Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|----------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3500 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.9 | 2.91 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.4 ± 6 % | 2.94 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | 222 | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.78 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 67.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.52 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 25.1 W/kg ± 19.5 % (k=2) | Certificate No: D3500V2-1036_Mar22 Page 3 of 6 ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 52.3 Ω - 1.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 30.9 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.140 ns | |----------------------------------|----------| | | 1.140113 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D3500V2-1036_Mar22 ### DASY5 Validation Report for Head TSL Date: 23.03.2022 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1036 Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz; $\sigma = 2.94 \text{ S/m}$; $\varepsilon_r = 37.4$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 08.03.2022 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 01.11.2021 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.91 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 18.5 W/kg ### SAR(1 g) = 6.78 W/kg; SAR(10 g) = 2.52 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74.5% Maximum value of SAR (measured) = 12.9 W/kg 0 dB = 12.9 W/kg = 11.09 dBW/kg ### Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client Sporton Certificate No: D3700V2-1006 Jun22 ### **CALIBRATION CERTIFICATE** Object D3700V2 - SN:1006 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: June 20, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 3503 | 08-Mar-22 (No. EX3-3503_Mar22) | Mar-23 | | DAE4 | SN: 601 | 02-May-22 (No. DAE4-601_May22) | May-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | dikto | | Approved by: | Sven Kühn | Technical Manager | | Issued: June 27, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3700V2-1006_Jun22 Page 1 of 6 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3700V2-1006_Jun22 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|----------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3700 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.7 | 3.12 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.0 ± 6 % | 3.07
mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.56 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 65.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | Certificate No: D3700V2-1006_Jun22 ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.6 Ω - 10.0 jΩ | | |--------------------------------------|------------------|--| | Return Loss | - 20.0 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.137 ns | |----------------------------------|----------------| | | 10.17.1 (107.) | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | SPEAG | |-------| | | Certificate No: D3700V2-1006_Jun22 ### **DASY5 Validation Report for Head TSL** Date: 20.06.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1006 Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.07 \text{ S/m}$; $\varepsilon_r = 37$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 08.03.2022 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.05.2022 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.96 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 18.6 W/kg SAR(1 g) = 6.56 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 73.4% Maximum value of SAR (measured) = 12.8 W/kg 0 dB = 12.8 W/kg = 11.06 dBW/kg ### Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S wiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D3900V2-1017 Apr22 ### CALIBRATION CERTIFICATE Object D3900V2 - SN:1017 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: April 22, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 04-Apr-22 (No. 217-03527) | Apr-23 | | Type-N mismatch combination | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | Reference Probe EX3DV4 | SN: 3503 | 08-Mar-22 (No. EX3-3503_Mar22) | Mar-23 | | DAE4 | SN: 601 | 01-Nov-21 (No. DAE4-601_Nov21) | Nov-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | | Name | Function | Signature | | Calibrated by: | Joanna Lleshaj | Laboratory Technician | dhuy | | Approved by: | Sven Kühn | Deputy Manager | C 6- | Issued: April 28, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3900V2-1017_Apr22 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3900V2-1017_Apr22 Page 2 of 7 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 3900 MHz ± 1 MHz
4100 MHz ± 1 MHz | | ## Head TSL parameters at 3900 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.5 ± 6 % | 3.25 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | (max) | ### SAR result with Head TSL at 3900 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.89 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.9 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 4100 MHz The following parameters and calculations were applied. | | Temperature |
Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.2 | 3.53 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.3 ± 6 % | 3.42 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 722 | | ### SAR result with Head TSL at 4100 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.84 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 68.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | Certificate No: D3900V2-1017_Apr22 Page 3 of 7 ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 3900 MHz | Impedance, transformed to feed point | 49.4 Ω - 7.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.0 dB | | ### Antenna Parameters with Head TSL at 4100 MHz | Impedance, transformed to feed point | $60.1 \Omega + 0.0 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 20.8 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.104 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D3900V2-1017_Apr22 ### DASY5 Validation Report for Head TSL Date: 22.04.2022 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1017 Communication System: UID 0 - CW; Frequency: 3900 MHz, Frequency: 4100 MHz Medium parameters used: f = 3900 MHz; σ = 3.25 S/m; ϵ_r = 36.5; ρ = 1000 kg/m³, Medium parameters used: f = 4100 MHz; σ = 3.42 S/m; ϵ_r = 36.3; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz, ConvF(7.26, 7.26, 7.26) @ 4100 MHz; Calibrated: 08.03.2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 01.11.2021 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.24 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 19.6 W/kg ## SAR(1 g) = 6.89 W/kg; SAR(10 g) = 2.41 W/kg Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 73.9% Maximum value of SAR (measured) = 13.7 W/kg ## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=4100MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 69.78 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 19.4 W/kg ### SAR(1 g) = 6.84 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 8.4 mm Ratio of SAR at M2 to SAR at M1 = 74.1% Maximum value of SAR (measured) = 13.5 W/kg Certificate No: D3900V2-1017_Apr22 0 dB = 13.7 W/kg = 11.36 dBW/kg ### Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D5GHzV2-1128_Dec19 ## **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1128 Calibration procedure(s) QA CAL-22.v4 Calibration Procedure for SAR Validation Sources between 3-6 GHz Calibration date: December 16, 2019 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 3503 | 25-Mar-19 (No. EX3-3503_Mar19) | Mar-20 | | DAE4 | SN: 601 | 30-Apr-19 (No. DAE4-601_Apr19) | Apr-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | 402 | | Approved by: | Katja Pokovic | Technical Manager | alle | Issued: December 17, 2019 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.
Certificate No: D5GHzV2-1128_Dec19 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.3 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | ### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.48 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.06 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 4.83 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1128_Dec19 Page 3 of 8 # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.1 ± 6 % | 4.98 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.99 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | · | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1128_Dec19 ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 47.7 Ω - 6.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.1 dB | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 53.6 Ω - 3.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.3 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 51.3 Ω - 3.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 28.6 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.208 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D5GHzV2-1128_Dec19 Page 5 of 8 ### **DASY5 Validation Report for Head TSL** Date: 16.12.2019 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1128 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.48$ S/m; $\varepsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.83$ S/m; $\varepsilon_r = 34.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 4.98$ S/m; $\varepsilon_r = 34.1$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.4, 5.4, 5.4) @ 5250 MHz, ConvF(4.95, 4.95, 4.95) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz; Calibrated: 25.03.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.04.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.3(1513); SEMCAD X 14.6.13(7474) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.60 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 27.9 W/kg ### SAR(1 g) = 8.06 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.9% Maximum value of SAR (measured) = 18.2 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.23 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 31.2 W/kg ### SAR(1 g) = 8.32 W/kg; SAR(10 g) = 2.39 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 67.1% Maximum value of SAR (measured) = 19.3 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.23 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 31.3 W/kg ### SAR(1 g) = 7.99 W/kg; SAR(10 g) = 2.29 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.7% Maximum value of SAR (measured) = 18.9 W/kg Certificate No: D5GHzV2-1128_Dec19 Page 6 of 8 0 dB = 18.9 W/kg = 12.77 dBW/kg ### Impedance Measurement Plot for Head TSL ### D5000V2, serial no. 1128 Extended Dipole Calibrations Referring to KDB 865664, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. ### <Justification of the extended calibration> | | D 5000 V2 – serial no. 1128 | | | | | | |-----------------------------|---|-----------|----------------------|-------------|---------------------------|-------------| | | | | 525 | 0MHZ | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 12.16.2019
(Cal. Report) | -23.113 | | 47.684 | | -6.437 | | | 12.15.2020
(extended) | -26.397 | 14.2 | 49.293 | 1.609 | -5.405 | 1.032 | | 12.14.2021
(extended) | -25.566 | 10.61 | 48.461 | 0.777 | -4.9046 | 1.5324 | | | | | 560 | 0MHZ | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 12.16.2019
(Cal. Report) | -26.278 | | 53.636 | | -3.4803 | | | 12.15.2020
(extended) | -27.417 | 4.33 | 54.448 | 0.812 | -2.3368 | 1.1435 | | 12.14.2021
(extended) | -28.562 | 8.69 | 54.259 | 0.623 | 0.72734 | 4.20764 | | | | | 575 | 0MHZ | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 12.16.2019
(Cal. Report) | -28.611 | | 51.3 | | -3.5295 | | | 12.15.2020
(extended) | -25.773 | -9.91 | 50.091 | -1.209 | -3.7769 | -0.2474 | | 12.14.2021
(extended) | -27.023 | -5.55 | 48.393 | -2.907 | -4.6333 | -1.1038 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of
prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - D5000 V2, serial no. 1128 (Data of Measurement : 12.15.2020) 5000 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - D5000 V2, serial no. 1128 (Data of Measurement : 12.14.2021) 5000 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D5GHzV2-1171_Apr21 Accreditation No.: SCS 0108 ### CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1171 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: April 20, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | Apr-22 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Dec-21 | | DAE4 | SN; 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Michael Weber | Laboratory Technician | M. Wese T | | Approved by: | Katja Pokovic | Technical Manager | 00101 | Issued: April 20, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1171_Apr21 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,v,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - · Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - · Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1171_Apr21 Page 2 of 9 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz
5850 MHz ± 1 MHz | | Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 4.57 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | S ****** | | ### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.08 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.0 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1171_Apr21 ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 4.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.39 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.7 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.1 ± 6 % | 5.09 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | **** | | ### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.11 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.30 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.8 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5850 MHz The following parameters and calculations
were applied. | 690 | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.2 | 5.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.0 ± 6 % | 5.19 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | (5777) | THEM: | ### SAR result with Head TSL at 5850 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 82.3 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1171_Apr21 Page 5 of 9 ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 50.4 Ω - 9.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.3 dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 55.5 Ω - 4.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.5 dB | | ### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 55.9 Ω - 5.8 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.1 dB | | ### Antenna Parameters with Head TSL at 5850 MHz | Impedance, transformed to feed point | 57.7 Ω - 6.6 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.5 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.206 ns | | |----------------------------------|----------|--| |----------------------------------|----------|--| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| ### **DASY5 Validation Report for Head TSL** Date: 20.04.2021 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1171 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5850 MHz Medium parameters used: f = 5250 MHz; σ = 4.57 S/m; ϵ_r = 34.9; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 4.93 S/m; ϵ_r = 34.4; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.09$ S/m; $\varepsilon_r = 34.1$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5850 MHz; $\sigma = 5.19$ S/m; $\varepsilon_r = 34$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(4.99, 4.99, 4.99) @ 5850 MHz; Calibrated: 30.12.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 02.11.2020 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.43 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.32 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 71.2% Maximum value of SAR (measured) = 18.2 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.80 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 31.0 W/kg SAR(1 g) = 8.41 W/kg; SAR(10 g) = 2.39 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 68.6% Maximum value of SAR (measured) = 19.6 W/kg Certificate No: D5GHzV2-1171_Apr21 ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.01 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 8.11 W/kg; SAR(10 g) = 2.30 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.9% Maximum value of SAR (measured) = 19.2 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.40 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 8.29 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 65.7% Maximum value of SAR (measured) = 20.0 W/kg 0 dB = 20.0 W/kg = 13.00 dBW/kg ## Impedance Measurement Plot for Head TSL ## D5000V2, serial no. 1171 Extended Dipole Calibrations Referring to KDB 865664, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | | | | D 5000 V2 – serial no. 1 ° | 171 | | | |-----------------------------|------------------|-----------|--|-------------|---------------------------|-------------| | | | | 525 | 0MHZ | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 04.20.2021
(Cal. Report) | -20.3 | | 50.4 | | -9.7 | | | 04.19.2022
(extended) | -22.054 | 8.6 | 49.363 | 1.037 | -7.3205 | -2.3795 | | | | | 560 | 0MHZ | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 04.20.2021
(Cal. Report) | -23.5 | | 55.5 | | -4.5 | | | 04.19.2022
(extended) | -24.852 | 5.8 | 54.716 | 0.784 | -3.8107 | -0.6893 | | | | | 575 | 0MHZ | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 04.20.2021
(Cal. Report) | -22.1 | | 55.9 | | -5.8 | | | 04.19.2022
(extended) | -24.551 | 11.1 | 53.48 | 2.42 | -5.9049 | 0.1049 | | | | | 585 | 0MHZ | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 04.20.2021
(Cal. Report) | -20.5 | | 57.7 | | -6.6 | | | 04.19.2022
(extended) | -20.584 | 0.4 | 56.293 | 1.407 | -6.6585 | 0.0585 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - D5000 V2, serial no. 1171 (Data of Measurement : 04.19.2022) 5000 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the sign The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: D6.5GHzV2-1003 Sep21 #### CALIBRATION CERTIFICATE Object D6.5GHzV2 - SN:1003 QA CAL-22.v6 Calibration procedure(s) Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: September 24, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Primary Standards ID# Cal Date (Certificate No.) Scheduled Calibration Power meter NRP SN: 104778 09-Apr-21 (No. 217-03291/03292) Apr-22 Power sensor NRP-Z91 SN: 103244 09-Apr-21 (No. 217-03291) Apr-22 Power sensor NRP-Z91 SN: 103245 09-Apr-21 (No. 217-03292) Apr-22 Power sensor R&S NRP33T SN: 100967 08-Apr-21 (No. 217-03293) Apr-22 Reference 20 dB Attenuator SN: BH9394 (20k) 09-Apr-21 (No. 217-03343) Apr-22 Type-N mismatch combination SN: 310982 / 06327 09-Apr-21 (No. 217-03344) Apr-22 Reference Probe EX3DV4 SN: 7405 30-Dec-20 (No. EX3-7405_Dec20) Dec-21 DAE4 SN: 908 24-Jun-21 (No. DAE4-908_Jun21) Jun-22 Secondary Standards ID# Check Date (in house) Scheduled Check RF
generator Anapico APSIN20G SN: 669 28-Mar-17 (in house check Dec-18) In house check: Dec-21 Network Analyzer Keysight E5063A SN:MY54504221 31-Oct-19 (in house check Oct-19) In house check: Oct-22 Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: September 27, 2021 Certificate No: D6.5GHzV2-1003_Sep21 Page 1 of 6 This calibration certificate shall not be reproduced except in full without written approval of the laboratory, S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. ### Additional Documentation: b) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. - The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D6.5GHzV2-1003_Sep21 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY6 | V16.0 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 5 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 3.4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 6500 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 34.5 | 6.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 33.6 ± 6 % | 6.11 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 100 mW input power | 29.4 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 292 W/kg ± 24.7 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 5.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.8 W/kg ± 24.4 % (k=2) | Certificate No: D6.5GHzV2-1003_Sep21 ### Appendix #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 54.4 Ω - 1.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.8 dB | | ### APD (Absorbed Power Density) | APD averaged over 1 cm ² | Condition | | |-------------------------------------|--------------------|--------------------------------------| | APD measured | 100 mW input power | 292 W/m² | | APD measured | normalized to 1W | 2920 W/m ² ± 29.2 % (k=2) | | APD averaged over 4 cm ² | condition | | |-------------------------------------|--------------------|--------------------------------------| | APD measured | 100 mW input power | 132 W/m ² | | APD measured | normalized to 1W | 1320 W/m ² ± 28.9 % (k=2) | ### General Antenna Parameters and Design After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | iviality by | SPEAG | ## **DASY6 Validation Report for Head TSL** **Hardware Setup** Measurement Report for D6.5GHz-1003, UID 0 -, Channel 6500 (6500.0MHz) | Name, Manufacturer | Dimensions [mm] | IMEI | DUT Type | |--------------------|--------------------|----------|----------| | D6.5GHz | 16.0 x 6.0 x 300.0 | SN: 1003 | | | Phantom
Section, TSL | Position, Test
Distance
[mm] | Band | Group,
UID | Frequency
[MHz] | Conversion
Factor | TSL Cond.
[S/m] | TSL
Permittivity | |-------------------------|------------------------------------|------|---------------|--------------------|----------------------|--------------------|---------------------| | Flat, HSL | 5.00 | Band | CW, | 6500 | 5.75 | 6.11 | 33.6 | | Phantom | TSL | Probe, Calibration Date | DAE, Calibration Date | |------------------------|-----------------------------|-----------------------------|------------------------| | MFP V8.0 Center - 1182 | HBBL600-10000V6 | EX3DV4 - SN7405, 2020-12-30 | DAE4 Sn908, 2021-06-24 | | Scan Setup | | Measurement Results | | | | Zoom Scan | | Zoom Scan | | Grid Extents [mm] | 22.0 x 22.0 x 22.0 | Date | 2021-09-24, 9:30 | | Grid Steps [mm] | $3.4 \times 3.4 \times 1.4$ | psSAR1g [W/Kg] | 29.4 | | Sensor Surface [mm] | 1.4 | psSAR10g [W/Kg] | 5.42 | | | | | | 4 12 -0.02Graded Grid Yes Power Drift [dB] Disabled **Grading Ratio** 1.4 **Power Scaling** MAIA N/A Scaling Factor [dB] TSL Correction No correction Surface Detection VMS + 6p 55.6 M2/M1 [%] Scan Method Measured Dist 3dB Peak [mm] 4.6 ## Impedance Measurement Plot for Head TSL -30.00 -35.00 -40.00 ## D6.5GHZV2, serial no. 1003 Extended Dipole Calibrations Referring to KDB 865664, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. ### <Justification of the extended calibration> | D 6.5GHZ V2 – serial no. 1003 | | | | | | | | |---|------------------|--------------|----------------------|-------------|---------------------------|-------------|--| | | | 6500MHZ | | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | | 09.24.2021 | -26.768 | | 54.414 | | -1.8621 | | | | (Cal. Report) | -20.700 | | 54.414 | | -1.0021 | | | | 09.23.2022 | -25.25 | 5.67 | F2 760 | 0.645 | -4.242 | 2.3799 | | | (extended) | -20.25 | -5.67 53.769 | | 0.045 | -4.242 | 2.3799 | | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - D6.5GHzV2, serial no. 1003 (Data of Measurement : 09.23.2022) 6.5GHZ GHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: 5G-Veri10-1020_Jan22 | CALIBRATION (| CERTIFICA | TE | | |-------------------------------------|---------------------------------|--|-----------------------------| | Dbject | 5G Verification | n Source 10 GHz - SN: 1020 |
| | Calibration procedure(s) | QA CAL-45.v3
Calibration pro | 3
ocedure for sources in air above 6 GH | Ž | | Calibration date: | January 18, 2 | 022 | | | he measurements and the unce | rtainties with confidence | national standards, which realize the physical units on the probability are given on the following pages and a ratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and | re part of the certificate. | | rimary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Reference Probe EUmmWV3
DAE4ip | SN: 9374
SN: 1602 | 2021-12-21(No. EUmmWV3-9374_Dec21)
2021-06-25 (No. DAE4ip-1602_Jun21) | Dec-22
Jun-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | Name | | | | Calibrated by: | Name
Leif Klysner | Function | Signature | | and of | Lon Myshol | Laboratory Technician | Seef The | | pproved by: | Sven Kühn | Deputy Manager | CON | | his calibration certificate shall n | ot be reproduced excer | ot in full without written approval of the laboratory. | Issued: January 26, 2022 | S C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary CW Continuous wave ## Calibration is Performed According to the Following Standards - Internal procedure QA CAL-45-5Gsources - IEC TR 63170 ED1, "Measurement procedure for the evaluation of power density related to human exposure to radio frequency fields from wireless communication devices operating between 6 GHz and 100 GHz", January 2018 ### Methods Applied and Interpretation of Parameters - Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange. - Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz: The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections. - Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn. - E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn. - Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation. ### Calibrated Quantity Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: 5G-Veri10-1020_Jan22 Page 2 of 7 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | cDASY6 Module mmWave | V2.4 | |--------------------------------|----------------------|------| | Phantom | 5G Phantom | | | Distance Horn Aperture - plane | 10 mm | | | XY Scan Resolution | dx, dy = 7.5 mm | | | Number of measured planes | 2 (10mm, 10mm + λ/4) | | | Frequency | 10 GHz ± 10 MHz | | ## Calibration Parameters, 10 GHz Circular Averaging | Distance Horn Aperture
to Measured Plane | Prad¹
(mW) | Max E-field
(V/m) | Uncertainty
(k = 2) | Avg (psPD
psPD | er Density
n+, psPDtot+,
mod+)
//m ²) | Uncertainty
(k = 2) | |---|---------------|----------------------|------------------------|-------------------|--|------------------------| | | | | | 1 cm ² | 4 cm ² | | | 10 mm | 86.1 | 149 | 1.27 dB | 55.0 | 51.7 | 1.28 dB | **Square Averaging** | Distance Horn Aperture
to Measured Plane | Prad¹
(mW) | Max E-field
(V/m) | Uncertainty
(k = 2) | Avg (psPDi
psPDi | er Density
n+, psP0tot+,
mod+)
/m²) | Uncertainty
(k = 2) | |---|---------------|----------------------|------------------------|---------------------|--|------------------------| | | | | | 1 cm ² | 4 cm ² | | | 10 mm | 86.1 | 149 | 1.27 dB | 55.0 | 51.5 | 1.28 dB | Certificate No: 5G-Veri10-1020_Jan22 ¹ Assessed ohmic and mismatch loss plus numerical offset: 0.55 dB ## Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) ## **Device under Test Properties** | Name, Manufacturer | Dimensions [mm] | IMEI | DUT Type | |-------------------------------|-----------------------|----------|----------| | 5G Verification Source 10 GHz | 100.0 x 100.0 x 172.0 | SN: 1020 | | | Phantom Section | Position, Test Distance
[mm] | Band | Group, | Frequency [MHz],
Channel Number | Conversion Factor | |-----------------|---------------------------------|-----------------|--------|------------------------------------|-------------------| | 5G - | 10.0 mm | Validation band | cw | 10000.0, | 1.0 | | | | | | 10000 | | ### **Hardware Setup** | Phantom | Medium | Probe, Calibration Date | DAE, Calibration Date | |-----------------------|--------|----------------------------|-----------------------| | mmWave Phantom - 1002 | Air | EUmmWV3 - SN9374_F1-55GHz, | DAE4ip Sn1602, | | | | 2021-12-21 | 2021-06-25 | #### Scan Setup | | 5G Scan | | 5G Scan | |---------------------|---------------|------------------------------|-------------------| | Grid Extents [mm] | 120.0 x 120.0 | Date | 2022-01-18, 16:30 | | Grid Steps [lambda] | 0.25 x 0.25 | Avg. Area [cm ²] | 1.00 | | Sensor Surface [mm] | 10.0 | psPDn+ [W/m²] | 54.8 | | MAIA | MAIA not used | psPDtot+ [W/m ²] | 55.0 | | | | psPDmod+ [W/m²] | 55.2 | | | | E _{max} [V/m] | 149 | | | | Power Drift [dB] | 0.02 | Measurement Results ## Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) ### **Device under Test Properties** | Name, Manufacturer | Dimensions [mm] | IMEI | DUT Type | | |-------------------------------|-----------------------|----------|----------|--| | 5G Verification Source 10 GHz | 100.0 x 100.0 x 172.0 | SN: 1020 | | | #### **Exposure Conditions** | Phantom Section | Position, Test Distance
[mm] | Band | Group, | Frequency [MHz],
Channel Number | Conversion Factor | |-----------------|---------------------------------|-----------------|--------|------------------------------------|-------------------| | 5G - | 10.0 mm | Validation band | cw | 10000.0, | 1.0 | ### **Hardware Setup** | Phantom | Medium | Probe, Calibration Date | DAE, Calibration Date | |-----------------------|--------|----------------------------|-----------------------| | mmWave Phantom - 1002 | Air | EUmmWV3 - SN9374_F1-55GHz, | DAE4ip Sn1602, | | | | 2021-12-21 | 2021-06-25 | #### Scan Setun | Scan Setup | | Measurement Results | | |---------------------|---------------|------------------------------|-------------------| | | 5G Scan | | 5G Scan | | Grid Extents [mm] | 120.0 x 120.0 | Date | 2022-01-18, 16:30 | | Grid Steps [lambda] | 0.25 x 0.25 | Avg. Area [cm ²] | 4.00 | | Sensor Surface [mm] | 10.0 | psPDn+ [W/m²] | 51.5 | | MAIA | MAIA not used | psPDtot+ [W/m²] | 51.7 | | | | psPDmod+ [W/m²] | 51.9 | | | | E _{max} [V/m] | 149 | | | | Power Drift [dB] | 0.02 | | | | | | ## Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) ## **Device under Test Properties** | Name, Manufacturer | Dimensions [mm] | IMEI | DUT Type | |-------------------------------|-----------------------|----------|----------| | 5G Verification Source 10 GHz | 100.0 x 100.0 x 172.0 | SN: 1020 | | #### **Exposure Conditions** | Phantom Section | Position, Test Distance
[mm] | Band | Group, | Frequency [MHz],
Channel Number | Conversion Factor | |-----------------|---------------------------------|-----------------|--------|------------------------------------|-------------------| | 5G - | 10.0 mm | Validation band | CW | 10000.0, | 1.0 | ### **Hardware Setup** | Phantom | Medium | Probe, Calibration Date | DAE, Calibration Date | |-----------------------|--------|----------------------------|-----------------------| | mmWave Phantom - 1002 | Air | EUmmWV3 - SN9374_F1-55GHz, | DAE4ip Sn1602, | | | | 2021-12-21 | 2021-06-25 | #### Scan Setup | | Measurement Results | | |---------------|--------------------------------------|--| | 5G Scan | | 5G Scan | | 120.0 x 120.0 | Date | 2022-01-18, 16:30 | | 0.25 x 0.25 | Avg. Area [cm ²] | 1.00 | | 10.0 | psPDn+ [W/m²] | 54.8 | | MAIA not used | psPDtot+ [W/m²] | 55.0 | | | psPDmod+ [W/m²] | 55.2 | | | E _{max} [V/m] | 149 | | | Power Drift [dB] | 0.02 | | | 120.0 x 120.0
0.25 x 0.25
10.0 | 120.0 x 120.0 Date 0.25 x 0.25 Avg. Area [cm²] 10.0 psPDn+ [W/m²]
MAIA not used psPDtot+ [W/m²] psPDmod+ [W/m²] E _{max} [V/m] | ## Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) #### **Device under Test Properties** | Name, Manufacturer | Dimensions [mm] | IMEI | DUT Type | |-------------------------------|-----------------------|----------|----------| | 5G Verification Source 10 GHz | 100.0 x 100.0 x 172.0 | SN: 1020 | | #### **Exposure Conditions** | Phantom Section | Position, Test Distance
[mm] | Band | Group, | Frequency [MHz],
Channel Number | Conversion Factor | |-----------------|---------------------------------|-----------------|--------|------------------------------------|-------------------| | 5G - | 10.0 mm | Validation band | CW | 10000.0, | 1.0 | #### Hardware Setup | Phantom | Medium | Probe, Calibration Date | DAE, Calibration Date | |-----------------------|--------|--|------------------------------| | mmWave Phantom - 1002 | Air | EUmmWV3 - SN9374_F1-55GHz,
2021-12-21 | DAE4ip Sn1602,
2021-06-25 | #### Scan Setup | Jean Jetup | | ivieasurement Results | | |---------------------|---------------|------------------------|-------------------| | | 5G Scan | | 5G Scan | | Grid Extents [mm] | 120.0 x 120.0 | Date | 2022-01-18, 16:30 | | Grid Steps [lambda] | 0.25 x 0.25 | Avg. Area [cm²] | 4.00 | | Sensor Surface [mm] | 10.0 | psPDn+ [W/m²] | 51.3 | | MAIA | MAIA not used | psPDtot+ [W/m²] | 51.5 | | | | psPDmod+ [W/m²] | 51.7 | | | | E _{max} [V/m] | 149 | | | | Power Drift [dB] | 0.02 | | | | | | Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Issued: January 26, 2022 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Accreditation No.: SCS 0108 S C S Certificate No: DAE4-316_Jan22 | CALIBRATION (| CERTIFICATE | | | |---|---|---|--| | Object | DAE4 - SD 000 D | 004 BM - SN: 316 | | | Calibration procedure(s) | QA CAL-06.v30
Calibration proce | dure for the data acquisition elec | ctronics (DAE) | | Calibration date: | January 26, 2022 | | | | All calibrations have been conducted Calibration Equipment used (M& | cted in the closed laboratory TE critical for calibration) | nal standards, which realize the physical un
obability are given on the following pages an
r facility: environment temperature (22 \pm 3)°(| nd are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Keithley Multimeter Type 2001 | SN: 0810278 | 31-Aug-21 (No:31368) | Aug-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit
Calibrator Box V2.1 | SE UWS 053 AA 1001
SE UMS 006 AA 1002 | 24-Jan-22 (in house check)
24-Jan-22 (in house check) | In house check: Jan-23
In house check: Jan-23 | | Calibrated by: | Name
Dominique Steffen | Function | Signature | | oundated by. | Dominique Stellen | Laboratory Technician | ell) | | Approved by: | Sven Kühn | Deputy Manager | i V. A lum | | | | | 1 N. 13 MMM R | Certificate No: DAE4-316_Jan22 Page 1 of 5 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 ### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ## Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-316_Jan22 Page 2 of 5 ## **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = 6.1µV, full range = -100...+300 mV Low Range: 1LSB = 61nV . full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | x | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.354 ± 0.02% (k=2) | 404.471 ± 0.02% (k=2) | 404.346 ± 0.02% (k=2) | | Low Range | 3.94615 ± 1.50% (k=2) | 3.94156 ± 1.50% (k=2) | 3.93735 ± 1.50% (k=2) | ## **Connector Angle** | Connector Angle to be used in DASY system | 352.0 ° ± 1 ° | |---|---------------| |---|---------------| Certificate No: DAE4-316_Jan22 ## Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Inpu | t 200037.31 | 3.07 | 0.00 | | Channel X + Inpu | 20009.91 | 4.11 | 0.02 | | Channel X - Input | -20006.43 | -0.58 | 0.00 | | Channel Y + Inpu | 200038.18 | -0.84 | -0.00 | | Channel Y + Input | 20009.41 | 3.71 | 0.02 | | Channel Y - Input | -20010.93 | -4.94 | 0.02 | | Channel Z + Input | 200036.49 | -2.45 | -0.00 | | Channel Z + Input | 20008.57 | 2.91 | 0.01 | | Channel Z - Input | -20011.15 | -5.09 | 0.03 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.95 | -0.21 | -0.01 | | Channel X + Input | 201.10 | -0.06 | -0.03 | | Channel X - Input | -199.24 | -0.42 | 0.21 | | Channel Y + Input | 2001.03 | 0.08 | 0.00 | | Channel Y + Input | 199.86 | -1.15 | -0.57 | | Channel Y - Input | -200.38 | -1.55 | 0.78 | | Channel Z + Input | 2000.94 | 0.03 | 0.00 | | Channel Z + Input | 200.21 | -0.77 | -0.38 | | Channel Z - Input | -200.14 | -1.20 | 0.60 | ## 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 5.76 | 4.39 | | | - 200 | -4.88 | -5.46 | | Channel Y | 200 | -1.81 | -1.86 | | | - 200 | -1.60 | -0.62 | | Channel Z | 200 | -15.50 | -15.36 | | | - 200 | 12.60 | 13.48 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | -1.34 | -1.75 | | Channel Y | 200 | 5.21 | | 0.26 | | Channel Z | 200 | 7.15 | 2.59 | | 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16021 | 15259 | | Channel Y | 16059 | 16229 | | Channel Z | 16145 | 17266 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MO | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.28 | -0.78 | 1.30 | 0.38 | | Channel Y | -0.63 | -1.59 | 0.33 | 0.37 | | Channel Z | -0.56 | -1.52 | 0.29 | 0.38 | ## 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical
values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) Sporton Client The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: DAE4-656_Jan22 Accreditation No.: SCS 0108 C | Object | DAE4 - SD 000 D | 004 BM - SN: 656 | | |--|--|---|---| | Calibration procedure(s) | QA CAL-06.v30
Calibration proces | dure for the data acquisition elec | ctronics (DAE) | | Calibration date: | January 19, 2022 | | | | rne measurements and the unce | rtainties with confidence pro | nal standards, which realize the physical un
obability are given on the following pages ar
r facility: environment temperature (22 ± 3)°(| d are part of the certificate. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Keithley Multimeter Type 2001 | SN: 0810278 | 24 Aug 04 (Na-04000) | | | The state of s | 8/ | 31-Aug-21 (No:31368) | Aug-22 | | Secondary Standards | ID# | | | | | 88
1802 | Check Date (in house) 07-Jan-21 (in house check) | Scheduled Check In house check: Jan-22 In house check: Jan-22 | | Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 | ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 | Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check) | Scheduled Check
In house check: Jan-22 | | Secondary Standards Auto DAE Calibration Unit Calibrator Box V2.1 | ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 | Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check) | Scheduled Check In house check: Jan-22 In house check: Jan-22 Signature | | Secondary Standards
Auto DAE Calibration Unit | ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 | Check Date (in house) 07-Jan-21 (in house check) 07-Jan-21 (in house check) | Scheduled Check In house check: Jan-22 In house check: Jan-22 | Certificate No: DAE4-656_Jan22 Page 1 of 5 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ## Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ## Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-656_Jan22 Page 2 of 5 ## DC Voltage Measurement A/D - Converter Resolution nominal High Range: $1LSB = 6.1 \mu V$, full range = -100...+300 mVLow Range: 1LSB = 61 nV, full range = -1.....+3 mVDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | X | Y | 7 | |-----------------------|-----------------------|------------------------| | 404.146 ± 0.02% (k=2) | 404.648 ± 0.02% (k=2) | 404.915 ± 0.02% (k=2) | | | | | | | 404.146 ± 0.02% (k=2) | 404 146 + 0.000/ (1-0) | ## **Connector Angle** | Onnector Angle to be weed in DAGY | | |---|---------------| | Connector Angle to be used in DASY system | 314.0 ° ± 1 ° | | | 014.0 ±1 | # Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 200022.45 | -13.82 | | | Channel X + Input | 20007.00 | 1.41 | -0.01 | | Channel X - Input | -20001.54 | 4.11 | -0.02 | | Channel Y + Input | 200026.91 | -4.48 | -0.02 | | Channel Y + Input | 20005.28 | -0.27 | -0.00 | | Channel Y - Input | -20003.83 | 1.96 | -0.00 | | Channel Z + Input | 200029.93 | -1.35 | -0.00 | | Channel Z + Input | 20003.01 | -2.42 | -0.00 | | Channel Z - Input | -20004.79 | 1.11 | -0.01 | | Low Range | Reading (µV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.48 | -0.94 | -0.05 | | Channel X + Input | 200.75 | -0.51 | 242304241 | | Channel X - Input | -199.52 | -0.92 | -0.26 | | Channel Y + Input | 2000.84 | -0.41 | 0.46 | | Channel Y + Input | 200.34 | -0.82 | -0.02 | | Channel Y - Input | -199.90 | -1,20 | -0.41 | | Channel Z + Input | 2000.73 | -0.47 | 0.60 | | Channel Z + Input | 200.88 | -0.47 | -0.02 | | Channel Z - Input | | | -0.11 | | - mpat | -199.73 | -0.97 | 0.49 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 0.76 | -0.98 | | | - 200 | 1.20 | -0.19 | | Channel Y | 200 | -1.51 | -1.27 | | | - 200 | -1.02 | -0.82 | | Channel Z | 200 | 5.72 | 5.16 | | | - 200 | -6.32 | -6.81 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------
--| | Channel X | 200 | | -2.59 | -1.49 | | Channel Y | 200 | 6.74 | 2.00 | The Control of Co | | Channel Z | 200 | 7.04 | 3.93 | -0.64 | 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15632 | 16011 | | Channel Y | 15859 | 16203 | | Channel Z | 15660 | 15027 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | Waster Transfer | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------------|--------------|------------------|------------------|---------------------| | Channel X | 0.59 | -0.72 | 2.07 | 0.58 | | Channel Y | -0.12 | -1.56 | 1.69 | 0.60 | | Channel Z | -0.13 | -1.55 | 1.01 | 0.51 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values Alarm Level (VDC) | | | |----------------------------------|------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss ## IMPORTANT NOTICE ## **USAGE OF THE DAE4** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures**: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. **DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. ## Important Note: Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. ## Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. ## Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Accreditation No.: SCS 0108 Certificate No: DAE4-699_Feb22 | Object | DAE4 - SD 000 D | 004 BO - SN: 699 | | |---|--|--|--| | Calibration procedure(s) | QA CAL-06.v30
Calibration proces | dure for the data acquisition elec | ctronics (DAE) | | Calibration date: | February 24, 202 | 2 | | | ne measurements and the unc | ertainties with confidence pro
ucted in the closed laboratory | nal standards, which realize the physical unobability are given on the following pages are facility: environment temperature (22 \pm 3)% | nd are part of the certificate. | | rampration Edgibilient asea (into | ornical for campiation) | | | | | M1 404-604 | Cal Data (Cortificate No.) | | | rimary Standards | ID#
SN: 0810278 | Cal Date (Certificate No.)
31-Aug-21 (No:31368) | Scheduled Calibration | | rimary Standards
eithley Multimeter Type 2001 | ID #
SN: 0810278 | 31-Aug-21 (No:31368) | Aug-22 | | rimary Standards eithley Multimeter Type 2001 econdary Standards uto DAE Calibration Unit | ID# | | | | Primary Standards Ceithley Multimeter Type 2001 Gecondary Standards Buto DAE Calibration Unit Calibrator Box V2.1 | ID #
SN: 0810278
ID #
SE UWS 053 AA 1001 | 31-Aug-21 (No:31368) Check Date (in house) 24-Jan-22 (in house check) 24-Jan-22 (in house check) | Aug-22 Scheduled Check In house check: Jan-23 In house check: Jan-23 | | rimary Standards Eeithley Multimeter Type 2001 Eecondary Standards uto DAE Calibration Unit | ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 | 31-Aug-21 (No:31368) Check Date (in house) 24-Jan-22 (in house check) | Aug-22 Scheduled Check In house check: Jan-23 In house check: Jan-23 | | eithley Multimeter Type 2001 econdary Standards uto DAE Calibration Unit alibrator Box V2.1 | ID # SN: 0810278 ID # SE UWS 053 AA 1001 SE UMS 006 AA 1002 | 31-Aug-21 (No:31368) Check Date (in house) 24-Jan-22 (in house check) 24-Jan-22 (in house check) | Aug-22 Scheduled Check In house check: Jan-23 In house check: Jan-23 | Certificate No: DAE4-699_Feb22 Page 1 of 5 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ## Methods Applied and Interpretation of Parameters - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix
contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-699_Feb22 Page 2 of 5 # DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = 6.1µV, full range = -100...+300 mV full range = -1......+3mV Low Range: 1LSB = 61nV, DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|--| | High Range | 404.729 ± 0.02% (k=2) | 403.370 ± 0.02% (k=2) | 404.543 ± 0.02% (k=2) | | Low Range | 3.93275 ± 1.50% (k=2) | 3.95092 ± 1.50% (k=2) | A CONTRACTOR OF THE STATE TH | ## **Connector Angle** | Connector Angle to be used in DASY system | 168.5 ° ± 1 ° | |---|---------------| | | | ## Appendix (Additional assessments outside the scope of SCS0108) 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199994.75 | 1.20 | 0.00 | | Channel X + Input | 19999.74 | -1.76 | -0.01 | | Channel X - Input | -19997.90 | 3.89 | -0.02 | | Channel Y + Input | 199993.31 | 0.03 | 0.00 | | Channel Y + Input | 19997.29 | -4.23 | -0.02 | | Channel Y - Input | -20002.03 | -0.16 | 0.00 | | Channel Z + Input | 199998.79 | 5.53 | 0.00 | | Channel Z + Input | 19998.77 | -2.67 | -0.01 | | Channel Z - Input | -20000.98 | 0.97 | -0.00 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.10 | -0.73 | -0.04 | | Channel X + Input | 201.39 | 0.22 | 0.11 | | Channel X - Input | -198.44 | 0.27 | -0.13 | | Channel Y + Input | 2000.39 | -0.37 | -0.02 | | Channel Y + Input | 201.37 | 0.21 | 0.10 | | Channel Y - Input | -199.76 | -0.90 | 0.45 | | Channel Z + Input | 2001.24 | 0.53 | 0.03 | | Channel Z + Input | 200.72 | -0.31 | -0.16 | | Channel Z - Input | -199.33 | -0.47 | 0.24 | ## 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | -3.03 | -3.58 | | | - 200 | 4.76 | 3.52 | | Channel Y | 200 | 21.88 | 22.22 | | | - 200 | -24.02 | -24.12 | | Channel Z | 200 | 8.79 | 8.30 | | | - 200 | -8.42 | -9.05 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (µV) | Channel Z (µV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | 340 | -2.17 | -2.32 | | Channel Y | 200 | 7.46 | | -0.80 | | Channel Z | 200 | 4.04 | 5.64 | -0.60 | 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 16101 | 15333 | | Channel Y | 16429 | 16302 | | Channel Z | 16296 | 16248 | 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (µV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | 0.96 | -0.27 | 2.15 | 0.40 | | Channel Y | -0.83 | -2.49 | 0.64 | 0.59 | | Channel Z | 0.23 | -1.54 | 2.09 | 0.51 | 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 | Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signer The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Accreditation No.: SCS 0108 Certificate No: DAE4-853 Jul22 | CALI | RD/ | TIC | JUL C | POT | TELL | OV. | TE | |------|-----|------|-------|-----|-------|-----|----| | UMLI | DIL | 1116 | JIM C | | 11.11 | UM | | Object DAE4 - SD 000 D04 BM - SN: 853 Calibration procedure(s) QA CAL-06.v30 Calibration procedure for the data acquisition electronics (DAE) Calibration date: July 20, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|--------------------|----------------------------|------------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 31-Aug-21 (No:31368) | Aug-22 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Auto DAE Calibration Unit | SE UWS 053 AA 1001 | 24-Jan-22 (in house check) | In house check: Jan-23 | | Calibrator Box V2.1 | SE UMS 006 AA 1002 | 24-Jan-22 (in house check) | In house check: Jan-23 | Name Function Signature Calibrated by: Adrian Gehring Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: July 20, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE4-853_Jul22 Page 1 of 5 ## Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the
signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ## Methods Applied and Interpretation of Parameters DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. Certificate No: DAE4-853_Jul22 Page 2 of 5 ## **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = $6.1\mu V$, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | x | Υ | z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 402.642 ± 0.02% (k=2) | 403.305 ± 0.02% (k=2) | 403.461 ± 0.02% (k=2) | | Low Range | 3.95597 ± 1.50% (k=2) | 3.96656 ± 1.50% (k=2) | 3.96633 ± 1.50% (k=2) | ## **Connector Angle** | Connector Angle to be used in DASY system | 135.0 ° ± 1 ° | |---|---------------| |---|---------------| Certificate No: DAE4-853_Jul22