Section 8	Testing
Test name	FCC §96.41(g) Peak to Average Power Ratio
Specification	FCC Part 96

Section 8	Testing
Test name	FCC §96.41(g) Peak to Average Power Ratio
Specification	FCC Part 96

Section 8	Testing
Test name	FCC §96.41(g) Peak to Average Power Ratio
Specification	FCC Part 96

Section 8	Testing
Test name	FCC §96.41(g) Peak to Average Power Ratio
Specification	FCC Part 96

PAPR, TX: 3570 MHz, BW: 40MHz, MOD: QPSK

PAPR, TX: 3625 MHz, BW: 40MHz, MOD: QPSK

MultiView Spectrun Ref Level 52.69 dBm Offse Att 32 dB SWI	1 t 30.00 dB • RBW 5 1 ms • VBW	2 MHz Mit	ide Sweep				s	GL ount 200/20
TDF "TEST" 1 Erecturpey Sweep							O1Ek M	nx 😐 2Ren Ave
S0 dBm-							M1[1]	13.23 dB 3.625 000 G
40 dBm								
30 dBm								
20 dBm								
10 dem-		m	m	m.	man			
o dên-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
-10 düm-						1		
-20 d8m						Ŋ		
man	mahr					Mapa	moun	mm
-30 tol	/					L		
-10 d8m-								
CF 3.625 GHz		412 pts		9.	38 MHz/		Spa	in 93.762 MI
Type Ref Trc M1 1	X-Value 3.625 GHz	1	Y-Value 3.23 dBm	Band Powe	Function r/37.505 MHz		Function Re 31.00 dE	isult Im

PAPR, TX: 3680 MHz, BW: 40MHz, MOD: QPSK

Frequency Sweep							O1Pk M	lax • 2Rm Avg
ið dBan							M1[1]	13.58 dB 3.680 000 GF
0 dGm								
0 5841-								
0 dBm								
0 dēm-		nom	anom	min	mm			
i džn								
10 dBm		1						
20 c8m	www					how	mm	man.
30 cBm	hand					Lunn		
10 dBm								
E 3.68 GHz		413 nt			4 MHz/		Sr	an 93,95 MH

F 3.57 GHz		412 pts		9.	.39 MHz/		Spa	an 93.863 M
10 dam-								
10 c8m	and the second					hann		
mmmmm	mound					Laterat her	www	Mohum
70 pām						Data to Data		
10 /8m								
dłm	1							
				1	·			
1.4800		mm	nom	mm	mm			
0 d8m								
0 dBm								
0 dBm								
								3.570 000 0
Frequency Sweep							01Fk M M1[2]	ax = 2Rm Av 1.87 d
Att 32 dB SWI DF 'TEST'	i ms 🖶 VBV	/ 2 MHz M	ode Sweep				c	ount 200/2
Ref Level 52.69 dBm Offs	et 30.00 dB = RBV	V 500 kHz					s	GL
fultiView Spectru RefLevel 52.69 dBm Offs	m et 30.00 d8 = RBV	V 500 kHz						s

PAPR, TX: 3625 MHz, BW: 40MHz, MOD: QPSK

MultiView	Spec	trum								•
Ref Level 52	.69 dBm	Offset 30.00	dB 🖷 RB	W 500 kHz					S	GL
Att	32 dB	SWT 1	ms e VB1	W 2 MH2 M	ode Sweep				c	ount 200/200
TDF "TEST"	0								017h M	an a DRan Aran
Threquency .	aweep		_						MI[2]	2 76 dBm
SU UBILI										3.625.000 GHz
40 dbm										
30 d8m-										
20 dBm										
				marma.	h ann	hanna				
10 dBm				0 10	1000	4 4 14 54	a normally			
						법-				
0 dêm-							· ····································			
			1					n i		
-10 (Gm			- 1					11		
								n		
-20 d8m-			- 11					1		
mm	mon	mad	m					Malya	monters	man
-30 c8m	· ·		. (
			~					Lanna		
-40 dam										
10 1011										
CE 3.625 GHz	,			412 nts		9	38 MH27		Soa	n 93,762 MHz
2 Marker Tab	le									
Type Re	f Trc	X	-Value		Y-Value		Function		Function Re	sult
M1	2	3.6	25 GHz		2.76 dBm	Band Powe	r/37.505 MHz		20.69 dB	m
								e 1	teady	- A -

PAPR, TX: 3680 MHz, BW: 40MHz, MOD: QPSK

Multiview Spectru	Im				
Ref Level 52.63 dBm Offs	et 30.00 dB = RBW 500	kHz			SGL
Att 32 dB SW1	1 1 ms 🖷 VBW 21	VHz Mode Sweep			Count 200/200
TDF "TEST"					O LOU Mary A DOWN AND
1 Frequency sweep					
S0 sbin					2 690 000 GH
					3.680 000 6Hz
40 dBm					
30 d8m-					
20 dBm					
10 dBm	m	madren	mann	n	
10 001				1	
			in the second se	~~	
0 d2m	1			1	
	<u> </u>			N I	
-10 cBm				1	
				n	
-20 d8m				1.0. 0. 1.	
mount	~~~~~~~~			MAN MANN	munum
-30 dBm-				1	
				- Lunnan	~
-40 dam-					
10 1011					
CE 3 AB GH2		413 nts	9.4.MHz/		Span 93 95 MHz
2 Marker Table			static		2,211001001112
Type Ref Trc	X-Value	Y-Value	Function		Function Result
M1 2	3.68 GHz	1.83 dBm	Band Power/37.584 MHz		20.88 dBm
				e Rea	idy 💼 👬

Section 8	Testing
Test name	FCC §96.41(g) Peak to Average Power Ratio
Specification	FCC Part 96

PAPR, TX: 3570 MHz, BW: 40MHz, MOD: 16QAM
 MultiView
 Spectrum

 Ref Level 52:29 dm
 Offset 30:00 d8

 R8W 500 kHz
 Att 32 d8 SWI 1 ms

 VIBW 2 MHz Mode Sweep

SGL Count 200/200 dBer dBrr 10 c6m-10 dBm 39 MHz/ Span 93.858 MH 3.57 GHz 412 pts

Y-Value 12.46 dBm

PAPR, TX: 3625 MHz, BW: 40MHz, MOD: 16QAM

X-Value 3.57 GHz

Marker Tal

PAPR, 1	ix:	3680	MHz,	BW:	40MHz,	MOD:	16QAM

MultiView Spectrum Ref Level 52.02 dBm Offset	1 t 30.00 d8 • RB	W 500 kHz	4. 0				s	GL
TDF "TEST"	1 115 🗢 🖬	2012 00	ide oweep				c	ounc 2007200
1 Frequency Sweep							O1Pk M	ax 🖲 2Rm Avg
S0 dBm							M1[1]	12.21 dBm 3.680.000 GHz
40 dBm								5.000 000 012
30 dBm								
20 dim								
10 dBm		mm	man	imm	my			
0 dira								
-10 cBm-						1		
-70 (0)()						1		
mmmmm	monton					human	mon	mmm
-30 dim	hand					1		
~40 d8m-								
CF 3.68 GHz		412 pts		9.	38 MHz/		Sp	an 93.79 MHz
2 Marker Table	Markey .		M Marker		From a black		From stations (Day	
M1 1	3.68 GHz	1	2.21 dBm	Band Powe	r/37.516 MHz		30.37 dE	suit
						e 1	Ready	- A

APR, TX: 3570 MHz, BW: 40M	Hz, MOD: 16QAM				
MultiView Spectrum					•
Bef Level 52.29 dBm Offset	30.00 d8 • RBW 500 kHz				SGL
Att 32 dB SWT	1 ms • VBW 2 MHz	Mode Sweep			Count 200/200
TDF "TEST"					
1 Frequency Sweep					●1Pk Max ●2Rm Avg
50 dBm					M1[2] 2.09 dBn
					3.570 000 GH
40 dBm					
30 dim-					
20 (84)					
20.000					
		man	manna	\sim	
10 dBm	- (* * i				
		11 N			
0 d2m	frank	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1	
	8			B	
-10 c6m					
	ſ			11	
-20 gBm-		_			
	Mar world			130 almonde	Listing and a second second
	Although of			1.0	Commence of the State
-10 com	man			1	
-40 cBm-					
CF 3.57 GHz	412	pts	9.39 MHz/		Span 93.858 MHz
2 Marker Table					
Type Ref Trc	2 57 GHz	2 09 dBm	Function		20.25 dBm
1911 2	5.57 612	2.07 dBill	baro rowdf/37.543 MH	4	20.25 0.00

PAPR, TX: 3625 MHz, BW: 40MHz, MOD: 16QAM

•

Function Resul 30.69 dBm

MultiView -	Spectrum								•
Ref Level 52.1 Att	32 dB SWI	1 ms • VBW	/ SOO kHz / 2 MHz Mo	de Sweep				s	GL ount 200/200
DF "TEST"								0.175.11	
Frequency Sv	weep							OTEK M	ax • 2km weg
0.586								m1[2]	2 625 000 GH
									5.025000 0
U DEM-									
D GBM-									
U GBR/									
		h	m	man	mm	man			
a dem-		1							
		L 1-	~~~~~,				1		
asn		1							
							11		
to cam-		()					0		
		L (11					11		
20 DBm		. //					11		
warmer	and and an	m					m		mound
io tam		Lu und					1		. anton
AU DBIN									
2.625 GU2			412 of a			30 MLI 57		Ens	0 0 7 7 9 0 ML
Marker Table			412 pts		2	30 MI 127		ape	1195.700 Mil
Type Ref	Trc	X-Value		Y-Value		Function		Function Re	esult
M1	2	3.625 GHz	1	.91 dBm	Band Powe	r/37.515 MHz		20.32 dE	lm
							· · · ·	keady	- A
PR TY- 2680	MHT BW- 406	HT NOD- 1604							
· N, IA: 3080									

Ref Level 52.0 Att	2 dBm Offset 32 dB SWT	30.00 dB = RB 1 ms = VB	W 500 kHz W 2 MHz Mode Sweep				s c	GL ount 200/200
1 Frequency Sv	меер						O1Pk M	sx e 2Rm Avg
50 dBm							M1[2]	1.90 dBm
								3.680 000 GHz
40 dBm								
30 dBm								
20 0645								
10 dBm			mon	mon	mon			
10 001		(NI				
0 d2m				~~				
-10 dBm-		(j						
		1				Ŋ.		
-20 dBm		1				U		
mon	mm	monthere				unter	mon	mon
-30 dim-		/				1		
-40 d8m-								
CT 0 60 Chis			110 ata		20.1415/		6.	
2 Marker Table	,		+12 pts	y	.36 MH2/		sp	an 93.79 MHz
Type Ref	Trc	X-Value	Y-Value	-	Function		Function Re	sult
M1	2	3.68 GHz	1.90 dB	m Band Pow	er/37.516 MHz		20.19 dB	m
						v 1	teady	- A -

Page 68 of 126

Section 8	Testing
Test name	FCC §96.41(g) Peak to Average Power Ratio
Specification	FCC Part 96

PAPR.	TX:	3570	MHz.	BW:	40MHz.	MOD:	640AM	
			,				0.4.0.1	

PAPR, TX: 3625 MHz, BW: 40MHz, MOD: 64QAM

PAPR, TX: 3680 MHz, BW: 40MHz, MOD: 64QAM

Att 31 dB SWT TDF "TEST"	ims 🖷 VBW 2	MHz Mode Sweep			Co	unt 200/200
1 Frequency Sweep					O1Pk Ma	ix 😐 2Rm Avg
50 dBm-					M1[1]	
40 dBm						
30 dBm						
20 dBm						
10.45		mmm	hannow	m		
10 dBm				1		
0 dłm				~		
-10 clim	1					
				1		
-20 dam-				11		
-30 cBm	mun			Inner	mun	many
				himme		
-40 cBm						
CF 3.68 GHz		414 pts	9.41 MHz/		Spar	n 94.125 MH
2 Marker Table						
2 Marker Table Type Ref Trc	X-Value	Y-Value	Function		Function Re	sult

PAPR, TX: 3570	MHz, BW: 4	10MHz, MOD: 640	AM						
MultiView	Spectr	um							•
Ref Level 51	97 dBm Off	lset 30.00 d8 🖷 Bl	BW 500 kHz					s	GL
Att	31 dB SW	/T imse VI	W 2 MHz M	ode Sweep				c	ount 200/200
TDF "TEST"									
1 Frequency S	Sweep							O1Pk M	əx 🗢 2Rm Avg
50 dum								M1[2]	2.10 dBm 3.570 000 GHz
40 dBm									
30 dBm									
20 dim-									
10 dBm			from	mm	mm	m			
0 d2m			m			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1		
-10 dBm-			[k		
							0		
-20 cBm		and in all					Mars a.		
-30 dim-	~~~~~	on mary					1 Man Control	han hander	marm
		manual					harmen		
-40 dBm									
CF 3.57 GHz			413 pts	1	1	4 MHz/		So	an 93.96 MHz
2 Marker Tabl	le								
Type Rel M1	f Trc	X-Value 3.57 GHz		Y-Value 2.10 dBm	Band Powe	Function ar/37.584 MHz		Function Re 20.25 dE	sult m
	-							Ready	

PAPR, TX: 3625 MHz, BW: 40MHz, MOD: 64QAM

MultiView	Spectrum								•
Ref Level 51.9	1 dBm Offset	30.00 dB = RB	W 500 kHz					s	GL
Att	31 dB SWI	ims 🖷 VB	W 2 MHz	Mode Sweep				с	ount 200/200
1 Erequency S	ween							O I Ek M	ax 🙍 2Ren Awa
50 d8m-								M1[2]	2.35 dBm
									3.625 000 GHz
40 d8m									
30 d6m									
20 d8m-									
			a cho -	1 also and a					
10 dBm		- (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1 million	moun			
		1			1		1		
0 dêm-		i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii							
		l i i i i i i i i i i i i i i i i i i i					n –		
-10 c8m		1					η		
							11		
-20 cam-		/					1		1. 1. 1.
mm	man	mm					m		m www.
-30 080							Lunn	· · · · · · · · · · · · · · · · · · ·	
-40 (Dm									
CF 3.625 GHz			413	ots	9.	39 MHz/		Spa	n 93.925 MHz
2 Marker Table	•								
Type Ref	Trc	X-Value		Y-Value	Read Dawn	Function		Function Re	sult
1911	4	5.023 GHZ		2.35 UDIII	pand Howe	systiat MHZ		20.02 UE	
							~	keady	
PAPR, TX: 3680	MHz, BW: 40M	IHz, MOD: 64Q/	AM						
ad	Constant								

Ref Level 51.8	33 dBm C)ffset 30.00 dB = 1	RBW 500 kHz					s	GL
Att TDF "TEST"	31 dB S	WI imsel	VBW 2 MHz M	ode Sweep				c	ount 200/200
1 Frequency S	weep							O1Pk M	ax 🖷 2Rm Avg
50 d8m-								M1[2]	2.31 dBm 3.680 000 GHz
40 dGm									
30 dim									
20 dBm									
10 dBm			mm	mm	m	mm			
0 dêrs				·····	1 				
-10 dBm			/				ų		
-20 (8)							1		
mm	mm	man	1				barne	many	mm
-30 dBm			/				L		
-40 dBm									
CF 3.68 GHz			414 pts		9	41 MH2/		Spa	n 94.125 MHz
2 Marker Table	B								
Type Ref M1	2 Trc	X-Value 3.68 GH	z	Y-Value 2.31 dBm	Band Powe	Function ar/37.65 MHz		Eunction Re 20.05 di	esult Im
	-						e 1	Ready	

Section 8	Testing
Test name	FCC §96.41(g) Peak to Average Power Ratio
Specification	FCC Part 96

PAPR, TX: 3570 MHz, BW: 40MHz, MOD: 256QAM

PAPR, TX: 3625 MHz, BW: 40MHz, MOD: 256QAM

 MultiView *
 Spectrum
 *

 Ref Level 51.02 dfm
 Offer 30.00 df = RBW 500 hr: Count 2007/200
 SGL
 SGL

 View 1000 df = RBW 500 hr: Count 2007/200
 Offer 400 df = RBW 500 hr: Count 2007/200
 Offer 400 df = RBW 500 hr: Count 2007/200
 Offer 400 df = RBW 500 hr: Count 2007/200

 View 1000 df = RBW 500 hr: Count 2007/200
 Offer 400 df = RBW 500 hr: Count 2007/200
 Offer 400 df = RBW 500 hr: Count 2007/200
 Offer 400 df = RBW 500 hr: Count 2007/200

 View 1000 df = RBW 500 hr: Count 2007/200
 Offer 400 df = RBW 500 hr: Count 2007/200
 Offer 400 df = RBW 500 hr: Count 2007/200
 Offer 400 df = RBW 500 hr: Count 2007/200

 View 1000 df = RBW 500 hr: Count 2007/200 df =

PAPR, TX: 3680 MHz, BW: 40MHz, MOD: 256QAM

MultiView	Spe	ectrum								•
Att	31.d8	SWI 1e	15 • RBW 500 15 • VRW 2	KHZ MHZ MO	de Sween				5	GL ount 2007200
TDF "TEST"									-	
1 Frequency S	Sweep								●1Pk M	ox • 2Rm Avg
50 cBm-									M1[1]	12.99 dBm
10.00										5.660 000 6Hz
40 diam-										
an cen-										
20 1000										
20 3041						(1				
10 dBm			Rush	Mun	mound	mon	mon			
			1					1		
o den-			m	~	~~~~~			· · · · · · · · · · · · · · · · · · ·		
			1					1		
-10 dBm								<u>N</u>		
			8					11		
-20 dBm								1		-
min	how	mon	rol					Iman	moun	home
-30 dBm								1		
								,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-40 dBm	-									
CF 3.68 GHz				413 pts		9.	39 MHz/		Spa	in 93.942 MHz
2 Marker Tab	le Tro	V.	(alua	_	V Voluo		Eurotion		Eurotian Dr	coult
M1 Ke	1	3.68	GHz	1	2.99 dBm	Band Powe	r/37.577 MHz		30.09 dE	Im
	e .							e 1	Ready	.

PAPR, TX: 3570 MHz, BW: 40	MHz, MOD: 256QAM				
MultiView Spectru	m				
Ref Level 51.97 dBm Offs	et 30.00 dB = RBW 500 k	łz			SGL
Att 31 dB SWI	1 ms 🖶 VBW 2 M	tz Mode Sweep			Count 200/200
1 Frequency Sweep					O1Pk Max e 2Rm Avg
50 dBm					M1[2] 1.63 dBrr 3.570 000 GH
40 dBm					
30 dBm					
20 dBm-					
10 dBm	mm	mon	mumm		
0 d2m	m				
-10 dBm				1	
-20 dbm					
-30 dam	mmm			homm	man
				L	
-40 dBm-					
CF 3.57 GHz	4	13 pts	9.4 MHz/		Span 94.038 MHz
2 Marker Table					
Type Ref Trc M1 2	X-Value 3.57 GHz	Y-Value 1.63 dBm	Function Band Power/37.615 MHz		unction Result 19.99 dBm
				c Reads	

PAPR, TX: 3625 MHz, BW: 40MHz, MOD: 256QAM

MultiView	Sp	ectrum							•
Ref Level 51. Att	32 dBm 31 dB	Offset 30.00 dB = P SWI ims = V	BW 500 kHz BW 2 MHz	Mode Sweep				s	GL ount 200/200
DF "TEST"								o tale to	an a DRes Area
S0 dBm	weep							01010	ak e zien neg
								(inster)	3.625.000 GH
O GERI									
30 dBm									
20 d6m			-	-					
LO dem-			from		m	mon			-
			1		1		1		
) dêm			former	~~~~~~	**************************************	······································			
			1						
10 /8m			1				<u>\\</u>		
			1				15		
00.00							11		
20 080							11		
- mm	ma	manun					10-000	moun	mm
30 00m							1		
		and the second s							
-40 d8m-									
F 3.625 GHz			412 p	ts	9.	39 MHz/		Spa	an 93.852 MHz
Marker Tabl	8								
Type Ref	Irc	X-Value	7	2.32 dBm	Rand Down	runction		19.83 di	suit
1.14	-	21020 011	-		Stand Powe	NUCLEAR PARTY		Le rely	
								1000y	
PR. TX: 3680	MHz. B	W: 40MHz. MOD: 25	50AM						

Arit, 17. 3000 Fills, 511. 49Fills

MultiView *	Spectru	m							•
Ref Level 51.8	5 dBm Offse	et 30.00 dB 🖷 RE	SD0 kHz					s	GL
Att	31 dB SWT	ims 🖷 VE	W 2 MHz M	ode Sweep				С	ount 200/200
TDF "TEST"	10000							OTEK M	av a 20en Aun
S0 dBm	weep	-		-	-	-		MI[2]	2.18 dBm
									3.680 000 GHz
40 dBm									
20 dim-									
20 d6m									
10 dBm			monus	mon	mon	mon			
					41		1		
o dêrs-			Acres and a contraction	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	hanna				
			1				1		
-10 cGm		1					1		
		1 1					11		
-20 dam-							11		
1 A A	and al	Num Red					The aver		
-30 gBm							1.00.44		w
		hand					\		
-40 (Bm									
CF 3.68 GHz		-	413 pts		9	39 MHz/		Spa	n 93.942 MHz
2 Marker Table									
Type Ref	Trc	X-Value		Y-Value	Day of Day	Function		Function Re	sult
MI	2	3.08 GHZ		2.10 dBM	Band Powe	97/37.577 MHz		20.08 di	
								Ready	

8.8 FCC §96.41(e)(1) Emissions intensity

8.8.1 Definitions and limits

- (1) General protection levels.
 - (i) Except as otherwise specified in paragraph (e)(2) of this section, for channel and frequency assignments made by the SAS to CBSDs, the conducted power of any CBSD emission outside the fundamental emission bandwidth as specified in paragraph (e)(3) of this section (whether the emission is inside or outside of the authorized band) shall not exceed –13 dBm/MHz within 0-10 megahertz above the upper SAS-assigned channel edge and within 0-10 megahertz below the lower SAS-assigned channel edge. At all frequencies greater than 10 megahertz above the upper SAS assigned channel edge and less than 10 MHz below the lower SAS assigned channel edge, the conducted power of any CBSD emission shall not exceed –25 dBm/MHz. The upper and lower SAS assigned channel edges are the upper and lower limits of any channel assigned to a CBSD by an SAS, or in the case of multiple contiguous channels, the upper and lower limits of the combined contiguous channels.
 - (ii) Except as otherwise specified in paragraph (e)(2) of this section, for channel and frequency assignments made by a CBSD to End User Devices, the conducted power of any End User Device emission outside the fundamental emission (whether in or outside of the authorized band) shall not exceed -13 dBm/MHz within 0 to B megahertz (where B is the bandwidth in megahertz of the assigned channel or multiple contiguous channels of the End User Device) above the upper CBSD-assigned channel edge and within 0 to B megahertz below the lower CBSD-assigned channel edge. At all frequencies greater than B megahertz above the upper CBSD assigned channel edge and less than B megahertz below the lower CBSD-assigned channel edge, the conducted power of any End User Device emission shall not exceed -25 dBm/MHz. Notwithstanding the emission limits in this paragraph, the Adjacent Channel Leakage Ratio for End User Devices shall be at least 30 dB.
- (2) Additional protection levels. Notwithstanding paragraph (e)(1) of this section, for CBSDs and End User Devices, the conducted power of emissions below 3540 MHz or above 3710 MHz shall not exceed -25 dBm/MHz, and the conducted power of emissions below 3530 MHz or above 3720 MHz shall not exceed -40dBm/MHz.

8.8.2 Test summary

Test date	April 27, 2023	Temperature	18 °C
Test engineer	Chenhao Mao, Wireless Technician	Air pressure	1001 mbar
Verdict	Pass	Relative humidity	62%

8.8.3 Observations, settings and special notes

Spectrum analyzer settings (conducted test):

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Frequency span	Sufficient for making an accurate measurement
Detector mode	RMS
Trace mode	Max Hold

Receiver settings (radiated test):

Resolution bandwidth	1 MHz
Video bandwidth	3 MHz
Frequency span	Sufficient for making an accurate measurement
Detector mode	Pre-scan: Peak detector
Detector mode	Final measurements: RMS detector
Measurement time	5 seconds

The EUT has two ports which can transmit simultaneously in a correlated way.

Measurements were performed on antenna port 2, identified as the worst case with respect to output power in Section 8.5.

The evaluation was made on the three channels (lowest, middle, and highest), all modulations (QPSK, 16QAM, 64QAM, and 256QAM) and operating bandwidths (10 MHz, 20 MHz, 30 MHz, and 40 MHz). Appropriate attenuation and filtering was applied to avoid overloading the measurement equipment and to achieve the required noise floor.

In the region within 1 MHz of the assigned channel edge, a reduced measurement bandwidth was used and a band power function employed to integrated over the entire 1 MHz region. MIMO correction was not applied (3.01 dB for 2 correlated antenna ports) however all emissions were well below the limit even after including an additional 3.01 dB.

Report reference ID: REP0031625-2R1TRFWL

8.8.4 Test data

Band TDD48 (Antenna port spurious emissions) TX: 3555 MHz, 10 MHz BW, QPSK modulation:

TX: 3625 MHz, 10 MHz BW, QPSK modulation:

TX: 3695 MHz, 10 MHz BW, QPSK modulation:

TX: 3555 MHz, 10 MHz BW, 16QAM modulation:

TX: 3625 MHz, 10 MHz BW, 16QAM modulation:

TX: 3695 MHz, 10 MHz BW, 16QAM modulation:

TX: 3555 MHz, 10 MHz BW, 64QAM modulation:

TX: 3625 MHz, 10 MHz BW, 64QAM modulation:

TX: 3695 MHz, 10 MHz BW, 64QAM modulation:

TX: 3555 MHz, 10 MHz BW, 256QAM modulation:

TX: 3625 MHz, 10 MHz BW, 256QAM modulation:

TX: 3695 MHz, 10 MHz BW, 256QAM modulation:

TX: 3560 MHz, 20 MHz BW, QPSK modulation:

TX: 3625 MHz, 20 MHz BW, QPSK modulation:

