

Report on the Intermodulation Testing

For

Draeger Safety UK Ltd

on

Gauge

Report no. TRA-051967-47-11A

2024-10-16

Report Number: TRA-051982-47-11A

Issue:

REPORT ON THE INTERMODULATION TESTING OF A Draeger Safety UK Ltd Gauge WITH RESPECT TO SELECTED CLAUSES OF SPECIFICATION KDB 996369 D04 v02 IN CASES OF MORE THAN ONE TRANSMITTER OPERATING AT THE SAME TIME

TEST DATE: 2023-04-28 to 2023-05-02

Tested by:

Steven Garwell
Radio Test Engineer

Written by:

Steven Garwell
Radio Test Engineer

John Charters

2024-10-16

Approved by: Department Manager - Radio

Disclaimers:

Date:

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

RF915 4.0

1 Revision Record

Issue Number	Issue Date	Revision History
A	2024-10-16	Original

RF915 4.0 Page 3 of 26

2 Summary

TEST REPORT NUMBER:	TRA-051967-47-11A
WORKS ORDER NUMBER:	TRA-051967-19
PURPOSE OF TEST:	Intermodulation emissions investigation
TEST SPECIFICATION:	KDB 996369 D04 v02
EQUIPMENT UNDER TEST (EUT):	Gauge
FCC ID:	X6O-BG001
ISED ID:	5895F-BG001
EUT SERIAL NUMBER:	Test Sample S56
MANUFACTURER/AGENT:	Draeger Safety UK Ltd
ADDRESS:	Ullswater Close
	Blyth Riverside Business Park
	Blyth
	NE24 4RG
	United Kingdom
CLIENT CONTACT:	Eoghan Quigley
	2 01670 352 891
	⊠ eoghan.quigley@draeger.com
ORDER NUMBER:	4302888682
TEST DATE:	2023-04-28 to 2023-05-02
TESTED BY:	Steven Garwell
	Element

RF915 4.0 Page 4 of 26

2.1 Test Summary

	Requireme	nt Clause	Applicable		
Test Method and Description	RSS	47CFR	to this equipment	Result / Note	
Multi-radio Simultaneous Transmission Spurious Emissions	Gen, 8.10	Part 15	\boxtimes	PASS	

Notes:

The results contained in this report relate only to the items tested, in the condition at time of test, and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

The apparatus was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. Any modifications made are identified in Section 8 of this report.

Particular operating modes, apparatus monitoring methods and performance criteria required by the standards tested to have been performed except where identified in Section 5.2 of this test report (Deviations from Test Standards).

The decision rule for compliance is not inherent within this specification and compliance is based on the customer requesting a simple acceptance rule based on understanding and acceptance of Elements Measurement Uncertainty values.

RF915 4.0 Page 5 of 26

3 Contents

1	Re	vision Record	3
2		mmary	
	2.1	Test Summary	
3	Co	ntents	6
4		roduction	
5		st Specifications	
	5.1	Normative References	
	5.2	Deviations from Test Standards	
6	Glo	ossary of Terms	9
7		uipment under Test	
	7.1	EUT Identification	
	7.2	System Equipment	
	7.3	EUT Mode of Operation	
	7.3		
	7.4	EUT Description	
8	Мо	odifications	
9	EU	IT Test Setup	12
	9.1	Block Diagram	12
	9.2	General Set-up Photograph	12
	9.3	Measurement software	
10) (General Technical Parameters	15
	10.1	Normal Conditions	15
11	1 r	Multi-radio Simultaneous Transmission Spurious Emissions below 30 MHz	16
	11.1	Definitions	
	11.2	Test Parameters	16
	11.3	Test Limit	17
	11.4	Test Method	17
	11.5	Test setup photograph	18
	11.6	Test Equipment	18
	11.7	Test Results	
12	2 i	Multi-radio Simultaneous Transmission Spurious Emissions above 30 MHz	
	12.1	Definitions	
	12.2	Test Parameters	
	12.3	Test Limits	
	12.4	Test Method	
	12.5	Test Set-up Photograph	
	12.6	Test Equipment	
	12.7	Results	
13	3 N	Measurement Uncertainty	24

4 Introduction

This report TRA-051967-47-11A presents the results of the Radio testing on a, Draeger Safety UK Ltd Gauge.

The Gauge contains a BTLE 2.4 GHz radio an NFC 13.56 MHz radio and a UHF 900 MHz radio that are able to operate simultaneously.

The testing was carried out for Draeger Safety UK Ltd by Element, at the address detailed below.

 $oxed{oxed}$ Element Skelmersdale $oxed{\Box}$ Element Surrey Hills

Unit 1 Unit 15 B

Pendle Place Henley Business Park Skelmersdale Pirbright Road

Skelmersdale Pirbright Road
West Lancashire Normandy
WN8 9PN Guildford
UK GU3 2DX

UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test & measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Elements own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

Throughout this report EUT denotes equipment under test.

FCC Site Listing:

The test laboratory is accredited for the above sites under the following US-UK MRA, Designation numbers.

Element Surrey Hills UK2027 Element Skelmersdale UK2020

ISED Registration Numbers:

Element Surrey Hills 30805 Element North West 3930B

The test site requirements of ANSI C63.4-2014 are met up to 1GHz.

The test site SVSWR requirements of CISPR 16-1-4:2010 are met over the frequency range 1 GHz to 18 GHz.

RF915 4.0 Page 7 of 26

5 Test Specifications

5.1 Normative References

- FCC 47 CFR Ch. I Part 15 Radio Frequency Devices
- ANSI C63.10-2013 American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.
- ANSI C63.4-2014 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- ISED RSS-Gen General Requirements for Compliance of Radio Apparatus Issue 5 April 2018.
- ISED RSS-210, Issue 10, December 2019 Licence-Exempt Radio Apparatus: Category I Equipment.
- KDB 996369 D04 Module Integration Guide v02 Modular transmitter integration guide -Guidance for host product manufacturers.
- RSP-100 Issue 12, August 2019 Certification of Radio Apparatus and Broadcasting Equipment.

5.2 Deviations from Test Standards

Only limited testing was performed to check the intermodulation emissions.

RF915 4.0 Page 8 of 26

6 Glossary of Terms

denotes a section reference from the standard, not this document

§ denotes a section reAC Alternating Current

ANSI American National Standards Institute

BW bandwidth C Celsius

CFR Code of Federal Regulations

CW Continuous Wave

dB decibel

dBm dB relative to 1 milliwatt

DC Direct Current

DSSS Direct Sequence Spread Spectrum
Equivalent Isotropically Radiated Power

ERP Effective Radiated Power EUT Equipment Under Test

FCC Federal Communications Commission
Frequency Hopping Spread Spectrum

Hz hertz

IC Industry Canada

ITU International Telecommunication Union

LBT Listen Before Talk

m metre
max maximum

MIMO Multiple Input and Multiple Output

min minimum

MRA Mutual Recognition Agreement

N/A Not Applicable
PCB Printed Circuit Board
PDF Portable Document Format
Point to multipoint

Pt-mpt Point-to-multipoint
Pt-pt Point-to-point
RF Radio Frequency
RH Relative Humidity
RMS Root Mean Square

Rx receiver s second

SVSWR Site Voltage Standing Wave Ratio

Tx transmitter

UKAS United Kingdom Accreditation Service

 $\begin{array}{ll} \textbf{V} & \text{volt} \\ \textbf{W} & \text{watt} \\ \textbf{\Omega} & \text{ohm} \end{array}$

RF915 4.0 Page 9 of 26

7 Equipment under Test

7.1 EUT Identification

Name: Gauge

• Serial Number: Test Sample S56

Model Number: Gauge

Software Revision: Not StatedHardware Version: 1st prototype

7.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

1. Not Applicable - No support/monitoring equipment required.

7.3 EUT Mode of Operation

7.3.1 Transmission

The mode of operation for transmitter tests was as follows:

Radios were set to transmit permanently in various combinations, the spectrum was checked to determine if any intermodulation products were generated due to multiple radios operating simultaneously. The worst case emission plots are shown in this document.

EUT was operated with worst case modes of operation for each radio device.

7.4 EUT Description

The Gauge contains a BTLE 2.4 GHz radio an NFC 13.56 MHz radio and a 920 MHz radio. This report covers the testing of inter-modulations produced by all radio technologies operating simultaneously.

RF915 4.0 Page 10 of 26

8 Modifications

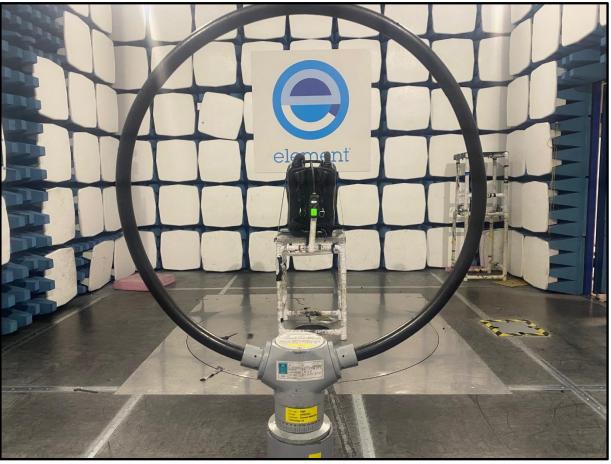
No modifications were performed during this assessment.

RF915 4.0 Page 11 of 26

9 EUT Test Setup

9.1 Block Diagram

The following diagram shows basic EUT interconnections with cable type and cable lengths identified:


EUT 7.5 V dc

9.2 General Set-up Photograph

RF915 4.0 Page 12 of 26

RF915 4.0 Page 13 of 26

9.3 Measurement software

Where applicable, the following software was used to perform measurements contained within this report.

Element Emissions R5 (See Note) Element Transmitter Bench Test (See Note) ETS Lindgren EMPower V1.0.4.2

Note:

The version of the Element software used is recorded in the results sheets contained within this report.

RF915 4.0 Page 14 of 26

10 General Technical Parameters

10.1 Normal Conditions

The Gauge was tested under the normal environmental conditions of the test laboratory, except where otherwise stated. The normal power source applied was 7.5 V dc from 5 X AA Alkaline batteries..

Modes of operation:	NFC	UHF	BTLE
Frequencies of operation:	13.56 MHz	902.25 MHz	2437 MHz
Antenna type(s):	INDUCTIVE LOOP	PCB TRACE	CHIP
Modulation type(s)	ASK	4-GFSK	GFSK
Nominal Supply Voltage:	7.5 V dc	7.5 V dc	7.5 V dc

RF915 4.0 Page 15 of 26

11 Multi-radio Simultaneous Transmission Spurious Emissions below 30 MHz

11.1 Definitions

Out-of-band emissions

Emissions on a frequency or frequencies immediately outside the necessary bandwidth which result from the modulation process, but exclude spurious emissions.

Spurious emissions

Emissions on a frequency or frequencies which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Restricted bands

A frequency band in which intentional radiators are permitted to radiate only spurious emissions but not fundamental signals.

11.2 Test Parameters

Test Location: Element Skelmersdale
Test Chamber: SK03 radio chamber

Test Standard and Clause: ANSI C63.10-2013, Clause 6.4

2437 MHz (BTLE) 13.56 MHz (NFC)

Frequencies Measured: 13.56 MHz (NFC) 902.25 MHz (UHF)

Deviations From Standard:

Measurement Distance and Site

3 m

EUT Height:

1 m

Measurement Antenna and Height: 60 cm shielded loop; 1 m

Measurement BW: 9 kHz to 150 kHz: 200 Hz;

150 kHz to 30 MHz: 9 kHz

Measurement Detector: 9 kHz to 90 kHz and 110 kHz to 490 kHz: Average, RMS

Other frequencies below 30 MHz: Quasi-peak.

Environmental Conditions (Normal Environment)

Temperature: +22 °C +15 °C to +35 °C (as declared)

Humidity: 37 % RH 20 % RH to 75 % RH (as declared)

Supply: 7.5 V dc (as declared)

RF915 4.0 Page 16 of 26

11.3 Test Limit

Emissions from license-exempt transmitters shall comply with the field strength limits shown in the table below. Additionally, the level of any transmitter emission shall not exceed the level of the transmitter's fundamental emission.

General Field Strength Limits for License-Exempt Transmitters at Frequencies below 30 MHz

Frequency, f (kHz)	Field Strength	Measurement Distance (m)
9 to 490	2,400 / 377.f (μA/m) 2,400 / f (μV/m)	300
490 to 1,750	24,000 / 377.f (μA/m) 24,000 / f (μV/m)	30
1,750 to 30,000	30 (μV/m)	30

n.b. Devices operated pursuant to §15.225 / RSS-210 B.6 are exempt from complying with the restricted band requirements for the 13.36–13.41 MHz band only.

11.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure I, the EUT fundamental frequency was maximised by rotating the EUT through 360°, in three orthogonal planes, and adjusting the measurement antenna azimuth.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 9 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 9 kHz and 30 MHz are measured using a calibrated 60cm active loop antenna. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in μ V/m at the regulatory distance, using:

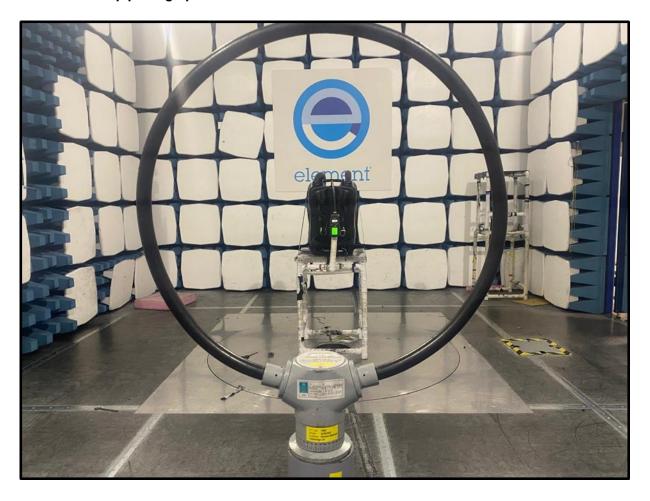
$$FS = 10 (PR - CF) / 20$$

Where,

PR is the power recorded on the receiver / spectrum analyzer in dBµV and includes any cable loss, antenna factor and pre-amplifier gain;

CF is the distance extrapolation factor in dB (where measurement distance different to limit distance);

Per FCC 47CFR15.31(f)(2) / RSS-Gen 6.4, an extrapolation factor of 40 dB per decade was used for extrapolation from 3 m to 30 m and from 3 m to 300 m.

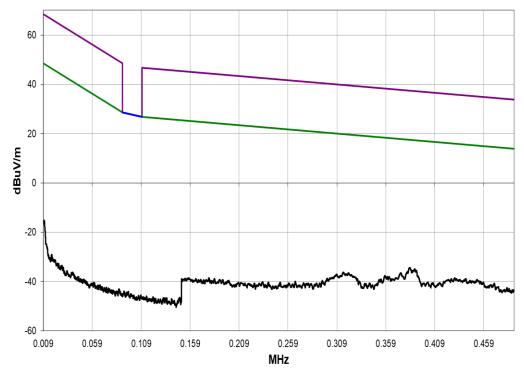

This field strength value is then compared with the regulatory limit.

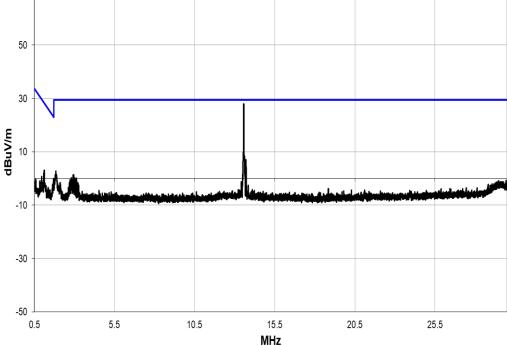
RF915 4.0 Page 17 of 26

Figure I Test Setup

11.5 Test setup photograph

11.6 Test Equipment


Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
EMI Receiver	R&S	ESR26	U489	2023-09-30
Loop Antenna	R&S	hfh2	L007	2023-09-09
Radio Chamber - PP	Rainford EMC	ATS	REF940	2023-11-06
Radiated Test Software	Element	Emissions R5	REF9000	Cal not required


RF915 4.0 Page 18 of 26

11.7 Test Results

70

BTLE; Frequency: 2437 MHz; NFC; Frequency: 13.56 MHz; 900 MHz; Frequency: 902.25 MHz

9 kHz to 490 kHz

490 kHz to 30 MHz

All emissions on graphs are related to either the BTLE 2.4 GHz, NFC 13.56 MHz or UHF, 900 MHz operation and are not intermodulation products.

RF915 4.0 Page 19 of 26

12 Multi-radio Simultaneous Transmission Spurious Emissions above 30 MHz

12.1 Definitions

Spurious emissions

Emissions on a frequency or frequencies, which are outside the necessary bandwidth and the level of which may be reduced without affecting the corresponding transmission of information. Spurious emissions include harmonic emissions, parasitic emissions, intermodulation products and frequency conversion products, but exclude out-of-band emissions.

Intermodulation products

Emissions of two or more electromagnetic waves transmitted simultaneously through a nonlinear electronic system.

12.2 Test Parameters

Test Location: Element Skelmersdale
Test Chamber: SK03 radio chamber

Test Standard and Clause: ANSI C63.10-2013, Clause 6.5 and 6.6

2437 MHz (BTLE) 13.56 MHz (NFC)

Frequencies Tested: 13.56 MHz (NFC) 902.25 MHz (UHF)

Deviations From Standard: None

Measurement BW: 9 kHz to 150 kHz: 1 kHz

150 kHz to 30 MHz: 10 kHz 30 MHz to 1 GHz: 120 kHz Above 1 GHz: 1 MHz

Measurement Detector: Up to 1 GHz: quasi-peak

Above 1 GHz: RMS average and Peak

Environmental Conditions (Normal Environment)

Temperature: +22 °C +15 °C to +35 °C (as declared)

Humidity: 37% RH 20 % RH to 75 % RH (as declared)

Supply: 7.5 V dc (as declared)

12.3 Test Limits

Unwanted emissions that fall within the restricted frequency bands shall comply with the limits specified:

General Field Strength Limits for License-Exempt Transmitters at Frequencies above 30 MHz

Frequency (MHz)	Field Strength (μV/m at 3 m)
30 to 88	100
88 to 216	150
216 to 960	200
Above 960	500

RF915 4.0 Page 20 of 26

General Field Strength Limits for License-Exempt Transmitters at Frequencies below 30 MHz

Frequency, f (kHz)	Field Strength	Measurement Distance (m)
9 to 490	2,400 / 377.f (µA/m) 2,400 / f (µV/m)	300
490 to 1,750	24,000 / 377.f (μA/m) 24,000 / f (μV/m)	30
1,750 to 30,000	30 (μV/m)	30

Least stringent limit applied to any intermodulation products.

12.4 Test Method

With the EUT setup as per section 9 of this report and connected as per Figure i, the emissions from the EUT were measured on a spectrum analyzer / EMI receiver.

Radiated electromagnetic emissions from the EUT are checked first by preview scans. Preview scans for all spectrum and modulation characteristics are checked, using a peak detector and where applicable worst-case determined for function, operation, orientation, etc. for both vertical and horizontal polarisations. Pre-scan plots are shown with a peak detector and 100 kHz RBW.

If the EUT connects to auxiliary equipment and is table or floor standing, the configurations prescribed in ANSI C63.10 are followed. Alternatively, a layout closest to normal use (as declared by the provider) is employed, (see EUT setup photographs for more detail).

Emissions between 30 MHz and 1 GHz are measured using calibrated broadband antennas. Emissions above 1 GHz are characterized using standard gain horn antennas. Pre-amplifiers and filters are used where required. Care is taken to ensure that test receiver resolution bandwidth, video bandwidth and detector type(s) meet the regulatory requirements.

For both horizontal and vertical polarizations, the EUT is then rotated through 360 degrees in azimuth until the highest emission is detected. At the previously determined azimuth the test antenna is raised and lowered from 1 to 4 m in height until a maximum emission level is detected, this maximum value is recorded.

Power values measured on the test receiver / analyzer are converted to field strength, FS, in $dB\mu V/m$ at the regulatory distance, using:

$$FS = PR + CL + AF - PA + DC - CF$$

 $Factor = CL + AF - PA$

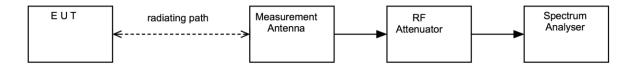
Where,

PR is the power recorded on the receiver / spectrum analyzer in dBµV;

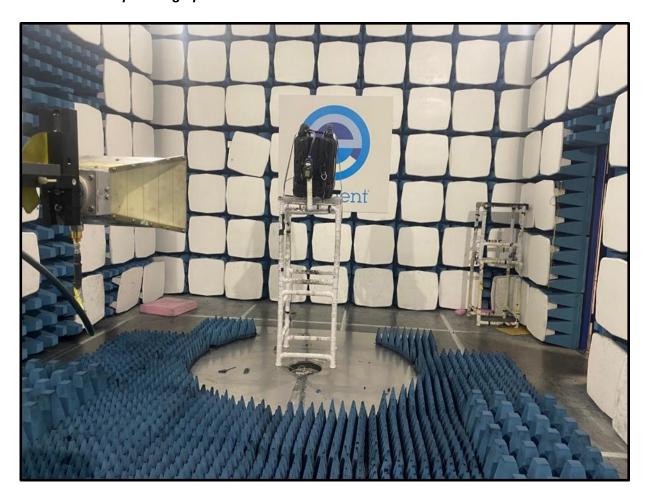
CL is the cable loss in dB;

AF is the test antenna factor in dB/m;

PA is the pre-amplifier gain in dB (where used);


DC is the duty correction factor in dB (where used, e.g. harmonics of pulsed fundamental);

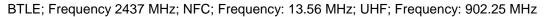
CF is the distance factor in dB (where measurement distance different to limit distance);

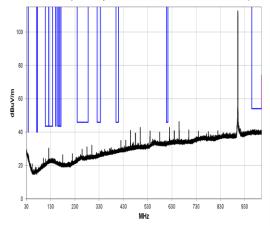

This field strength value is then compared with the regulatory limit.

RF915 4.0 Page 21 of 26

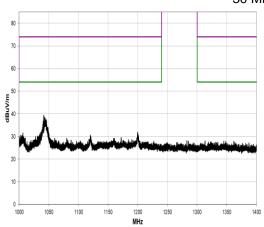
Figure i Test Setup

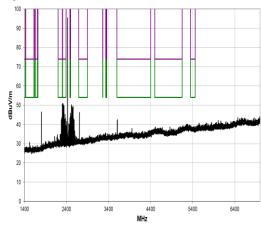
12.5 Test Set-up Photograph

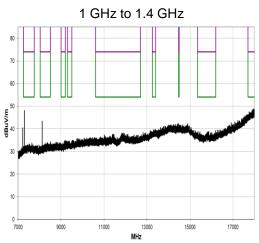



12.6 Test Equipment

Equipment		Equipment	Element	Due For
Туре	Manufacturer	Description	No	Calibration
Spectrum Analyser	R&S	FSU50	U544	2023-11-18
EMI Receiver	R&S	ESR26	U489	2023-09-30
1-18GHz Horn	EMCO	3115	L139	2024-07-01
Pre Amp	Agilent	8449B	U457	2024-01-24
Bilog	Chase	CBL611/A	U191	2025-02-22
PreAmp	Watkins Johnson	6201-69	U372	2024-03-07
1.3GHz High Pass Filter	MiniCircuits	HPF 1300+	U716	2024-02-09
High Pass Filter	Atlantic Microwave	AFH-07000	U558	2024-02-13
Radio Chamber - PP	Rainford EMC	ATS	REF940	2023-11-06
Radiated Test Software	Element	Emissions R5	REF9000	Cal not required


RF915 4.0 Page 22 of 26


12.7 Results



30 MHz to 1 GHz

7 GHz to 18 GHz

18 GHz to 26.5 GHz

	Freq (MHz)	Amplitude (dBuV)	Factor (dB/m)	Antenna Height (meters)	Azimuth (degrees)	Test Distance (meters)	External Attenuation (dB)	Polarity/ Transducer Type	Detector	Distance Adjustment (dB)	Adjusted (dBuV/m)	Spec. Limit (dBuV/m)	Compared to Spec. (dB)
10)42.597	45.3	-8.3	1.61	0.0	3.0	0.0	Vert	AV	0.0	37.0	54.0	-17.0
10	043.688	60.4	-8.3	1.61	0.0	3.0	0.0	Vert	PK	0.0	52.1	74.0	-21.9

RF915 4.0 Page 23 of 26

13 Measurement Uncertainty

Calculated Measurement Uncertainties

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence:

[1] Radiated spurious emissions

Uncertainty in test result (30 MHz to 1 GHz) = **4.6 dB**Uncertainty in test result (1 GHz to 18 GHz) = **4.7 dB**

RF915 4.0 Page 24 of 26

All statements of uncertainty are expanded standard uncertainty using a coverage factor of 1.96 to give a 95 % confidence where no required test level exists.

Test/Measurement	Budget Number	MU
Conducted RF Power, Power Spectral Density, Adjacent Channel Power and		
Spurious emissions		
Absolute RF power (via antenna connecter) Dare RPR3006W Power Head	MU4001	0.9 dB
Carrier Power and PSD - Spectrum Analysers	MU4004	0.9 dB
Adjacent Channel Power	MU4002	1.9 dB
Transmitter conducted spurious emissions	MU4041	0.9 dB
Conducted power and spurious emissions 40 GHz to 50 GHz	MU4042	2.4 dB
Conducted power and spurious emissions 50 GHz to 75 GHz	MU4043	2.5 dB
Conducted power and spurious emissions 75 GHz to 110 GHz	MU4044	2.4 dB
Radiated RF Power and Spurious emissions ERP and EIRP		
Effective Radiated Power Reverb Chamber	MU4020	3.7 dB
Effective Radiated Power	MU4021	4.7 dB
TRP Emissions 30 MHz to 1 GHz using CBL6111 or CBL6112 Bilog Antenna	MU4046	5.3 dB
TRP Emissions 1 GHz to 18 GHz using HL050 Log Periodic Antenna	MU4047	5.1 dB
TRP Emissions 18 GHz to 26.5 GHz using Standard Gain Horn	MU4048	2.7 dB
TRP Emissions 26.5 GHz to 40 GHz using Standard Gain Horn	MU4049	2.7 dB
Oursians Essissions Electric and Mannetic Field		
Spurious Emissions Electric and Magnetic Field	MUMOOZ	4.7.dD
Radiated Spurious Emissions 30 MHz to 1 GHz	MU4037 MU4032	4.7 dB 4.5 dB
Radiated Spurious Emissions 1-18 GHz		3.2 dB
E Field Emissions 18GHz to 26 GHz	MU4024	
E Field Emissions 26GHz to 40 GHz	MU4025	3.3 dB
E Field Emissions 40GHz to 50 GHz	MU4026	3.5 dB
E Field Emissions 50GHz to 75 GHz	MU4027	3.6 dB
E Field Emissions 75GHz to 110 GHz	MU4028 MU4031	3.6 dB 2.3 dB
Radiated Magnetic Field Emissions	WIU4031	2.3 UB
Frequency Measurements		
Frequency Deviation	MU4022	0.316 kHz
Frequency error using CMTA test set	MU4023	113.441 Hz
Frequency error using GPS locked frequency source	MU4045	0.0413 ppm
Bandwidth/Spectral Mask Measurements		
Channel Bandwidth	MU4005	3.87 %
Transmitter Mask Amplitude	MU4039	1.3 dB
Transmitter Mask Frequency	MU4040	2.59 %
Time Domain Measurements		
Transmission Time	MU4038	4.40 %
Dynamia Fraguency Soloation (DES) Baramatara		
Dynamic Frequency Selection (DFS) Parameters) DFS Analyser - Measurement Time	MU4006	679 µs
	MU4006 MU4007	
DFS Generator - Frequency Error DFS Threshold Conducted		92 Hz
DES THESHOR CONDUCTED	MU4008	1.3 dB
DFS Threshold Radiated	MU4009	3.2 dB

RF915 4.0 Page 25 of 26

Test/Measurement	Budget Number	MU
Receiver Parameters		
EN300328 Receiver Blocking	MU4010	1.1 dB
EN301893 Receiver Blocking	MU4011	1.1 dB
EN303340 Adjacent Channel Selectivity	MU4012	1.1 dB
EN303340 Overloading	MU4013	1.1 dB
EN303340 Receiver Blocking	MU4014	1.1 dB
EN303340 Receiver Sensitivity	MU4015	0.9 dB
EN303372-1 Image Rejection	MU4016	1.4 dB
EN303372-1 Receiver Blocking	MU4017	1.1 dB
EN303372-2 Adjacent Channel Selectivity	MU4018	1.1 dB
EN303372-2 Dynamic Range	MU4019	0.9 dB
Receiver Blocking Talk Mode Conducted	MU4033	1.2 dB
Receiver Blocking Talk Mode- radiated	MU4034	3.4 dB
Rx Blocking, listen mode, blocking level	MU4035	3.2 dB
Rx Blocking, listen mode, radiated Threshold Measurement	MU4036	3.4 dB
Adjacent Sub Band Selectivity	MU4003	4.2 dB

RF915 4.0 Page 26 of 26