

## **FCC - TEST REPORT**

Report Number : **709502405780-00C** Date of Issue: August 30, 2024

Model : Refer to page 4

Product Type : Acoustic Imaging Camera

Applicant : FOTRIC INC.

Address : No. 14, Lane 2500, Xiupu Road, Pudong, 201201 Shanghai,

PEOPLE'S REPUBLIC OF CHINA

Manufacturer : FOTRIC INC.

Address : No. 14, Lane 2500, Xiupu Road, Pudong, 201201 Shanghai,

PEOPLE'S REPUBLIC OF CHINA

Test Result : ■ Positive □ Negative

Total pages including Appendices



TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.



# 1 Table of Contents

| 1   | Ta | able of Contents                              | 2  |
|-----|----|-----------------------------------------------|----|
| 2   | R  | Report Modification Record                    | 3  |
| 3   | D  | Details about the Test Laboratory             | 3  |
| 4   | D  | Description of the Equipment under Test       | 4  |
| 5   | Sı | Summary of Test Standards                     | 8  |
| 6   | Sı | Summary of Test Results                       | 9  |
| 7   | G  | General Remarks                               | 10 |
| 8   | Te | est Setups                                    | 11 |
| 9   | S  | Systems test configuration                    | 14 |
| 10  |    | Technical Requirement                         | 15 |
| 10. | .1 | 1 Conducted Emission                          | 15 |
| 10. | .2 | 2 Conducted peak output power                 | 20 |
| 10. | .3 | 3 6dB bandwidth                               | 24 |
| 10. | .4 | Power spectral density                        | 26 |
| 10. | .5 | 5 Spurious RF conducted emissions             | 28 |
| 10. | .6 | Band edge                                     | 32 |
| 10. | .7 | 7 Spurious radiated emissions for transmitter | 35 |
| 11  |    | Test Equipment List                           | 42 |
| 12  |    | System Measurement Uncertainty                | 43 |
| 13  |    | Photographs of Test Set-ups                   | 44 |
| 14  |    | Photographs of EUT                            | 44 |



# 2 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

| Issue            | Description of Change | Date of Issue |
|------------------|-----------------------|---------------|
| 709502405780-00C | First Issue           | 08/30/2024    |

## 3 Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

No.16 Lane, 1951 Du Hui Road,

Shanghai 201108,

P.R. China

Test Firm FCC

Registration Number:

820234

Designation

number:

CN1183

IC Company

31668

Number:

CAB identifier: CN0101

Telephone:

+86 21 6141 0123

Fax:

+86 21 6140 8600



# 4 Description of the Equipment under Test

Product: Acoustic Imaging Camera

Model no.:

| Fotric AC80   | Fotric 450 Pro | Fotric AC60    | Fotric H0      |
|---------------|----------------|----------------|----------------|
| Fotric AC81   | Fotric 451 Pro | Fotric AC61    | Fotric H1      |
| Fotric AC82   | Fotric 452 Pro | Fotric AC62    | Fotric H2      |
| Fotric AC83   | Fotric 453 Pro | Fotric AC63    | Fotric H3      |
| Fotric AC84   | Fotric 454 Pro | Fotric AC64    | Fotric H4      |
| Fotric AC85   | Fotric 455 Pro | Fotric AC65    | Fotric H5      |
| Fotric AC86   | Fotric 456 Pro | Fotric AC66    | Fotric H6      |
| Fotric AC87   | Fotric 457 Pro | Fotric AC67    | Fotric H7      |
| Fotric AC88   | Fotric 458 Pro | Fotric AC68    | Fotric H8      |
| Fotric AC89   | Fotric 459 Pro | Fotric AC69    | Fotric H9      |
| Fotric H0pLus | Fotric H0+     | Fotric Fac30FH | Fotric TD0     |
| Fotric H1pLus | Fotric H1+     | Fotric Fac31FH | Fotric TD1     |
| Fotric H2pLus | Fotric H2+     | Fotric Fac32FH | Fotric TD2     |
| Fotric H3pLus | Fotric H3+     | Fotric Fac33FH | Fotric TD3     |
| Fotric H4pLus | Fotric H4+     | Fotric Fac34FH | Fotric TD4     |
| Fotric H5pLus | Fotric H5+     | Fotric Fac35FH | Fotric TD5     |
| Fotric H6pLus | Fotric H6+     | Fotric Fac36FH | Fotric TD6     |
| Fotric H7pLus | Fotric H7+     | Fotric Fac37FH | Fotric TD7     |
| Fotric H8pLus | Fotric H8+     | Fotric Fac38FH | Fotric TD8     |
| Fotric H9pLus | Fotric H9+     | Fotric Fac39FH | Fotric TD9     |
| Fotric EE0HE  | Fotric EE0DT   | Fotric H0Pro   | Fotric AC80-Ex |
| Fotric EE1HE  | Fotric EE1DT   | Fotric H1Pro   | Fotric AC81-Ex |
| Fotric EE2HE  | Fotric EE2DT   | Fotric H2Pro   | Fotric AC82-Ex |
| Fotric EE3HE  | Fotric EE3DT   | Fotric H3Pro   | Fotric AC83-Ex |
| Fotric EE4HE  | Fotric EE4DT   | Fotric H4Pro   | Fotric AC84-Ex |
| Fotric EE5HE  | Fotric EE5DT   | Fotric H5Pro   | Fotric AC85-Ex |
| Fotric EE6HE  | Fotric EE6DT   | Fotric H6Pro   | Fotric AC86-Ex |
| Fotric EE7HE  | Fotric EE7DT   | Fotric H7Pro   | Fotric AC87-Ex |
| Fotric EE8HE  | Fotric EE8DT   | Fotric H8Pro   | Fotric AC88-Ex |
| Fotric EE9HE  | Fotric EE9DT   | Fotric H9Pro   | Fotric AC89-Ex |
| Fotric TD0pro | Fotric TD0plus | Fotric TD0+    |                |
| Fotric TD1pro | Fotric TD1plus | Fotric TD1+    |                |
| Fotric TD2pro | Fotric TD2plus | Fotric TD2+    |                |
| Fotric TD3pro | Fotric TD3plus | Fotric TD3+    |                |
| Fotric TD4pro | Fotric TD4plus | Fotric TD4+    |                |
| Fotric TD5pro | Fotric TD5plus | Fotric TD5+    |                |
| Fotric TD6pro | Fotric TD6plus | Fotric TD6+    | _              |
| Fotric TD7pro | Fotric TD7plus | Fotric TD7+    | _              |
| Fotric TD8pro | Fotric TD8plus | Fotric TD8+    |                |
| 1             |                | 1              |                |

FCC ID: 2AZTCFALCONAC

Options and accessories: NA

Rating: DC 7.4V for Acoustic Imaging Camera

Fotric TD9pro

Input: AC 100-240V, 50/60Hz, Output DC 12V for adapter

Fotric TD9plus

Fotric TD9+

TÜV

RF Transmission For Bluetooth:2402~2480MHz

Frequency: For 2.4G Wi-Fi:802.11b/g/n-HT20: 2412~2462 MHz

802.11n-HT40: 2422~2452 MHz

For 5G Wi-Fi:5180~5240 MHz (U-NII-1)

5260~5320 MHz (U-NII-2A)

5500~5720 MHz (U-NII-2C)

5745~5825 MHz (U-NII-3)

No. of Operated Channel: 79 ch

### 79 channels for Bluetooth EDR

| 7 0 0110 |             | וטו טוט | elooli      | LDI |             |    |             |    |              |
|----------|-------------|---------|-------------|-----|-------------|----|-------------|----|--------------|
| Ch       | Fre<br>(MH) | Ch      | Fre<br>(MH) | Ch  | Fre<br>(MH) | Ch | Fre<br>(MH) | Ch | Fre<br>(MHz) |
| 1        | 2402        | 17      | 2418        | 33  | 2434        | 49 | 2450        | 65 | 2466         |
| 2        | 2403        | 18      | 2419        | 34  | 2435        | 50 | 2451        | 66 | 2467         |
| 3        | 2404        | 19      | 2420        | 35  | 2436        | 51 | 2452        | 67 | 2468         |
| 4        | 2405        | 20      | 2421        | 36  | 2437        | 52 | 2453        | 68 | 2469         |
| 5        | 2406        | 21      | 2422        | 37  | 2438        | 53 | 2454        | 69 | 2470         |
| 6        | 2407        | 22      | 2423        | 38  | 2439        | 54 | 2455        | 70 | 2471         |
| 7        | 2408        | 23      | 2424        | 39  | 2440        | 55 | 2456        | 71 | 2472         |
| 8        | 2409        | 24      | 2425        | 40  | 2441        | 56 | 2457        | 72 | 2473         |
| 9        | 2410        | 25      | 2426        | 41  | 2442        | 57 | 2458        | 73 | 2474         |
| 10       | 2411        | 26      | 2427        | 42  | 2443        | 58 | 2459        | 74 | 2475         |
| 11       | 2412        | 27      | 2428        | 43  | 2444        | 59 | 2460        | 75 | 2476         |
| 12       | 2413        | 28      | 2429        | 44  | 2445        | 60 | 2461        | 76 | 2477         |
| 13       | 2414        | 29      | 2430        | 45  | 2446        | 61 | 2462        | 77 | 2478         |
| 14       | 2415        | 30      | 2431        | 46  | 2447        | 62 | 2463        | 78 | 2479         |
| 15       | 2416        | 31      | 2432        | 47  | 2448        | 63 | 2464        | 79 | 2480         |
| 16       | 2417        | 32      | 2433        | 48  | 2449        | 64 | 2465        |    |              |

#### 40 channels for Bluetooth 4.2 BLE

| TO CHAIN CIO TO BIGGGOGN TIE BEE |          |    |          |    |          |    |          |
|----------------------------------|----------|----|----------|----|----------|----|----------|
| Ch                               | Fre(MHz) | Ch | Fre(MHz) | Ch | Fre(MHz) | Ch | Fre(MHz) |
| 0                                | 2402     | 10 | 2422     | 20 | 2442     | 30 | 2462     |
| 1                                | 2404     | 11 | 2424     | 21 | 2444     | 31 | 2464     |
| 2                                | 2406     | 12 | 2426     | 22 | 2446     | 32 | 2466     |
| 3                                | 2408     | 13 | 2428     | 23 | 2448     | 33 | 2468     |
| 4                                | 2410     | 14 | 2430     | 24 | 2450     | 34 | 2470     |
| 5                                | 2412     | 15 | 2432     | 25 | 2452     | 35 | 2472     |
| 6                                | 2414     | 16 | 2434     | 26 | 2454     | 36 | 2474     |
| 7                                | 2416     | 17 | 2436     | 27 | 2456     | 37 | 2476     |
| 8                                | 2418     | 18 | 2438     | 28 | 2458     | 38 | 2478     |
| 9                                | 2420     | 19 | 2440     | 29 | 2460     | 39 | 2480     |

### 2.4GHz WIFI: 11 for 802.11b/802.11g/802.11(H20); 7 for 802.11n(HT40)

|    | 7 101 002.1111(11140) |        |          |    |               |    |          |  |
|----|-----------------------|--------|----------|----|---------------|----|----------|--|
|    | 802.                  | 11b/g/ | n(HT20)  |    | 802.11n(HT40) |    |          |  |
| Ch | Fre(MHz)              | Ch     | Fre(MHz) | Ch | Fre(MHz)      | Ch | Fre(MHz) |  |
| 1  | 2412                  | 7      | 2442     | 3  | 2422          | 8  | 2447MHz  |  |
| 2  | 2417                  | 8      | 2447     | 4  | 2427          | 9  | 2452MHz  |  |
| 3  | 2422                  | 9      | 2452     | 5  | 2432          |    |          |  |
| 4  | 2427                  | 10     | 2457     | 6  | 2437          |    |          |  |
| 5  | 2432                  | 11     | 2462     | 7  | 2442          |    |          |  |
| 6  | 2437                  |        |          |    |               |    |          |  |



### 5180~5240 MHz (U-NII-1):

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|
| 36      | 5180            | 44      | 5220            |
| 40      | 5200            | 48      | 5240            |

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|
| 38      | 5190            | 46      | 5230            |

1 channel is provided for 802.11ac (VHT80):

| Channel | Frequency (MHz) |
|---------|-----------------|
| 42      | 5210            |

### 5260~5320 MHz (U-NII-2A)

4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |  |
|---------|-----------------|---------|-----------------|--|
| 52      | 5260            | 60      | 5300            |  |
| 56      | 5280            | 64      | 5320            |  |

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

| Channel | Frequency (MHz) | Channel | Frequ | iency | (MHz) |
|---------|-----------------|---------|-------|-------|-------|
| 54      | 5270            | 62      | 5310  |       |       |

1 channel is provided for 802.11ac (VHT80):

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|
| 58      | 5290            |         |                 |

### 5500~5720 MHz (U-NII-2C)

12 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| Channel | Frequency (MHz) | Channel | Frequency(MHz) |
|---------|-----------------|---------|----------------|
| 100     | 5500            | 124     | 5620           |
| 104     | 5520            | 128     | 5640           |
| 108     | 5540            | 132     | 5660           |
| 112     | 5560            | 136     | 5680           |
| 116     | 5580            | 140     | 5700           |
| 120     | 5600            | 144     | 5720           |

6 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

| Channel | nel Frequency (MHz) Channel Fre |     | Frequency(MHz) |
|---------|---------------------------------|-----|----------------|
| 102     | 5510                            | 126 | 5630           |
| 110     | 5550                            | 134 | 5670           |
| 118     | 5590                            | 142 | 5710           |

3 channels are provided for 802.11ac (VHT80):

| Channel | Frequency (MHz) | Channel | Frequency(MHz) |
|---------|-----------------|---------|----------------|
| 106     | 5530            | 138     | 5690           |
| 122     | 5610            |         |                |

## 5745~5825 MHz (U-NII-3): Channel 149 - 165

5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|
| 149     | 5745            | 161     | 5805            |
| 153     | 5765            | 165     | 5825            |
| 157     | 5785            |         |                 |

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

| Channel | Frequency (MHz) | Channel | Frequency (MHz) |
|---------|-----------------|---------|-----------------|
| 151     | 5755            | 159     | 5795            |

1 channel is provided for 802.11ac (VHT80):

| Channel | Frequency (MHz) |
|---------|-----------------|
| 155     | 5755            |

Modulation: Bluetooth EDR FHSS: GFSK, π/4 DQPSK, 8DPSK

Bluetooth 4.2+BLE DHSS: GFSK

For Wi-Fi: Direct Sequence Spread Spectrum (DSSS) for 802.11b

Orthogonal Frequency Division Multiplexing (OFDM) for

802.11a/b/g/n/ac

Hardware Version: V01 Software Version: V6.2.0

Data speed: 1. Bluetooth EDR FHSS: 1Mbps, 2Mbps, 3Mbps

2. Bluetooth 4.2+BLE DHSS: 1Mbps

3. Wi-Fi: 11b 1 ~ 11Mbps,

11g/a 6 ~ 54Mbps, 11n HT20 6.5 ~ 72.2Mbps,

11n HT 40 13.5 ~ 150Mbps, 11ac VHT40 13.5 ~ 200Mbps, 11ac VHT80 29.3 ~ 433.3Mbps

Antenna Type: PIFA Antenna

Antenna Gain: 1.76dBi for 2.4GHz; 5.96dBi for 5GHz

Description of the EUT: The Equipment Under Test (EUT) is an Acoustic Imaging Camera

with Bluetooth and Wi-Fi Module. The EUT support Bluetooth EDR.

BLE function, Wi-Fi 2.4GHz and Wi-Fi 5GHz.

According to the client's declaration, all the models share the same schematic, hardware circuit, PCB layout, including RF parameters, except for the number of enabled microphone modules. We chose model Fotric H6 to perform all the tests and listed the worst data in this report. Only 2.4GHz BLE RF testing results were included in

this report.

Test sample no.: SHA-831405-2 (RF Conducted); SHA-831405-3 (RF Radiated)

The sample's mentioned in this report is/are submitted/ supplied/ manufactured by client. The laboratory therefore assumes no responsibility for accuracy of information on the brand name, model number, origin of manufacture, consignment or any information supplied.



# 5 Summary of Test Standards

| Test Standards        |                                   |  |  |  |
|-----------------------|-----------------------------------|--|--|--|
| FCC Part 15 Subpart C | PART 15 - RADIO FREQUENCY DEVICES |  |  |  |
| 10-1-2023 Edition     | Subpart C - Intentional Radiators |  |  |  |

All the test methods were according to KDB 558074 D01 15.247 Meas Guidance v05r02 Measurement Guidance and ANSI C63.10-2020.



# 6 Summary of Test Results

|                       | Technical Requiremen                        | nts     |        |             |      |             |
|-----------------------|---------------------------------------------|---------|--------|-------------|------|-------------|
| FCC Part 15 Subpart C |                                             |         |        |             |      |             |
| Test Condition        |                                             | Doggo   | Test   | Test Result |      |             |
| rest Condition        |                                             | Pages   | Site   | Pass        | Fail | N/A         |
| §15.207               | Conducted emission AC power port            | 15-19   | Site 1 |             |      |             |
| §15.247 (b) (3)       | Conducted peak output power                 | 20-23   | Site 1 |             |      |             |
| §15.247(a)(1)         | 20dB bandwidth                              |         |        |             |      | $\boxtimes$ |
| §15.247(a)(1)         | Carrier frequency separation                |         |        |             |      |             |
| §15.247(a)(1)(iii)    | Number of hopping frequencies               |         |        |             |      |             |
| §15.247(a)(1)(iii)    | Dwell Time                                  |         |        |             |      |             |
| §15.247(a)(2)         | 6dB bandwidth                               | 24-25   | Site 1 |             |      |             |
| §15.247(e)            | Power spectral density                      | 26-27   | Site 1 |             |      |             |
| §15.247(d)            | Spurious RF conducted emissions             | 28-31   | Site 1 |             |      |             |
| §15.247(d)            | Band edge                                   | 32-34   | Site 1 |             |      |             |
| §15.247(d) & §15.209  | Spurious radiated emissions for transmitter | 35-41   | Site 1 |             |      |             |
| §15.203               | Antenna requirement                         | See not | e 1    |             |      |             |

Remark 1: N/A – Not Applicable.

Note 1: The EUT uses a PIFA antenna, which gain is 1.76dBi for 2.4GHz and 5.96dBi for 5GHz. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.



## 7 General Remarks

### **Remarks**

This submittal(s) (test report) is intended for FCC ID: 2AZTCFALCONAC complies with Section 15.205,15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules.

This report in only for 2.4GHz BLE.

#### **SUMMARY:**

All tests according to the regulations cited on page 5 were

- Performed
- ☐ Not Performed

The Equipment under Test

- - Fulfills the general approval requirements.
- □ **Does not** fulfill the general approval requirements.

Sample Received Date: July 12, 2024

Testing Start Date: July 12, 2024

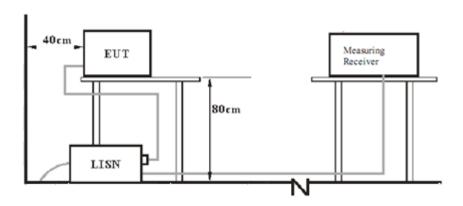
Testing End Date: August 16, 2024

-TÜV SÜD Certification and Testing (China) Co., Ltd. Shanghai Branch

Reviewed by:

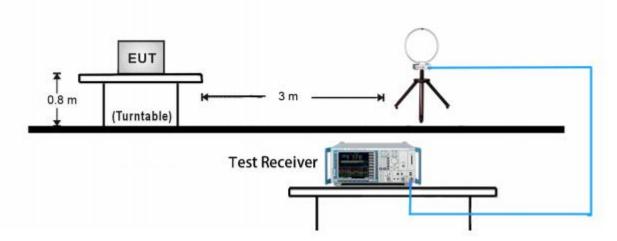
Prepared by:

Tested by:


Hui TONG Review Engineer Jiaxi XU Project Engineer

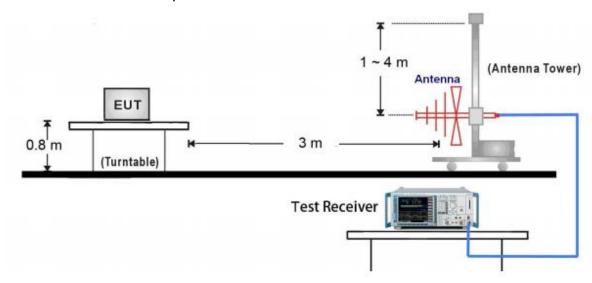
Cheng Huali Test Engineer




# 8 Test Setups

## 7.1 AC Power Line Conducted Emission test setups



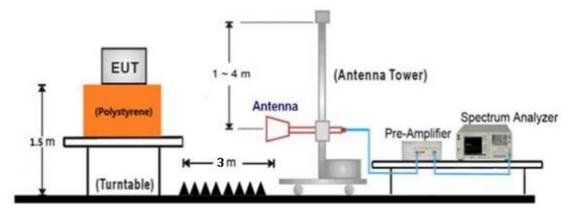

## 7.2 Radiated test setups

9kHz ~ 30MHz Test Setup:





# 30MHz ~ 1GHz Test Setup:




## 1GHz ~ 18GHz Test Setup:





## 18GHz ~ 25GHz Test Setup:



# 7.3 Conducted RF test setups





# 9 Systems test configuration

Auxiliary Equipment Used during Test:

| DESCRIPTION | MANUFACTURER | MODEL NO.(SHIELD) | S/N(LENGTH)     |
|-------------|--------------|-------------------|-----------------|
| Notebook    | Lenove       | E470              | PF-OU5TS7 17/09 |

Test software: QRCT.exe, which used to control the EUT in continues transmitting mode

The system was configured to channel 0, 19, and 39 for the test.

Test Mode Applicability and Tested Channel Detail:

| Mode | Tested<br>Channel | Data Rate<br>(Mbps) | Modulation | Index Value<br>(Power level setting) |
|------|-------------------|---------------------|------------|--------------------------------------|
|      | 1                 | 1                   | GFSK       | By manufacturer                      |
| BLE  | 19                | 1                   | GFSK       | By manufacturer                      |
|      | 39                | 1                   | GFSK       | By manufacturer                      |

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power.



## 10 Technical Requirement

## 10.1 Conducted Emission

#### **Test Method**

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

#### Limit

According to §15.207, conducted emissions limit as below:

| Frequency   | QP Limit               | AV Limit                                                       |                                                                                                                           |
|-------------|------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| MHz         | dΒμV                   | dΒμV                                                           |                                                                                                                           |
| 0.150-0.500 | 66-56*                 | 56-46*                                                         |                                                                                                                           |
| 0.500-5     | 56                     | 46                                                             |                                                                                                                           |
| 5-30        | 60                     | 50                                                             |                                                                                                                           |
|             | 0.150-0.500<br>0.500-5 | MHz     dBμV       0.150-0.500     66-56*       0.500-5     56 | MHz         dBμV         dBμV           0.150-0.500         66-56*         56-46*           0.500-5         56         46 |

Decreasing linearly with logarithm of the frequency



#### **Conducted Emission**

# 150k-30MHz Conducted Emission Test

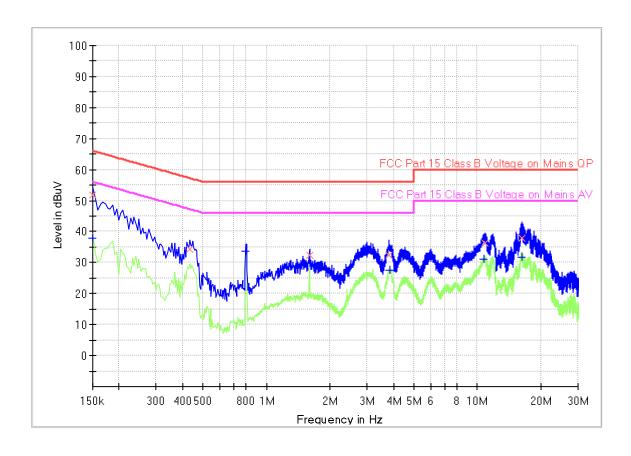
### **EUT Information**

EUT Name: Acoustic Imaging Camera

Model Fotric H6
Client: FOTRIC INC

Op Cond Power on, TX at 2480MHz, AC 120V/60Hz

Operator: Huali CHENG Standard FCC Part 15.207(a)


Comment: Phase L Sample No.: SHA-831405-2

# Scan Setup: Voltage with 2-Line-LISN pre [EMI conducted]

Hardware Setup: Voltage with 2-Line-LISN

Receiver: [ESR 3] Level Unit: dBuV

Subrange Step Size **Detectors** IF BW Meas. Time **Preamp** 9 kHz - 150 kHz 100 Hz PK+ 200 Hz 0.02 s0 dB 150 kHz - 30 MHz 4.5 kHz PK+: AVG 9 kHz 0.01 s0 dB





## **Final Result**

| Frequency | QuasiPeak | CAverage | Limit  | Margin | Meas.  | Bandwidth | Line | Corr. |
|-----------|-----------|----------|--------|--------|--------|-----------|------|-------|
| (MHz)     | (dBuV)    | (dBuV)   | (dBuV) | (dB)   | Time   | (kHz)     |      | (dB)  |
|           |           |          |        |        | (ms)   |           |      |       |
| 0.150000  |           | 38.02    | 56.00  | 17.98  | 1000.0 | 9.000     | L1   | 19.4  |
| 0.150000  | 51.79     | -        | 66.00  | 14.21  | 1000.0 | 9.000     | L1   | 19.4  |
| 0.433500  | 34.36     |          | 57.19  | 22.83  | 1000.0 | 9.000     | L1   | 19.5  |
| 0.798000  |           | 33.83    | 46.00  | 12.17  | 1000.0 | 9.000     | L1   | 19.5  |
| 1.599000  |           | 29.86    | 46.00  | 16.14  | 1000.0 | 9.000     | L1   | 19.5  |
| 1.599000  | 32.45     |          | 56.00  | 23.55  | 1000.0 | 9.000     | L1   | 19.5  |
| 3.817500  | 32.50     | -        | 56.00  | 23.50  | 1000.0 | 9.000     | L1   | 19.6  |
| 3.840000  |           | 27.50    | 46.00  | 18.50  | 1000.0 | 9.000     | L1   | 19.6  |
| 10.738500 |           | 31.16    | 50.00  | 18.84  | 1000.0 | 9.000     | L1   | 19.8  |
| 10.873500 | 36.25     | I        | 60.00  | 23.75  | 1000.0 | 9.000     | L1   | 19.8  |
| 16.188000 | 37.84     |          | 60.00  | 22.16  | 1000.0 | 9.000     | L1   | 20.1  |
| 16.300500 |           | 31.60    | 50.00  | 18.40  | 1000.0 | 9.000     | L1   | 20.1  |

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB) Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator



# 150k-30MHz Conducted Emission Test

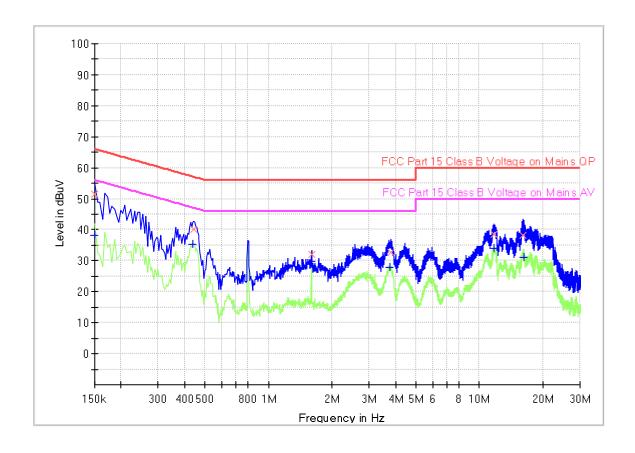
### **EUT Information**

EUT Name: Acoustic Imaging Camera

Model Fotric H6
Client: FOTRIC INC

Op Cond Power on, TX at 2480MHz, AC 120V/60Hz

Operator: Huali CHENG Standard FCC Part 15.207(a)


Comment: Phase N Sample No.: SHA-831405-2

## Scan Setup: Voltage with 2-Line-LISN pre [EMI conducted]

Hardware Setup: Voltage with 2-Line-LISN

Receiver: [ESR 3] Level Unit: dBuV

Subrange Step Size **Detectors** IF BW Meas. Time **Preamp** 9 kHz - 150 kHz 100 Hz PK+ 200 Hz 0.02 s0 dB 150 kHz - 30 MHz 4.5 kHz PK+; AVG 9 kHz 0.01 s0 dB





## **Final Result**

| a vo      | Juit      |          |        |        |        |           |      |       |
|-----------|-----------|----------|--------|--------|--------|-----------|------|-------|
| Frequency | QuasiPeak | CAverage | Limit  | Margin | Meas.  | Bandwidth | Line | Corr. |
| (MHz)     | (dBuV)    | (dBuV)   | (dBuV) | (dB)   | Time   | (kHz)     |      | (dB)  |
|           | , ,       |          | , ,    | , ,    | (ms)   |           |      | . ,   |
| 0.150000  |           | 38.21    | 56.00  | 17.79  | 1000.0 | 9.000     | N    | 19.4  |
| 0.150000  | 51.56     |          | 66.00  | 14.44  | 1000.0 | 9.000     | N    | 19.4  |
| 0.438000  |           | 35.24    | 47.10  | 11.86  | 1000.0 | 9.000     | N    | 19.5  |
| 0.442500  | 40.29     |          | 57.01  | 16.72  | 1000.0 | 9.000     | N    | 19.5  |
| 1.599000  |           | 29.73    | 46.00  | 16.27  | 1000.0 | 9.000     | N    | 19.5  |
| 1.599000  | 31.93     |          | 56.00  | 24.07  | 1000.0 | 9.000     | N    | 19.5  |
| 3.759000  |           | 27.81    | 46.00  | 18.19  | 1000.0 | 9.000     | N    | 19.6  |
| 3.795000  | 32.81     |          | 56.00  | 23.19  | 1000.0 | 9.000     | N    | 19.6  |
| 11.764500 | 38.69     |          | 60.00  | 21.31  | 1000.0 | 9.000     | N    | 19.8  |
| 11.764500 |           | 34.08    | 50.00  | 15.92  | 1000.0 | 9.000     | N    | 19.8  |
| 16.044000 | 38.28     |          | 60.00  | 21.72  | 1000.0 | 9.000     | N    | 20.0  |
| 16.300500 |           | 31.08    | 50.00  | 18.92  | 1000.0 | 9.000     | N    | 20.0  |

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB) Factor (dB) = Cable Loss (dB) + LISN Factor (dB) + 10dB Attenuator



## 10.2 Conducted peak output power

### **Test Method (1)**

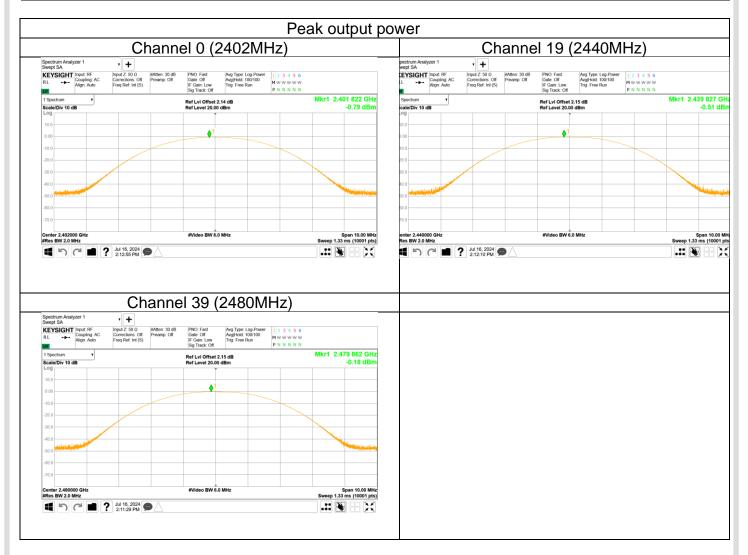
- Use the following spectrum analyzer settings:
   RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW
   Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

### Test Method (2)

- 1. Measure the duty cycle D of the transmitter output signal.
- 2. Set span to at least 1.5 times the OBW.
- 3. Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- 4. Set VBW ≥ [3 × RBW].
- 5. Number of points in sweep ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- 6. Sweep time = auto.
- 7. Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode.
- 8. Do not use sweep triggering. Allow the sweep to "free run."
- 9. Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.
- 10. Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function with band limits set equal to the OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.
- 11. Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission).

### Limits

According to §15.247 (b) (3), conducted peak (average) output power limit as below:

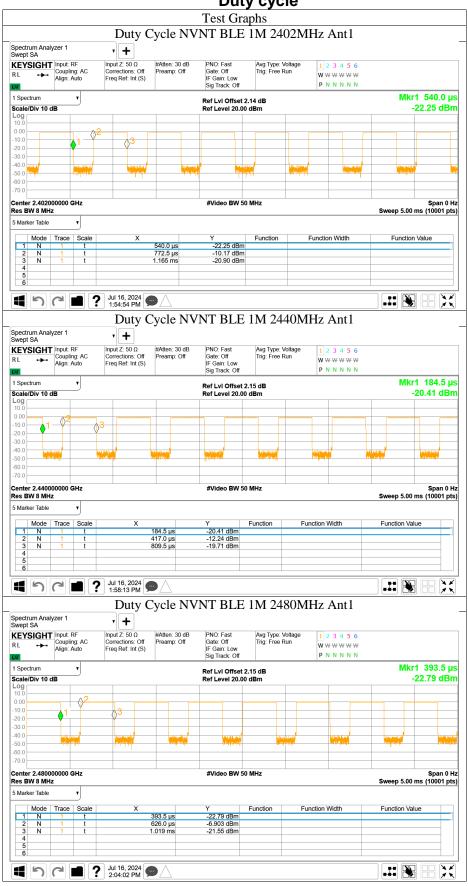

### Conducted peak output power

| Frequency Range | Limit | Limit |
|-----------------|-------|-------|
| MHz             | W     | dBm   |
| 2400-2483.5     | ≤1    | ≤30   |



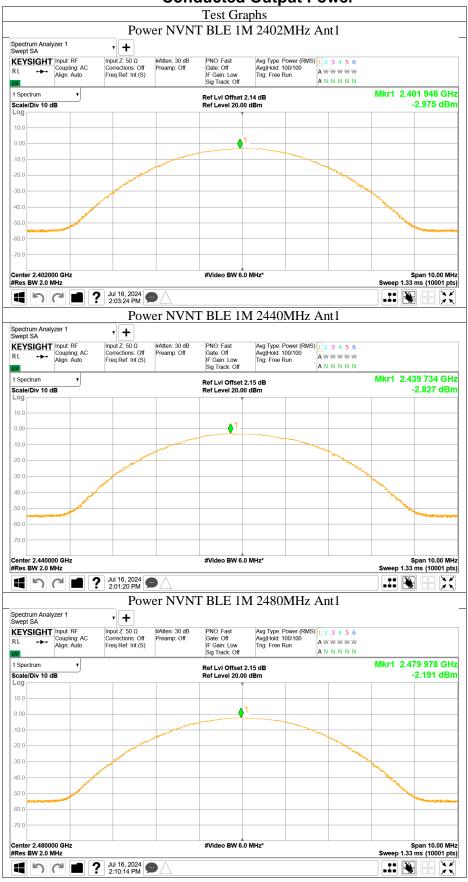
### Test result (conducted peak) as below:

| Data transmission rate:1Mbps |                             |        |  |  |
|------------------------------|-----------------------------|--------|--|--|
| Frequency                    | Conducted Peak Output Power | Result |  |  |
| MHz                          | dBm                         | Nesuit |  |  |
| Low channel 2402MHz          | -0.79                       | Pass   |  |  |
| Middle channel 2440MHz       | -0.51                       | Pass   |  |  |
| High channel 2480MHz         | -0.18                       | Pass   |  |  |




### Test result (average power) as below table:

| Frequency (MHz) | Duty cycle<br>Factor (dB) | Conducted Power (dBm) | Total Power<br>(dBm) | Result |
|-----------------|---------------------------|-----------------------|----------------------|--------|
| 2402MHz         | 2.02                      | -2.98                 | -0.96                | Pass   |
| 2440MHz         | 2.02                      | -2.83                 | -0.81                | Pass   |
| 2480MHz         | 2.02                      | -2.19                 | -0.17                | Pass   |




**Duty cycle** 





**Conducted Output Power** 



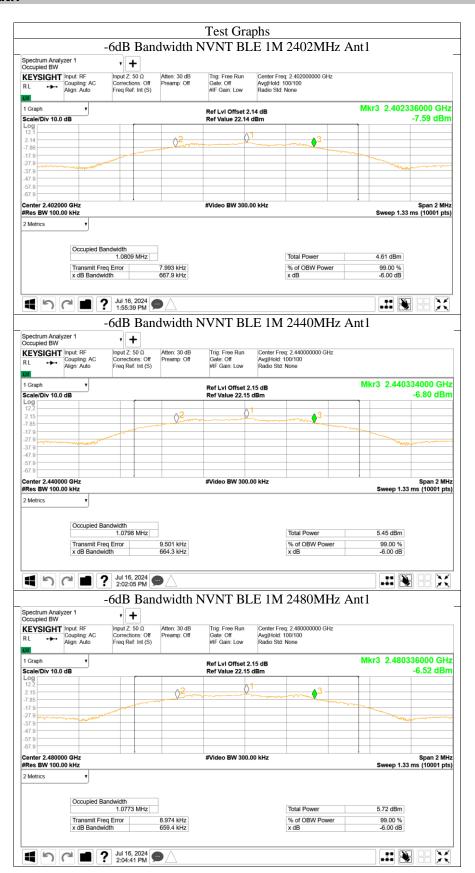


### 10.36dB bandwidth

#### Test Method for 6 dB Bandwidth

- 1. The RF output of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings: RBW=100KHz, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Use the automatic bandwidth measurement capability of an instrument, use the X dB bandwidth mode with X set to 6 dB.
- 5. Allow the trace to stabilize, record the 6 dB Bandwidth value.

| ı | _11 | n | ıt |
|---|-----|---|----|
| - |     |   |    |


| 6dB bandwidth Limit [kHz] |
|---------------------------|
| ≥500                      |

#### Test result

| Data              | Frequency | 6dB bandwidth (MHz) |       | Result  |  |
|-------------------|-----------|---------------------|-------|---------|--|
| transmission rate | MHz       | result              | limit | verdict |  |
|                   | 2402      | 0.668               | ≥0.5  | Pass    |  |
| 1Mbps             | 2440      | 0.664               | ≥0.5  | Pass    |  |
|                   | 2480      | 0.659               | ≥0.5  | Pass    |  |



#### 6dB Bandwidth



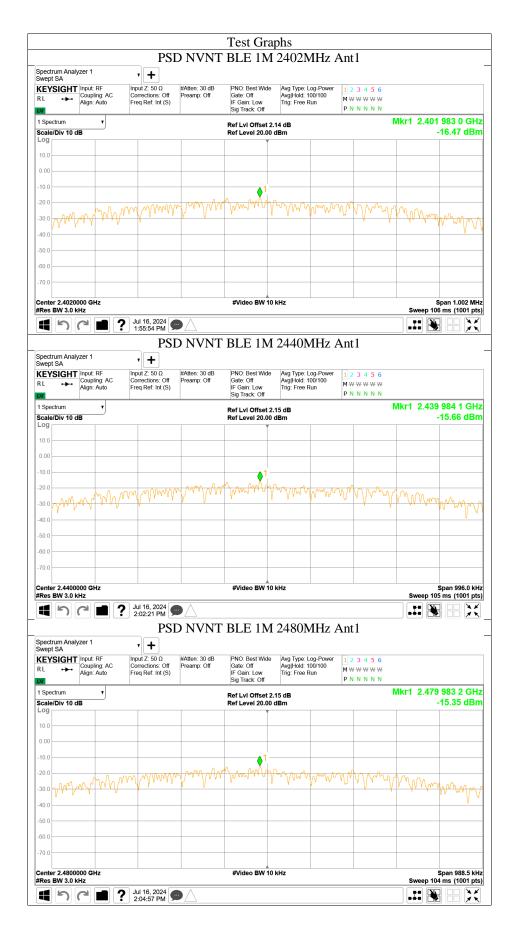


## 10.4 Power spectral density

#### **Test Method**

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- 1. The RF output of EUT was connected to the spectrum analyzer. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings:
- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz, VBW≥3RBW, Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 5. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 6. Repeat above procedures until other frequencies measured were completed.


#### Limit

| Limit [dBm/3kHz] |  |
|------------------|--|
| <br><b>≤</b> 8   |  |

#### Test result

| Data transmission rate | Frequency              | Power spectral density | Result |
|------------------------|------------------------|------------------------|--------|
|                        | MHz                    | dBm/3kHz               |        |
| 1Mbps                  | Top channel 2402MHz    | -16.47                 | Pass   |
| Tivibps                | Middle channel 2440MHz | -15.66                 | Pass   |
|                        | Bottom channel 2480MHz | -15.35                 | Pass   |





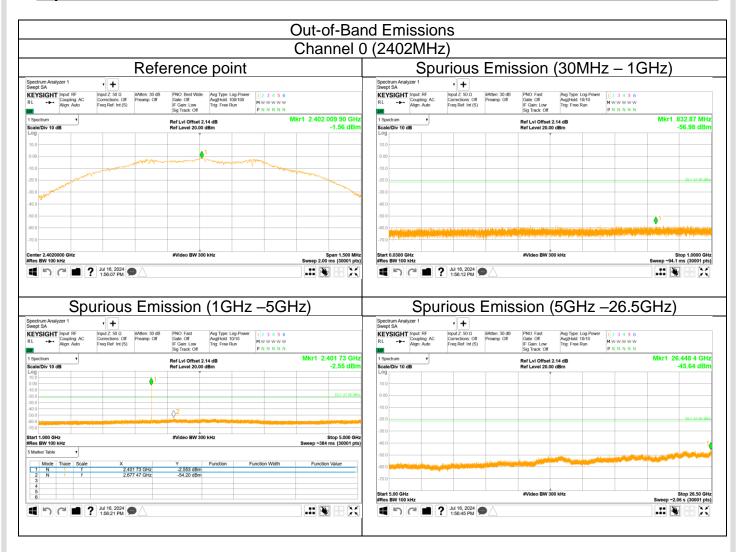


# 10.5 Spurious RF conducted emissions

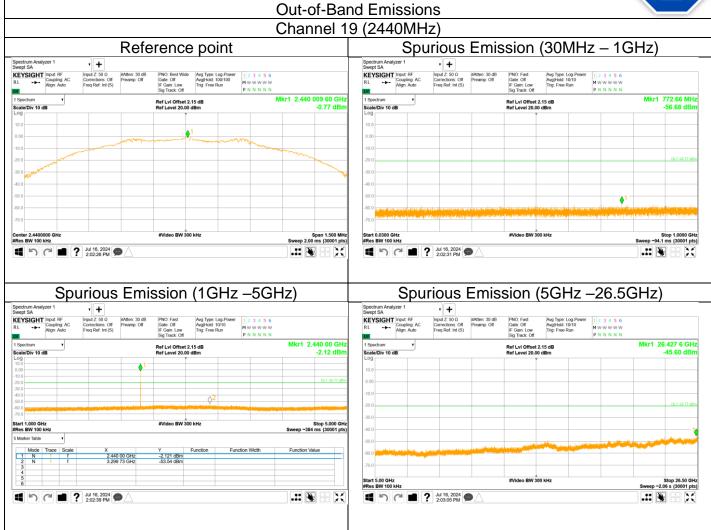
#### **Test Method**

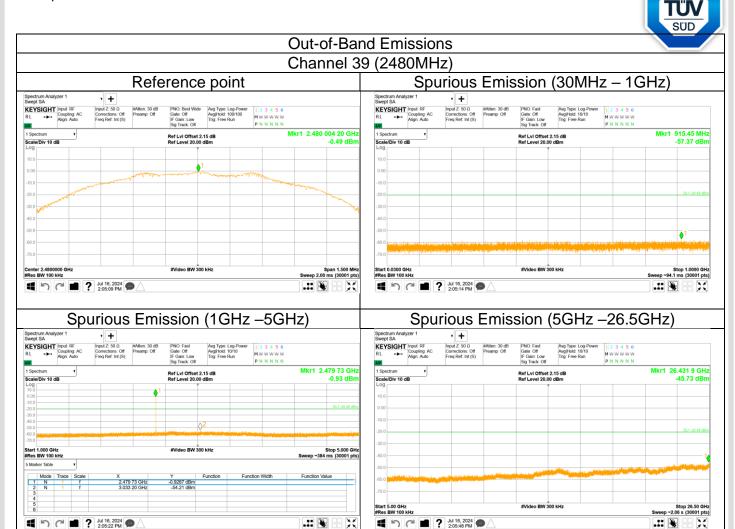
- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings:

  Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10<sup>th</sup> harmonic. Typically, several plots are required to cover this entire span.


  RBW = 100 kHz, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 5. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 6. Repeat above procedures until all frequencies measured were complete.

#### Limit


| Frequency Range<br>MHz | Limit (dBc) |
|------------------------|-------------|
| 30-25000               | -20         |




## **Spurious RF conducted emissions**







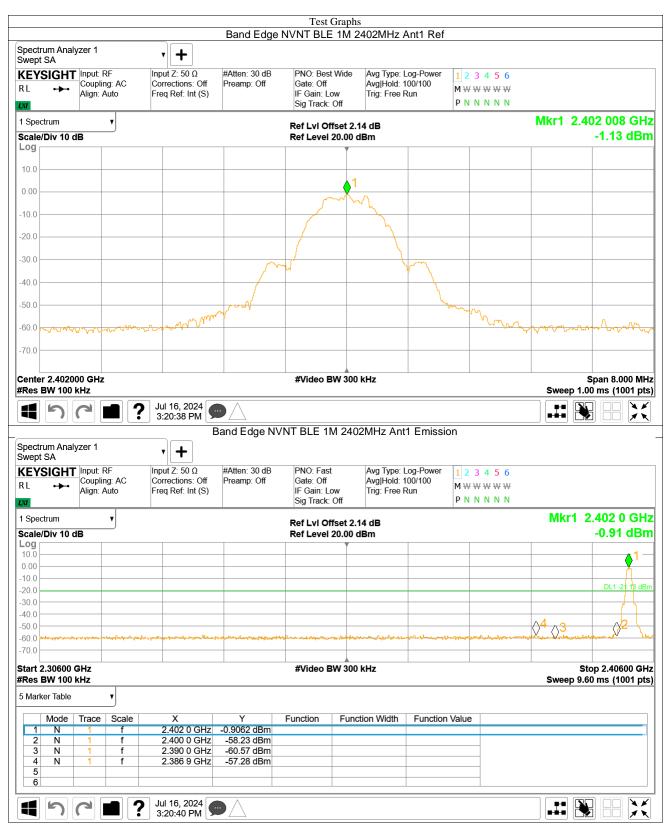




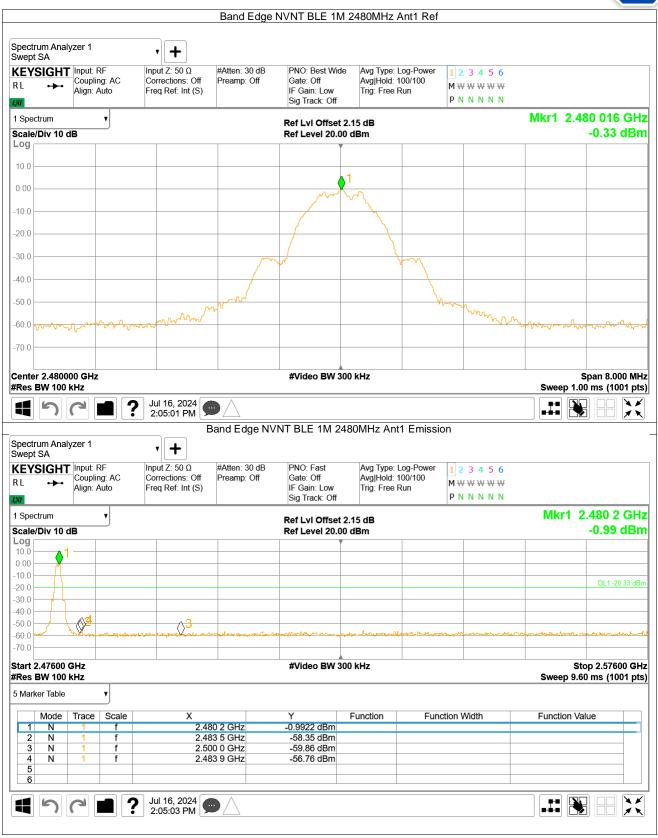
## 10.6 Band edge

#### **Test Method**

- 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting, the instrument center frequency is set to the nominal EUT channel center frequency enable the EUT transmit continuously.
- 3. Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 4. Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 5. The level displayed must comply with the limit specified in this Section.
- 6. Repeat above procedures until all frequencies measured were complete and submit all the plots.


#### Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under § 15.247(b)(3), the attenuation required shall be 30 dB instead of 20 dB.


| Frequency Range<br>MHz | Limit (dBc) |
|------------------------|-------------|
| 30-25000               | -20         |



#### Test result









## 10.7 Spurious radiated emissions for transmitter

#### **Test Method**

- 1. The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. Use the following spectrum analyzer settings According to C63.10
  - 1) Procedure for Unwanted Emissions Measurements Below 1000 MHz Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz to 120kHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.
  - 2) For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1GHz a) RBW = 1MHz.

- b) VBW \  $[3 \times RBW]$ .
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.



2)If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.

3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission (AV) at frequency above 1GHz.

#### Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under § 15.247(b)(3), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

| Frequency<br>MHz | Field Strength<br>µV/m | Field Strength<br>dBµV/m | Detector | Measurement distance meters |
|------------------|------------------------|--------------------------|----------|-----------------------------|
| 0.009-0.490      | 2400/F(kHz)            | 48.5-13.8                | AV       | 300                         |
| 0.490-1.705      | 24000/F(kHz)           | 33.8-23.0                | QP       | 30                          |
| 1.705-30         | 30 `                   | 29.5                     | QP       | 30                          |
| 30-88            | 100                    | 40                       | QP       | 3                           |
| 88-216           | 150                    | 43.5                     | QP       | 3                           |
| 216-960          | 200                    | 46                       | QP       | 3                           |
| 960-1000         | 500                    | 54                       | QP       | 3                           |
| Above 1000       | 500                    | 54                       | AV       | 3                           |
| Above 1000       | 5000                   | 74                       | PK       | 3                           |

Note 1: Limit  $3m(dB\mu V/m)$ =Limit  $300m(dB\mu V/m)$ +40Log(300m/3m) (Below 30MHz) Note 2: Limit  $3m(dB\mu V/m)$ =Limit  $30m(dB\mu V/m)$ +40Log(30m/3m) (Below 30MHz)



### Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Data of measurement within frequency range 9kHz-30MHz and 18-25GHz is the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured, so test data does not present in this report.

#### **Test result**

## Above 1GHz Transmitting spurious emission test result as below:

| Test mode:2.4G_BLE_2402MHz |                              |                  |                |          |              |  |
|----------------------------|------------------------------|------------------|----------------|----------|--------------|--|
| Frequency<br>MHz           | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/M | Margin<br>(dB) | Detector | Polarization |  |
| 2382.55                    | 40.32                        | 74.00            | 33.68          | PK       | Horizontal   |  |
| 2387.09                    | 40.40                        | 74.00            | 33.60          | PK       | Vertical     |  |
| 4804.28                    | 42.42                        | 74.00            | 31.58          | PK       | Horizontal   |  |
| 4804.81                    | 41.01                        | 74.00            | 32.99          | PK       | Vertical     |  |

| Test mode:2.4G_BLE_2440MHz |                              |                  |                |          |              |  |
|----------------------------|------------------------------|------------------|----------------|----------|--------------|--|
| Frequency<br>MHz           | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/M | Margin<br>(dB) | Detector | Polarization |  |
| 4879.19                    | 42.10                        | 74.00            | 31.90          | PK       | Horizontal   |  |
| 4879.19                    | 41.39                        | 74.00            | 32.61          | PK       | Vertical     |  |

| Test mode:2.4G_BLE_2480MHz |                              |                  |                |          |              |  |
|----------------------------|------------------------------|------------------|----------------|----------|--------------|--|
| Frequency<br>MHz           | Measure<br>Level<br>(dBuV/m) | Limit<br>(dBuV/M | Margin<br>(dB) | Detector | Polarization |  |
| 2483.57                    | 42.83                        | 74.00            | 31.17          | PK       | Vertical     |  |
| 2483.58                    | 44.20                        | 74.00            | 29.80          | PK       | Horizontal   |  |
| 4959.41                    | 42.08                        | 74.00            | 31.92          | PK       | Vertical     |  |
| 4961.00                    | 41.62                        | 74.00            | 32.38          | PK       | Horizontal   |  |

#### Remark:

- (1) Emission level= Original Receiver Reading + Correct Factor
- (2) Correct Factor = Antenna Factor + Cable Loss Amplifier gain
- (3) Margin = limit Corrected Reading



#### The worst case of Radiated Emission below 1GHz:

# 30-1000MHz Radiated Emission

## **EUT Information**

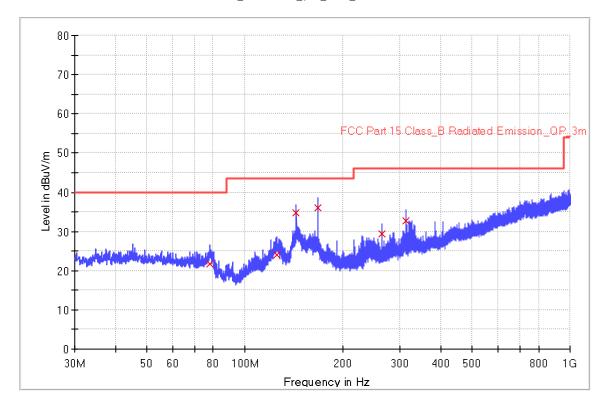
EUT Name: Acoustic Imaging Camera

Model: Fotric H6
Client: FOTRIC INC

Op Cond: Power on, TX at 2480MHz, AC120V/60Hz

Operator: Huali CHENG
Test Spec: FCC Part 15.209(a)

Comment: Horizontal Sample No: SHA-831405-2


# Sweep Setup: RE\_VULB9168\_pre\_Cont\_30-1000 [EMI radiated]

Hardware Setup: RE\_VULB9168

Receiver: [ESR 3] Level Unit: dBuV/m

SubrangeStep SizeDetectorsBandwidthSweep TimePreamp30 MHz - 1 GHz48.5 kHzPK+120 kHz0.2 s20 dB

RE\_VULB9168\_pre\_Cont\_30-1000



**Limit and Margin** 





(continuation of the "Limit and Margin" table from column 16 ...)

| Frequency<br>(MHz) | Limit -<br>QPK<br>(dBuV/m) | Comment |
|--------------------|----------------------------|---------|
| 78.080000          | 40.0                       |         |
| 125.200000         | 43.5                       |         |
| 144.000000         | 43.5                       |         |
| 168.000000         | 43.5                       |         |
| 263.960000         | 46.0                       |         |
| 312.040000         | 46.0                       |         |

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range:  $9kHz \sim 30MHz$ ,  $18GHz \sim 25GHz$ ), therefore no data appear in the report.



# 30-1000MHz Radiated Emission

## **EUT Information**

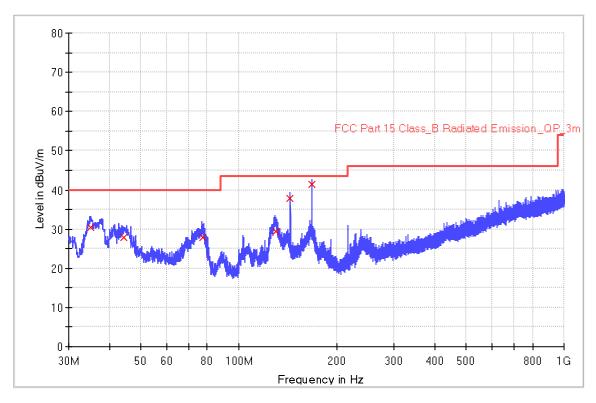
EUT Name: Acoustic Imaging Camera

Model: Fotric H6
Client: FOTRIC INC

Op Cond: Power on, TX at 2480MHz, AC120V/60Hz

Operator: Huali CHENG
Test Spec: FCC Part 15.209(a)

Comment: Vertical Sample No: SHA-831405-2


# Sweep Setup: RE\_VULB9168\_pre\_Cont\_30-1000 [EMI radiated]

Hardware Setup: RE\_VULB9168
Receiver: [ESR 3]

Receiver: [ESR 3] Level Unit: dBuV/m

SubrangeStep SizeDetectorsBandwidthSweep TimePreamp30 MHz - 1 GHz48.5 kHzPK+120 kHz0.2 s20 dB







# **Limit and Margin**

|                    | =·······              |                    |                    |                |     |                  |                 |                         |
|--------------------|-----------------------|--------------------|--------------------|----------------|-----|------------------|-----------------|-------------------------|
| Frequency<br>(MHz) | QuasiPeak<br>(dBuV/m) | Meas. Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB/m) | Margin -<br>QPK<br>(dB) |
| 35.040000          | 30.4                  | 1000.0             | 120.000            | 111.0          | ٧   | 95.0             | 19.4            | 9.6                     |
| 44.200000          | 27.9                  | 1000.0             | 120.000            | 102.0          | ٧   | 123.0            | 20.3            | 12.1                    |
| 77.320000          | 27.8                  | 1000.0             | 120.000            | 106.0          | ٧   | 206.0            | 16.9            | 12.2                    |
| 130.240000         | 29.3                  | 1000.0             | 120.000            | 123.0          | V   | 118.0            | 19.3            | 14.2                    |
| 144.000000         | 37.9                  | 1000.0             | 120.000            | 100.0          | ٧   | 326.0            | 20.5            | 5.6                     |
| 168.000000         | 41.4                  | 1000.0             | 120.000            | 100.0          | ٧   | 359.0            | 20.4            | 2.1                     |

(continuation of the "Limit and Margin" table from column 16 ...)

| Frequency<br>(MHz) | Limit -<br>QPK<br>(dBuV/m) | Comment |
|--------------------|----------------------------|---------|
| 35.040000          | 40.0                       |         |
| 44.200000          | 40.0                       |         |
| 77.320000          | 40.0                       |         |
| 130.240000         | 43.5                       |         |
| 144.000000         | 43.5                       |         |
| 168.000000         | 43.5                       |         |

Note 1: Measure Level (dBuV/m) = Reading Level (dBuV) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m)

Note 2: The test trace is same as the ambient noise and the amplitude of the emissions are attenuated more than 20dB below the permissible (the test frequency range:  $9kHz \sim 30MHz$ ,  $18GHz \sim 25GHz$ ), therefore no data appear in the report.



# 11 Test Equipment List

#### List of Test Instruments Test Site1

| rest offer               |                                           |                   |                |            |           |                  |
|--------------------------|-------------------------------------------|-------------------|----------------|------------|-----------|------------------|
|                          | DESCRIPTION                               | MANUFACTURER      | MODEL<br>NO.   | SERIAL NO. | CAL. DATE | CAL. DUE<br>DATE |
| С                        | Signal spectrum<br>analyzer               | Agilent           | N9020B         | MY59050168 | 2024-2-19 | 2025-2-18        |
|                          | EMI Test Receiver                         | Rohde & Schwarz   | ESR3           | 101906     | 2023-8-1  | 2024-7-31        |
|                          | EMI Test Receiver                         | Rohde & Schwarz   | ESR3           | 101906     | 2024-8-1  | 2025-7-31        |
|                          | Signal Analyzer                           | Rohde & Schwarz   | FSV40          | 101091     | 2023-8-1  | 2024-7-31        |
|                          | Signal Analyzer                           | Rohde & Schwarz   | FSV40          | 101091     | 2024-8-1  | 2025-7-31        |
|                          | Trilog Super<br>Broadband Test<br>Antenna | Schwarzbeck       | VULB<br>9168   | 961        | 2021-9-23 | 2024-9-22        |
| RE                       | Double-ridged waveguide horn antenna      | Rohde & Schwarz   | HF907          | 102868     | 2024-4-14 | 2027-4-13        |
|                          | Pre-amplifier                             | Shenzhen<br>HzEMC | HPA-<br>081843 | HYPA23026  | 2024-4-16 | 2025-4-15        |
|                          | Loop antenna                              | Rohde & Schwarz   | HFH2-Z2        | 100443     | 2024-6-26 | 2025-6-25        |
|                          | Double Ridged<br>Horn Antenna             | ETS-Lindgren      | 3116C          | 00246076   | 2023-7-7  | 2026-7-6         |
| 3m Semi-anechoic chamber |                                           | TDK               | 9X6X6          |            | 2024-5-8  | 2027-5-7         |
|                          | EMI Test Receiver                         | Rohde & Schwarz   | ESR3           | 101907     | 2023-8-1  | 2024-7-31        |
| CE                       | EMI Test Receiver                         | Rohde & Schwarz   | ESR3           | 101907     | 2024-8-1  | 2025-7-31        |
| CE                       | LISN                                      | Rohde & Schwarz   | ENV216         | 101924     | 2023-8-1  | 2024-7-31        |
|                          | LISN                                      | Rohde & Schwarz   | ENV216         | 101924     | 2024-8-1  | 2025-7-31        |

|              | Measurement Software Information |                 |           |  |  |  |
|--------------|----------------------------------|-----------------|-----------|--|--|--|
| Test<br>Item | Software                         | Manufacturer    | Version   |  |  |  |
| С            | MTS 8310                         | MWRFtest        | 2.0.0.0   |  |  |  |
| RE           | EMC 32                           | Rohde & Schwarz | V10.50.40 |  |  |  |
| CE           | EMC 32                           | Rohde & Schwarz | V9.15.03  |  |  |  |

#### C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth and 99% Occupied Bandwidth
- Power spectral density\*
- Spurious RF conducted emissions
- Band edge



# 12 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

| Items                                       | Extended Uncertainty                     |
|---------------------------------------------|------------------------------------------|
| Conducted Disturbance at Mains<br>Terminals | 150kHz to 30MHz, LISN, 3.16dB            |
| Radiated Disturbance                        | 9kHz to 30MHz, 3.52dB                    |
|                                             | 30MHz to 1GHz, 5.03dB (Horizontal)       |
|                                             | 5.12dB (Vertical)                        |
|                                             | 1GHz to 18GHz, 5.49dB                    |
|                                             | 18GHz to 40GHz, 5.63dB                   |
| RF Conducted Measurement                    | Power related: 1.16dB                    |
|                                             | Frequency related: 6.00×10 <sup>-8</sup> |

Measurement Uncertainty Decision Rule:

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2021, clause 4.4.3 and 4.5.1.



# 13 Photographs of Test Set-ups

Refer to the < Test Setup photos >.

# 14 Photographs of EUT

Refer to the < External Photos > & < Internal Photos >.

-----End of Test Report------