

FCC TEST REPORT

Test report
On Behalf of
Dongguan Shenyao Digital Technology Co., Ltd
For
Hidden wifi Car Dashcam

Model No.: D18, D12, D15, D16, D17, D19, D20, D21, D22, D23

FCC ID: 2BFHT-D18

Prepared For: Dongguan Shenyao Digital Technology Co., Ltd

Room 301, No.11, Shatou Muyu Second Street, Chang'an Town, Dongguan

City, Guangdong Province, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Feb. 23, 2024 ~ Mar. 19, 2024

Date of Report: Mar. 19, 2024

Report Number: HK2402260801-E

TEST RESULT CERTIFICATION

Applicant's name: Dongguan Shenyao Digital Technology Co., Ltd

Room 301, No.11, Shatou Muyu Second Street, Chang'an Town,

Dongguan City, Guangdong Province, China

Manufacturer's Name: Dongguan Shenyao Digital Technology Co., Ltd

Room 301, No.11, Shatou Muyu Second Street, Chang'an Town,

Dongguan City, Guangdong Province, China

Product description

Trade Mark...... N/A

Product name Hidden wifi Car Dashcam

Model and/or type reference .. : D18, D12, D15, D16, D17, D19, D20, D21, D22, D23

FCC Rules and Regulations Part 15 Subpart C Section 15.247

ANSI C63.10: 2013

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test:

Date (s) of performance of tests.....: Feb. 23, 2024 ~ Mar. 19, 2024

Mar. 19, 2024 Date of Issue:

Test Result..... **Pass**

Testing Engineer

(Len Liao)

Technical Manager

(Sliver Wan)

Authorized Signatory:

(Jason Zhou)

TABLE OF CONTENTS

1.	TEST RESULT SUMMARY	5
	1.1. TEST PROCEDURES AND RESULTS	5
	1.2. INFORMATION OF THE TEST LABORATORY	
	1.3. MEASUREMENT UNCERTAINTY	
2.		
	2.1. GENERAL DESCRIPTION OF EUT	
	2.2. CARRIER FREQUENCY OF CHANNELS	
	2.3. OPERATION OF EUT DURING TESTING	8
	2.4. DESCRIPTION OF TEST SETUP	
	2.5. DESCRIPTION OF SUPPORT UNITS	10
3.		
	3.1. TEST ENVIRONMENT AND MODE	11
4.	TEST RESULTS AND MEASUREMENT DATA	13
	4.1. CONDUCTED EMISSION	13
	4.2. TEST RESULT	15
	4.3. MAXIMUM CONDUCTED OUTPUT POWER	16
	4.4. EMISSION BANDWIDTH	
	4.5. POWER SPECTRAL DENSITY	24
	4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT	31
	4.7. RADIATED SPURIOUS EMISSION MEASUREMENT	41
	4.8. ANTENNA REQUIREMENT	67
5.	PHOTOGRAPH OF TEST	68
	DUOTOC OF THE FUT	00

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Mar. 19, 2024	Jason Zhou
TNG	mG mG	THE THE	G ING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1. TEST RESULT SUMMARY

1.1. TEST PROCEDURES AND RESULTS

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247(b)(4)	PASS
AC Power Line Conducted Emission	§15.207	N/A
Conducted Peak Output Power	§15.247(b)(3)	PASS
6dB Emission Bandwidth	§15.247(a)(2)	PASS
Power Spectral Density	§15.247(e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd. Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01. FCC Designation Number is CN1229. Canada IC CAB identifier is CN0045. CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1.3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	±2.71dB
2	RF power, conducted	±0.37dB
3	Spurious emissions, conducted	±0.11dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2. EUT DESCRIPTION

2.1. GENERAL DESCRIPTION OF EUT

Equipment:	Hidden wifi Car Dashcam	- WAKTESTING	- JUAN TE
Model Name:	D18		0
Series Model:	D12, D15, D16, D17, D19, D2	0, D21, D22, D2	3
Model Difference:	All model's the function, softw the same, only with model nar model: D18.		
FCC ID:	2BFHT-D18	A. TESTIN	3 AKTEST
Antenna Type:	Ceramic Antenna	O HUAR	O HOW
Antenna Gain:	3.5dBi	a	
Operation frequency:	802.11b/g/n 20:2412~2462 M 802.11n 40: 2422~2452MHz	Hz MUNKTESTIN	MINAK T
Number of Channels:	802.11b/g/n20: 11CH 802.11n 40: 7CH	, JAK TESTING	anyG
Modulation Type:	CCK/OFDM/DBPSK/DAPSK	0,11	HUAKTESI
Power Source:	DC 5V from Car Charger	AKTESTING	
Power Rating:	DC 5V from Car Charger	- WAKTESTIN	HUAKTEST
Hardware Version:	V2.0	0	
Software Version:	V2.0	TSTING	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.2. Carrier Frequency of Channels

Channel List For 802.11b/802.11g/802.11n (HT20)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2412	04	2427	07	2442	10	2457
02	2417	05	2432	08	2447	11	2462
03	2422	06	2437	09	2452	STING	

Channel List For 802.11n (HT40)							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
STING_	XTESTING (04	2427	07	2442	- TESTIN	WTE
@ H		05	2432	08	2447	HILAK	Monage Home
03	2422	06	2437	09	2452		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

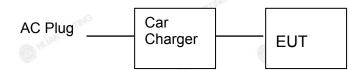
2.3. OPERATION OF EUT DURING TESTING

Operating Mode

The mode is used: Transmitting mode for 802.11b/802.11g/802.11n (HT20)

Low Channel: 2412MHz Middle Channel: 2437MHz High Channel: 2462MHz

The mode is used: Transmitting mode for 802.11n (HT40)


Low Channel: 2422MHz Middle Channel: 2437MHz High Channel: 2452MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2.4. DESCRIPTION OF TEST SETUP

Operation of EUT during radiation testing:

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and the output power to the maximum state.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.5. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Specification	Note
mic 1	Hidden wifi Car Dashcam	N/A	D18	N/A	EUT
	Car Charger	N/A	HY-715	INPUT: 12-24V OUTPUT: 5V-1500MA	Accessory

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is connect to the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

3. ENERA INFORMATION

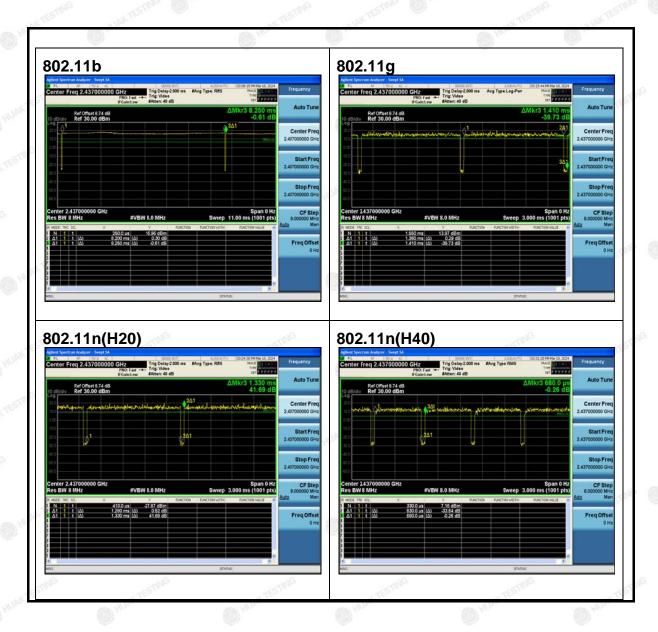
3.1. TEST ENVIRONMENT AND MODE

Operating Environment:			
Temperature:	25.0 °C	HUAKTESIN	HUAKTES
Humidity:	56 % RH		0
Atmospheric Pressure:	1010 mbar	LAKTESTING	,nJG

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Willoll It Was Worst base.	Willow it was worst sassi						
Mode	Data rate						
802.11b	1Mbps						
802.11g	6Mbps						
802.11n(H20)	6.5Mbps						
802.11n(H40)	13.5Mbps						


Final Test Mode:

Operation mode:	Keep the EUT in continuous transmitting
Operation mode.	with modulation

- 1. For WIFI function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.
- 2.According to ANSI C63.10 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20), 13.5Mbps for 802.11(H40).
- 3.Mode Test Duty Cycle

Mode Mode	Duty Cycle	Duty Cycle Factor (dB)
802.11b	0.994	-0.026
802.11g	0.965	-0.157
802.11n(H20)	0.962	-0.166
802.11n(H40)	0.926	-0.332

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4. TEST RESULTS AND MEASUREMENT DATA

4.1. CONDUCTED EMISSION

Test Specification

TING	TING	TING	TING	-71
Test Requirement:	FCC Part15 C Secti	on 15.207	AN TE	HUAKTED
Test Method:	ANSI C63.10:2013		TING	
Frequency Range:	150 kHz to 30 MHz	HUAKTE	. NCT	ESTING
Receiver setup:	RBW=9 kHz, VBW=	30 kHz, Sweep	time=auto	
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (c Quasi-peak 66 to 56* 56 60	Average 56 to 46* 46 50	MY TESTING
Test Setup:	40c	power 80cm LISN Filt Filt Receiver	er — AC power	ON TEST
Test Mode:	Charging + transmit	ting with modula	tion	
Test Procedure:	1. The E.U.T is con line impedance s provides a 50ohr measuring equipr 2. The peripheral de power through a coupling impedar refer to the bloophotographs). 3. Both sides of A conducted interfeemission, the relating the interface cab ANSI C63.10: 20	stabilization netwon/50uH couplingment. vices are also could LISN that province with 50ohm or could be diagram of the could be c	work (L.I.S.N. g impedance onnected to the ides a 500hm termination. (the test setulated for material to find the material anged according to the identity of). This for the e main 1/50uH Please up and eximum and all of ding to
Test Result:	N/A		TING	
				_

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Instruments

	Conducted	Emission Shi	ielding Room Te	st Site (843)	
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESR-7	HKE-010	Feb. 20, 2024	Feb. 19, 2025
LISN	R&S	ENV216	HKE-002	Feb. 20, 2024	Feb. 19, 2025
Coax cable (9KHz-30MHz)	Times	381806-002	N/A	Feb. 20, 2024	Feb. 19, 2025
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	M/A	N/A
10dB Attenuator	SCHWARZBE CK	VTSD9561F	HKE-153	Feb. 20, 2024	Feb. 19, 2025

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2. TEST RESULT

Not applicable

Note: Since EUT is only for on-car use, so this test item not applicable.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.3. MAXIMUM CONDUCTED OUTPUT POWER

Test Specification

Test Requirement:	FCC Part15 C Section 15	5.247 (b)(3)	V TESTI
Test Method:	KDB 558074	O HOME	(1) HOME
Limit:	30dBm	OK TESTING	فانه
Test Setup:	Power meter	EUT	MAN TESTING
Test Mode:	Transmitting mode with n	nodulation	
Test Procedure:	1. The testing follows the FCC KDB 558074 D0 v05r02. 2. The RF output of EUT meter by RF cable an compensated to the result. 3. Set to the maximum por EUT transmit continued. 4. Measure the Peak output in the test report.	was connected to d attenuator. The esults for each me ower setting and e	uidance the power path loss was easurement. enable the
Test Result:	PASS	O HOM	6

Test Instruments

ATTAL YOU	PIC .	P HC	ATTA FACE	ALL HOUSE	Alle Marie
		RF Te	est Room		
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025
Power meter	Agilent	E4419B	HKE-085	Feb. 20, 2024	Feb. 19, 2025
Power Sensor	Agilent	E9300A	HKE-086	Feb. 20, 2024	Feb. 19, 2025
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Data

Test Channel	Frequency	Maximum Peak Conducted Output Power	LIMIT
Onamici	(MHz)	(dBm)	(dBm)
0	HUAK	TX 802.11b Mode	MINK.
CH01	2412	12.54	30
CH06	2437	12.91	30
CH11	2462	12.55	30
		TX 802.11g Mode	
CH01	2412	12.93	30
CH06	2437	12.73	30
CH11	2462	11.96	30 mg
	HUAKTER	TX 802.11n20 Mode	HINKIE
CH01	2412	12.86	30
CH06	2437	12.63	30
CH11	2462	12.39	30
1		TX 802.11n40 Mode	
CH03	2422	13.42	30
CH06	2437	12.86	30
CH09	2452	12.65	30 mg
			All y

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.4. EMISSION BANDWIDTH

Test Specification

Test Requirement:	FCC Part15 C Section 1	5.247 (a)(2)	K TESTIN
Test Method:	KDB 558074	O HUN	(1) HILL
Limit:	>500kHz	LAKTESTING	- Dita
Test Setup:	Spectrum Analyzer	EUT	WE WANTESING
Test Mode:	Transmitting mode with r	modulation	
Test Procedure:	1. The testing follows FC 15.247 Meas Guidan 2. Set to the maximum p EUT transmit continu 3. Make the measureme resolution bandwidth Video bandwidth (VB an accurate measure be greater than 500 ke 4. Measure and record the second sec	ce v05r02. bower setting and elections ously. Int with the spectru (RBW) = 100 kHz W) = 300 kHz. In dement. The 6dB backHz.	enable the m analyzer's . Set the order to make ndwidth must
Test Result:	PASS	O HUM	0 "

Test Instruments

		RF Te	est Room		
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025

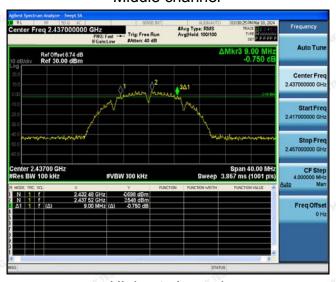
Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

AFICATION.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test data

Toot obannal		6dB Emission	Bandwidth (MHz)	
Test channel	802.11b	802.11g	802.11n(H20)	802.11n(H40)
Lowest	9.080	16.080	17.280	35.440
Middle	9.000	16.320	16.600	35.600
Highest	9.080	16.320	16.600	36.240
Limit:	3 HUAKTES	>	-500k	0.0
Test Result:	"IAM	TESTING	PASS	TIME HUANTESTING


Test plots as follows:

802.11b Modulation

Lowest channel

Middle channel

Highest channel

802.11g Modulation

Lowest channel

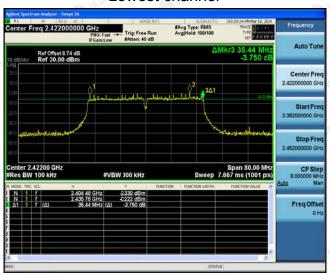
Middle channel

Highest channel

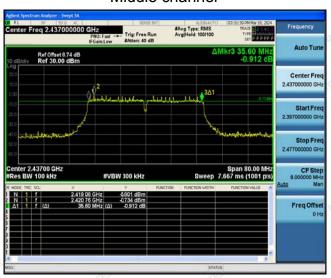
802.11n (HT20) Modulation

Lowest channel

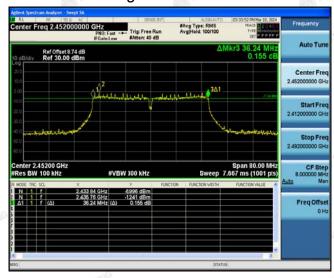
Middle channel



Highest channel



802.11n (HT40) Modulation


Lowest channel

Middle channel

Highest channel

4.5. POWER SPECTRAL DENSITY

Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074
Limit:	The average power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	Spectrum Analyzer EUI
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows Measurement procedure 10.2 method PKPSD of FCC KDB Publication 558074 D01 15.247 Meas Guidance v05r02. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = Peak, Sweep time = auto couple. Employ trace averaging (Peak) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS WAR TO THE THE STATE OF TH

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

Test Instruments

		RF Te	est Room		
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 20, 2024	Feb. 19, 2025
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test data

EUT Set Mode	Channel	Result (dBm/30kHz)	Result (dBm/3kHz)
	Lowest	-0.47	-10.47
802.11b	Middle	-0.4	-10.4
	Highest	-0.36	-10.36
	Lowest	-1.37	-11.37
802.11g	Middle	-2.88	-12.88
	Highest	-3.69	-13.69
	Lowest	-2.9	-12.9
802.11n(H20)	Middle	-3.08	-13.08
	Highest	-3.64	-13.64
	Lowest	-2.82	-12.82
802.11n(H40)	Middle	-3.64	-13.64
	Highest	-3.95	-13.95
PSD test result (dBm/3kHz)= PS	SD test result (dBm/	/30kHz)-10
Limit: 8dBm/3kH	Z		
Test Result:	HUPO	PASS	HIDO.
100		C. T.	1761


Test plots as follows:

802.11b Modulation

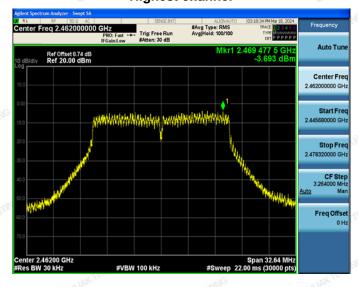
Lowest channel

Middle channel

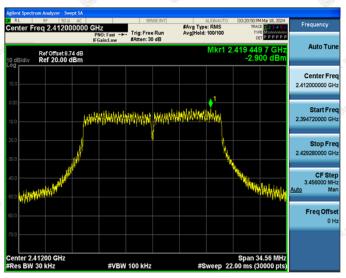
Highest channel



802.11g Modulation


Lowest channel

Middle channel



Highest channel

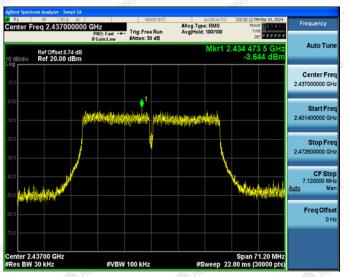


802.11n (HT20) Modulation

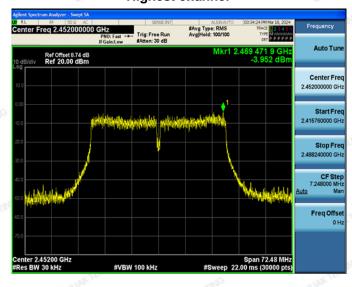
Lowest channel

Middle channel

Highest channel


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

802.11n (HT40) Modulation


Lowest channel

Middle channel

Highest channel

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

4.6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION MEASUREMENT

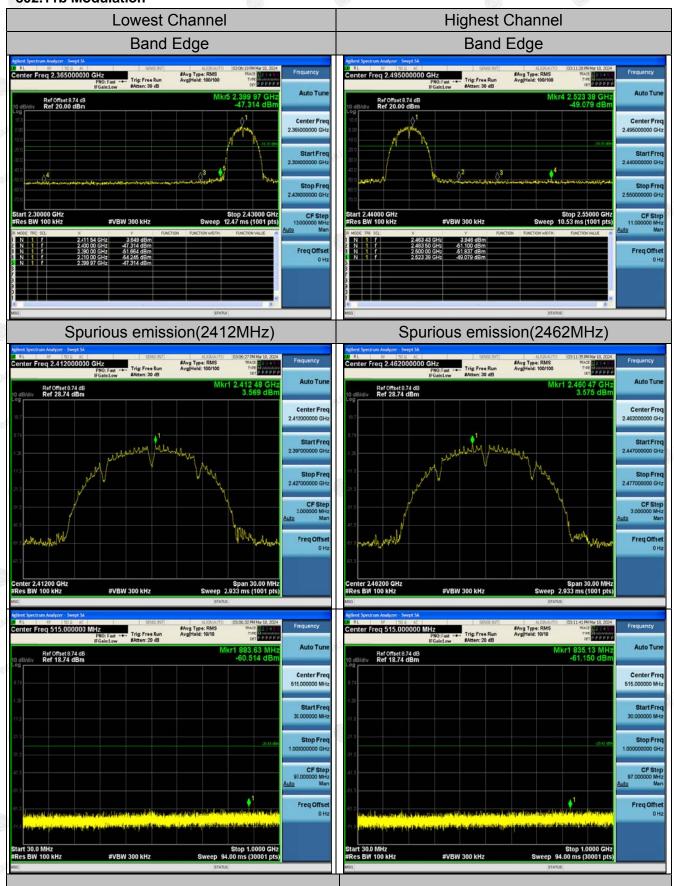
Test Specification

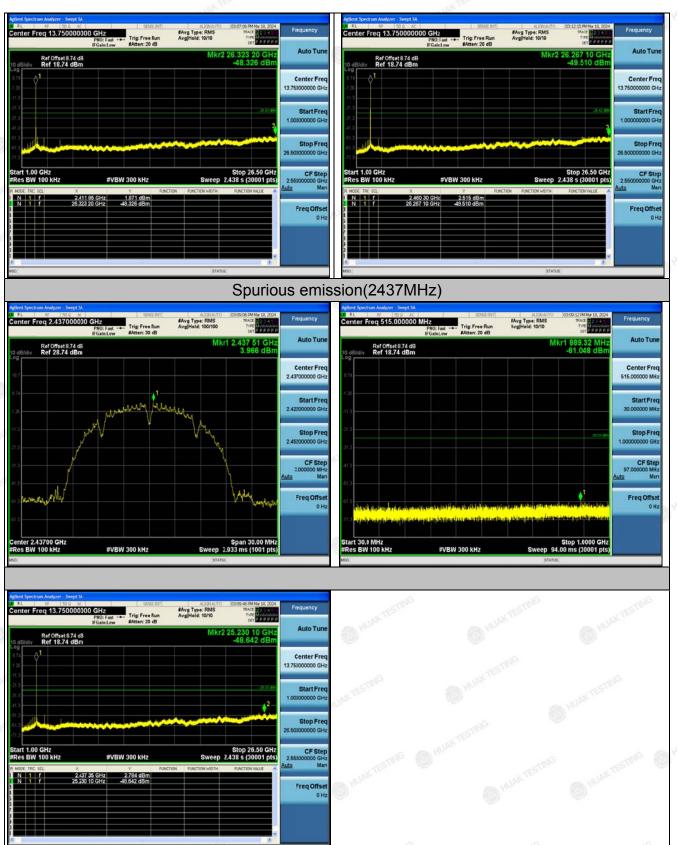
In any 100 kHz bandwidth outside of the authorize frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dE 30dB relative to the maximum PSD level in 100 kHz least RF conducted measurement and radiated emission which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dE 30dB relative to the maximum PSD level in 100 kHz leads to the maximum PSD level in 100 kHz le
Spectrum Analyzer EUT
Transmitting mode with modulation
1. The testing follows FCC KDB Publication 558074 DO 15.247 Meas Guidance v05r02. 2. The RF output of EUT was connected to the spectru analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 3. Set to the maximum power setting and enable the EUT transmit continuously. 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure used. If the transmitter complies with the conducted power limits based on the use of RMS averaging ov a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 5. Measure and record the results in the test report. 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band
Test Result: PASS

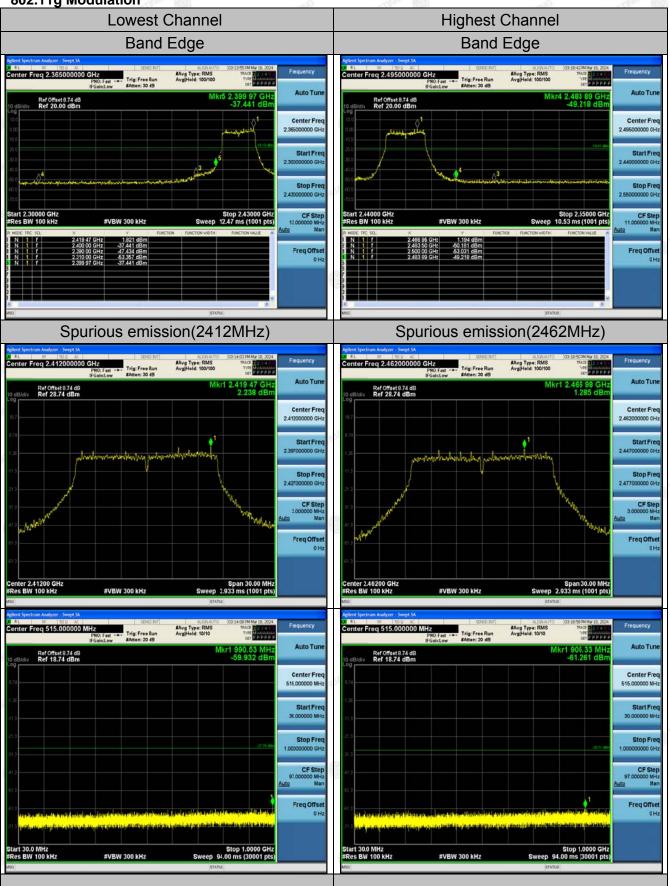
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Instruments

RF Test Room					
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 20, 2024	Feb. 19, 2025
RF Cable (9KHz-26.5GHz)	Tonscend	170660	N/A	Feb. 20, 2024	Feb. 19, 2025
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 20, 2024	Feb. 19, 2025
RF test software	Tonscend	JS1120-B Version 2.6	HKE-083	N/A	N/A

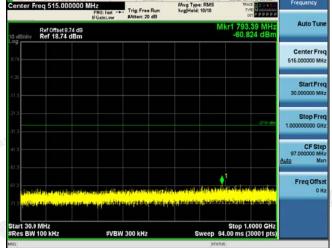

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

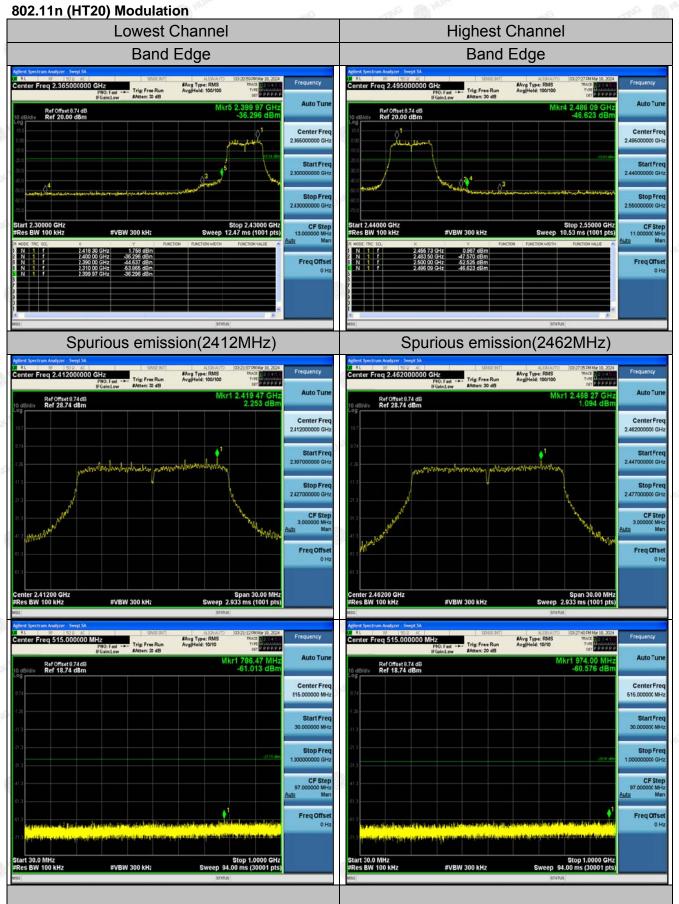

Test Data


802.11b Modulation

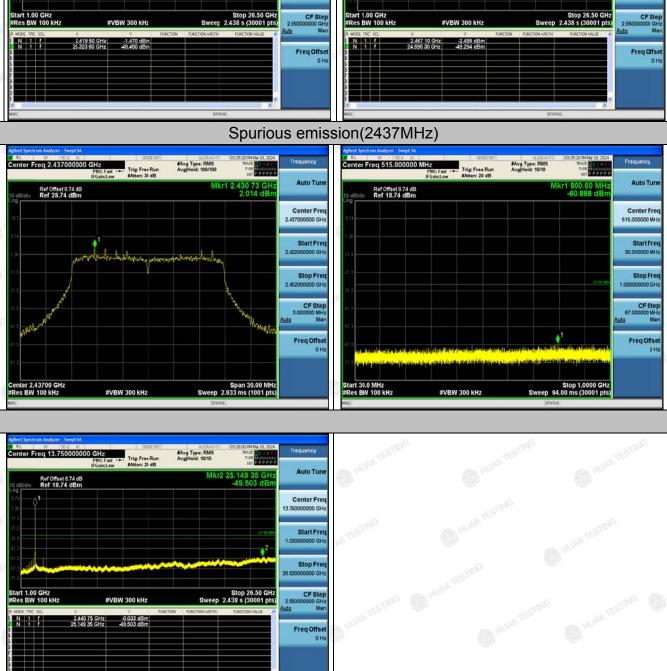
802.11g Modulation

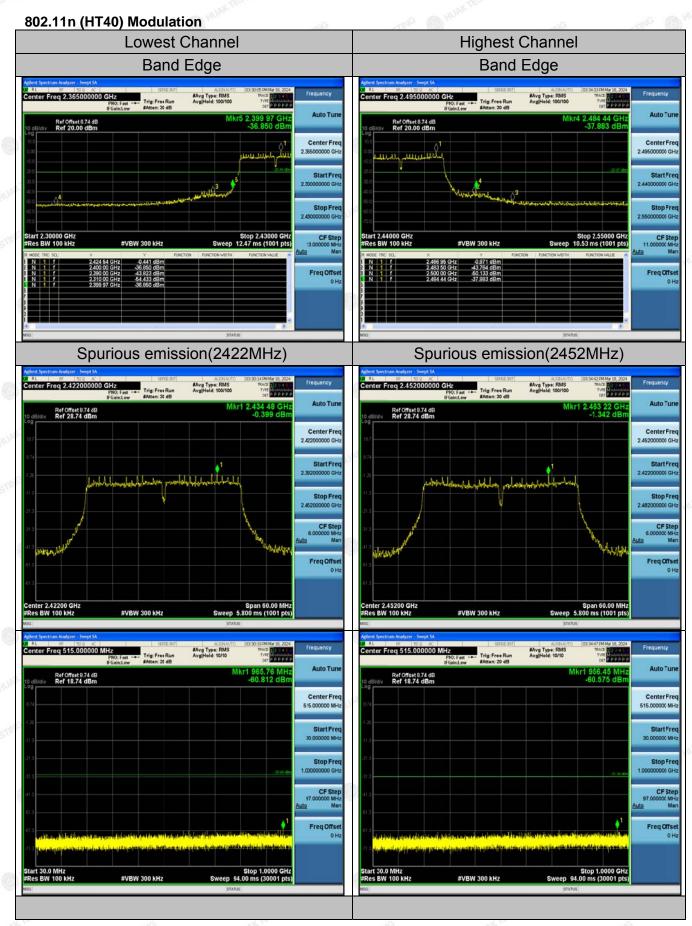


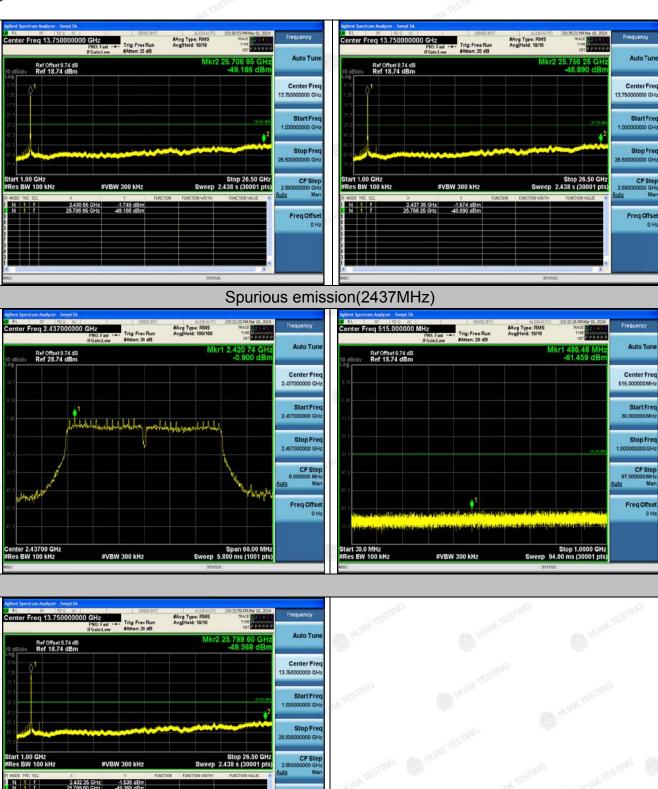
#Avg Type: RMS Avg|Hold: 10/10



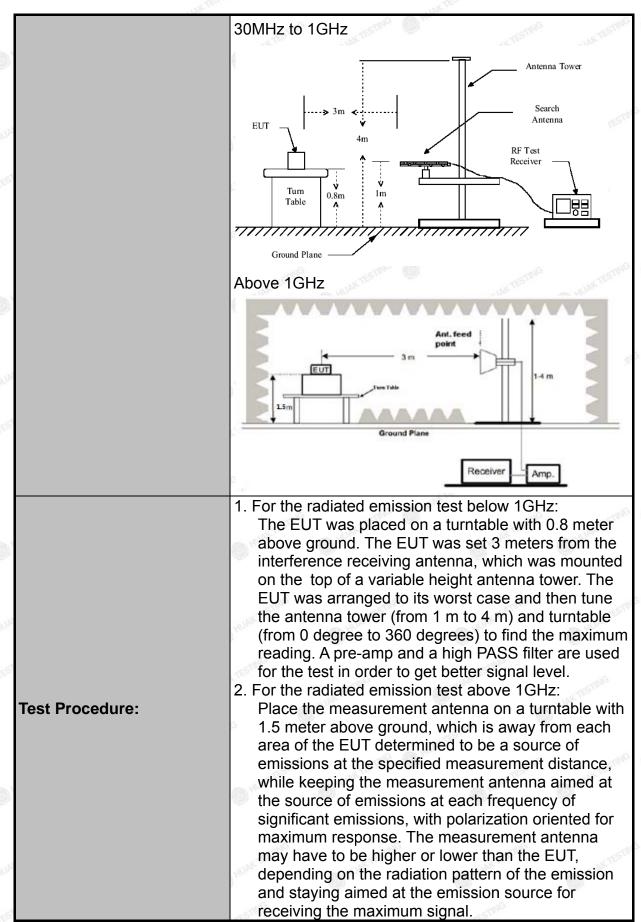
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


AKTES!"




Ref Offset 8.74 dB Ref 18.74 dBm

#Avg Type: RMS Avg|Hold: 10/10


4.7. RADIATED SPURIOUS EMISSION MEASUREMENT

Test Specification

Test Requirement:	FCC Part15	C Section	n 1	5.209	ESTI	liG	STR
Test Method:	ANSI C63.10): 2013		6	HUANTE		HUAKTE
Frequency Range:	9 kHz to 25 (GHz			TING		
Measurement Distance:	3 m	TESTING		M HU	AKTEST		TESTING
Antenna Polarization:	Horizontal &	Vertical			100	6)	HOVE
Operation mode:	Transmitting	mode w	ith i	modulati	ion		
	Frequency	Detecto	r	RBW	VBW	1	Remark
Receiver Setup:	9kHz- 150kHz 150kHz- 30MHz	Quasi-pe Quasi-pe		200Hz 9kHz	1kHz 30kHz		si-peak Value si-peak Value
	30MHz-1GHz Above 1GHz	Quasi-pe Peak Peak	ak	120KHz 1MHz 1MHz	300KHz 3MHz 10Hz	P	si-peak Value eak Value erage Value
	Frequen 0.009-0.4	су	(Field Stre	ength /meter)	Ме	asurement nce (meters)
		0.490-1.705		24000/F(KHz)		30	
	1.705-30			30 100	MG.	30	
_imit:	30-88	30-88 88-216					3
	216-960			150 200		TING	3
	Above 960			500	HUAKT		3
	Frequency	II Frequency I		Strength Measurement Distance (meters)		Detector	
	Above 1GHz	Z (M) YURK I'	500 5000		3		Average Peak
Test setup:	For radiated	Turn		pelow 30	-MG		NUAR STE
	30MHz to 10	SHz ***		O HU	VK.		SUAN TESTING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

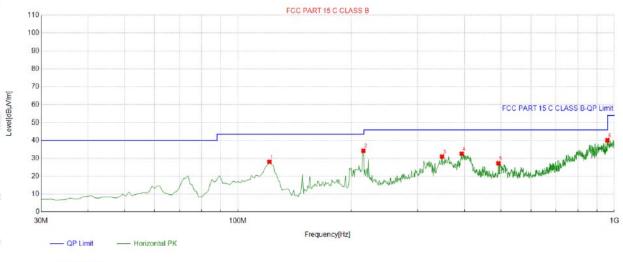
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

107	101
	The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement. 6. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test results:	PASS

Test Instruments

	Rad	iated Emission	Test Site (966	<u> </u>	
Name of Equipment	Manufacturer	Model	Serial Number		
Receiver	R&S	ESR-7	HKE-010	Feb. 20, 2024	Feb. 19, 2025
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 20, 2024	Feb. 19, 2025
Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 20, 2024	Feb. 19, 2025
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 20, 2024	Feb. 19, 2025
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 20, 2024	Feb. 19, 2025
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 20, 2024	Feb. 19, 2025
Preamplifier	Agilent	83051A	HKE-016	Feb. 20, 2024	Feb. 19, 2025
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 21, 2024	Feb. 20, 2026
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 21, 2024	Feb. 20, 2026
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 21, 2024	Feb. 20, 2026
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 20, 2024	Feb. 19, 2025
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 20, 2024	Feb. 19, 2025
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
RF cable	Times	9kHz-1GHz	HKE-117	Feb. 20, 2024	Feb. 19, 2025
RF cable	Times	1-40G	HKE-034	Feb. 20, 2024	Feb. 19, 2025
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Feb. 21, 2024	Feb. 20, 2026

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Data

All the test modes completed for test. only the worst result of 802. 11b was reported as below:

Below 1GHz

Horizontal

QP Detector

Si	Suspected List										
		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle		
N	10.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
	1	121.27127	-15.87	43.98	28.11	43.50	15.39	100	258	Horizontal	
	2	215.45545	-14.42	48.74	34.32	43.50	9.18	100	174	Horizontal	
	3	348.47847	-11.23	42.29	31.06	46.00	14.94	100	42	Horizontal	
	4	393.14314	-9.88	42.57	32.69	46.00	13.31	100	247	Horizontal	
	5	492.18218	-7.44	34.76	27.32	46.00	18.68	100	182	Horizontal	
	6	958.24824	-0.15	40.31	40.16	46.00	5.84	100	42	Horizontal	

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Vertical

Suspe	Suspected List										
	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle			
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity		
1	120.3003	-15.83	49.22	33.39	43.50	10.11	100	87	Vertical		
2	214.48448	-14.46	39.77	25.31	43.50	18.19	100	96	Vertical		
3	333.91391	-11.53	37.75	26.22	46.00	19.78	100	87	Vertical		
4	388.28828	-10.17	37.66	27.49	46.00	18.51	100	317	Vertical		
5	502.86286	-7.10	31.59	24.49	46.00	21.51	100	223	Vertical		
6	985.43543	0.36	36.93	37.29	54.00	16.71	100	165	Vertical		

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
HUM	10 m	HUA
	We	ESTING
IG HUAK		UNK.
TESTING WIESTING	TESTING WIESTING	TESTING

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

Above 1GHz

RADIATED EMISSION TEST

LOW CH1 (802.11b Mode)/2412

Horizontal:

Meter Reading	Factor	Emission Level	Limits WA	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
58.15	-3.64	54.51	74	-19.49	peak
39.93	-3.64	36.29	54	-17.71	AVG
48.42	-0.95	47.47	74	-26.53	peak
37.17	-0.95	36.22	54	-17.78	AVG
	(dBµV) 58.15 39.93 48.42	(dBµV) (dB) 58.15 -3.64 39.93 -3.64 48.42 -0.95	(dBμV) (dB) (dBμV/m) 58.15 -3.64 54.51 39.93 -3.64 36.29 48.42 -0.95 47.47	(dBμV) (dB) (dBμV/m) (dBμV/m) 58.15 -3.64 54.51 74 39.93 -3.64 36.29 54 48.42 -0.95 47.47 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 58.15 -3.64 54.51 74 -19.49 39.93 -3.64 36.29 54 -17.71 48.42 -0.95 47.47 74 -26.53

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level -

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	57.18	-3.64	53.54	74	-20.46	peak
4824	39.6	-3.64	35.96	54	-18.04	AVG
7236	49.41	-0.95	48.46	74	-25.54	peak
7236	34.94	-0.95	33.99	54	-20.01	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifierr; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

MID CH6 (802.11b Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.70	-3.51	52.19	74	-21.81	peak
4874	39.16	-3.51	35.65	54	-18.35	AVG
7311	48.34	-0.82	47.52	74	-26.48	peak
7311	37.04	-0.82	36.22	54	-17.78	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.16	-3.51	54.65	74	-19.35	peak
4874	40.68	-3.51	37.17	54	-16.83	AVG
7311	50.11	-0.82	49.29	74	-24.71	peak
7311	37.21	-0.82	36.39	54	-17.61	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

AFICATION.

HIGH CH11 (802.11b Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
4924	57.34	-3.43	53.91	74	-20.09	peak	
4924	40.33	-3.43	36.9	54	-17.1	AVG	
7386	48.64	-0.75	47.89	74	-26.11	peak	
7386	35.39	-0.75	34.64	54	-19.36	AVG	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level -

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	.∞ (dBμV/m)	(dB)	Туре
4924	56.36	-3.43	52.93	74	-21.07	peak
4924	39.27	-3.43	35.84	54	-18.16	AVG
7386	47.53	-0.75	46.78	74 HUM	-27.22	peak
7386	36.96	-0.75	36.21	54	-17.79	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

STING

Report No.: HK2402260801-E

LOW CH1 (802.11g Mode)/2412

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	57.09	-3.64	53.45	74	-20.55	peak
4824	41.55	-3.64	37.91	54	-16.09	AVG
7236	47.4	-0.95	46.45	74	-27.55	peak
7236	34.75	-0.95	33.8	54	-20.2	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level -

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	56.46	-3.64	52.82	74 HUM	-21.18	peak
4824	39.23	-3.64	35.59	54	-18.41	AVG
7236	49.73	-0.95	48.78	74	-25.22	peak
7236	36.12	-0.95	35.17	54	-18.83	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

MID CH6 (802.11g Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	58.22	-3.51	54.71	74	-19.29	peak
4874	39.31	-3.51	35.8	54	-18.2	AVG
7311	47.94	-0.82	47.12	74	-26.88	peak
7311	35.28	-0.82	34.46	54	-19.54	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss	Pre-amplifier; Lev	vel = Reading +	Factor; Margin	= Level -

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	57.83	-3.51	54.32	74	-19.68	peak
4874	40.7	-3.51	37.19	54	-16.81	AVG
7311	47.64	-0.82	46.82	74 TESTING	-27.18	peak
7311	34.9	-0.82	34.08	54	-19.92	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level -

HIGH CH11 (802.11g Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	55.59	-3.43	52.16	74	-21.84	peak
4924	39.27	-3.43	35.84	54	-18.16	AVG
7386	50.37	-0.75	49.62	74	-24.38	peak
7386	35.58	-0.75	34.83	54	-19.17	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	55.52	-3.43	52.09	74	-21.91	peak
4924	39.82	-3.43	36.39	54	-17.61	AVG
7386	48.65	-0.75	47.9	74	-26.1	peak
7386	35.62	-0.75	34.87	54	-19.13	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark.

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
57.81	-3.64	54.17	74	-19.83	peak
40.8	-3.64	37.16	54	-16.84	AVG
48.33	-0.95	47.38	74	-26.62	peak
36.89	-0.95	35.94	54	-18.06	AVG
	(dBµV) 57.81 40.8 48.33	(dBµV) (dB) 57.81 -3.64 40.8 -3.64 48.33 -0.95	(dBμV) (dB) (dBμV/m) 57.81 -3.64 54.17 40.8 -3.64 37.16 48.33 -0.95 47.38	(dBμV) (dB) (dBμV/m) (dBμV/m) 57.81 -3.64 54.17 74 40.8 -3.64 37.16 54 48.33 -0.95 47.38 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 57.81 -3.64 54.17 74 -19.83 40.8 -3.64 37.16 54 -16.84 48.33 -0.95 47.38 74 -26.62

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level -Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	57.98	-3.64	54.34	74	-19.66	peak
4824	39.75	-3.64	36.11	54	-17.89	AVG
7236	47.45	-0.95	46.5	74	-27.5	peak
7236	36.12	-0.95	35.17	54	-18.83	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874.00	55.45	-3.51	51.94	74.00	-22.06	peak
4874.00	40.38	-3.51	36.87	54.00	-17.13	AVG
7311.00	49.88	-0.82	49.06	74.00	-24.94	peak
7311.00	34.74	-0.82	33.92	54.00	-20.08	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level -

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874.00	55.93	-3.51	52.42	74.00	-21.58	peak
4874.00	41.78	-3.51	38.27	54.00	-15.73	AVG
7311.00	48.58	-0.82	47.76	74.00	-26.24	peak
7311.00	35.64	-0.82	34.82	54.00	-19.18	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

AFICATION.

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	57.55	-3.43	54.12	74	-19.88	peak
4924	41.00	-3.43	37.57	54	-16.43	AVG
7386	49.18	-0.75	48.43	74	-25.57	peak
7386	37.14	-0.75	36.39	54	-17.61	AVG
	AIG SHELL			ALC ARMS THE		a)G

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

4 /	1/1/2	1	117		476	11/1
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	56.09	-3.43	52.66	74	-21.34	peak
4924	38.94	-3.43	35.51	54	-18.49	AVG
7386	49.29	-0.75	48.54	74	-25.46	peak
7386	35.35	-0.75	34.6	54	-19.4	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ataly TESTIN
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	58.03	-3.63	54.4	74	-19.6	peak
4844	41.82	-3.63	38.19	54	-15.81	AVG
7266	48.71	-0.94	47.77	74	-26.23	peak
7266	34.89	-0.94	33.95	54	-20.05	AVG
-651	1780		STILL		~69TH	TEST

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

	. 75 % 27				. 600	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4844	56.22	-3.63	52.59	74	-21.41	peak
4844	41.53	-3.63	37.9	54	-16.1	AVG
7266	48.78	-0.94	47.84	74	-26.16	peak
7266	36.30	-0.94	35.36	54	-18.64	AVG
. (63)	9	1000	(SS)		105001	(20)

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	55.89	-3.51	52.38	74	-21.62	peak
4874	40.01	-3.51	36.5	54	-17.5	AVG
7311	47.87	-0.82	47.05	74	-26.95	peak
7311	36.64	-0.82	35.82	54	-18.18	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	56.05	-3.51	52.54	74	-21.46	peak
4874	39.29	-3.51	35.78	54	-18.22	AVG
7311	48.06	-0.82	47.24	74	-26.76	peak
7311	36.58	-0.82	35.76	54	-18.24	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

HIGH CH9 (802.11n/H40 Mode)/2452 Horizontal:

Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
57.09	-3.43	53.66	74	-20.34	peak
41.75	-3.43	38.32	54	-15.68	AVG
48.39	-0.75	47.64	74	-26.36	peak
35.26	-0.75	34.51	54	-19.49	AVG
	(dBµV) 57.09 41.75 48.39	(dBµV) (dB) 57.09 -3.43 41.75 -3.43 48.39 -0.75	(dBμV) (dB) (dBμV/m) 57.09 -3.43 53.66 41.75 -3.43 38.32 48.39 -0.75 47.64	(dBμV) (dB) (dBμV/m) (dBμV/m) 57.09 -3.43 53.66 74 41.75 -3.43 38.32 54 48.39 -0.75 47.64 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 57.09 -3.43 53.66 74 -20.34 41.75 -3.43 38.32 54 -15.68 48.39 -0.75 47.64 74 -26.36

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4904	55.85	-3.43	52.42	74	-21.58	peak
4904	40.61	-3.43	37.18	54	-16.82	AVG
7356	49.25	-0.75	48.5	74	-25.5	peak
7356	34.6	-0.75	33.85	54 MARTES	-20.15	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark:

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

of 69 Report No.: HK2402260801-E

Test Result of Radiated Spurious at Band edges

Operation Mode: 802.11b Mode TX CH Low (2412MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atau Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	54.28	-5.81	48.47	74	-25.53	peak
2310	TSTING/ WHUAT	-5.81	THE I STAY	54	TING	AVG
2390	55.28	-5.84	49.44	74	-24.56	peak
2390	1	-5.84	1	54	1	AVG
2400	56.38	-5.84	50.54	₅ 74	-23.46	peak
2400	ALL DIK TO	-5.84	A HUAK I	54	WAKTE	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atom Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	56.12	-5.81	50.31	74	-23.69	peak
2310	m/G	-5.81	6 1	54	-mvG/	AVG
2390	54.02	-5.84	48.18	74	-25.82	peak
2390	1	-5.84	1	54	IIIG /	AVG
2400	57.41	-5.84	51.57	74	-22.43	peak
2400	/	-5.84	MIAM /	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.25	-5.65	47.6	74 HUAN	-26.4	peak
2483.50	1	-5.65	MAN /	54	1 6	AVG
2500.00	54.16	-5.65	48.51	74	-25.49	peak
2500.00	WAY TESTING	-5.65	NG HAY TESTIN	54	NY TETNIG	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Dotostor Typo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.28	-5.65	49.63	74	-24.37	peak
2483.50	1	-5.65	1	54	1	AVG
2500.00	54.21	-5.65	48.56	74	-25.44	peak
2500.00	1	-5.65	Ĭ	54	· 1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	54.02	-5.81	48.21	74	-25.79	peak
2310	mis 1	-5.81	1 mg	54	ESTING /	AVG
2390	53.26	-5.84	47.42	74	-26.58	peak
2390	1	-5.84	1	54	1	AVG
2400	53.77	-5.84	47.93	74	-26.07	peak
2400	JH I	-5.84	(1) I	54	HUAK	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Turns
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	53.16	-5.81	47.35	74	-26.65	peak
2310	A.LEZIME I WHO	-5.81	STNG / TESTING	54	ESTAG	AVG
2390	52.31	-5.84	46.47	74	-27.53	peak
2390	1	-5.84	1	54	1	AVG
2400	51.99	-5.84	46.15	[©] 74	-27.85	peak
2400	1	-5.84	1 How	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata Timo
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	54.46	-5.65	48.81	74	-25.19	peak
2483.50	rsmrc /	-5.65	- MAN ESTING	54	1	AVG
2500.00	52.36	-5.65	46.71	74	-27.29	peak
2500.00	TING WHIA	-5.65	NIG TIN	54	1	AVG
-651	175	-65			45	1760

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	55.28	-5.65	49.63	74	-24.37	peak
2483.50	1	-5.65	1	54	ug 1	AVG
2500.00	54.16	-5.65	48.51	74	-25.49	peak
2500.00	HUM	-5.65	1 HOM	54	MAK I	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
© 2310	55.52	-5.81	49.71	74	-24.29	peak
2310	STING /	-5.81	LAK ESTING	54	1	AVG
2390	54.21	-5.84	48.37	74	-25.63	peak
2390	NG HUAY	-5.84	1	54	1	AVG
2400	55.28	-5.84	49.44	74	-24.56	peak
2400	1	-5.84	1	54	<i>)</i>	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Defeater Turn
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	53.14	-5.81	47.33	74	-26.67	peak
2310	WAX TESTING	-5.81	STAIL HUAY TESTA	54	TAK TE TIME	AVG
2390	52.85	-5.84	47.01	74	-26.99	peak
2390	1	-5.84	1	54	1	AVG
2400	52.16	-5.84	46.32	74	-27.68	peak
2400	1	-5.84	7	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Operation Mode: TX CH High (2462MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	THURK TEST
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.16	-5.65	47.51	74	-26.49	peak
2483.50	1	-5.65	MAN HUAN	54	1	AVG
2500.00	56.32	-5.65	50.67	74	-23.33	peak
2500.00	OK TESTING	-5.65	ING LOW TESTIN	54	T/STING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

639		4365555	495700	A20000		43557353
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.16	-5.65	47.51	74	-26.49	peak
2483.50	I HUI	-5.65	1	54	1	AVG
2500.00	52.38	-5.65	46.73	74	-27.27	peak
2500.00	1	-5.65	1	54)	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	52.41	-5.81	46.6	74	-27.4	peak
2310	STATE /	-5.81	- MAY AESTINE	54	1	AVG
2390	55.62	-5.84	49.78	74	-24.22	peak
2390	STING HUAN	-5.84	TNG / STIN	54	1	AVG
2400	54.16	-5.84	48.32	74	-25.68	peak
2400	1	-5.84	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stor Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2310	55.28	-5.81	49.47	74	-24.53	peak
2310	1	-5.81	O I	54	MILIAN /	AVG
2390	56.32	-5.84	50.48	74	-23.52	peak
2390	WAK TESTING	-5.84	I HANTEST	54	UAX TESTING	AVG
2400	55.71	-5.84	49.87	74	-24.13	peak
2400	STING /	-5.84	1 STING	54	ESTING /	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Operation Mode: TX CH High (2452MHz)

Horizontal

Esquency	Motor Dooding	Contain State	Emission Lavel	Limita	Margin	V TESTING
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	53.16	-5.65	47.51	74	-26.49	peak
2483.50	1	-5.65	O HUAN	54	1	AVG
2500.00	54.26	-5.65	48.61	74	-25.39	peak
2500.00	NY TESTING	-5.65	IN I NY TESTIN	54	TETING	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.16	-5.65	47.51	74	-26.49	peak
2483.50	THUMK	-5.65	1	54	1	AVG
2500.00	55.28	-5.65	49.63	74	-24.37	peak
2500.00	1	-5.65	1	54	1	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier; Level = Reading + Factor; Margin = Level - Limit

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

Remark:

- 1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.
- 2. In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 4. All the test modes completed for test. only the worst result of Mode 1 was reported.

4.8. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

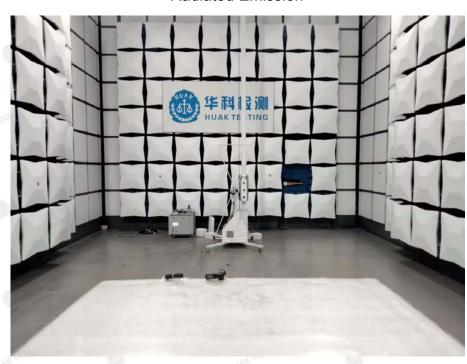
Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Ceramic Antenna, which permanently attached. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 3.5dBi.

WIFI ANTENNA



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5. PHOTOGRAPH OF TEST

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

6. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

-----End of test report-----

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.