Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Compiled by

(position+printed name+signature) .: File administrators Joan Wu

Supervised by

(position+printed name+signature) .: Project Engineer Zoey Cao

Approved by

(position+printed name+signature) .: RF Manager Eric Wang

Date of issue Mar. 27, 2025

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shenzhen Wenfengsheng Electronics Co., Ltd.

Floor 2, No.27 Rifu Road, Baishixia, Fuyong Street, Baoan District,

Shenzhen City, Guangdong Province, China

Test specification:

Standard FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Wireless Earphone

Trade Mark: N/A

Manufacturer Shenzhen Wenfengsheng Electronics Co., Ltd.

Model/Type reference: DX-09

Listed Models DX-18, DX-19, JJ-13

Modulation GFSK, Π/4DQPSK, 8DPSK

Frequency From 2402MHz to 2480MHz

Rating DC 3.7V From battery and DC 5.0V From external circuit

Result: PASS

Page 2 of 46 Report No.: CTA25031101602

TEST REPORT

Equipment under Test Wireless Earphone

DX-09 Model /Type

DX-18, DX-19, JJ-13 Listed Models

Model difference The PCB board, circuit, structure and internal of these models are the

same, Only model number and colour is different for these model.

Shenzhen Wenfengsheng Electronics Co., Ltd. Applicant

Floor 2, No.27 Rifu Road, Baishixia, Fuyong Street, Baoan District, Address

Shenzhen City, Guangdong Province, China

Shenzhen Wenfengsheng Electronics Co., Ltd. Manufacturer

Address Floor 2, No.27 Rifu Road, Baishixia, Fuyong Street, Baoan District,

Shenzhen City, Guangdong Province, China

CHENZINI OF		Guanguong Province, China		
	Test Result:	PASS		

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 46 Report No.: CTA25031101602

Contents

		TESTING	ntents	
	1.	TEST STANDARDS	LING	4
	A TO HOM THE	CTA		-ING
	<u>2</u>	SUMMARY	<u></u>	.S <u>5</u>
			CTA.	
	2.1	General Remarks		5
	2.2	Product Description		5
	2.3	Equipment Under Test		5 5
	2.4	Short description of the Equipment unde	r Test (EUT)	
	2.5	EUT configuration		6
	2.6	EUT operation mode		6
CAL	2.7	Block Diagram of Test Setup		6
	2.8	Related Submittal(s) / Grant (s)		6
	2.9	Modifications		6
	•	TEST ENVIRONMENT	OTATA	
	<u>3</u>	TEST ENVIRONMENT	<u> </u>	
	0.4	A Library of the Asset lebens from		CTATES 7
	3.1	Address of the test laboratory		7
	3.2	Test Facility		7
	3.3	Environmental conditions		7
	3.4	Summary of measurement results		8
	3.5	Statement of the measurement uncertain	ı y	8
	3.6	Equipments Used during the Test		9
	4	TEST CONDITIONS AND RESU	LTS	11
	The state of the s	CIAIL	CTAT'	ING
	4.1	AC Power Conducted Emission		-STIN
	4.1 4.2	Radiated Emission		14
	4.2			14
		Maximum Peak Output Power		21
	4.4	20dB Bandwidth		22
	4.5	Frequency Separation		26
	4.6	Number of hopping frequency		28
	4.7	Time of Occupancy (Dwell Time)		30
	4.8	Out-of-band Emissions		34
	4.9	Pseudorandom Frequency Hopping Sequ	ence	43
	4.10	Antenna Requirement		44
		CTA.	TING	
	<u>5</u>	TEST SETUP PHOTOS OF THE	EUT	45
	<u>6</u>	EXTERNAL AND INTERNAL PH	OTOS OF THE EUT	<u> 46</u>

Page 4 of 46 Report No.: CTA25031101602

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Report No.: CTA25031101602 Page 5 of 46

SUMMARY

2.1 General Remarks

Date of receipt of test sample	10	Mar. 11, 2025
Testing commenced on	Continue of the last	Mar. 11, 2025
Testing concluded on	:	Mar. 27, 2025

2.2 Product Description

Testing commenced on		Mar. 11, 2025	CTA.	
Testing concluded on	:	Mar. 27, 2025		GTA CTA
2.2 Product Descrip	tion			
Product Name:	Wireless E	Earphone		
Model/Type reference:	DX-09			
Power supply:	DC 3.7V F	rom battery and DC 5	5.0V From external circuit	
Charging case:	Input: DC Output: D0		ATES	TING
Testing sample ID:		11016-1# (Engineer sa 11016-2# (Normal sam		= CTATES.
Hardware version:	V1.0			TIA .
Software version:	V1.0			
Bluetooth :				
Supported Type:	Bluetooth	BR/EDR		
Modulation:	GFSK, π/4	4DQPSK, 8DPSK		-16
Operation frequency:	2402MHz	~2480MHz	TEST	Illa
Channel number:	79	,	CTA	
Channel separation:	1MHz		C.	C(A)
Antenna type:	Ceramic a	intenna		GIP.
Antenna gain:	2.70 dBi			
Note: Left and Right earpho	ones were te	ested, only recorded th	ne worst case data in the tes	st report.

Equipment Under Test

2.3 Equipment Under Test						
Power supply system utilised Power supply voltage	1 :	0	230V / 50 Hz	0	120V / 60Hz	
		0	12V DC	0	24V DC	
		•	Other (specified in blank bel	ow		

DC 3.7V From battery and DC 5.0V From external circuit

Short description of the Equipment under Test (EUT)

This is a Wireless Earphone.

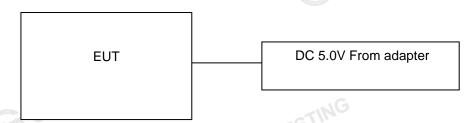
For more details, refer to the user's manual of the EUT.

Page 6 of 46 Report No.: CTA25031101602

2.5 EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

supplied by the manufacturer


○ - supplied by the lab	Carlo Ci.	STING	
○ Adapter		Model: EP-TA20CBC	
		Input: AC 100-240V 50/60Hz	
		Output: DC 5V 2A	

2.6 EUT operation mode

The Applicant provides communication tools software (AT command) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels CTA TESTING provided to the EUT and Channel 00/39/78 were selected to test.

Channel	Frequency (MHz)
00	2402
<u>01</u> :	2403 :
38	2440
39	2441
40	2442
i i	TATES
77	2479
78	2480

Block Diagram of Test Setup

Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.9 **Modifications**

No modifications were implemented to meet testing criteria. CTA TESTING

Page 7 of 46 Report No.: CTA25031101602

TEST ENVIRONMENT

Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory
Accreditation to perform electromagnetic emission measurement

CAB identifier: CN0127 ISED#: 27890

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

CTA TESTING During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

tadiatoa Erribolorii	
Temperature:	24 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission:

Temperature:	25 ° C	
TES!	P	
Humidity:	46 %	TING
(eth)		TESI"
Atmospheric pressure:	950-1050mbar	TAIL
Conducted testing:		, ``
Temperature:	25 ° C	

Conducted testina:

25 ° C
44 %
44 70
950-1050mbar
950-1050mba
STIN

Page 8 of 46 Report No.: CTA25031101602

Summary of measurement results

Test Specification clause	Test case	Test Mode	Test Channel		orded eport	Test result
§15.247(a)(1)	Carrier Frequency separation	GFSK N/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK		Compliant
§15.247(a)(1)	Number of Hopping channels	GFSK П/4DQPSK 8DPSK	⊠ Full	GFSK	⊠ Full	Compliant
§15.247(a)(1)	Time of Occupancy (dwell time)	GFSK Π/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	⊠ Middle	Compliant
§15.247(a)(1)	Spectrumbandwidth of aFHSS system20dB bandwidth	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(b)(1)	Maximum output peak power	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	 Lowest Middle Highest	Compliant
§15.247(d)	Band edgecompliance conducted	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Highest	Compliant
§15.205	Band edgecompliance radiated	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	Compliant
§15.247(d)	TX spuriousemissions conducted	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.247(d)	TX spuriousemissions radiated	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK	☑ Lowest☑ Middle☑ Highest	Compliant
§15.209(a)	TX spurious Emissions radiated Below 1GHz	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK	⊠ Middle	Compliant
§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK		Compliant

Remark: The measurement uncertainty is not included in the test result.

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density		0.57 dB	(1)

Page 9 of 46 Report No.: CTA25031101602

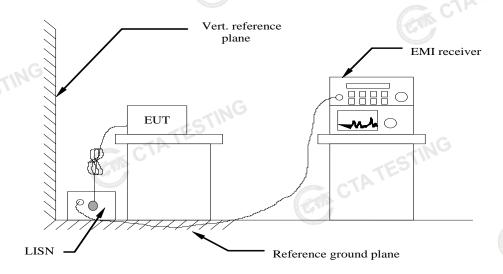
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	3.6 Equipments	Used during th	e lest			
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
	Spectrum Analyzer	G R&S	FSU	CTA-337	2024/08/03	2025/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2026/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2026/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2026/10/16
	Broadband Horn Antenna	A-INFOMW	LB-180500H-2.4F	CTA-336	2023/09/13	2026/09/12
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
	High-Pass Filter	SingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
	Automated filter bank	Tonscend	JRUQI-MH8R06- F	CTA-404	2024/08/03	2025/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02

Report No.: CTA25031101602 Page 10 of 46


Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	- N TE
STING					GW C	,TA

Report No.: CTA25031101602 Page 11 of 46

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

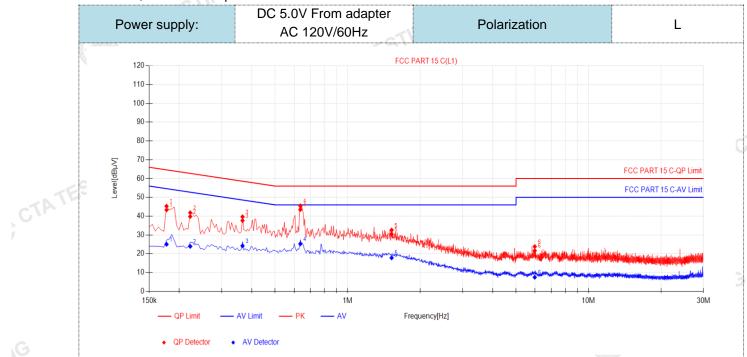
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

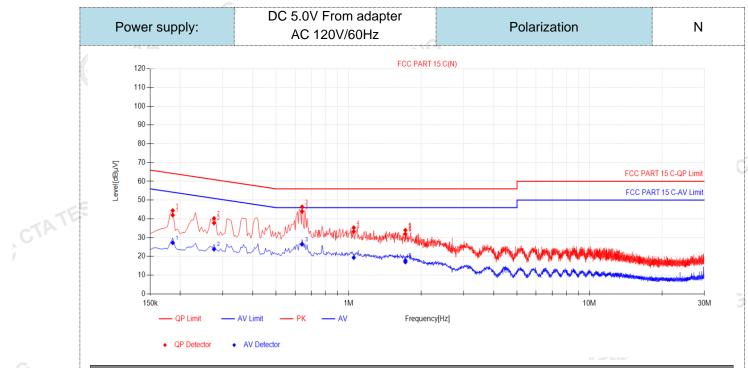
Eroguepov renge (MHz)	Limit (dBuV)						
Frequency range (MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					
* Decreases with the logarithm of the frequency.							


TEST RESULTS

Remark:

1. All modes of GFSK, $\Pi/4$ DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

Report No.: CTA25031101602

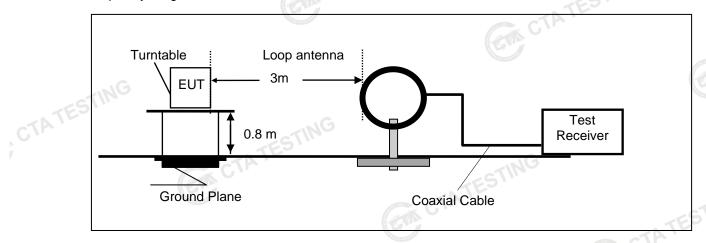

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dΒμV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBμV]	AV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.177	9.99	33.31	43.30	64.63	21.33	15.05	25.04	54.63	29.59	PASS
2	0.222	10.03	29.79	39.82	62.74	22.92	13.89	23.92	52.74	28.82	PASS
3	0.366	9.87	27.78	37.65	58.59	20.94	14.35	24.22	48.59	24.37	PASS
4	0.636	10.00	33.49	43.49	56.00	12.51	15.26	25.26	46.00	20.74	PASS
5	1.5225	9.90	20.43	30.33	56.00	25.67	7.91	17.81	46.00	28.19	PASS
6	5.982	10.14	11.48	21.62	60.00	38.38	-2.65	7.49	50.00	42.51	PASS
lote:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB)										Selfer 11d	

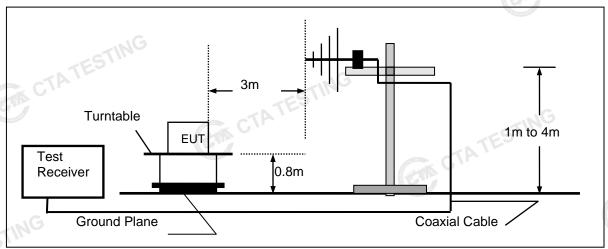
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
 - 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

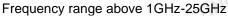
Page 13 of 46 Report No.: CTA25031101602

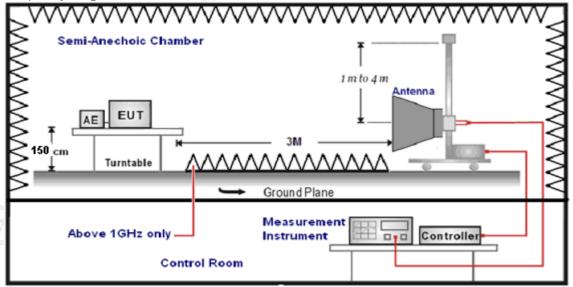
Final	l Data Lis	st										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dΒμV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dΒμV]	AV Limit [dBμV]	AV Margin [dB]	Verdict	
1	0.186	10.01	32.02	42.03	64.21	22.18	17.25	27.26	54.21	26.95	PASS	
2	0.276	9.94	27.85	37.79	60.94	23.15	13.91	23.85	50.94	27.09	PASS	
3	0.6405	10.12	33.81	43.93	56.00	12.07	16.40	26.52	46.00	19.48	PASS	
4	1.05	10.14	23.11	33.25	56.00	22.75	9.21	19.35	46.00	26.65	PASS	
5	1.7205	10.16	21.79	31.95	56.00	24.05	7.68	17.84	46.00	28.16	PASS	
6	1.7205	10.16	21.48	31.64	56.00	24.36	6.86	17.02	46.00	28.98	PASS	
2). Fac).QP Value ctor (dB)=ir Margin(dB	nsertion	loss of LI	SN (dB)	+ Cable	loss (dB					CIN.	
4).	. AVMargii	h(dB) = A	V Limit (dBuV) -	AV Valu	e (dBuV))					

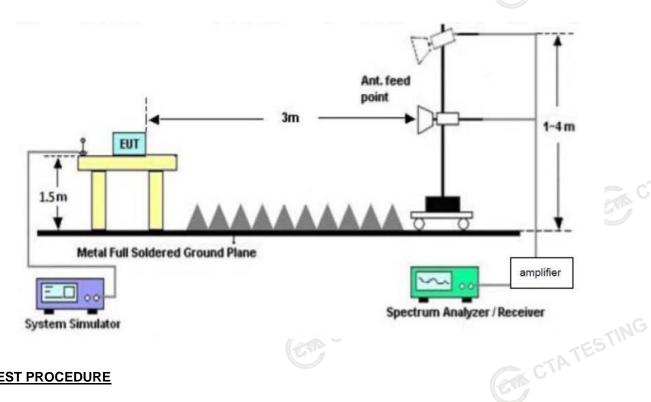

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
 - 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) -MA

Page 14 of 46 Report No.: CTA25031101602


4.2 **Radiated Emission**


TEST CONFIGURATION


Frequency range 9 KHz – 30MHz


Frequency range 30MHz - 1000MHz

Report No.: CTA25031101602 Page 15 of 46

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	pr/
30MHz-1GHz	Ultra-Broadband Antenna	3	Carlo Carlo
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
The state of the s	Peak Value: RBW=1MHz/VBW=3MHz,	ING
1GHz-40GHz	Sweep time=Auto	Peak
10112 400112	Average Value: RBW=1MHz/VBW=10Hz,	Cak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

FS = RA + AF + CL - AG	
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Page 16 of 46 Report No.: CTA25031101602

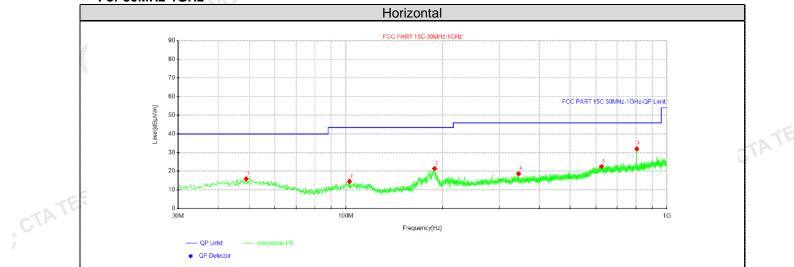
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK,π/4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- 3. For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

Page 17 of 46 Report No.: CTA25031101602

For 30MHz-1GHz



Suspe	Suspected Data List									
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolovity	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	48.915	27.06	15.85	-11.21	40.00	24.15	200	1	Horizontal	
2	102.628	27.47	14.48	-12.99	43.50	29.02	100	48	Horizontal	
3	188.837	35.08	21.39	-13.69	43.50	22.11	100	60	Horizontal	
4	345.128	29.34	18.60	-10.74	46.00	27.40	200	357	Horizontal	
5	625.701	28.25	22.55	-5.70	46.00	23.45	100	269	Horizontal	
6	806	36.51	32.05	-4.46	46.00	13.95	100	357	Horizontal	

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA25031101602 Page 18 of 46

CTATE

Suspe	Suspected Data List									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dalarity	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	37.8812	28.37	15.67	-12.70	40.00	24.33	200	157	Vertical	
2	56.675	31.82	19.87	-11.95	40.00	20.13	100	216	Vertical	
3	148.946	33.16	17.74	-15.42	43.50	25.76	100	360	Vertical	
4	171.983	36.78	21.85	-14.93	43.50	21.65	200	360	Vertical	
5	658.196	29.65	24.18	-5.47	46.00	21.82	100	348	Vertical	
6	907.607	31.30	28.66	-2.64	46.00	17.34	100	81	Vertical	

CTATE

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

For 1GHz to 25GHz

Note: GFSK , $\pi/4$ DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK (above 1GHz)

Freque	Frequency(MHz):		2402		Polarity:		HORIZONTAL		
Frequency (MHz)	_	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	61.95	PK	74	12.05	66.22	32.33	5.12	41.72	-4.27
4804.00	45.02	AV	54	8.98	49.29	32.33	5.12	41.72	-4.27
7206.00	53.86	PK	74	20.14	54.38	36.6	6.49	43.61	-0.52
7206.00	43.41	AV	54	10.59	43.93	36.6	6.49	43.61	-0.52

_	- 117									
	Freque	requency(MHz):		2402		Polarity:		VERTICAL		
	Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
ſ	4804.00	60.07	PK	74	13.93	64.34	32.33	5.12	41.72	-4.27
	4804.00	43.18	AV	54	10.82	47.45	32.33	5.12	41.72	-4.27
	7206.00	51.96	PK	74	22.04	52.48	36.6	6.49	43.61	-0.52
Ī	7206.00	41.81	AV	54	12.19	42.33	36.6	6.49	43.61	-0.52

							437			
Freque	Frequency(MHz):			2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	61.28	PK	74	12.72	65.16	32.6	5.34	41.82	-3.88	
4882.00	44.49	AV	54	9.51	48.37	32.6	5.34	41.82	-3.88	
7323.00	53.10	PK	74	20.90	53.21	36.8	6.81	43.72	-0.11	
7323.00	42.58	AV	54	11.42	42.69	36.8	6.81	43.72	-0.11	

Freque	Frequency(MHz):			2441		Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4882.00	59.41	PK	74	14.59	63.29	32.6	5.34	41.82	-3.88	
4882.00	42.60	AV	54	11.40	46.48	32.6	5.34	41.82	-3.88	
7323.00	51.26	PK	74	22.74	51.37	36.8	6.81	43.72	-0.11	
7323.00	40.81	AV	54	13.19	40.92	36.8	6.81	43.72	-0.11	

Freque	Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4960.00	60.37	PK	74	13.63	63.45	32.73	5.66	41.47	-3.08	
4960.00	43.78	AV	54	10.22	46.86	32.73	5.66	41.47	-3.08	
7440.00	52.32	PK	74	21.68	51.87	37.04	7.25	43.84	0.45	
7440.00	42.06	AV	54	11.94	41.61	37.04	7.25	43.84	0.45	

Freque	Frequency(MHz):		2480		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	58.54	PK	74	15.46	61.62	32.73	5.66	41.47	-3.08
4960.00	41.72	ΑV	54	12.28	44.80	32.73	5.66	41.47	-3.08
7440.00	50.79	PK	74	23.21	50.34	37.04	7.25	43.84	0.45
7440.00	40.41	AV	54	13.59	39.96	37.04	7.25	43.84	0.45

Page 20 of 46 Report No.: CTA25031101602

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, π/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK

Freque	ncy(MHz)	:	24	02	Pola	rity:	Н	HORIZONTAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	62.27	PK	74	11.73	72.69	27.42	4.31	42.15	-10.42
2390.00	43.08	AV	54	10.92	53.50	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.20	PK	74	13.80	70.62	27.42	4.31	42.15	-10.42
2390.00	41.58	AV	54	12.42	52.00	27.42	4.31	42.15	-10.42
Frequency(MHz):		24	80	Pola	rity:	ш	ORIZONTA	.I	
110440	1103 (1411 12)	•		00	i Ola	uity.		ONIZONIA	\ L
Frequency (MHz)	Emis Lev (dBu	sion vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
Frequency	Emis Le	sion vel	Limit	Margin	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor
Frequency (MHz)	Emis Le (dBu	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
Frequency (MHz) 2483.50 2483.50	Emis Le (dBu	esion vel V/m) PK AV	Limit (dBuV/m)	Margin (dB) 12.49 11.57	Raw Value (dBuV) 71.62	Antenna Factor (dB/m) 27.7 27.7	Cable Factor (dB) 4.47 4.47	Pre- amplifier (dB) 42.28	Correction Factor (dB/m) -10.11
Frequency (MHz) 2483.50 2483.50	Emis Le (dBu 61.51 42.43	esion vel V/m) PK AV :	Limit (dBuV/m) 74 54	Margin (dB) 12.49 11.57	Raw Value (dBuV) 71.62 52.54	Antenna Factor (dB/m) 27.7 27.7	Cable Factor (dB) 4.47 4.47	Pre- amplifier (dB) 42.28 42.28	Correction Factor (dB/m) -10.11
Frequency (MHz) 2483.50 2483.50 Frequency	Emis Lev (dBu 61.51 42.43 ncy(MHz) Emis Lev	esion vel V/m) PK AV :	Limit (dBuV/m) 74 54 24 Limit	Margin (dB) 12.49 11.57 80	Raw Value (dBuV) 71.62 52.54 Pola Raw Value	Antenna Factor (dB/m) 27.7 27.7 rity: Antenna Factor	Cable Factor (dB) 4.47 4.47 Cable Factor	Pre- amplifier (dB) 42.28 42.28 VERTICAL Pre- amplifier	Correction Factor (dB/m) -10.11 -10.11 Correction Factor

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- CTA TESTING 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Page 21 of 46 Report No.: CTA25031101602

Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to CTATE the powersensor.

Test Configuration

Test Results

GFSK 39 0.76 20.97 Pass 78 0.30 00 0.65 78 -0.01 20.97 Pass 78 -0.42 00 0.67 8DPSK 39 -0.01 20.97 Pass 78 -0.01 20.97 Pass	Туре	Channel	Output power (dBm)	Limit (dBm)	Result
78 0.30 00 0.65 π/4DQPSK 39 -0.01 20.97 Pass 78 -0.42 00 0.67 8DPSK 39 -0.01 20.97 Pass		00	1.48		TES
π/4DQPSK 39 -0.01 20.97 Pass 78 -0.42 00 0.67 8DPSK 39 -0.01 20.97 Pass	GFSK	39	0.76	20.97	Pass
π/4DQPSK 39 -0.01 20.97 Pass 78 -0.42 00 0.67 8DPSK 39 -0.01 20.97 Pass		78	0.30		
78 -0.42 00 0.67 8DPSK 39 -0.01 20.97 Pass	LIN-	3 00	0.65		
8DPSK 39 -0.01 20.97 Pass	π/4DQPSK	39	-0.01	20.97	Pass
8DPSK 39 -0.01 20.97 Pass	CTA.	78	-0.42		
		00	0.67	ING	
78 -0.41	8DPSK	39	-0.01	20.97	Pass
		78	-0.41	CIL	
					ET

Page 22 of 46 Report No.: CTA25031101602

20dB Bandwidth

Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

Test Results


<u>Test Results</u>			CTAT
Modulation	Channel	20dB bandwidth (MHz)	Resul
TING	CH00	0.939	
GFSK	CH39	0.948	
CTA.	CH78	0.945	
Car	CH00	1.335	NG
π/4DQPSK	CH39	1.326	Pass
	CH78	1.317	
	CH00	1.284	
8DPSK	CH39	1.266	
ING	CH78	1.344	

Test plot as follows:

Page 23 of 46 Report No.: CTA25031101602

Report No.: CTA25031101602

Page 25 of 46 Report No.: CTA25031101602

Page 26 of 46 Report No.: CTA25031101602

Frequency Separation

LIMIT

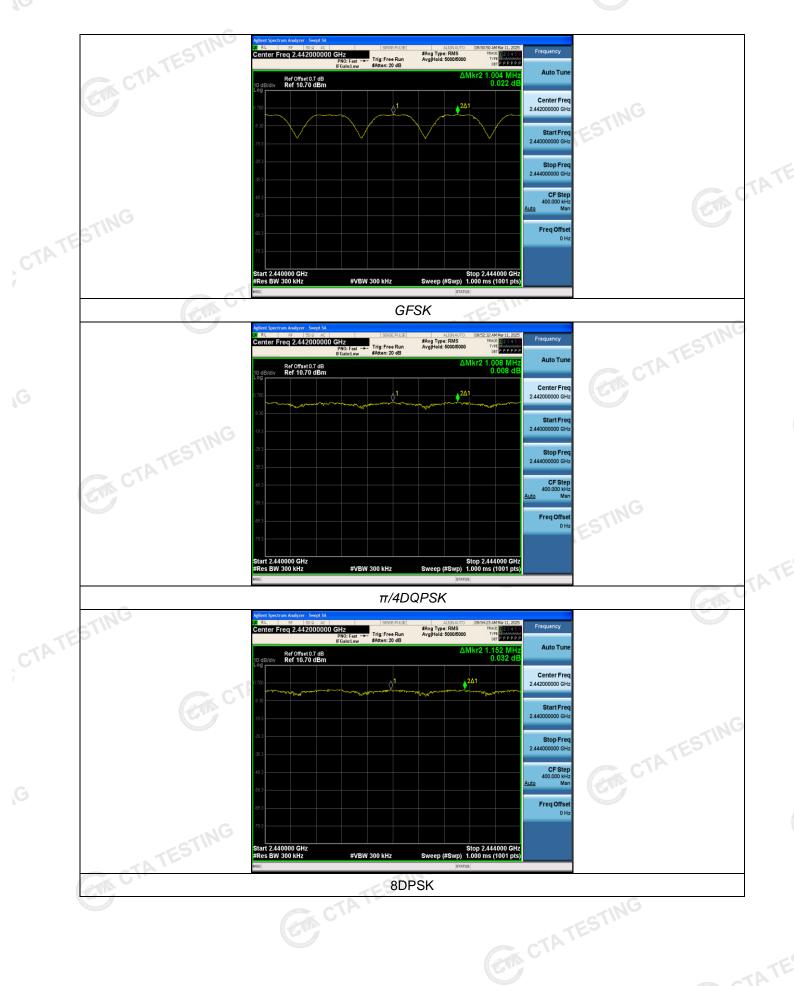
According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS


TEST RESULTS		CTATES CTATES		TESTING
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	CH38	1.004	25KHz or 2/3*20dB	Pass
Gran	CH39	1.004	bandwidth	Pass
π/4DQPSK	CH38	1 000	25KHz or 2/3*20dB	Pass
II/4DQF3K	CH39	1.008	bandwidth	Pass
8DPSK	CH38	1.150	25KHz or 2/3*20dB	Door
ODPSK	CH39	1.152	bandwidth	Pass

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows: CTATESTING

Page 27 of 46 Report No.: CTA25031101602

Page 28 of 46 Report No.: CTA25031101602

Number of hopping frequency

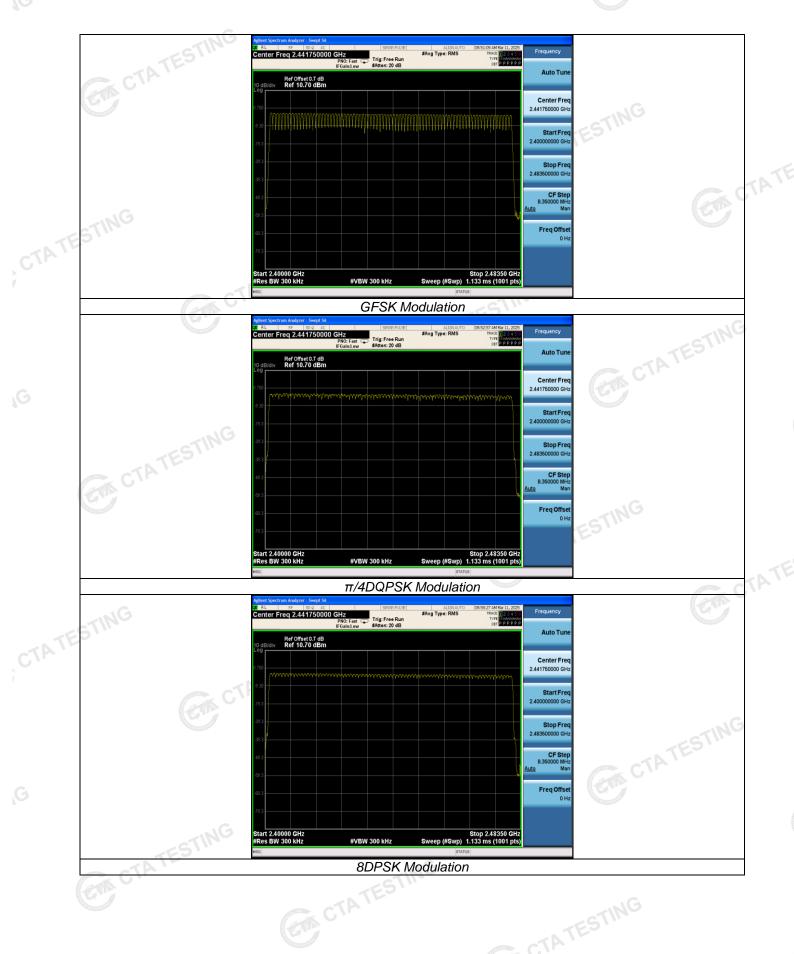
Limit C

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration



Test Results

Test Results	CTAT	Es	STING
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		
π/4DQPSK	79	≥15	Pass
8DPSK	79		

Test plot as follows:

Report No.: CTA25031101602 Page 29 of 46

Page 30 of 46 Report No.: CTA25031101602

Time of Occupancy (Dwell Time)

Limit

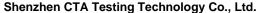
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

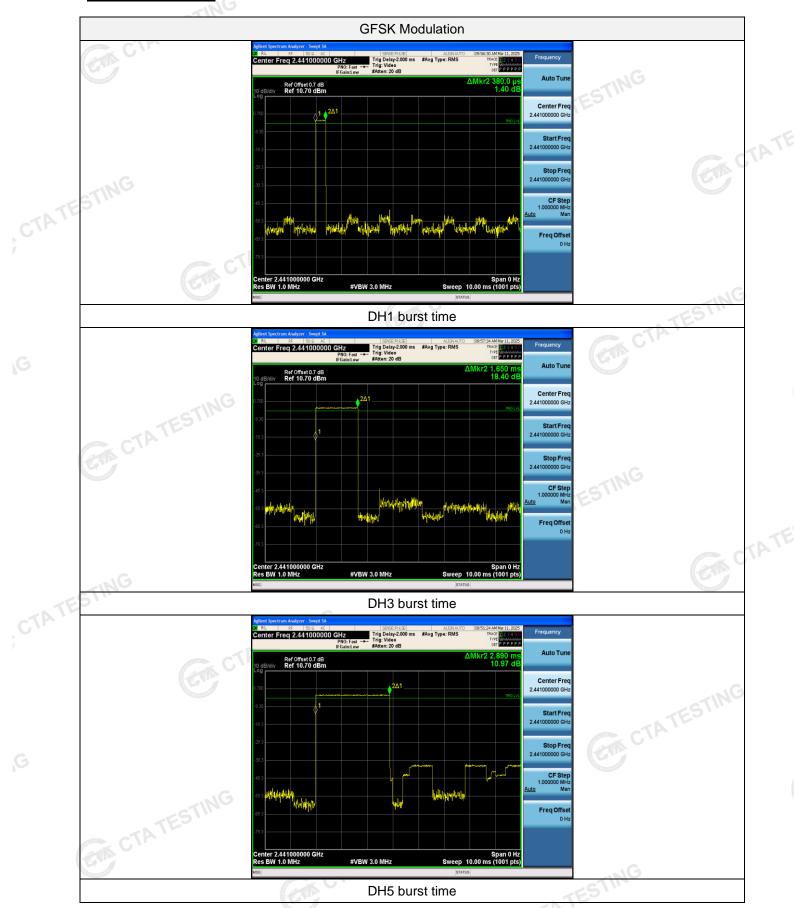
Test Configuration

Test Results

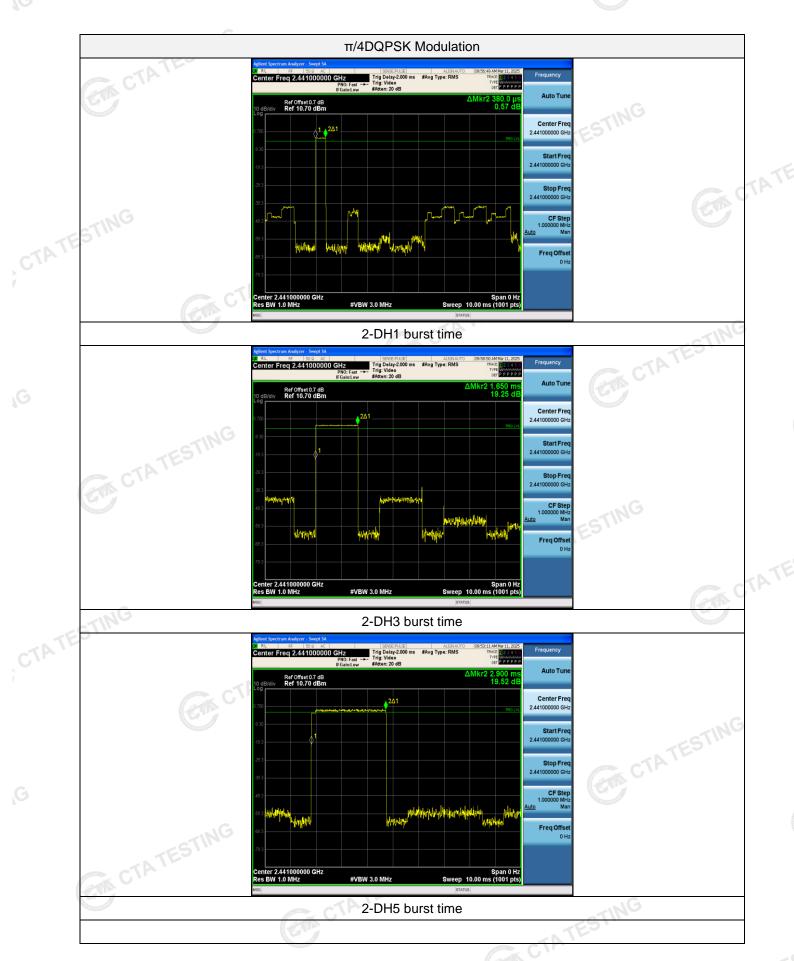

Test Results		(en	CTATES		TESTING
Modulation	Packet	Burst time (ms)	Dwell time (s)	Limit (s)	Result
	DH1	0.380	0.122		
GFSK	DH3	1.650	0.264	0.40	Pass
TATES	DH5	2.890	0.308		
C	2-DH1	0.380	0.122		
π/4DQPSK	2-DH3	1.650	0.264	0.40	Pass
	2-DH5	2.900	0.309	TESIN	
	3-DH1	0.380	0.122	CIR	
8DPSK	3-DH3	1.640	0.262	0.40	Pass
	3-DH5	2.900	0.309		

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

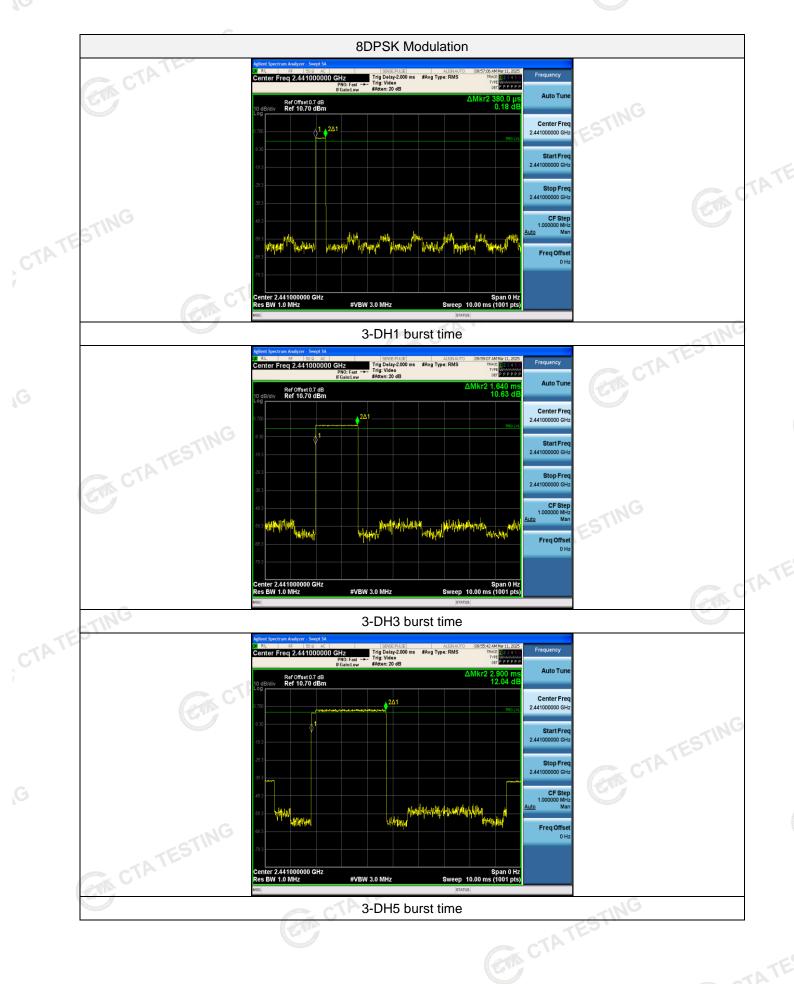
Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1


Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5 CTA TESTING



Page 31 of 46 Report No.: CTA25031101602

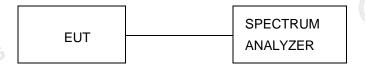

Test plot as follows:

Page 32 of 46 Report No.: CTA25031101602

Page 33 of 46 Report No.: CTA25031101602

Report No.: CTA25031101602 Page 34 of 46

Out-of-band Emissions 4.8

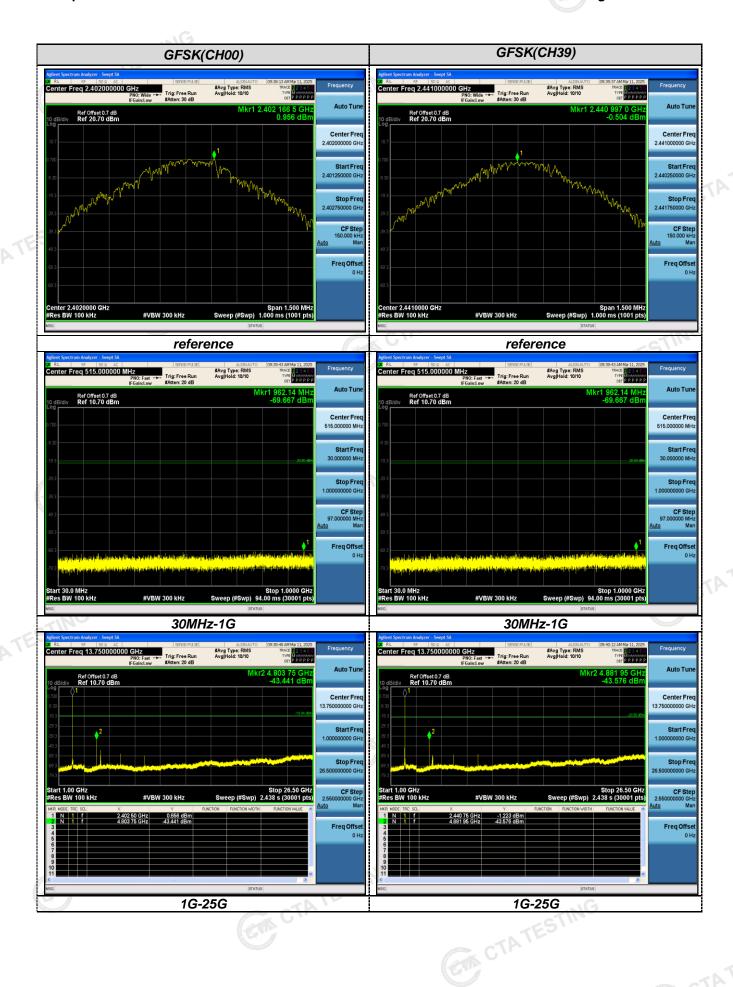

Limit

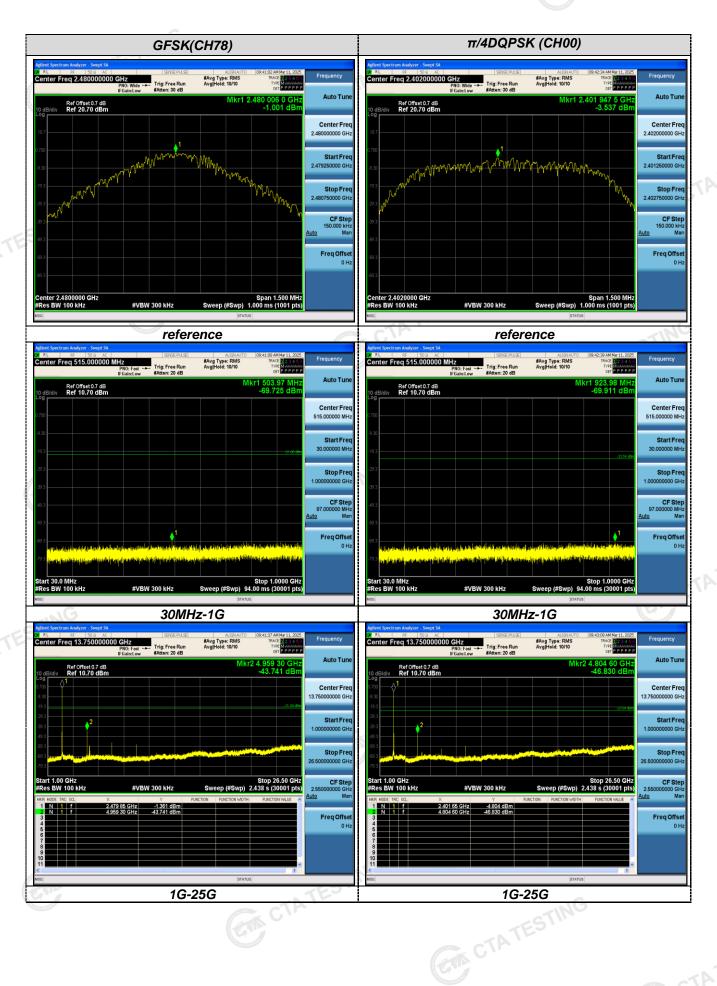
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

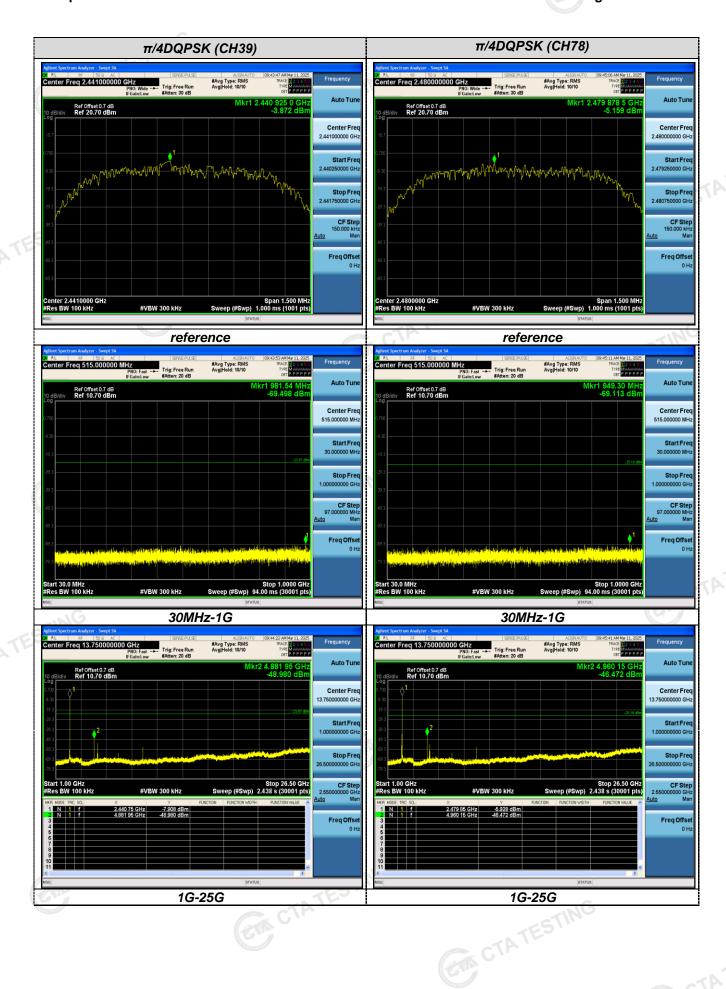
Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are CTA TESTING made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration




Test Results


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

