

FCC Test Report

APPLICANT	:	Nokia Shanghai Bell Co., Ltd.
EQUIPMENT	:	NOKIA WiFi Beacon 19
BRAND NAME	:	NOKIA
MODEL NAME	:	Beacon 19
FCC ID	:	2ADZRBEACON19
STANDARD	:	47 CFR Part 15 Subpart B
CLASSIFICATION	:	Certification
TEST DATE(S)	:	May 27, 2024 ~ Jun. 06, 2024

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	REVISION HISTORY					
SU	SUMMARY OF TEST RESULT4					
1.	GENE	RAL DESCRIPTION				
	1.1. 1.2.	Applicant				
	1.2. 1.3.	Product Feature of Equipment Under Test				
	1.4.	Product Peatine of Equipment Under Test				
	1.5.	Modification of EUT				
	1.6.	Test Location				
	1.7.	Test Software7				
	1.8.	Applicable Standards	'			
2.	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST8	5			
	2.1.	Test Mode	6			
	2.2.	Connection Diagram of Test System9				
	2.3.	Support Unit used in test configuration and system9				
	2.4.	EUT Operation Test Setup	1			
3.	TEST	RESULT11				
	3.1.	Test of AC Conducted Emission Measurement11				
	3.2.	Test of Radiated Emission Measurement15	i			
4.	LIST	OF MEASURING EQUIPMENT20	ł			
5.	MEAS	SUREMENT UNCERTAINTY				
AP	APPENDIX A. SETUP PHOTOGRAPHS A1					

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FC452305	Rev. 01	Initial issue of report	Aug. 12, 2024

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
			< 15.107 limits	PASS	Under limit
3.1	3.1 15.107 AC Cond	AC Conducted Emission			11.88 dB at
					0.156 MHz
			< 15.109 limits	PASS	Under limit
3.2 15.109	Radiated Emission	4.20 dB at			
					250.190 MHz

Conformity Assessment Condition:

The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account. Please refer to each test results in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1. General Description

1.1. Applicant

Nokia Shanghai Bell Co., Ltd.

No.388, Ningqiao Rd, Pilot Free Trade Zone, Shanghai, 201206 P.R. China

1.2. Manufacturer

Nokia of America Corporation

2301 Sugar Bush Rd. Raleigh, NC 27612

1.3. Product Feature of Equipment Under Test

Product Feature				
Equipment	NOKIA WiFi Beacon 19			
Brand Name NOKIA				
Model Name	Beacon 19			
FCC ID	2ADZRBEACON19			
	WLAN 2.4GHz 802.11b/g/n (HT20/HT40)			
	WLAN 2.4GHz 802.11ax (HE20/HE40)			
	WLAN 2.4GHz 802.11be (EHT20/ EHT40)			
	WLAN 5GHz 802.11a/n (HT20/HT40)			
EUT supports Radios application	WLAN 5GHz 802.11ac (VHT20/VHT40/VHT80/VHT160)			
	WLAN 5GHz 802.11ax (HE20/HE40/HE80/HE160)			
	WLAN 5GHz 802.11be (EHT20/EHT40/EHT80/EHT160)			
	WLAN 6GHz 802.11ax (HE20/HE40/HE80/HE160)			
	WLAN 6GHz 802.11be (EHT20/EHT40/EHT80/EHT160/EHT320)			
	Conduction: ALCLEB401AC1 for Sample 1			
SN Cada	Radiation:			
SN Code	ALCLEB401AC1 for Sample 1			
	ALCLEB401AC2 for Sample 2			
EUT Stage	Production Unit			

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- 2. There are two samples under test, sample 1 is Inpaq antenna and sample 2 is AOT antenna. According to the difference, we choose sample 1 to full test and the sample 2 is verified for the difference for Radiation.

Power Adapter				
AC Adapter 1	Brand Name	HONOR	Model Name	ADS-40FKJ-12N 12036EPCU
AC Adapter 1	Power Rating	I/P: 100-240 Vac, 1000mA , O/P: 12Vdc,3000mA		
AC Adapter 2	Brand Name	KELI	Model Name	KL-WA120300-A1
AC Adapter 2	Power Rating	I/P: 100-240 Vac, 2000mA, O/P: 12Vdc,3000mA		

1.4. Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx Frequency	WLAN 802.11b/g/n/ax/be: 2400 MHz - 2483.5 MHz WLAN 802.11a/n/ac/ax/be: 5150 MHz - 5250 MHz; 5250 MHz - 5350 MHz; 5470 MHz - 5725 MHz; 5725 MHz - 5850 MHz 802.11ax/be: 6105 MHz - 7125 MHz			
Rx Frequency	WLAN 802.11b/g/n/ax/be: 2400 MHz - 2483.5 MHz WLAN 802.11a/n/ac/ax/be: 5150 MHz - 5250 MHz; 5250 MHz - 5350 MHz; 5470 MHz - 5725 MHz; 5725 MHz - 5850 MHz 802.11ax/be: 6105 MHz - 7125 MHz			
Antenna Type	WLAN: Dipole Antenna			
Type of Modulation	802.11b: DSSS (DBPSK / DQPSK / CCK) 802.11a/g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM) 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM) 802.11ax: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM /1024QAM) 802.11be: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM / 1024QAM / 4096QAM)			

1.5. Modification of EUT

No modifications are made to the EUT during all test items.

1.6. Test Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)			
Test Site Location	No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China TEL : +86-512-57900158			
Test Site No.	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.	
	CO01-KS 03CH02-KS	CN1257	314309	

1.7. Test Software

I	tem Site Manufacturer I		Name	Version	
	1.	03CH02-KS	AUDIX	E3	6.2009-8-24al
	2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8. Applicable Standards

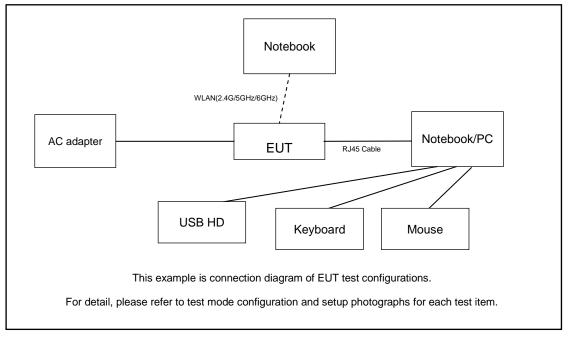
According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart B
- ANSI C63.4-2014

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2. Test Configuration of Equipment Under Test

2.1. Test Mode


The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (30MHz to the 5th harmonic of the highest frequency or to 40 GHz, whichever is lower).

Test Items	Function Type					
AC Conducted Emission	Mode 1: WIFI IDLE + Lan1/LAN2/LAN3 Link With NB + WAN Link with NB + Power from Adapter1 for Sample1					
	Mode 2: WIFI IDLE + Lan1/LAN2/LAN3 Link With NB + WAN Link with NB + Power from Adapter2 for Sample1					
	Mode 1: WIFI IDLE + Lan1/LAN2/LAN3 Link With NB + WAN Link with NB + Power from Adapter1 for Sample1					
Radiated Emissions	Mode 2: WIFI IDLE + Lan1/LAN2/LAN3 Link With NB + WAN Link with NB + Power from Adapter2 for Sample1					
	Mode 3: WIFI IDLE + Lan1/LAN2/LAN3 Link With NB + WAN Link with NB + Power from Adapter2 for Sample2					
Remark:						
1. The worst	1. The worst case of AC is mode 2; only the test data of this mode is reported.					
2. The worst	2. The worst case of RE is mode 2; only the test data of this mode is reported.					

2.2.Connection Diagram of Test System

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application

2.3. Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	shielded cable DC O/P 1.8m , Unshielded AC I/P cable 1.8m
2.	PC	Adwantech	IPC-610MB-L	KA21R655B1	N/A	Unshielded,1.8m
3.	(USB)Mouse	Lenovo	OEUUOA	Fcc DoC	Shielded, 1.8m	N/A
4.	(USB)Keyboard	Lenovo	SK-8821	Fcc DoC	Shielded, 1.8m	N/A
5.	Notebook	Lenovo	G410	N/A	N/A	shielded cable DC O/P 1.80m , Unshielded AC I/P cable 0.9m
6.	Hard disk	WD	Elements	N/A	N/A	N/A
7.	Monitor	Lenovo	LS2033wA	Fcc DoC	N/A	Unshielded,1.8m
8.	RJ45 Cable	N/A	N/A	N/A	N/A	Unshielded
9.	RJ45 Cable	N/A	N/A	N/A	N/A	Shielded

2.4. EUT Operation Test Setup

At the same time, the following programs installed in the EUT were programmed during the test.

The Notebook WLAN link the EUT via Wi-Fi network;

The Notebook LAN link the EUT via RJ-45 Cable;

The Notebook WAN link the EUT via RJ-45 Cable;

3. Test Result

3.1. Test of AC Conducted Emission Measurement

3.1.1. Limits of AC Conducted Emission

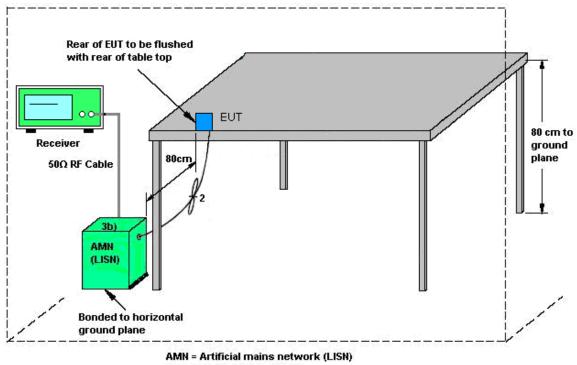
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

<Class B Limit>

Frequency of emission	Conducted limit (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

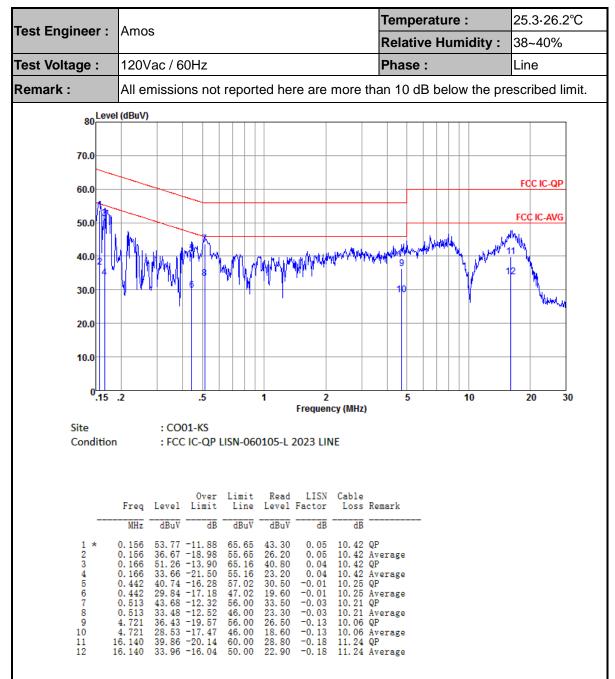
*Decreases with the logarithm of the frequency.

3.1.2. Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.1.3. Test Procedure

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.



3.1.4. Test Setup

- AE = Associated equipment
- EUT = Equipment under test
- ISN = Impedance stabilization network

3.1.5. Test Result of AC Conducted Emission

Note:

- 1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over $Limit(dB) = Level(dB\mu V) Limit Line(dB\mu V)$

3.2. Test of Radiated Emission Measurement

3.2.1. Limit of Radiated Emission

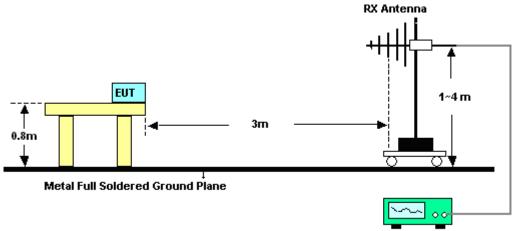
The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

<Class B Limit>

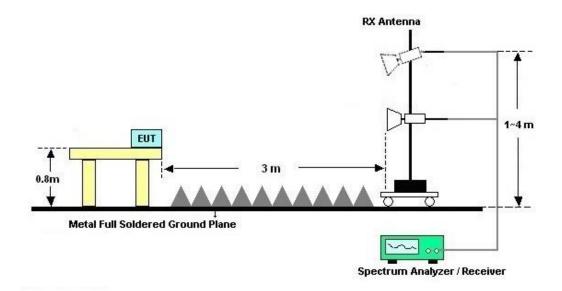
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

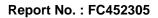
3.2.2. Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.


3.2.3. Test Procedures

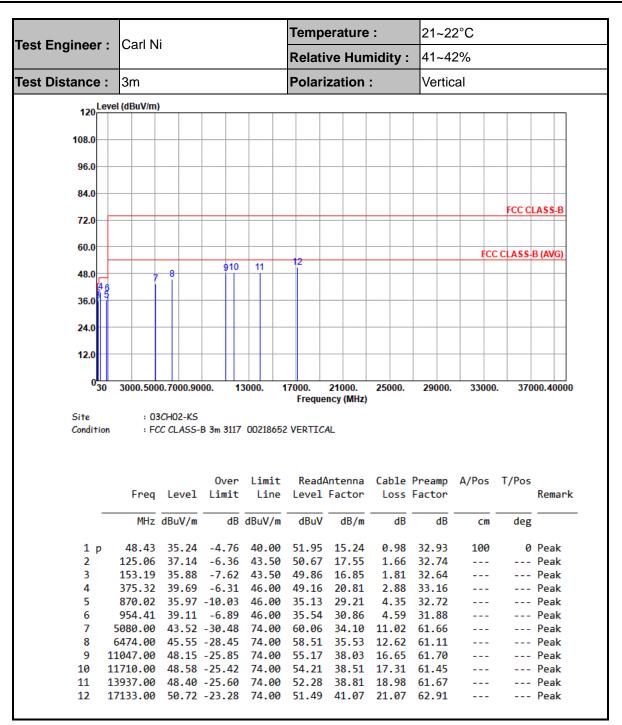
- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level $(dB\mu V/m) = 20 \log Emission level (\mu V/m)$
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 10. Exploratory radiated emissions testing of handheld and/or body-worn devices shall include rotation of the EUT through three orthogonal axes (X/Y/Z Plane) to determine the orientation (attitude) that maximizes the emissions.


3.2.4. Test Setup of Radiated Emission


For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated emissions above 1GHz



	Carl Ni				Temperature :			21~22°C				
est Engineer	Carl N					Relative Humidity :			41~42%			
Sest Distance :	3m				Polarization :			Horizontal				
120 ^{Le}	vel (dBuV/m))										
120												
108.0												
96.0												
84.0												
										FCC CI	ASS-B	
72.0												
60.0									FC	C CLASS-	B (AVG)	
48.0			10	11 12								
40.0	7	ĬĬĬ										
36.0												
24.0												
12.0												
12.0												
030	3000 500	0 7000 90	00 1	3000 1	17000	21000	25000	29000	3300	0 370	00 40000	
0 <mark>30</mark>	3000.500	0.7000.90	000. 1	3000. 1	17000. Freque	21000. ncy (MHz)	25000.	29000.	3300	0. 370	00.40000	
0 <mark>30</mark> Site		0.7000.90		3000. 1				29000.	3300	0. 370	00.40000	
	: 03	3CH02-K5			Freque	ncy (MHz)		29000.	3300	0. 370	00.40000	
Site	: 03	3CH02-K5			Freque	ncy (MHz)		29000.	3300	0. 370	00.40000	
Site	: 03	3CH02-K5			Freque	ncy (MHz)		29000.	3300	0. 370	00.40000	
Site	:03 n :FC	8CH02-KS CC CLASS-	-B 3m 3117 Over	00218652 Limit	Freque 2 HORIZO Read/	ncy (MHz) DNTAL Antenna	Cable	Preamp				
Site	:03 n :FC	8CH02-KS CC CLASS-	-B 3m 3117	00218652 Limit	Freque 2 HORIZO Read/	ncy (MHz) DNTAL Antenna		Preamp				
Site	:03 n :FC Freq	CH02-KS C CLASS- Level	B 3m 3117 Over Limit	00218652 Limit Line	Freque 2 HORIZO Read/ Level	ncy (MHz) DNTAL Antenna Factor	Cable Loss	Preamp Factor	A/Pos	T/Pos		
Site	:03 n :FC Freq	8CH02-KS CC CLASS-	B 3m 3117 Over Limit	00218652 Limit	Freque 2 HORIZO Read/	ncy (MHz) DNTAL Antenna Factor	Cable	Preamp		T/Pos		
Site	:03 n :FC Freq MHz	CCH02-KS CCCLASS- Level dBuV/m	B 3m 3117 Over Limit	00218652 Limit Line dBuV/m	Freque 2 HORIZO Read/ Level dBuV	ncy (MHz) DNTAL Antenna Factor dB/m	Cable Loss dB	Preamp Factor	A/Pos cm	T/Pos 		
Site Condition —	: 03 n : FC Freq MHz 155.13 250.19	CCH02-KS CC CLASS- Level dBuV/m 33.94 41.80	B 3m 3117 Over Limit 	00218652 Limit Line dBuV/m 43.50 46.00	Freque 2 HORIZC Read/ Level dBuV 48.05 54.47	ncy (MHz) NNTAL Intenna Factor dB/m 16.72 18.31	Cable Loss dB 1.82 2.10	Preamp Factor dB 32.65 33.08	A/Pos cm	T/Pos 	Remark	
Site Condition - 1 2 p 3	: 03 h : FC Freq MHz 155.13 250.19 375.32	CCH02-KS CCLASS- Level dBuV/m 33.94 41.80 37.78	B 3m 3117 Over Limit -9.56 -4.20 -8.22	00218652 Limit Line dBuV/m 43.50 46.00 46.00	Freque 2 HORIZC Read/ Level dBuV 48.05 54.47 47.25	ncy (MHz) NNTAL Antenna Factor dB/m 16.72 18.31 20.81	Cable Loss dB 1.82 2.10 2.88	Preamp Factor dB 32.65 33.08 33.16	A/Pos 100 	T/Pos 	Remark Peak Peak Peak	
Site Condition 1 2 p 3 4	: 03 Freq MHz 155.13 250.19 375.32 737.13	CCH02-KS CCLASS- Level dBuV/m 33.94 41.80 37.78 38.25	B 3m 3117 Over Limit -9.56 -4.20 -8.22 -7.75	00218652 Limit Line dBuV/m 43.50 46.00 46.00 46.00	Freque 2 HORIZC Read/ Level dBuV 48.05 54.47 47.25 39.46	ncy (MHz) NTAL Intenna Factor dB/m 16.72 18.31 20.81 28.10	Cable Loss dB 1.82 2.10 2.88 4.04	Preamp Factor dB 32.65 33.08 33.16 33.35	A/Pos 100 	T/Pos 	Remark Peak Peak Peak Peak Peak	
Site Condition 1 2 p 3 4 5	* 03 h * FC Freq MHz 155.13 250.19 375.32 737.13 852.56	CCH02-KS CCLASS- Level dBuV/m 33.94 41.80 37.78 38.25 37.55	B 3m 3117 Over Limit -9.56 -4.20 -8.22 -7.75 -8.45	00218652 Limit Line dBuV/m 43.50 46.00 46.00 46.00 46.00	Freque 2 HORIZC Read/ Level dBuV 48.05 54.47 47.25 39.46 36.52	ncy (MHz) NTAL Antenna Factor dB/m 16.72 18.31 20.81 28.10 29.53	Cable Loss dB 1.82 2.10 2.88 4.04 4.27	Preamp Factor dB 32.65 33.08 33.16 33.35 32.77	A/Pos 	T/Pos 	Remark Peak Peak Peak Peak Peak Peak	
Site Condition - 1 2 p 3 4 5 6	* 03 h * FC Freq MHz 155.13 250.19 375.32 737.13 852.56 948.59	CCH02-KS CCLASS- CLASS- dBuV/m 33.94 41.80 37.78 38.25 37.55 40.05	B 3m 3117 Over Limit -9.56 -4.20 -8.22 -7.75 -8.45 -5.95	00218652 Limit Line dBuV/m 43.50 46.00 46.00 46.00 46.00 46.00	Freque 2 HORIZC 2 HOR	ncy (MHz) NTAL Antenna Factor dB/m 16.72 18.31 20.81 28.10 29.53 30.69	Cable Loss dB 1.82 2.10 2.88 4.04 4.27 4.58	Preamp Factor dB 32.65 33.08 33.16 33.35 32.77 31.95	A/Pos 100 	T/Pos 	Remark Peak Peak Peak Peak Peak Peak Peak	
Site Condition 1 2 p 3 4 5 6 7	Erreq MHz 155.13 250.19 375.32 737.13 852.56 948.59 2122.00	CH02-KS CCLASS- CLASS- dBuV/m 33.94 41.80 37.78 38.25 37.55 40.05 42.61	B 3m 3117 Over Limit -9.56 -4.20 -8.22 -7.75 -8.45 -5.95 -31.39	00218652 Limit Line dBuV/m 43.50 46.00 46.00 46.00 46.00 46.00 74.00	Freque 2 HORIZC 2 HORIZC 2 HORIZC 2 HORIZC 400 48.05 54.47 47.25 39.46 36.52 36.73 65.28	ncy (MHz) NTAL Antenna Factor dB/m 16.72 18.31 20.81 28.10 29.53 30.69 31.60	Cable Loss dB 1.82 2.10 2.88 4.04 4.27 4.58 6.92	Preamp Factor dB 32.65 33.08 33.16 33.35 32.77 31.95 61.19	A/Pos 100 	T/Pos 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
Site Condition 1 2 p 3 4 5 6 7 8	Erreq MHz 155.13 250.19 375.32 737.13 852.56 948.59 2122.00 6423.00	CH02-KS C CLASS- C CLASS- dBuV/m 33.94 41.80 37.78 38.25 37.55 40.05 42.61 45.36	B 3m 3117 Over Limit dB -9.56 -4.20 -8.22 -7.75 -8.45 -5.95 -31.39 -28.64	00218652 Limit Line dBuV/m 43.50 46.00 46.00 46.00 46.00 74.00 74.00	Freque 2 HORIZC 2 HOR	ncy (MHz) NTAL Antenna Factor dB/m 16.72 18.31 20.81 28.10 29.53 30.69 31.60 35.43	Cable Loss dB 1.82 2.10 2.88 4.04 4.27 4.58 6.92 12.60	Preamp Factor dB 32.65 33.08 33.16 33.35 32.77 31.95 61.19 61.13	A/Pos 100 	T/Pos 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
Site Condition 	Erreq MHz 155.13 250.19 375.32 737.13 852.56 948.59 2122.00 6423.00 7970.00	CH02-KS C CLASS- C CLASS- dBuV/m 33.94 41.80 37.78 38.25 37.55 40.05 42.61 45.36 45.47	B 3m 3117 Over Limit 	00218652 Limit Line dBuV/m 43.50 46.00 46.00 46.00 46.00 74.00 74.00 74.00	Freque 2 HORIZC 2 HORIZC 2 HORIZC 2 HORIZC 2 HORIZC 4 HORIZC 3 HOR	ncy (MHz) NTAL Antenna Factor dB/m 16.72 18.31 20.81 28.10 29.53 30.69 31.60 35.43 35.87	Cable Loss dB 1.82 2.10 2.88 4.04 4.27 4.58 6.92 12.60 13.31	Preamp Factor dB 32.65 33.08 33.16 33.35 32.77 31.95 61.19 61.13 61.94	A/Pos 100 	T/Pos 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
Site Condition 1 2 p 3 4 5 6 7 8 9 10	Erreq MHz 155.13 250.19 375.32 737.13 852.56 948.59 2122.00 6423.00 7970.00 10384.00	CH02-KS CCLASS- CCLASS- dBuV/m 33.94 41.80 37.78 38.25 37.55 40.05 42.61 45.36 45.47 46.74	B 3m 3117 Over Limit dB -9.56 -4.20 -8.22 -7.75 -8.45 -5.95 -31.39 -28.64 -28.53 -27.26	00218652 Limit Line dBuV/m 43.50 46.00 46.00 46.00 46.00 46.00 74.00 74.00 74.00 74.00	Freque 2 HORIZC 2 HORIZC 2 HORIZC 2 HORIZC 2 HORIZC 4 HORIZC 3 HOR	ncy (MHz) NTAL Antenna Factor dB/m 16.72 18.31 20.81 28.10 29.53 30.69 31.60 35.43 35.87 37.65	Cable Loss dB 1.82 2.10 2.88 4.04 4.27 4.58 6.92 12.60 13.31 16.21	Preamp Factor dB 32.65 33.08 33.16 33.35 32.77 31.95 61.19 61.13 61.94 61.84	A/Pos 100 	T/Pos 0 0 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	
Site Condition 1 2 p 3 4 5 6 7 8 9 10 11	Erreq MHz 155.13 250.19 375.32 737.13 852.56 948.59 2122.00 6423.00 7970.00	CH02-KS CCLASS- CCLASS- dBuV/m 33.94 41.80 37.78 38.25 37.55 40.05 42.61 45.36 45.47 46.74 47.16	B 3m 3117 Over Limit dB -9.56 -4.20 -8.22 -7.75 -8.45 -5.95 -31.39 -28.64 -28.53 -27.26 -26.84	00218652 Limit Line dBuV/m 43.50 46.00 46.00 46.00 46.00 74.00 74.00 74.00 74.00 74.00	Freque 2 HORIZC 2 HORIZC 2 HORIZC 2 HORIZC 2 HORIZC 4 HORIZC 3 HOR	ncy (MHz) NTAL Antenna Factor dB/m 16.72 18.31 20.81 28.10 29.53 30.69 31.60 35.43 35.87 37.65 38.85	Cable Loss dB 1.82 2.10 2.88 4.04 4.27 4.58 6.92 12.60 13.31 16.21 18.81	Preamp Factor dB 32.65 33.08 33.16 33.35 32.77 31.95 61.19 61.13 61.94 61.84 61.72	A/Pos 100 	T/Pos 	Remark Peak Peak Peak Peak Peak Peak Peak Pea	

3.2.5. Test Result of Radiated Emission

Note:

- Level(dBµV/m) = Read Level(dBµV) + Antenna Factor(dB/m) + Cable Loss(dB) Preamp Factor(dB)
- 2. Over $Limit(dB) = Level(dB\mu V/m) Limit Line(dB\mu V/m)$

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	R&S	ESR7	101403	9kHz~7GHz;Ma x 30dBm	Oct. 10, 2023	May 27, 2024	Oct. 09, 2024	Radiation (03CH02-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55370528	10Hz-44G,MAX 30dB	Oct. 10, 2023	May 27, 2024	Oct. 09, 2024	Radiation (03CH02-KS)
Bilog Antenna	TeseQ	CBL6111D	44483	30MHz-1GHz	Dec. 21, 2023	May 27, 2024	Dec. 20, 2024	Radiation (03CH02-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Nov. 23, 2023	May 27, 2024	Nov. 22, 2024	Radiation (03CH02-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2024	May 27, 2024	Jan. 04, 2025	Radiation (03CH02-KS)
Amplifier	EM	EM18G40GGA	060852	18~40GHz	Jan. 05, 2024	May 27, 2024	Jan. 04, 2025	Radiation (03CH02-KS)
Amplifier	SONOMA	310N	380826	9KHz-1GHz	Jul. 06, 2023	May 27, 2024	Jul. 05, 2024	Radiation (03CH02-KS)
Amplifier	EM	EM01G18G	060806	1GHz~18GHz	Oct. 10, 2023	May 27, 2024	Oct. 09, 2024	Radiation (03CH02-KS)
AC Power Source	Chroma	61601	616010002473	N/A	NCR	May 27, 2024	NCR	Radiation (03CH02-KS)
Turn Table	MF	MF7802	N/A	0~360 degree	NCR	May 27, 2024	NCR	Radiation (03CH02-KS)
Antenna Mast	MF	MF7802	N/A	1 m~4 m	NCR	May 27, 2024	NCR	Radiation (03CH02-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 18, 2024	Jun. 06, 2024	Apr. 17, 2025	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 11, 2023	Jun. 06, 2024	Oct. 10, 2024	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Apr. 18, 2024	Jun. 06, 2024	Apr. 17, 2025	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP000000811	AC 0V~300V, 45Hz~1000Hz	Oct. 11, 2023	Jun. 06, 2024	Oct. 10, 2024	Conduction (CO01-KS)

NCR: No Calibration Required

5. Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.84 dB
of 95% (U = 2Uc(y))	2.04 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	6.04 dB
--	---------

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.12 dB
of 95% (U = 2Uc(y))	5.12 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.30 dB
--	---------

----- THE END ------