

No. 1 Workshop, M-10, Middle section, Science & Technology Park, Nanshan

District, Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEM140500252005

Email: ee.shenzhen@sgs.com Page: 1 of 43

FCC REPORT

Application No: SZEM1411006259CR

Applicant: Creative Labs Inc. **Product Name:** Sound Blaster X7

Model No.(EUT): SB1580
Trade Mark: Creative

FCC ID: IBAAVPSB1580

Standards: 47 CFR Part 15, Subpart C (2013)

 Date of Receipt:
 2014-11-19

 Date of Test:
 2014-11-19

 Date of Issue:
 2014-11-24

Test Result: PASS *

Authorized Signature:

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government. All test results in this report can be traceable to National or International Standards.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM140500252005 Page: 2 of 43

Version 2

Revision Record					
Version	Chapter	Date	Modifier	Remark	
00		2014-11-24		Original	

Authorized for issue by:		
Tested By	Eric Fu	2014-11-19
	(Eric Fu) /Project Engineer	Date
Prepared By	Sade Luo.	2014-11-24
	(Sade Luo) /Clerk	Date
Checked By	Dormer	2014-11-26
	(Kevin Feng) /Reviewer	Date

Report No.: SZEM140500252005

Page: 3 of 43

3 Test Summary

Test Item	Test Requirement	Test method	Result
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 2009	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	KDB558074 D01 v03r01	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2009	PASS

Model No.: SB1580

This test report (Ref. No.: SZEM140500252005) is only valid with the original test report (Ref.

No.: SZEM140500252002).

Review this report and original report, this report just changing the information of applicant and switching mode power supply.

According to the declaration from the applicant, the models in this report and models in original report were identical.

Considering to the difference, pre-scan were performed on the sample in this report to find the items which can be influential to the result in the original test report for fully retest.

Therefore in this report Conducted Emissions, Conducted Peak Output Power, Radiated Spurious

Emission were fully retested on model SB1580 and shown the data in this report, other tests please refer to original report SZEM140500252002.

Report No.: SZEM140500252005

Page: 4 of 43

4 Contents

			Page
1	CC	OVER PAGE	1
2	VE	ERSION	2
3		ST SUMMARY	
TC	O ORIG	GINAL REPORT SZEM140500252002	3
4	CC	ONTENTS	4
5		ENERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST ENVIRONMENT	7
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST LOCATION	
	5.6	TEST FACILITY	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.10	EQUIPMENT LIST	9
6	TE	ST RESULTS AND MEASUREMENT DATA	12
	6.1	CONDUCTED EMISSIONS	12
	6.2	CONDUCTED PEAK OUTPUT POWER	16
	6.3	RADIATED SPURIOUS EMISSION	
	6.3	3.1 Spurious Emissions	19
7	PH	HOTOGRAPHS - EUT TEST SETUP	26
	7.1	RADIATED EMISSION	26
	7.2	CONDUCTED EMISSION	27
8	РН	HOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	28-43

Report No.: SZEM140500252005

Page: 5 of 43

5 General Information

5.1 Client Information

Applicant:	Creative Labs Inc.
Address of Applicant:	1901, McCarthy Boulevard, Milpitas, CA 95035, United States

5.2 General Description of EUT

Product Name:	Sound Blaster X7
Model No.	
	SB1580
Trade Mark:	Creative
Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.1
	This report is for BLE mode
Modulation Type:	GFSK
Number of Channel:	40
Sample Type:	Fixed production
Test Power Grade:	0(manufacturer declare)
Test Software of EUT:	Bluetest3 (manufacturer declare)
Antenna Type and Gain:	Type :Integral
	Gain :0.5dBi
USB Cable:	150cm(Shielded)
Audio Extension Cable:	15cm(Unshielded)
AC Cable:	120cm(Unshielded)
Audio Cable:	200cm(Unshielded)
DC Cable:	150cm(Unshielded with one ferrite core)
AC Adapter:	MODEL: GM150-2400600
	INPUT: 100-240V~50/60Hz 2.5A
	OUTPUT: 24V == 6.0A
Power Supply:	Input: DC 24V 6.0A
Test Voltage:	AC 120V 60Hz

Report No.: SZEM140500252005

Page: 6 of 43

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency		
The Lowest channel	2402MHz		
The Middle channel	2440MHz		
The Highest channel	2480MHz		

Report No.: SZEM140500252005

Page: 7 of 43

5.3 Test Environment

Operating Environment:		
Temperature:	25.0 °C	
Humidity:	51 % RH	
Atmospheric Pressure:	1005mbar	

5.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.
iPhone5	Apple	A1429
Audio in cable	Supply by SGS	100cm unshielded
Speaker	Supply by SGS	8ohm, 20W
5.1 speaker	Edifier	R151T
Microphone	Supply by SGS	N/A

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch E&E Lab,

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

Report No.: SZEM140500252005

Page: 8 of 43

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

VCCI

The 10m Semi-anechoic chamber and Shielded Room (7.5m x 4.0m x 3.0m) of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC – Registration No.: 556682

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.: 556682.

Industry Canada (IC)

Two 3m Semi-anechoic chambers of SGS-CSTC Standards Technical Services Co., Ltd. have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1 & 4620C-2.

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: SZEM140500252005

Page: 9 of 43

5.10 Equipment List

	Conducted Emission					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEL0042	2015-06-10	
2	LISN	Rohde & Schwarz	ENV216	SEL0152	2015-10-24	
3	LISN	ETS-LINDGREN	3816/2	SEL0021	2015-05-16	
4	8 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T8-02	SEL0162	2015-08-30	
5	4 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T4-02	SEL0163	2015-08-30	
6	2 Line ISN	Fischer Custom Communications Inc.	FCC-TLISN- T2-02	SEL0164	2015-08-30	
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEL0022	2015-05-16	
8	Coaxial Cable	SGS	N/A	SEL0025	2015-05-29	
9	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24	
10	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	
11	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16	

Report No.: SZEM140500252005

Page: 10 of 43

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)	
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEL0017	2015-06-10	
2	EMI Test Receiver	Agilent Technologies	N9038A	SEL0312	2015-09-16	
3	EMI Test software	AUDIX	E3	SEL0050	N/A	
4	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEL0015	2015-10-24	
5	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEL0006	2015-10-24	
6	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEL0076	2015-10-24	
7	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEL0053	2015-05-16	
8	Pre-Amplifier (0.1-26.5GHz)	Compliance Directions Systems Inc.	PAP-0126	SEL0168	2015-10-24	
9	Coaxial cable	SGS	N/A	SEL0027	2015-05-29	
10	Coaxial cable	SGS	N/A	SEL0189	2015-05-29	
11	Coaxial cable	SGS	N/A	SEL0121	2015-05-29	
12	Coaxial cable	SGS	N/A	SEL0178	2015-05-29	
13	Band filter	Amindeon	82346	SEL0094	2015-05-16	
14	Barometer	Chang Chun	DYM3	SEL0088	2015-05-16	
15	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24	
16	Humidity/ Temperature Indicator	Shanhai Qixiang	ZJ1-2B	SEL0103	2015-10-24	
17	Signal Generator (10M-27GHz)	Rohde & Schwarz	SMR27	SEL0067	2015-05-16	
18	Signal Generator	Rohde & Schwarz	SMY01	SEL0155	2015-10-24	
19	Loop Antenna	Beijing Daze	ZN30401	SEL0203	2015-06-04	

Report No.: SZEM140500252005

Page: 11 of 43

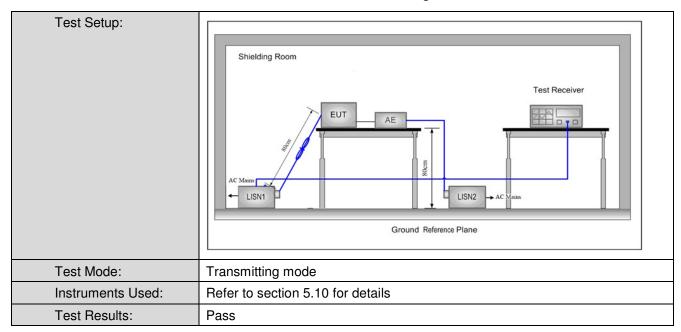
	RF connected test				
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Due date (yyyy-mm-dd)
1	DC Power Supply	Zhao Xin	RXN-305D	SEL0117	2015-10-24
2	Humidity/ Temperature Indicator	HYGRO	ZJ1-2B	SEL0033	2015-10-24
3	Spectrum Analyzer	Rohde & Schwarz	FSP	SEL0154	2015-10-24
4	Coaxial cable	SGS	N/A	SEL0178	2015-05-29
5	Coaxial cable	SGS	N/A	SEL0179	2015-05-29
6	Barometer	ChangChun	DYM3	SEL0088	2015-05-16
7	Signal Generator	Rohde & Schwarz	SML03	SEL0068	2015-05-16
8	Band filter	amideon	82346	SEL0094	2015-05-16
9	POWER METER	R&S	NRVS	SEL0144	2015-10-24
10	Attenuator	Beijin feihang taida	TST-2-6dB	SEL0205	2015-05-16
11	Power Divider(splitter)	Agilent Technologies	11636B	SEL0130	2015-10-24

Note: The calibration interval is one year, all the instruments are valid.

Report No.: SZEM140500252005

Page: 12 of 43

6 Test results and Measurement Data


6.1 Conducted Emissions

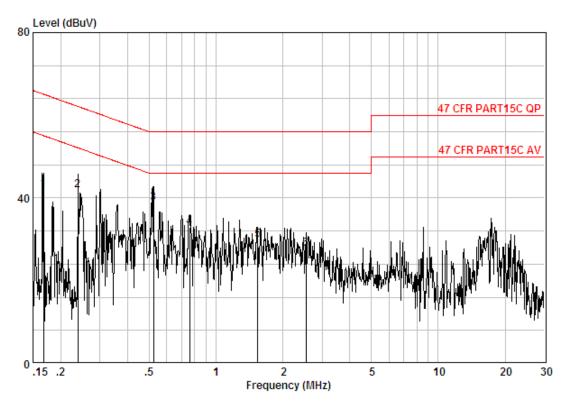
Test Requirement:	47 CFR Part 15C Section 15.207						
Test Method:	ANSI C63.10: 2009						
Test Frequency Range:	150kHz to 30MHz						
Limit:	Function of the control of the contr	Limit (c	IBuV)				
	Frequency range (MHz)	Average					
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	n of the frequency.					
Test Procedure:	 The mains terminal disturbly room. The EUT was connected to Impedance Stabilization Not impedance. The power cather connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single LI exceeded. The tabletop EUT was placed on the horizontal ground reference plane. An placed on the horizontal ground reference plane. The LISN unit under test and bonded mounted on top of the group between the closest points the EUT and associated ed. In order to find the maximule equipment and all of the interest. 	o AC power source throetwork) which provides oles of all other units of all 2, which was bondene way as the LISN 1 for et outlet strip was used SN provided the rating around reference plane. The avertical ground reference plane was bonded to the 1 was placed 0.8 m from the vertical ground reference plane. The to a ground reference plane. The of the LISN 1 and the quipment was at least 0 am emission, the relative	bugh a LISN 1 (Line a 50Ω/50μH + 5Ω linear if the EUT were do to the ground or the unit being do to connect multiple of the LISN was not considered the table 0.8m above the rangement, the EUT was deference plane. The rear do reference plane. The endition has been downward from the boundary of the plane for LISNs his distance was EUT. All other units of 0.8 m from the LISN 2. The positions of				

Report No.: SZEM140500252005

Page: 13 of 43

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Report No.: SZEM140500252005

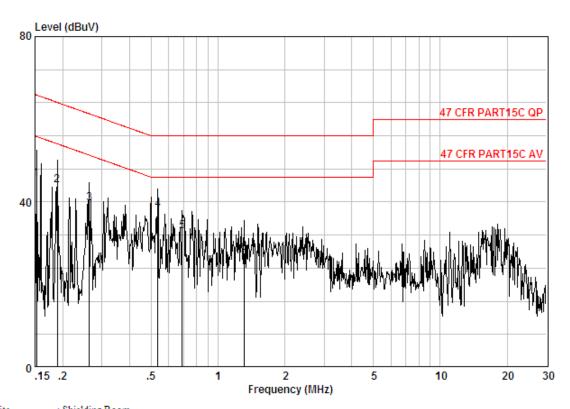
Page: 14 of 43

Live line:

Site : Shielding Room

Condition : 47 CFR PART15C QP CE LINE

Job No. : 6259CR Mode : TX mode : BLE


	Freq		LISN Factor					Remark
	MHz	dB	dB	dBuV	dBuV	dBu∇	dB	
1	0.16765	0.02	9.70	32.33	42.05	65.08	-23.03	QP
2	0.23910	0.02	9.70	32.12	41.83	62.13	-20.29	QP
3 @	0.52376	0.01	9.80	28.96	38.78	56.00	-17.22	QP
4	0.75894	0.02	9.80	23.08	32.90	56.00	-23.10	QP
5	1.544	0.02	9.80	20.02	29.84	56.00	-26.16	QP
6	2.540	0.02	9.83	17.81	27.66	56.00	-28.34	OP

Report No.: SZEM140500252005

Page: 15 of 43

Neutral line:

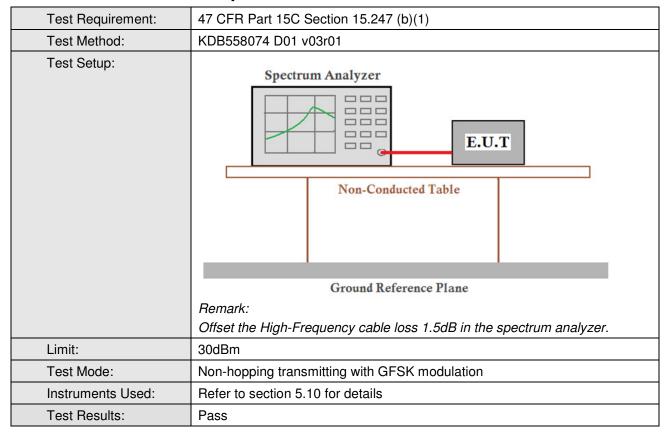
Site : Shielding Room

Condition : 47 CFR PART15C QP CE NEUTRAL

Job No. : 6259CR Mode : TX mode : BLE

	Freq		LISN Factor					Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15240	0.02	9.70	35.74	45.46	65.87	-20.41	QP
2	0.18938	0.02	9.70	34.38	44.10	64.06	-19.97	QP
3	0.26303	0.02	9.70	29.95	39.66	61.34	-21.67	QP
4	0.53498	0.01	9.80	28.36	38.17	56.00	-17.83	QP
5	0.68990	0.02	9.80	23.01	32.83	56.00	-23.17	QP
6	1.317	0.02	9.80	17.80	27.62	56.00	-28.38	QP

Notes:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

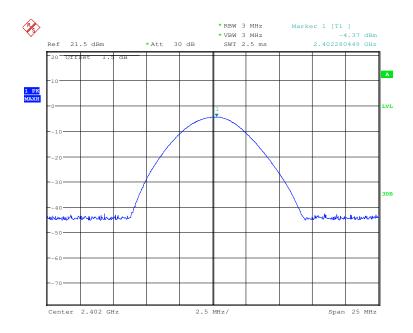
Report No.: SZEM140500252005

Page: 16 of 43

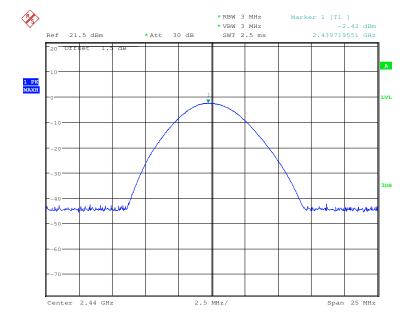
6.2 Conducted Peak Output Power

Measurement Data

	GFSK mode										
Test channel	Test channel Peak Output Power (dBm) Limit (dBm) Result										
Lowest	-4.37	30.00	Pass								
Middle	-2.42	30.00	Pass								
Highest	-1.95	30.00	Pass								



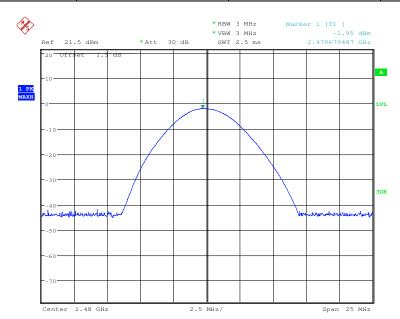
Report No.: SZEM140500252005


Page: 17 of 43

Test plot as follows:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Middle



Report No.: SZEM140500252005

Page: 18 of 43

Test mode: GFSK Test channel: Highest

Report No.: SZEM140500252005

Page: 19 of 43

6.3 Radiated Spurious Emission

6.3.1 Spurious Emiss			5 000 1 45	005					
Test Requirement:	47 CFR Part 15C Section 15.209 and 15.205								
Test Method:	ANSI C63.10 2009								
Test Site:	Measurement Distance	: 3m	ı (Semi-Anech	1	-	·)			
Receiver Setup:	Frequency		Detector	RBW	'	VBW	Remark		
	0.009MHz-0.090MH	Z	Peak	10kHz	Z	30kHz	Peak		
	0.009MHz-0.090MH	Z	Average	10kHz	Z	30kHz	Average		
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	Z	30kHz	Quasi-peak		
	0.110MHz-0.490MH	z	Peak	10kHz	Z	30kHz	Peak		
	0.110MHz-0.490MH	z	Average	10kHz	z	30kHz	Average		
	0.490MHz -30MHz		Quasi-peak	10kHz	Z	30kHz	Quasi-peak		
	30MHz-1GHz		Quasi-peak	100 kH	łz	300kHz	Quasi-peak		
	Ab 4011-		Peak	1MHz	<u> </u>	3MHz	Peak		
	Above 1GHz		Peak	1MHz	<u>-</u>	10Hz	Average		
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)		Remark	Measureme distance (r		
	0.009MHz-0.490MHz	2	400/F(kHz)	-		-	300		
	0.490MHz-1.705MHz	24	1000/F(kHz)	-		-	30		
	1.705MHz-30MHz		30	-		-	30		
	30MHz-88MHz		100	40.0	Q	uasi-peak	3		
	88MHz-216MHz		150	43.5	Q	uasi-peak	3		
	216MHz-960MHz		200	46.0	Q	uasi-peak	3		
	960MHz-1GHz		500	54.0	Q	uasi-peak	3		
	Above 1GHz	500	54.0		Average	3			
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.								
Test Setup:	•								

Report No.: SZEM140500252005

Page: 20 of 43

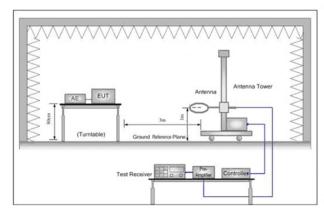


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

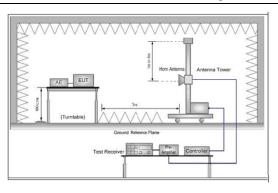


Figure 3. Above 1 GHz

Test Procedure:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz)
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, And found the X axis positioning which it is worse

Report No.: SZEM140500252005

Page: 21 of 43

	case. i. Repeat above procedures until all frequencies measured was complete.
Test Mode:	Non-hopping transmitting mode
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass



Report No.: SZEM140500252005

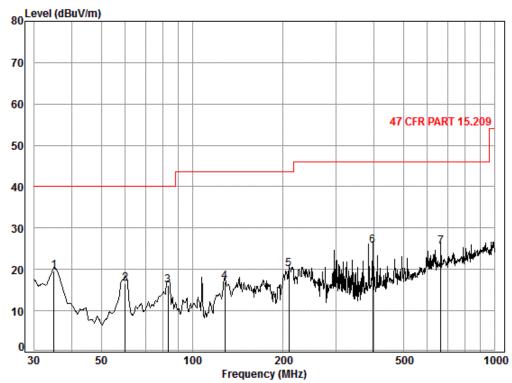
Page: 22 of 43

Radiated Emission below 1GHz						
30MHz~1GHz (QP)	30MHz~1GHz (QP)					
Test mode: Transmitting Vertical						

Condition: 47 CFR PART 15.209 3m 3142C Vertical

Job No. : 6259CR Test mode: TX mode

	Freq			Preamp Factor				
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	35.87	0.60	15.41	27.33	43.95	32.63	40.00	-7.37
2	57.19	0.80	7.62	27.27	51.11	32.26	40.00	-7.74
3	77.59	1.03	7.51	27.23	49.50	30.81	40.00	-9.19
4	154.28	1.33	9.26	26.89	44.56	28.26	43.50	-15.24
5	276.12	1.80	12.85	26.46	42.55	30.74	46.00	-15.26
6	787.85	3.17	22.05	27.31	38.21	36.12	46.00	-9.88



Report No.: SZEM140500252005

Page: 23 of 43

Test mode:	Transmitting	Horizontal
------------	--------------	------------

Condition: 47 CFR PART 15.209 3m 3142C Horizontal

Job No. : 6259CR Test mode: TX mode

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	34.88	0.60	15.76	27.34	30.53	19.55	40.00	-20.45
2	60.07	0.80	7.20	27.27	35.88	16.61	40.00	-23.39
3	83.23	1.10	8.04	27.22	34.31	16.23	40.00	-23.77
4	128.11	1.27	7.74	27.02	35.03	17.02	43.50	-26.48
5	208.58	1.45	10.66	26.67	34.72	20.16	43.50	-23.34
6	396.24	2.19	16.26	27.11	34.44	25.78	46.00	-20.22
7	663.47	2.83	21.03	27.46	29.09	25.49	46.00	-20.51

Report No.: SZEM140500252005

Page: 24 of 43

Transmitter Emission above 1GHz								
Test mode:	node: GFSK Test channel: Lowest Remark:			Peak				
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Lin (dBuV/m	I I Imit	Polarization
1597.401	3.80	29.18	38.39	49.82	44.41	74	-29.59	Vertical
3863.900	5.68	33.26	38.90	48.43	48.47	74	-25.53	Vertical
4804.000	5.49	34.70	39.24	50.55	51.50	74	-22.50	Vertical
7206.000	8.27	35.63	39.07	48.17	53.00	74	-21.00	Vertical
9608.000	9.26	37.33	37.93	44.70	53.36	74	-20.64	Vertical
11399.030	9.98	38.15	38.42	42.41	52.12	74	-21.88	Vertical
3310.181	7.34	32.55	38.65	49.01	50.25	74	-23.75	Horizontal
4804.000	6.42	34.70	39.24	48.70	50.58	74	-23.42	Horizontal
5964.939	8.03	36.23	39.19	47.50	52.57	74	-21.43	Horizontal
7206.000	8.92	35.63	39.07	47.28	52.76	74	-21.24	Horizontal
9608.000	9.99	37.33	37.93	42.61	52.00	74	-22.00	Horizontal
11740.650	10.50	38.44	38.58	42.67	53.03	74	-20.97	Horizontal

Test mode:		GFSK	Test channel:		Middle	Rema	rk:	Peak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBµV/m)	Over limit (dB)	Polarization
3507.416	6.97	32.90	38.74	48.01	49.14	74	-24.86	Vertical
4880.000	6.58	34.78	39.26	48.94	51.04	74	-22.96	Vertical
6034.386	8.07	36.26	39.18	48.27	53.42	74	-20.58	Vertical
7320.000	9.07	35.51	39.06	47.22	52.74	74	-21.26	Vertical
9760.000	9.90	37.80	37.84	41.56	51.42	74	-22.58	Vertical
10873.950	10.21	37.99	38.16	43.46	53.50	74	-20.50	Vertical
3568.847	6.93	32.97	38.77	47.71	48.84	74	-25.16	Horizontal
4880.000	6.58	34.78	39.26	48.15	50.25	74	-23.75	Horizontal
5964.939	8.03	36.23	39.19	47.64	52.71	74	-21.29	Horizontal
7320.000	9.07	35.51	39.06	47.36	52.88	74	-21.12	Horizontal
9760.000	9.90	37.80	37.84	41.88	51.74	74	-22.26	Horizontal
11323.540	10.35	38.14	38.38	42.88	52.99	74	-21.01	Horizontal

Report No.: SZEM140500252005

Page: 25 of 43

Test mode:		GFSK	Test	channel:	Highest		Remark:		Peak
Frequency (MHz)	Cable loss (dB)	Antenna factors (dB/m)	Preamp factor (dB)	Reading Level (dBµV)	Emission Level (dBµV/m)	Limit (dBμV/m)		Over limit (dB)	Polarization
3716.403	6.84	33.09	38.84	48.49	49.58	74		-24.42	Vertical
4960.000	6.76	34.86	39.29	48.45	50.78	74		-23.22	Vertical
5982.226	8.05	36.27	39.19	48.33	53.46	74		-20.54	Vertical
7440.000	9.23	35.43	39.05	47.48	53.09	74		-20.91	Vertical
9920.000	9.81	38.27	37.75	41.32	51.65	74		-22.35	Vertical
11757.650	10.50	38.46	38.59	43.58	53.95	74		-20.05	Vertical
3368.157	7.22	32.70	38.68	48.15	49.39	74		-24.61	Horizontal
4960.000	6.76	34.86	39.29	48.99	51.32	74		-22.68	Horizontal
5999.562	8.08	36.30	39.18	47.65	52.85	74		-21.15	Horizontal
7440.000	9.23	35.43	39.05	48.16	53.77	74		-20.23	Horizontal
9920.000	9.81	38.27	37.75	41.57	51.90	74		-22.10	Horizontal
10717.750	10.11	37.84	38.08	42.38	52.25	74		-21.75	Horizontal

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level = Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

Report No.: SZEM140500252005

Page: 26 of 43

7 Photographs - EUT Test Setup

Test model No.:SB1580

7.1 Radiated Emission

Report No.: SZEM140500252005

Page: 27 of 43

7.2 Conducted Emission

Report No.: SZEM140500252005

Page: 28 of 43

8 Photographs - EUT Constructional Details

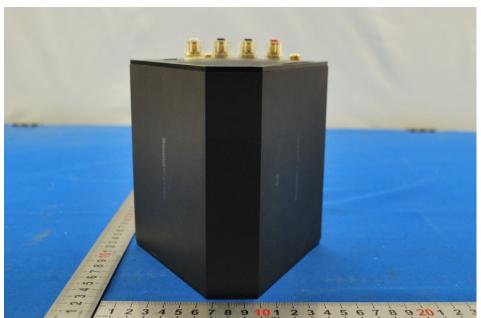
Test model No.:SB1580

Report No.: SZEM140500252005

Page: 29 of 43

Report No.: SZEM140500252005

Page: 30 of 43

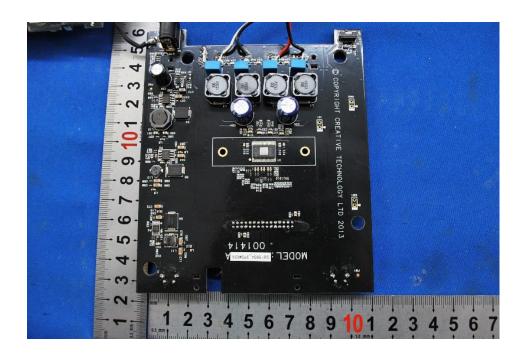


Report No.: SZEM140500252005

Page: 31 of 43

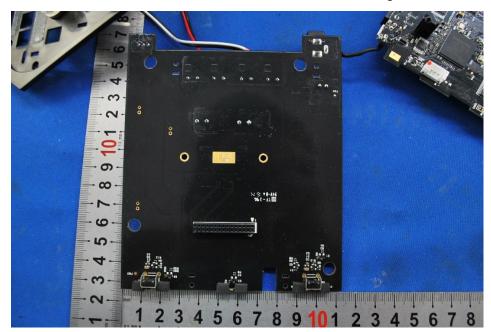
Report No.: SZEM140500252005

Page: 32 of 43



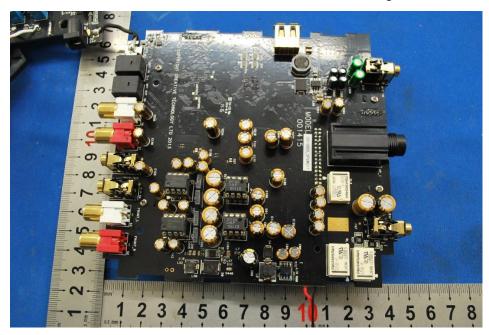
Report No.: SZEM140500252005

Page: 33 of 43



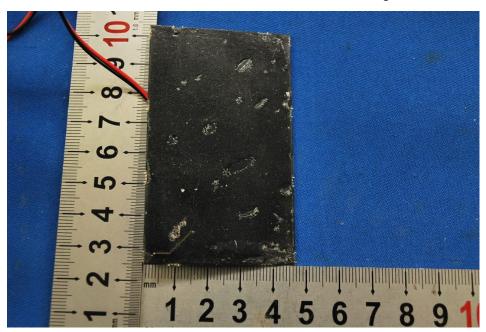
Report No.: SZEM140500252005

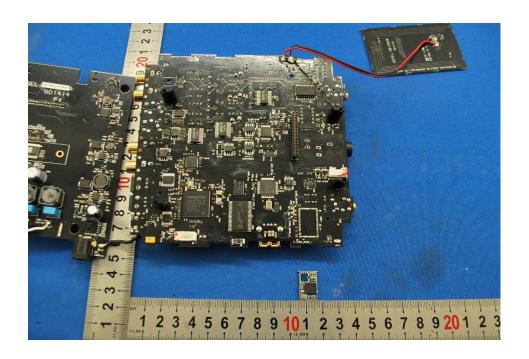
Page: 34 of 43



Report No.: SZEM140500252005

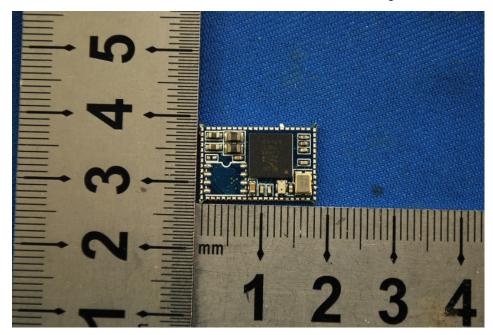
Page: 35 of 43

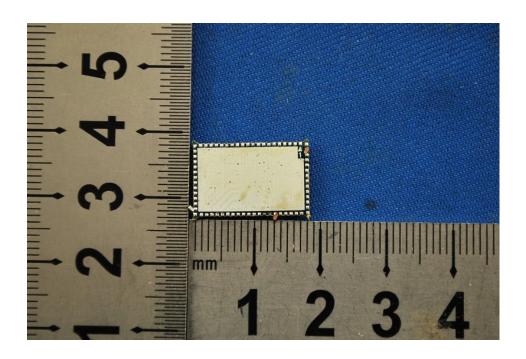




Report No.: SZEM140500252005

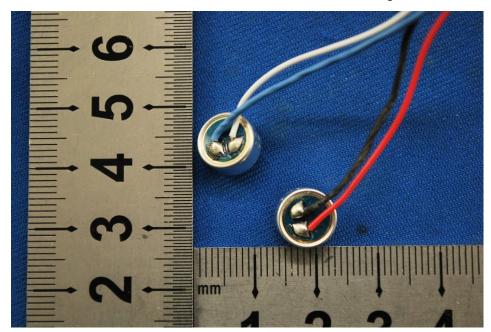
Page: 36 of 43

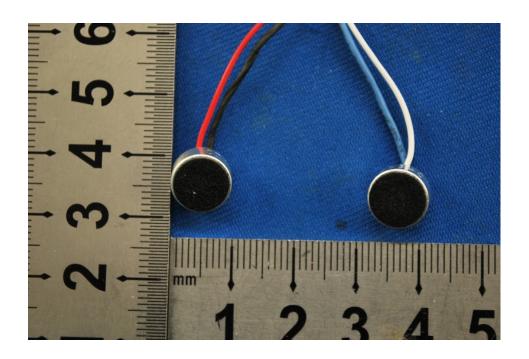




Report No.: SZEM140500252005

Page: 37 of 43





Report No.: SZEM140500252005

Page: 38 of 43

Report No.: SZEM140500252005

Page: 39 of 43

Report No.: SZEM140500252005

Page: 40 of 43

MODEL\型号\модель:GM150-2400600 INPUT\输入\вход:100-240V~50/60Hz 2.5A OUTPUT\输出\выход:24V == 6.0A 144W

(V) EFFICIENCY LEVEL

전기용품 안전관리법에 의한 표시

모델명:GM150-2400600 정격입력:100-240V~50/60Hz 2.5A

징격출력:24V=6.0A 144W 안전인증번호:HU10379-11005A

제품명 : 직류전원장치

제조원:Foshan Shunde Guanyuda Power

Supply Co.,Ltd.
제조국: 중국(MADE IN CHINA)
제조년월: 2014년 11월
A/S연락처: JAY WORKS CO.,LTD
(02) 9485757
최저소비효율기준 만족제품

Creative Media K.K

3TR4 Audio / Video Apparatus

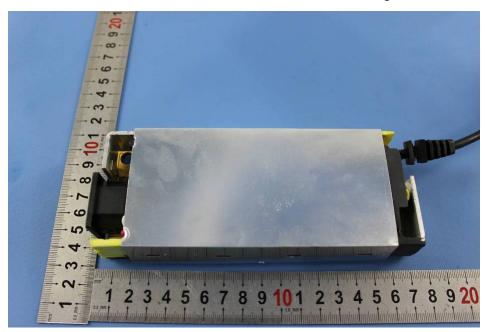
CAUTION/警告

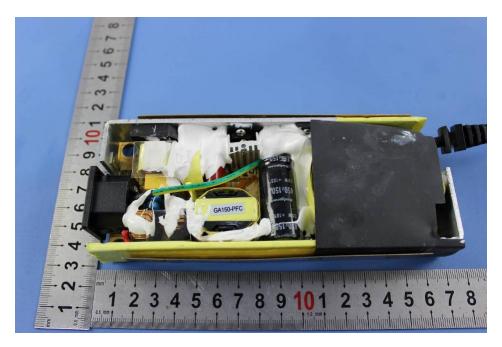
CAUTION

RISK OF ELECTRIC SHOCK DO NOT OPEN

(请不要打开,小心触电)

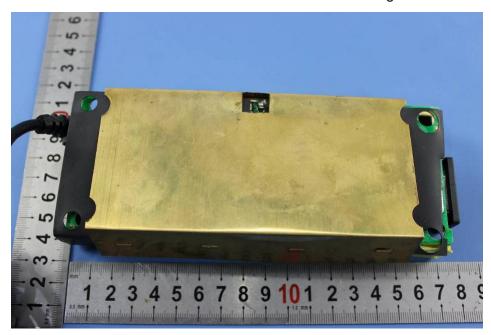
MADE IN CHINA/中国制造/Сделано в Китае

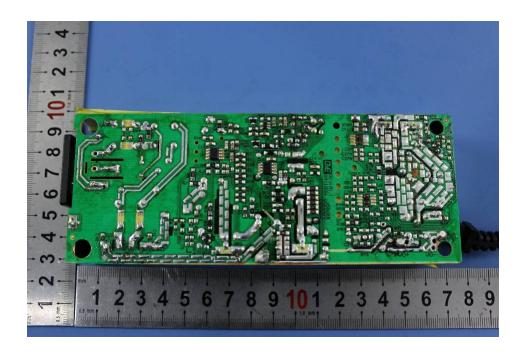

FO SHAN SHUNDE GUANYUDA POWER SUPPLY CO.,LTD


佛山市顺德区冠宇达电源有限公司

Report No.: SZEM140500252005

Page: 41 of 43





Report No.: SZEM140500252005

Page: 42 of 43

Report No.: SZEM140500252005

Page: 43 of 43

