

r

Shenzhen Huatongwei International Inspection Co.,Ltd. Huatongwei 101, No.006, Keji south 12th Road, High-tech zone community, Yuehai Street, Nanshan District, Shenzhen, Guangdong, China Phone:86-755-26715499 E-mail: cs@szhtw.com.cn Website:http://www.szhtw.com.cn

1

	ST REPORT	
	For Bluetooth-LE	
Report No:	CHTEW23100067 Repor	t Verification:
Project No	SHT2304024504EW	
FCC ID:	2AE6C-EP8100VHF	
Applicant's name:	Shenzhen Excera Technology Co	o., Ltd.
Address	201, Building B, Tongfang Informat Road, Nanshan District, Shenzhen	
Product Name:	Digital Portable Radio	
Trade Mark	EXCERA	
Model No	EP8100 VHF	
Listed Model(s)	EP8000 VHF	
Standard	FCC CFR Title 47 Part 15 Subpart	t C § 15.247
Date of receipt of test sample:	Aug. 10, 2023	
Date of testing	Aug. 29, 2023- Oct. 13, 2023	
Date of issue	Oct. 19, 2023	
Result	PASS	
Compiled by		
Compiled by (Position+Printed name+Signature):	File administrator Xiaodong Zhao	Xiaodong Zheo
Supervised by		Carbar Cher
(Position+Printed name+Signature):	Project Engineer Caspar Chen	
Approved by		Caspar Chen Lu. Jong
(Position+Printed name+Signature):	RF Manager Xu Yang	orn, long
Testing Laboratory Name: :	Shenzhen Huatongwei Internatio	nal Inspection Co., Ltd.
Address:	1/F, Bldg 3, Hongfa Hi-tech Industri Tianliao, Gongming, Shenzhen, Ch	
Shenzhen Huatongwei International Inspe	ection Co., Ltd. All rights reserved.	
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.		
The test report merely correspond to the test sample.		

2023-10-19

Contents

<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
-		_
<u>3.</u>	SUMMARY	5_
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Radio Specification Description	5
3.4.	Testing Laboratory Information	6
<u>4.</u>	TEST CONFIGURATION	7
4.1.	Test frequency list	7
4.2.	Descriptions of Test mode	7
4.3.	Test sample information	7
4.4.	Support unit used in test configuration and system	8
4.5.	Testing environmental condition	8
4.6.	Statement of the measurement uncertainty	8
4.7.	Equipment Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Antenna Requirement	10
5.2.	AC Conducted Emission	10
5.3.	Peak Output Power	12
5.4.	Power Spectral Density	13
5.5.	6dB bandwidth	14
5.6.	99% Occupied Bandwidth	15
5.7.	Duty Cycle	16
5.8.	Conducted Band edge and Spurious Emission	17
5.9.	Radiated Band edge Emission	18
5.10.	Radiated Spurious Emission	20
<u>6.</u>	TEST SETUP PHOTOS	25
7	EXTERNAL AND INTERNAL PHOTOS	27
<u>7.</u>		21
7.1.	External Photos	27
7.2.	Internal Photos	31
<u>8.</u>	APPENDIX REPORT	32

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- FCC CFR Title 47 Part 15 Subpart C § 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
- <u>ANSI C63.10:2020</u>: American National Standard for Testing Unlicensed Wireless Devices
- <u>KDB 558074 D01 15.247 Meas Guidance v05r02</u>: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules

1.2. Report version

Revision No.	Date of issue	Description
N/A	2023-10-19	Original

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result	Test Engineer
5.1	Antenna Requirement	15.203/15.247(c)	PASS	Caspar Chen
5.2	AC Conducted Emission	15.207	PASS	-
5.3	Peak Output Power	15.247(b)(3)	PASS	Caspar Chen
5.4	Power Spectral Density	15.247(e)	PASS	Caspar Chen
5.5	6dB Bandwidth	15.247(a)(2)	PASS	Caspar Chen
5.6	99% Occupied Bandwidth	-	PASS ^{*1}	Caspar Chen
5.7	Duty cycle	-	PASS ^{*1}	Caspar Chen
5.8	Conducted Band Edge and Spurious Emission	15.247(d)/15.205	PASS	Caspar Chen
5.9	Radiated Band Edge Emission	15.205/15.209	PASS	Yifan Wang
5.10	Radiated Spurious Emission	15.247(d)/15.205/15.209	PASS	Yifan Wang

Note:

- The measurement uncertainty is not included in the test result.

- *1: No requirement on standard, only report these test data.

3. SUMMARY

3.1. Client Information

Applicant:	Shenzhen Excera Technology Co., Ltd.
Address:	201, Building B, Tongfang Information Habour, No.11 Langshan Road, Nanshan District, Shenzhen 518057, P.R.China
Manufacturer:	Shenzhen Excera Technology Co., Ltd.
Address:	201, Building B, Tongfang Information Habour, No.11 Langshan Road, Nanshan District, Shenzhen 518057, P.R.China
Factory:	Shenzhen Excera Technology Co., Ltd.
Address:	201, Building B, Tongfang Information Habour, No.11 Langshan Road, Nanshan District, Shenzhen 518057, P.R.China

3.2. Product Description

Main unit information:		
Product Name:	Digital Portable Radio	
Trade Mark:	EXCERA	
Model No.:	EP8100 VHF	
Listed Model(s):	EP8000 VHF	
Power supply:	DC 7.2V from Battery	
Hardware version:	EP8100 VHF -F	
Software version:	EXCERA OneKeyUpdate 1.4.01.15D	
Accessory unit information:		
Battery information:	MODEL: EB242L DC 7.2V 2400mAh/17.28Wh	
Adapter information:	MODEL: DSA-12PFU-12 FCA 120100 INPUT:100-240V~50/60Hz 0.5A OUTPUT: DC 12V 1.0A, 12W	
desktop charger:	MODEL: ESC102L INPUT: DC 12V 1A OUTPUT: DC 8.4V 1A	

3.3. Radio Specification Description

Bluetooth version:	V4.0
Support function:	BLE
Modulation:	GFSK
Operation frequency:	2402MHz~2480MHz
Channel number:	40

Report No .:	CHTEW23100067	Page:	6 of 32	Date of issue: 2023-10-19

Channel separation:	2MHz
Antenna type:	intenal antenna
Antenna gain:	0.00dBi

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.	
Laboratory Location	1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China	
Contact information:	Phone: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>	
Qualifications	Туре	Accreditation Number
Qualifications	FCC	762235

2023-10-19

4. TEST CONFIGURATION

4.1. Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below blue front.

Channel	Frequency (MHz)
00	2402
01	2404
19	2440
38	2478
39	2480

4.2. Descriptions of Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For Radiated spurious emissions:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

4.3. Test sample information

Test item	HTW sample no.
RF Conducted test items	Please refer to the description in the appendix report
RF Radiated test items	YPHT23040245005
EMI test items	-

Note:

RF Conducted test items: Peak Output Power, Power Spectral Density, 6dB Bandwidth, 99% Occupied Bandwidth, Duty cycle, Conducted Band Edge and Spurious Emission

RF Radiated test items: Radiated Band Edge Emission, Radiated Spurious Emission EMI test items: AC Conducted Emission

4.4. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whether su	Whether support unit is used?									
✓ No										
Item	Equipment	Trade Name	Model No.							
1										
2										

4.5. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

4.6. Statement of the measurement uncertainty

No.	Test Items	Measurement Uncertainty		
1	AC Conducted Emission	3.21dB		
2	Peak Output Power	1.07		
3	Power Spectral Density	1.07		
4	6dB Bandwidth	0.002%		
5	99% Occupied Bandwidth	0.002%		
6	Duty cycle	-		
7	Conducted Band Edge and Spurious Emission	1.68dB		
8	Radiated Band Edge Emission	4.54dB for 30MHz-1GHz		
Ű		5.10dB for above 1GHz		
9	Padiated Spurious Emission	4.54dB for 30MHz-1GHz		
9	Radiated Spurious Emission	5.10dB for above 1GHz		

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

9 of 32

•	RF Conducted	test item					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	HTWE0242	FSV40	100048	2023/08/22	2024/08/21
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2023/08/22	2024/08/21
•	Vector signal generator	R&S	HTWE0244	SMBV100A	260790	2023/05/23	2024/05/22
•	Test software	Tonscend	N/A	JS1120	N/A	N/A	N/A

4.7. Equipment Used during the Test

•	Radiated emission- 9kHz~30MHz											
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)					
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2023/4/6	2026/4/5					
•	EMI Test Receiver	R&S	HTWE0099	ESCI 7	100900	2023/08/22	2024/08/21					
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/4/6	2024/4/5					
•	Test Software	R&S	N/A	EMC32	N/A	N/A	N/A					

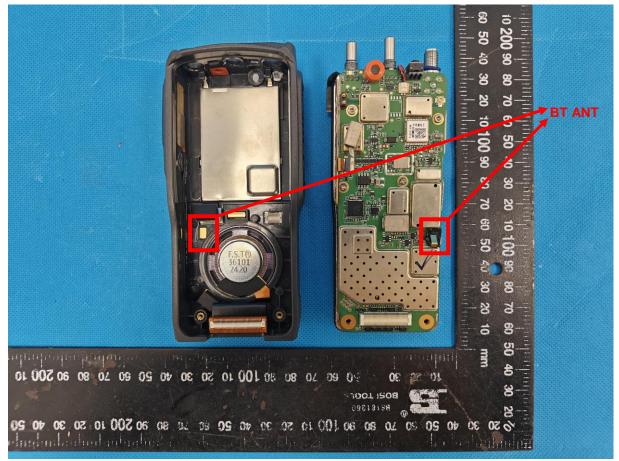
•	Radiated emi	ssion- 30MHz~1	GHz				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2023/4/6	2026/4/5
•	EMI Test Receiver	R&S	HTWE0099	ESCI 7	100900	2023/08/22	2024/08/21
•	Ultra-Broadband Antenna	SCHWARZBECK	HTWE0119	VULB9163	546	2023/2/22	2026/2/21
•	Pre-Amplifer	SCHWARZBECK	HTWE0295	BBV 9742	/	2023/5/25	2024/5/24
•	Test Software	R&S	N/A	EMC32	N/A	N/A	N/A

•	Radiated emi	ission- Above 10	GHz				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	C11121	2023/4/17	2026/4/16
•	Spectrum Analyzer	R&S	<u>HTWE0098</u>	FSP40	100597	2023/08/22	2024/08/21
•	Spectrum Analyzer	R&S	<u>HTWE0385</u>	N9020A	MY54486658	2023/08/22	2024/08/21
•	Horn Antenna	SCHWARZBECK	HTWE0126	BBHA 9120D	1011	2023/2/14	2026/2/13
•	Pre-Amplifer	CD	HTWE0071	PAP-0102	12004	2023/5/25	2024/5/24
•	Broadband Pre- amplifier	SCHWARZBECK	HTWE0201	BBV 9718	9718-248	2023/5/25	2024/5/24
•	Test Software	Audix	N/A	E3	N/A	N/A	N/A

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

REQUIREMENT


FCC CFR Title 47 Part 15 Subpart C Section 15.203:

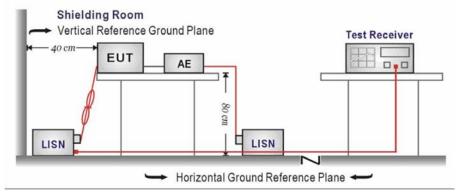
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

TEST RESULT

☑ Passed □ Not Applicable

The antenna type is a intenal antenna, please refer to the below antenna photo.

5.2. AC Conducted Emission


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

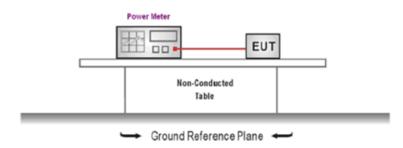
* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE


Refer to the clause 4.2

TEST RESULT

5.3. Peak Output Power

LIMIT FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10 and KDB 558074 D01 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.
- 4. Record the measurement data.

TEST MODE

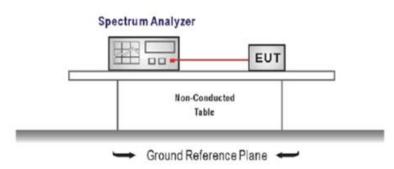
Refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST DATA

2023-10-19


5.4. Power Spectral Density

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold
 Place the radio in continuous transmit mode, allow the
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

TEST MODE

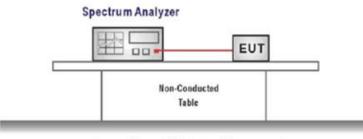
Refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST DATA Refer to the appendix report

2023-10-19


5.5. 6dB bandwidth

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

Ground Reference Plane

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency

Span=2 x DTS bandwidth

 $RBW = 100 kHz, VBW \ge 3 \times RBW$

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

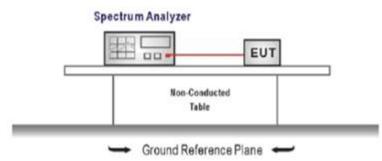
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE

Refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable


TEST DATA Refer to the appendix report 15 of 32

2023-10-19

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =channel center frequency Span≥1.5 x OBW RBW = 1%~5%OBW VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

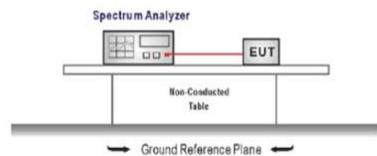
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

TEST MODE

Refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable


<u>TEST DATA</u>

Page:

5.7. Duty Cycle

N/A

TEST CONFIGURATION

TEST PROCEDURE

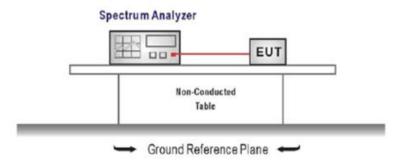
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Span=zero span, Frequency=centered channel, RBW= 1 MHz, VBW ≥ RBW Sweep=as necessary to capture the entire dwell time,

Detector function = peak, Trigger mode

4. Measure and record the duty cycle data

TEST MODE


Refer to the clause 4.2

TEST DATA

5.8. Conducted Band edge and Spurious Emission

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Emission level measurement

Set the center frequency and span to encompass frequency range to be measured

RBW = 100 kHz, VBW \ge 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

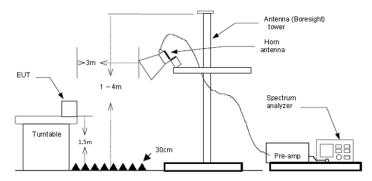
TEST MODE

Refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST DATA


5.9. Radiated Band edge Emission

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.
- 5. Use the following spectrum analyzer settings:
 - a) Span shall wide enough to fully capture the emission being measured
 - b) Set RBW=100kHz for <1GHz, VBW=3*RBW, Sweep time=auto, Detector=peak, Trace=max hold
 - c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- − VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

TEST MODE

Refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- 3) Average measurement was not performed if peak level is lower than average limit(54 dBuV/m).

19 of 32

Page:

Fest channel		CH00	CH00			Polarity			Horizontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark	
1	2310.00	40.64	27.86	4.01	37.55	34.96	74.00	-39.04	Peak	
2	2390.03	40.37	27.54	4.31	37.55	34.67	74.00	-39.33	Peak	

Test channel		CH00	CH00			Polarity			Vertical		
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp	Level dBuV/m	Limit dBuV/m	Over limit	Remark		
1	2310.00	40.64	27.86	4.01	37.55	34.96	74.00	-39.04	Peak		
2	2333.40	45.06	27.77	4.07	37.61	39.29	74.00	-34.71	Peak		
3	2390.03	40.37	27.54	4.31	37.55	34.67	74.00	-39.33	Peak		

Fest channel		CH39	CH39			Polarity			Horizontal		
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark		
1	2483.50	43.64	27.33	4.18	37.64	37.51	74.00	-36.49	Peak		
2	2500.00	40.57	27.30	4.19	37.67	34.39	74.00	-39.61	Peak		

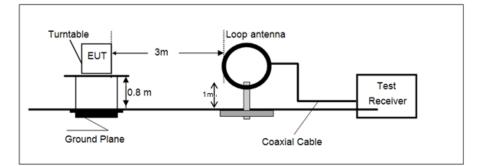
Test channel		CH39	CH39			Polarity			Vertical	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark	
1	2483.50	43.28	27.33	4.18	37.64	37.15	74.00	-36.85	Peak	
2	2500.00	41.22	27.30	4.19	37.67	35.04	74.00	-38.96	Peak	

5.10. Radiated Spurious Emission

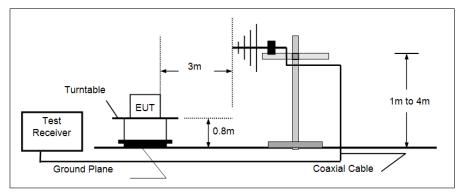
<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.209

Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak

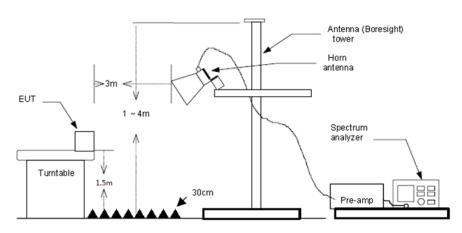

Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80,

Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.


Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
	74.00	Peak

TEST CONFIGURATION

➢ 9 kHz ~ 30 MHz



> 30 MHz ~ 1 GHz

Above 1 GHz

21 of 32

Page:

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- − VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.6 duty cycle.

TEST MODE

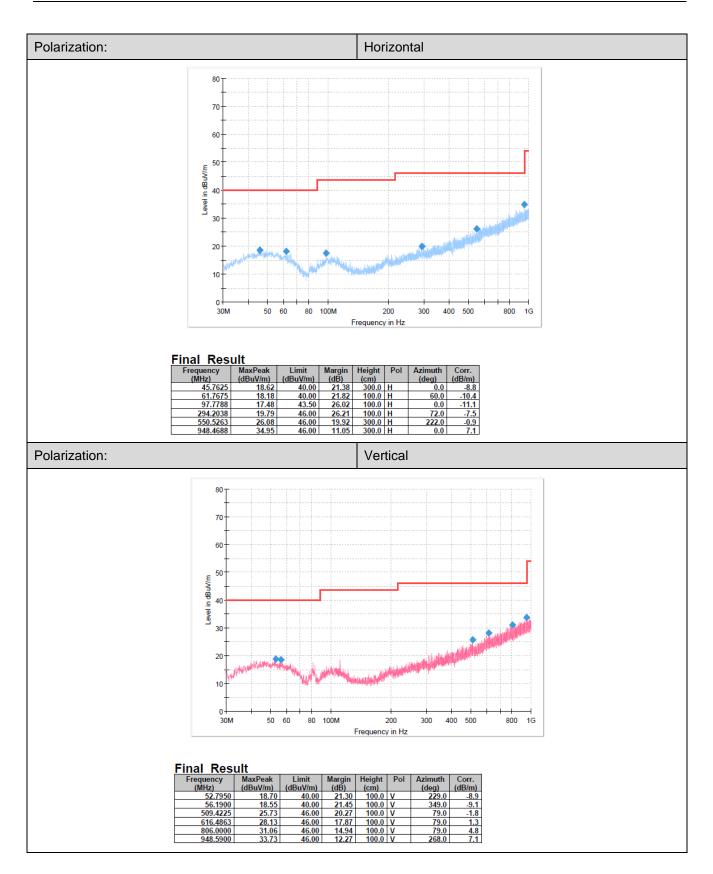
Refer to the clause 4.2

TEST RESULT

Passed Not Applicable

Note:

- 1) Level= Reading + Factor/Transd; Factor/Transd = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.


2023-10-19

For 9 kHz ~ 30 MHz

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

For 30 MHz ~ 1000 MHz

Have pre-scan all test channel, found CH39 which it was worst case, so only show the worst case's data on this report.

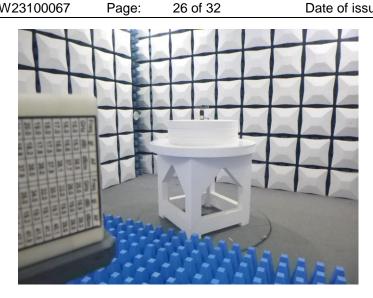
	For 1	GHz	~ 25	GHz
--	-------	-----	------	-----

Test chai	nnel	CH00			Polarity		Hori	zontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	3570.71	40.16	29.24	5.13	37.32	37.21	74.00	-36.79	Peak
2	4809.50	45.35	31.28	6.00	35.88	46.75	74.00	-27.25	Peak
3	6974.36	38.98	35.00	7.34	34.15	47.17	74.00	-26.83	Peak
4	11197.71	36.46	40.00	10.14	36.00	50.60	74.00	-23.40	Peak
Test cha	nnel	CH00			Polarity		Vert	ical	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	4809.50	42.75	31.28	6.00	35.88	44.15	74.00	-29.85	Peak
2	6974.36	39.03	35.00	7.34	34.15	47.22	74.00	-26.78	Peak
3	9784.47	35.81	39.30	9.48	33.44	51.15	74.00	-22.85	Peak
4	11515.68	35.32	40.47	10.37	36.16	50.00	74.00	-24.00	Peak

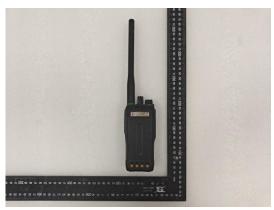
Test char	nnel	CH19			Polarity		Horiz	zontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	3570.71	40.44	29.24	5.13	37.32	37.49	74.00	-36.51	Peak
2	4883.52	47.00	31.20	6.21	35.97	48.44	74.00	-25.56	Peak
3	6992.14	38.86	35.07	7.34	34.22	47.05	74.00	-26.95	Peak
4	9759.59	35.89	39.30	9.46	33.66	50.99	74.00	-23.01	Peak
Test char	nnel	CH19			Polarity		Verti	cal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	3963.52	40.85	29.73	5.54	36.80	39.32	74.00	-34.68	Peak
2	4883.52	45.10	31.20	6.21	35.97	46.54	74.00	-27.46	Peak
3	6851.19	39.80	34.40	7.29	34.05	47.44	74.00	-26.56	Peak
4	9784.47	35.58	39.30	9.48	33.44	50.92	74.00	-23.08	Peak

Test char	nnel	CH39			Polarity		Hori	izontal	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level	Limit dBuV/m	Over limit	
1	3080.60	42.57	28.72	4.64	37.38	38.55	74.00	-35.45	Peak
2	4933.50	39.73	31.20	6.05	35.79	41.19	74.00	-32.81	Peak
3 4	6956.63	38.95	34.93	7.35	34.16	47.07	74.00	-26.93	Peak
4	9784.47	34.82	39.30	9.48	33.44	50.16	74.00	-23.84	Peak
Test char	nnel	CH39			Polarity		Vert	tical	
Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	2980.33	42.40	28.50	4.75	37.46	38.19	74.00	-35.81	Peak
2	5762.24	39.70	31.92	6.66	35.22	43.06	74.00	-30.94	Peak
3	6992.14	38.77	35.07	7.34	34.22	46.96	74.00	-27.04	Peak
4	9784.47	34.60	39.30	9.48	33.44	49.94	74.00	-24.06	Peak


Page:


6. TEST SETUP PHOTOS

Radiated Emission

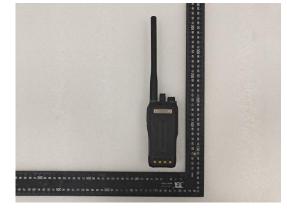


7. EXTERNAL AND INTERNAL PHOTOS

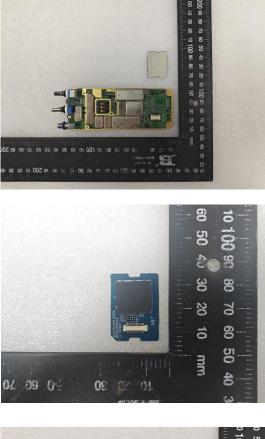
7.1. External Photos

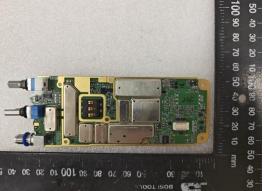
28 of 32

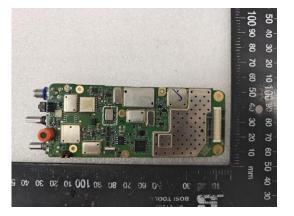
Page:



Page:


Shenzhen Huatongwei International Inspection Co., Ltd.




2023-10-19

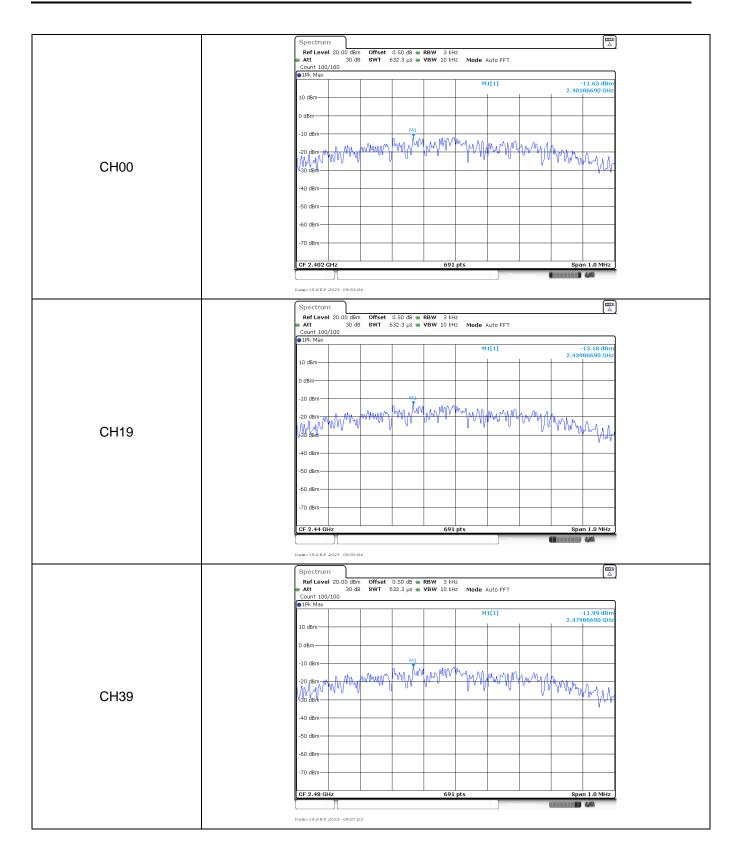
7.2. Internal Photos

8. APPENDIX REPORT

APPENDIX REPORT

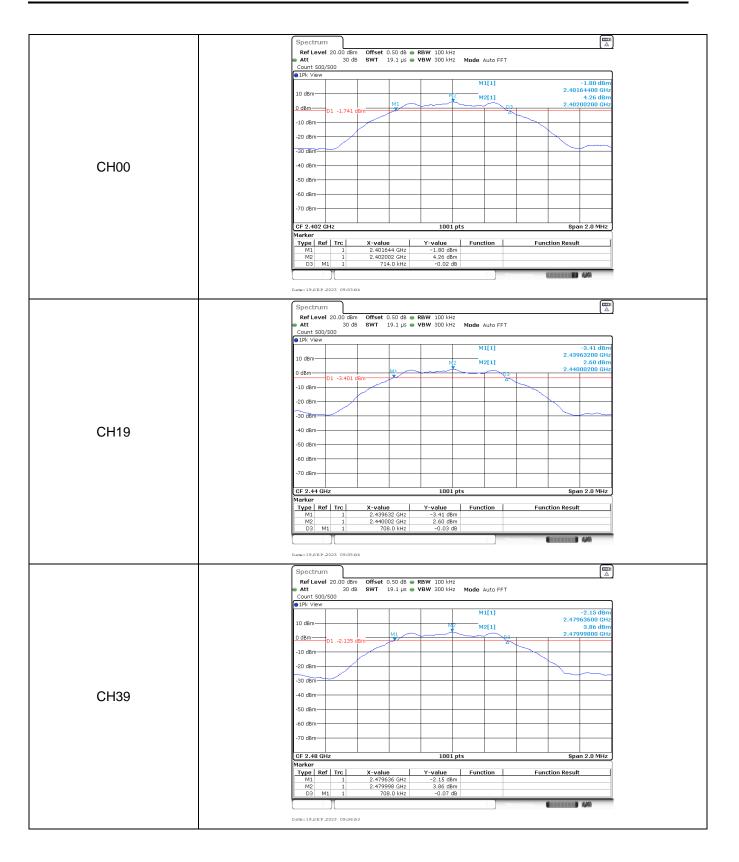
Project No.	SHT2304024504EW	Radio Specification	Bluetooth BLE
Test sample No.	YPHT23040245005	Model No.	EP8100 VHF
Start test date	2023/9/5	Finish date	2023/9/19
Temperature	23.9 ℃	Humidity	47%
Test Engineer	Caspar Chen	Auditor	Xiaodong Zheo

Appendix clause	Test item	Result
A	Peak Output Power	PASS
В	Power Spectral Density	PASS
С	6 dB Bandwidth	PASS
D	99% Occupied Bandwidth	PASS
E	Duty cycle	PASS
F	Band edge and Spurious Emissions (conducted)	PASS

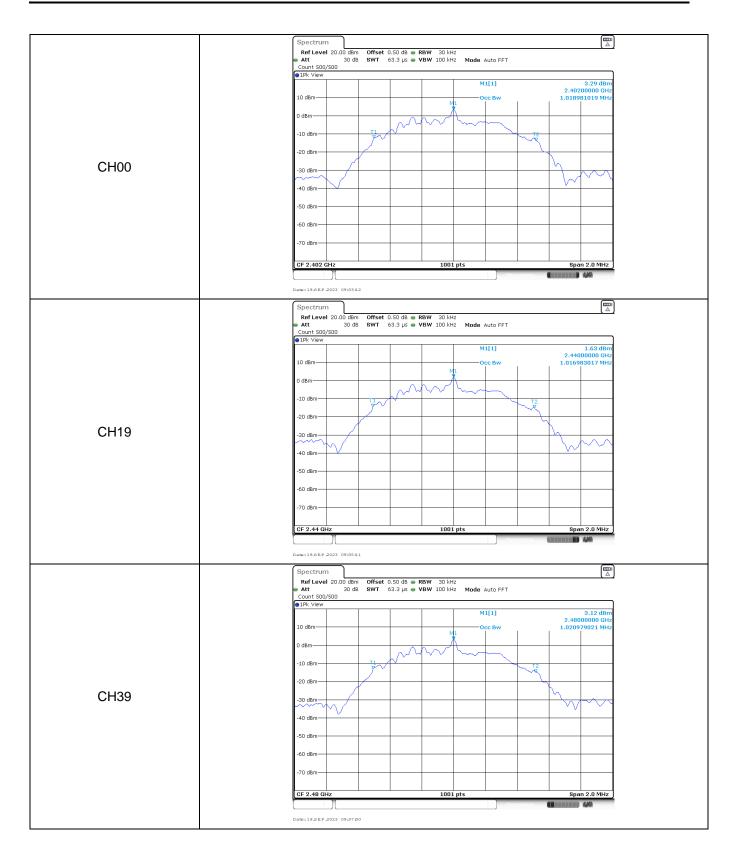

Appendix A: Peak Output Power

Туре	Channel	Peak Output power (dBm)	Average Output power (dBm)	Limit (dBm)	Result
	00	4.58	4.57		
BT-BLE	19	2.98	2.97	≤ 30.00	Pass
	39	4.01	3.99		

	Spectrum 🛣
	Ref Level 20.00 dBm Offset 0.50 dB RBW 2 MHz
	Att 30 dB SWT 1 ms VBW 5 MHz Mode Auto Sweep Count 500/500 for them
	P1Pk View M1[1] 4.58 dBm 2.4020056 CH-
	10 dBm M1
	0 dBm
	-10 d8m
01100	-20 dBm
CH00	-30 dBm
	-40 dBm-
	-50 d8m-
	-60 d8m
	-70 dBm
	CF 2.402 GHz 691 pts Span 5.0 MHz
	Measuring. 🗰 HEREERE 🎶
	Data: 19.5EP-2023 09:13.20
	Spectrum Imm Ref Level 20.00 dBm Offset 0.50 dB ● RBW 2 MHz
	Att 30 dB SWT 1 ms VBW 5 MHz Mode Auto Sweep Count 500/500
	OFFX View M1[1] 2.98 dBm
	10 dBm 2.43969610 GHz
	M1
	0 dBm
	-20 dBm
	-20 dBm
CH19	-30 dBm-
	-40 dBm
	-50 dBm
	-60 dBm
	-70 dBm
	CF 2.44 GHz 691 pts Span 5.0 MHz
	OF 2 + 4 - 61 - 22 OF 2 + 23 OF 2 + 23 OF 2 + 23 OF 2 + 23 Measuring Measuring Measuring Measuring
	Date: 19.8EP.2023 09:35:19
	Spectrum 🕅
	RefLevel 20.00 dBm Offset 0.50 dB RBW 2 MHz Att 30 dB SWT 1 ms VBW 5 MHz Mode Auto Sweep
	Count 500/500
	M1[1] 4.01 dBm 2.47967440 GHz
	10 dBm M1
	0 dBm
	-10 dBm
	-20 d8m
CH39	
01139	-30 dBm-
	-40 dBm
	-50 d8m
	-30 dbm
	-60 dBm
	-60 dBm


Appendix B: Power Spectral Density

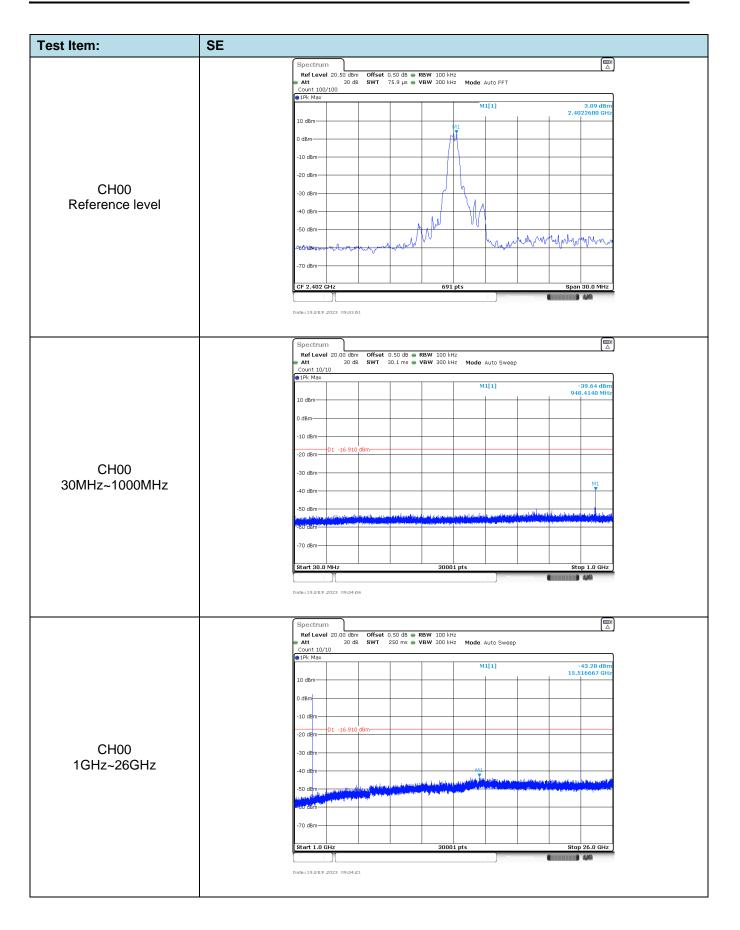
Туре	Channel	Power Spectral Density(dBm/3KHz)	Limit (dBm/3KHz)	Result
	00	-11.65		
BT-BLE	19	-13.18	≤8.00	Pass
	39	-11.99		

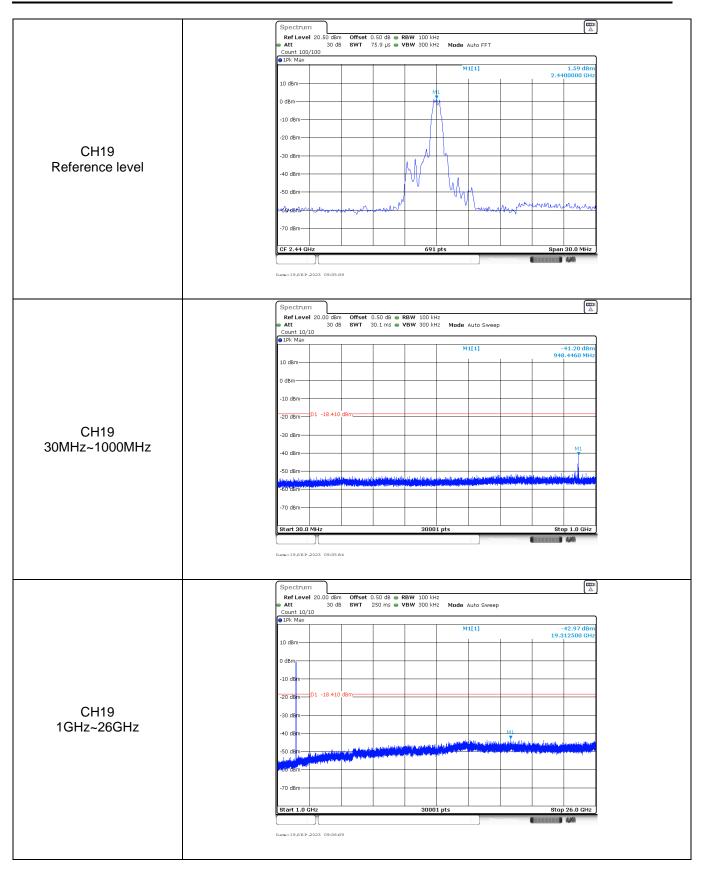

Appendix C: 6dB bandwidth

Туре	Channel	6dB Bandwidth(kHz)	Limit (kHz)	Result
	00	714.00		
BT-BLE	19	708.00	≥500	Pass
	39	708.00		

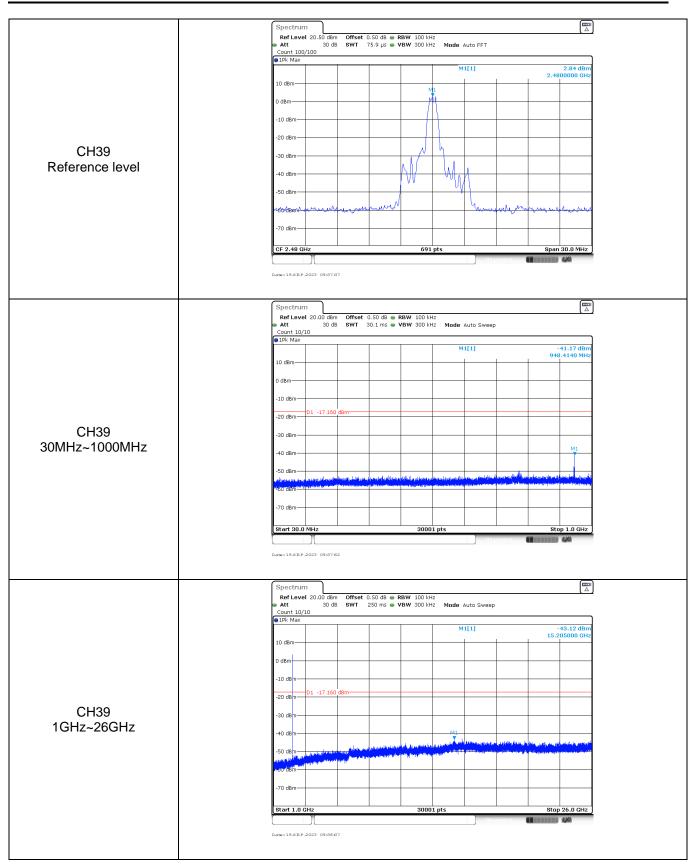
Appendix D: 99% Occupied Bandwidth

Туре	Channel	99% Occupied Bandwidth(MHz)	Limit (kHz)	Result
	00	1.02		
BT-BLE	19	1.02	-	Pass
	39	1.02		




Appendix E: Duty cycle

Test Frequency (MHz)	T _{on time} for single burst (ms)	T _{period} (ms)	Duty cycle	1/T _{on time} (kHz)
2440	0.41	0.65	0.63	2.44
	Spectrum Ref Level 30. Att SGL TAG: VID PF CIW 20 dBm 10 dBm 0 dBm 20 dBm 4 d dBm 20 dBm 20 dBm 4 d dBm 20 dBm 4 d dBm 4 d dBm 5 d dBm 6 d dBm 6 d dBm 7 ye C f 2.44 GHz Marker Type C f f T 10 dBm 2 d dBm 6 d dBm 6 d dBm 7 ye C f 2.44 GHz Marker Type C f f T 10 dBm 0 dBm 6 d dBm 7 ye C f 2.44 GHz Marker 10 dBm 10 d	40 db e SWT 10 ms e VBW 1 MHz M1[1] 01[1] -5,900 dbm -5,900 dbm -6,900 d	-2.48 µs 10.91 dB 407.55 µs	


st Item:	Band edge	
CH00	Spectrum RefLevel 20.00 dBm Offset 0.50 dB RBW 100 kHz Att 30 dB SWT 1.1 ms VBW 300 kHz Mode Auto Sweep	
	Count 300/300	
	10 dBm M1[1] 3.7/ 2.40204 M2[1] -42.6	'8 dBm 40 GHz
	0 dBm	DO CHZ
	-10 dBm D1 -16.220	
	-20 dBm	1
	A DECEMBER OF A	
	-60 dBm-	
	-70 dBm	
	Start 2.31 GHz 691 pts Stop 2.405 Marker	5 GHz
	Type Ref Trc X-value Y-value Function Function Result M1 1 2.40204 GHz 3.78 dBm	
	M2 1 2.4 GHz -42.67 dBm M3 1 2.39 GHz -55.08 dBm	
	M4 1 2.31 GHz -53.70 dBm M5 1 2.398804 GHz -46.46 dBm	
	Date: 19.5EP.2023 09.33%4 Spectrum Ref Level 20.00 dBm Offset 0.50 dB • RBW 100 kHz • Att 30 dB SWT 56.9 µs • VBW 300 kHz Mode Auto FFT	
	Count 100/100 P1Pk Max	
	10 d8m M1 2.479990 M1 M2 M2[1]466.6	13 dBm D0 GHz
	0 dBm - 2.483500	DO GHZ
	-10 d8m	
	-20 dBm	
CH39		
CH39		M
CH39	-50 dBm	N
CH39	vf0 dBm -50 dBm <t< td=""><td>5 GHz</td></t<>	5 GHz
CH39	-50 dBm -50 dBm -60 dBm -70	5 GHz
CH39	.f0 dBm .f0	5 GHz

Appendix F: Band edge and Spurious Emissions (conducted)

-----End of Report------