP
3	0.2249570	30.91	-31.72	62.63	30.57	0.11	0.23	QP
4	0.2249570	12.77	-39.86	52.63	12.43	0.11	0.23	Average
5	0.3216920	28.75	-30.91	59.66	28.33	0.11	0.31	QP
6	0.3216920	20.42	-29.24	49.66	20.00	0.11	0.31	Average
7	0.6495640	26.57	-29.43	56.00	25.73	0.23	0.61	QP
8	0.6495640	17.76	-28.24	46.00	16.92	0.23	0.61	Average
9	2.741	12.29	-33.71	46.00	11.80	0.23	0.26	Average
10	2.741	22.58	-33.42	56.00	22.09	0.23	0.26	QP
11	13.770	33.04	-26.96	60.00	31.54	0.33	1.17	QP
12	13.770	26.92	-23.08	50.00	25.42	0.33	1.17	Average

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 27 of 45

Report No.: FR560805

5.5.8. Photographs of Conducted Emission Test Configuration

FRONT VIEW

REAR VIEW

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 28 of 45

Report No.: FR560805

Report No.: FR560805

5.6. Test of Spurious Radiated Emission

5.6.1. Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

5.6.2. Measuring Instruments

Please reference item 6~17 in chapter 6 for the instruments used for testing.

5.6.3. Description of Major Test Instruments Setting

 Spectrum Analyzer : R&S FSP40

Attenuation Auto

Start Frequency 1000 MHz

Stop Frequency 10th carrier harmonic RB / VB : 1 MHz / 1MHz for Peak RB / VB 1 MHz / 10Hz for Average

Test Receiver R&S ESCS 30

Attenuation Auto Start Frequency 30 MHz Stop Frequency 1000 MHz

RΒ 120 KHz for QP or PK

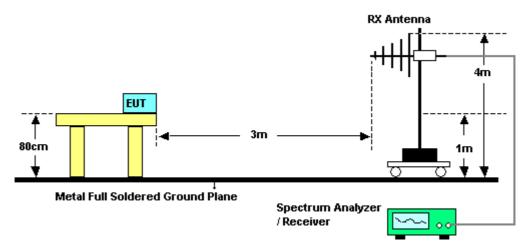
5.6.4. Test Procedures

- 1. Configure the EUT according to ANSI C63.4-2003.
- 2. The EUT was placed on the top of the turntable 0.8 meter above ground.
- 3. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 4. Power on the EUT and all the supporting units.
- 5. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 6. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 7. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 8. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 9. For emission above 1GHz, use 1MHz VBW and RBW for peak reading. Then 1MHz RBW and 10Hz VBW for average reading in spectrum analyzer.

SPORTON International Inc.

Page No. : 29 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

Report No.: FR560805


Page No.

: 30 of 45

: June 23, 2005

- 10.If the emission level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz and average method for above the 1GHz. the reported.
- 11. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB higher than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

5.6.5. Test Setup Layout

5.6.6. Test Criteria

All test results complied with the requirements of 15.247(d). Measurement Uncertainty is 2.26dB.

SPORTON International Inc.

TEL: 886-2-2696-2468 Issued Date FAX: 886-2-2696-2255

Report No.: FR560805

5.6.7. Test Results for CH 06 / 2437 MHz (for emission below 1GHz)

Modulation Type: OFDM Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chiu

(A) Polarization: Horizontal

				Over	Read	Limit		Cable	Preamp	
		Freq	Level	Limit	Level	Line	Factor	Loss	Factor	Remark
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
1		97.150	33.16	-10.34	53.43	43.50	-20.27	0.94	30.06	Peak
2		133.020	35.18	-8.32	52.33	43.50	-17.15	1.15	30.72	Peak
3	0	166.340 265.600	37.95 38.97		53.49 55.37		-15.54 -16.40	1.28 1.62		
2		343.200	38.95	-7.05	53.00	46.00	-14.05	1.78	30.94	Peak
3		396.800	34.03	-11.97	46.54	46.00	-12.51	1.96	31.18	Peak

(B) Polarization: Vertical

	Freq	Level	Over Limit	Read Level	Limit Line			Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
1	132.510	24.47	-19.03	54.03	43.50	-29.56	1.15	30.71	Peak
2	147.470	17.53	-25.97	46.84	43.50	-29.31	1.19	30.50	Peak
3 1 0	166.510 343.200		-20.41 -5.71	51.92 54.34		-28.83 -14.05	1.28 1.78	30.11 30.94	
2	612.000	33.71	-12.29	41.80	46.00	-8.09	2.42	30.95	Peak
3	688.000	34.99	-11.01	42.39	46.00	-7.40	2.55	30.61	Peak

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 31 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005

FAX: 886-2-2696-2255

Report No.: FR560805

5.6.8. Test Results for CH 01 / 2412 MHz (for emission above 1GHz)

Modulation Type: DSSS Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chiu

(A) Polarization: Horizontal

	Freq	Level	Over Limit	Read Level	Limit Line			Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
1	1438.000	42.50	-31.50	56.04	74.00	-13.54	1.43	40.16	Peak
2	4824.000	51.58	-22.42	57.42	74.00	-5.84	2.84	41.80	PEAK
3	4824.000	40.44	-13.56	46.28	54.00	-5.84	2.84	41.80	Average
4	7776.000	48.25	-25.75	49.13	74.00	-0.88	3.81	41.57	PEAK

(B) Polarization: Vertical

	Freq	Freq Level	Over R Limit Le	Read Level	-3333			Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
1	1590.000	46.51	-27.49	59.55	74.00	-13.04	1.51	40.28	Peak
2	4824.000	58.71	-15.29	64.55	74.00	-5.84	2.84	41.80	PEAK
3	4824.000	46.78	-7.22	52.62	54.00	-5.84	2.84	41.80	Average
4	7236.000	44.92	-29.08	47.50	74.00	-2.58	3.62	42.18	PEAK

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

SPORTON International Inc.

Page No. : 32 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

Report No.: FR560805

Modulation Type: OFDM Temperature: 26°C

Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chiu

(A) Polarization: Horizontal

	Freq	Level	Over Limit	38	Limit Line	: E Factor		Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
1	1596.000	41.34	-32.66	54.38	74.00	-13.04	1.51	40.28	Peak
2	4828.000	45.86	-28.14	51.70	74.00	-5.84	2.84	41.80	PEAK
3	7044.000	45.80	-28.20	49.09	74.00	-3.29	3.56	42.37	PEAK

(B) Polarization: Vertical

	Freq	Level	Over Limit	Read Level	Limit Line			Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
1	1590.000	47.63	-26.37	60.67	74.00	-13.04	1.51	40.28	Peak
2	4828.000	52.50	-21.50	58.34	74.00	-5.84	2.84		PEAK
3	4828.000	44.55	-9.45	50.39	54.00	-5.84	2.84	41.80	Average
4	7592.000	47.06	-26.94	48.42	74.00	-1.36	3.74	41.81	PEAK

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 33 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005

FAX: 886-2-2696-2255

Report No.: FR560805

5.6.9. Test Results for CH 06 / 2437 MHz (for emission above 1GHz)

Modulation Type: DSSS Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chiu

(A) Polarization: Horizontal

		Freq	Freq	Level	Over Limit	Read Level	Limit Line			Preamp Factor	Remark
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB		
1		1558.000	42.06	-31.94	55.23	74.00	-13.17	1.49	40.25	Peak	
2		4876.000	54.45	-19.55	60.18	74.00	-5.72	2.87	41.80	PEAK	
3	0	4876.000	49.50	-4.50	55.22	54.00	-5.72	2.87	41.80	Average	
4		8464.000	49.77	-24.23	48.54	74.00	1.23	3.97	40.59	PEAK	

(B) Polarization: Vertical

		Freq	Level	Over Limit	Read Level		Factor		Preamp Factor	Remark
		MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
1		1596.000	47.63	-26.37	60.67	74.00	-13.04	1.51	40.28	Peak
2	0	4876.000	60.47	-13.53	66.20	74.00	-5.72	2.87	41.80	PEAK
3	0	4876.000	52.98	-1.02	58.70	54.00	-5.72	2.87	41.80	Average
4		9748.000	54.18	-19.82	50.65	74.00	3.53	4.00	39.04	PEAK

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 34 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

Report No.: FR560805

Modulation Type: OFDM

Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chiu

(A) Polarization: Horizontal

	Freq	Level	Over Limit	Read Level				Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
1	1438.000	42.44	-31.56	55.98	74.00	-13.54	1.43	40.16	Peak
2	4880.000	51.00	-23.00	56.73	74.00	-5.72	2.87	41.80	PEAK
3	7580.000	46.93	-27.07	48.34	74.00	-1.41	3.74	41.84	PEAK

(B) Polarization: Vertical

	Freq	$\frac{\text{Over}}{\text{c}}$ $\frac{\text{dBuV/m}}{\text{dB}}$	3.5	Limit Line			Preamp Factor	Remark	
	MHz		dB	dBuV	dBuV/m	dB	dB	dB	
1	1588.000	46.91	-27.09	59.95	74.00	-13.04	1.51	40.28	Peak
2	4880.000	58.43	-15.57	64.16	74.00	-5.72	2.87	41.80	PEAK
3	4880.000	46.31	-7.69	52.03	54.00	-5.72	2.87	41.80	Average
4	7680.000	47.33	-26.67	48.47	74.00	-1.14	3.78	41.71	PEAK

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 35 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

Report No.: FR560805

5.6.10. Test Results for CH 11 / 2462 MHz (for emission above 1GHz)

Modulation Type: DSSS Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chiu

(A) Polarization: Horizontal

	Freq	Level	Over Limit	Read Level	Limit Line	Factor		Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
1	1438.000	42.81	-31.19	56.35	74.00	-13.54	1.43	40.16	Peak
2	4924.000	59.12	-14.88	64.74	74.00	-5.62	2.89	41.80	PEAK
3 @	4924.000	50.92	-3.08	56.54	54.00	-5.62	2.89	41.80	Average
4	9508.000	49.69	-24.31	46.54	74.00	3.15	4.02	38.97	PEAK

(B) Polarization: Vertical

	Freq	Level	Over Limit	Read Level	3333	Factor		Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
1	1596.000	48.78	-25.22	61.82	74.00	-13.04	1.51	40.28	Peak
2	4924.000	62.17	-11.83	67.79	74.00	-5.62	2.89	41.80	PEAK
3 @	4924.000	51.69	-2.31	57.31	54.00	-5.62	2.89	41.80	Average
4	9848.000	54.71	-19.29	51.06	74.00	3.64	3.99	39.07	PEAK

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 36 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

Report No.: FR560805

Modulation Type: OFDM Temperature: 26°C

Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

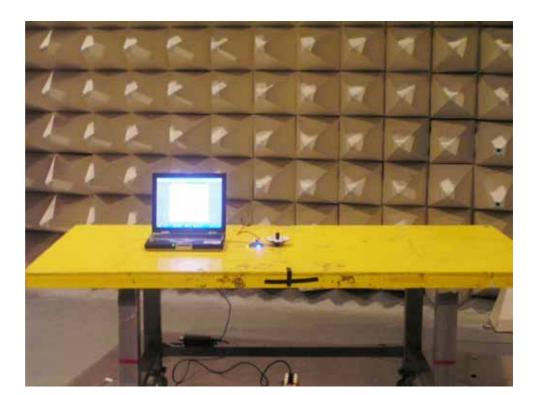
Test Engineer: Ted Chiu

(A) Polarization: Horizontal

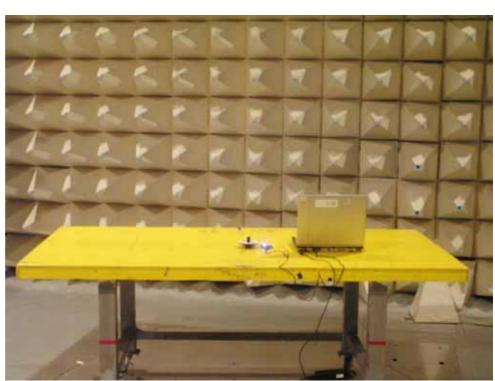
	Freq	Level	Over Limit	r Read t Level		7 23 30		Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
1	1558.000	41.31	-32.69	54.48	74.00	-13.17	1.49	40.25	Peak
2	4928.000	53.90	-20.10	59.52	74.00	-5.62	2.89	41.80	
3	4928.000	41.59	-12.41	47.21	54.00	-5.62	2.89	41.80	Average
4	7068.000	45.39	-28.61	48.60	74.00	-3.21	3.57	42.35	PEAK

(B) Polarization: Vertical

	Freq	Level	Over Limit	Read Level	Limit Line	Factor		Preamp Factor	Remark
	MHz	dBuV/m	dB	dBuV	dBuV/m	dB	dB	dB	
1	1590.000	46.22	-27.78	59.26	74.00	-13.04	1.51	40.28	Peak
2	4928.000	56.35	-17.65	61.97	74.00	-5.62	2.89	41.80	PEAK
3	4928.000	46.31	-7.69	51.93	54.00	-5.62	2.89	41.80	Average
4	7680 000	47 99	-26 01	49 13	74 00	-1 14	3 78	41 71	PFAK


Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)


Corrected Reading: Probe Factor + Cable Loss + Read Level - Preamp Factor = Level

Page No. : 37 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

5.6.11. Photographs of Radiated Emission Test Configuration

FRONT VIEW

REAR VIEW

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 38 of 45

Report No.: FR560805

Issued Date : June 23, 2005

5.7. Antenna Requirements

5.7.1. Standard Applicable

Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

5.7.2. Antenna Connected Construction

The antenna for the EUT is UFL.

5.7.3. Antenna Gain

Antenna gain of EUT is more than 6dBi. Therefore peak conducted power limit shall be degraded any more. Antenna report of manufacturer will have more detail antenna gain or antenna pattern.

5.7.4. Test Criteria

All test results complied with the requirements of 15.203/15.247(b)/(c).

SPORTON International Inc.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 39 of 45

Report No.: FR560805

Issued Date : June 23, 2005

Report No.: FR560805

5.8. RF Exposure

5.8.1. Limit For Maximum Permissible Exposure (MPE)

This product can be classified as mobile device, so the 20cm separation distance warning is required. In this section, the power density at 20cm location is calculated to examine if it is lower than the limit.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

F = frequency in MHz

5.8.2. MPE Calculation Method

E (V/m)
$$=\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd \text{ (mW/cm}^2\text{)} = \frac{E^2}{377}$

 $\mathbf{E} = \text{Electric field}$ (V/m)

P = Peak RF output power (mW)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=20cm, as well as the gain of the used antenna, the RF power density can be obtained.

SPORTON International Inc.

Page No. : 40 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005

FAX: 886-2-2696-2255

^{*}Plane-wave equivalent power density

Report No.: FR560805

5.8.3. Calculated Result and Limit

 Modulation Type: DSSS Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chiu

Channel No.	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)		Limit of Power Density (S) (mW/cm²)
01	8.00	6.31	18.02	63.39	0.0796	1
06	8.00	6.31	18.21	66.22	0.0832	1
11	8.00	6.31	18.44	69.82	0.0877	1

 Modulation Type: OFDM Temperature: 26°C Relative Humidity: 64%

Duty Cycle of the Equipment During the Test: 100.00%

Test Engineer: Ted Chiu

Channel No.	Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (S) (mW/cm²)	Limit of Power Density (S) (mW/cm²)
01	8.00	6.31	14.40	27.54	0.0346	1
06	8.00	6.31	14.25	26.61	0.0334	1
11	8.00	6.31	14.70	29.51	0.0371	1

Page No. : 41 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255

6. List of Measuring Equipments Used

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
1	EMC Receiver	R&S	ESCS 30	100174	9 KHz – 2.75 GHz	Feb. 15, 2005	Conduction (CO04-HY)
2	LISN	MessTec	NNB-2/16Z	2001/004	9 KHz – 30 MHz	Jun. 08, 2005	Conduction (CO04-HY)
3	LISN (Support Unit)	MessTec	NNB-2/16Z	99041	9 KHz – 30 MHz	Apr. 26, 2005	Conduction (CO04-HY)
4	EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	Conduction (CO04-HY)
5	RF Cable-CON	UTIFLEX	3102-26886-4	CB044	9KHz~30MHz	Apr. 20, 2005	Conduction (CO04-HY)
6	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	30MHz~1GHz 3m	Jun. 16, 2005	Radiation (03CH03-HY)
7	Spectrum analyzer	R&S	FSP40	100004	9KHZ~40GHz	Aug. 31, 2004	Radiation (03CH03-HY)
8	Amplifier	SCHAFFNER	CPA9231A	18667	9KHz – 2GHz	Jan. 10, 2005	Radiation (03CH03-HY)
9	Biconical Antenna	SCHWARZBECK	VHBB 9124	301	30MHz –200MHz	Jul. 28, 2004	Radiation (03CH03-HY)
10	Log Antenna	SCHWARZBECK	VUSLP 9111	221	200MHz -1GHz	Jul. 28, 2004	Radiation (03CH03-HY)
11	RF Cable-R03m	Jye Bao	RG142	CB021	30MHz~1GHz	Feb. 22, 2005	Radiation (03CH03-HY)
12	Amplifier	MITEQ	AFS44	849984	100MHz~26.5GHz	Mar. 25, 2005	Radiation (03CH03-HY)
13	Horn Antenna	EMCO	3115	6741	1GHz – 18GHz	Apr. 06, 2005	Radiation (03CH03-HY)
14	Turn Table	HD	DS 420	420/650/00	0 ~ 360 degree	N/A	Radiation (03CH03-HY)
15	Antenna Mast	HD	MA 240	240/560/00	1 m - 4 m	N/A	Radiation (03CH03-HY)
16	Horn Antenna	Schwarzbeck	BBHA9170	154	18GHz~40GHz	Jun. 08, 2005	Radiation (03CH03-HY)
17	RF Cable-HIGH	Jye Bao	RG142	CB030-HIGH	1GHz~29.5GHz	Dec.01, 2004	Radiation (03CH03-HY)

Calibration Interval of instruments listed above is one year.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 42 of 45

Report No.: FR560805

Issued Date : June 23, 2005

Items	Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
18	Spectrum analyzer	R&S	FSP30	100023	9kHz ~ 30GHx	Aug. 02, 2004	Conducted (TH01-HY)
19	Power meter	R&S	NRVS	100444	DC ~ 40GHz	Jun. 14, 2005	Conducted (TH01-HY)
20	Power sensor	R&S	NRV-Z55	100049	DC ~ 40GHz	Jun. 14, 2005	Conducted (TH01-HY)
21	Power Sensor	R&S	NRV-Z32	100057	30MHz ~ 6GHz	Jun. 14, 2005	Conducted (TH01-HY)
22	AC power source	HPC	HPA-500W	HPA-9100024	AC 0 ~ 300V	Jun. 15, 2005	Conducted (TH01-HY)
23	DC power source	G.W.	GPC-6030D	C671845	DC 1V ~ 60V	Nov. 28, 2004	Conducted (TH01-HY)
24	Temp. and Humidity Chamber	KSON	THS-C3L	612	N/A	Oct. 01, 2004	Conducted (TH01-HY)
25	RF CABLE-1m	Jye Bao	RG142	CB034-1m	20MHz ~ 7GHz	Jan. 01, 2005	Conducted (TH01-HY)
26	RF CABLE-2m	Jye Bao	RG142	CB035-2m	20MHz ~ 1GHz	Jan. 01, 2005	Conducted (TH01-HY)
27	Oscilloscope	Tektronix	TDS1012	CO38515	100MHz / 1GS/s	Apr. 15, 2005	Conducted (TH01-HY)
28	Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Dec. 31, 2004	Conducted (TH01-HY)
29	Data Generator	Tektronix	DG2030	063-2920-50	0.1Hz~400MHz	Jun. 02, 2005	Conducted (TH01-HY)

 $[\]ensuremath{\,\%\,}$ Calibration Interval of instruments listed above is one year.

TEL: 886-2-2696-2468 FAX: 886-2-2696-2255 Page No. : 43 of 45
Issued Date : June 23, 2005

Report No.: FR560805

Report No.: FR560805

7. Company Profile

SPORTON Lab. was established in 1986 with one shielded room: the first private EMI test facility, offering local manufacturers an alternative EMI test familial apart from ERSO. In 1988, one 3M and 10M/3M open area test site were setup and also obtained official accreditation from FCC, VCCI and NEMKO. In 1993, a Safety laboratory was founded and obtained accreditation from UL of USA, CSA of Canada and TUV (Rhineland & PS) of Germany. In 1995, one EMC lab, including EMI and EMS test facilities was setup. In 1997, SPORTON Group has provided financial expense to relocate the headquarter to Orient Scientific Park in Taipei Hsien to offer more comprehensive, more qualified and better service to local suppliers and manufactures. In 1999, Safety Group and Component Group were setup. In 2001, SPORTON has established 3M/10M chamber in Hwa Ya Technology Park.

7.1. Certificate of Accreditation

Taiwan	BSMI, CNLA, DGT
USA	FCC, NVLAP, UL
EU	Nemko, TUV
Japan	VCCI
Canada	Industry Canada

7.2. Test Location

SHIJR	ADD:	6FI., No. 106, Sec. 1, Shintai 5th Rd., Shijr City, Taipei, Taiwan 221, R.O.C.
	TEL:	02-2696-2468
	FAX:	02-2696-2255
HWA YA	ADD:	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.
	TEL:	03-327-3456
	FAX:	03-318-0055
LINKOU	ADD:	No. 30-2, Dingfu Tsuen, Linkou Shiang, Taipei, Taiwan 244, R.O.C
	TEL:	02-2601-1640
	FAX:	02-2601-1695
DUNGHU	ADD :	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C.
DUNGHU	ADD : TEL :	No. 3, Lane 238, Kangle St., Neihu Chiu, Taipei, Taiwan 114, R.O.C. 02-2631-4739
DUNGHU		•
JUNGHE	TEL:	02-2631-4739
	TEL:	02-2631-4739 02-2631-9740
	TEL: FAX: ADD:	02-2631-4739 02-2631-9740 7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C.
	TEL: FAX: ADD: TEL:	02-2631-4739 02-2631-9740 7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C. 02-8227-2020
JUNGHE	TEL: FAX: ADD: TEL: FAX:	02-2631-4739 02-2631-9740 7FI., No. 758, Jungjeng Rd., Junghe City, Taipei, Taiwan 235, R.O.C. 02-8227-2020 02-8227-2626

SPORTON International Inc.

Page No. : 44 of 45 TEL: 886-2-2696-2468 : June 23, 2005 Issued Date FAX: 886-2-2696-2255

8. CNLA Certificate of Accreditation

Test Lab. Sporton International Inc.

Accreditation Number 1190

Originally Accredited 2003/12/15

Effective Period 2003/12/15~2006/12/14

47 CFR FCC Part 15 Subpart C (9kHz~40GHz) Accredited Scope

Taiwan Accreditation Foundation Chinese National Laboratory Accreditation Certificate of Accreditation

Accreditation Criteria: ISO 17025 Accreditation Number: 1190

Organization/Laboratory: EMC & Wireless Communications Laboratory, Sporton International Inc.

Originally Accredited: December 15, 2003

Effective Period: December 15, 2003 To December 14, 2006

Accredited Scope: Electrical Testing Field, 7 items, details shown in the following pages. Specific Accreditation Recognition and Approval of Designated Laboratory for Commodities

Program:

Inspection

President, Taiwan Accreditation Foundation

Date: July 19, 2004

(This document is invalid unless accompanied by all 4 pages)

CNLA-ZL03191E Page 1 of 4

Report No.: FR560805

Page No. : 45 of 45 TEL: 886-2-2696-2468 Issued Date : June 23, 2005 FAX: 886-2-2696-2255