Address

FCC - TEST REPORT

Report Number	:	60.792.22.004.01R01	Date of Issue	: .	November 18, 2022
Model	:	HG09913A-US, HG099	13B-US		
Product Type	:	Bluetooth Speaker			
Applicant	:	Lidl US LLC			
Address	:	3500 South Clark Street	, Arlington, VA 222	202, L	JS
Production Facility	:	DIGI-MAX TECHNOLOG	GY LIMITED		

RM 1902 EASEY COMM BLDG, 253 – 261 HENNESSY ROAD,

Test Result : nPositive ONegative

WANCHAI, HK

Total pages 83 including : Appendices

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

1 Table of Contents

1 Table of Contents	2
2 Description of Equipment Under Test	3
3 Summary of Test Standards	4
4 Details about the Test Laboratory	5
4.1 Test Equipment Site List	6
4.2 Measurement System Uncertainty	7
5 Summary of Test Results	8
6 General Remarks	9
7 Test Setups	10
7.1 Radiated test setups Below 1GHz	10
7.2 Radiated test setups Above 1GHz	10
7.3 AC Power Line Conducted Emission test setups	11
7.4 Conducted RF test setups	11
8 Emission Test Results	12
8.1 Spurious Radiated Emission	12
8.2 Conducted Emission at AC Power line	19
8.3 20dB & 99% Bandwidth	21
8.4 Peak Output Power	30
8.5 Spurious Emissions at Antenna Terminals	39
8.6 100kHz Bandwidth of band edges	
8.7 Minimum. Number of Hopping Frequencies	63
8.8 Minimum Hopping Channel Carrier Frequency Separation	
8.9 Average Channel Occupancy Time	
8.10 Antenna Requirement	
9 Test setup procedure	
10 Appendix A - General Product Information	83

2 Description of Equipment Under Test

Description of the Equipment Under Test

Product: Bluetooth Speaker

Model no.: HG09913A-US, HG09913B-US

FCC ID: **2AJ9O-HG9913**

Rating: 5.0 VDC form USB port

Or

3.7V DC, 2000mAh rechargeable Li-ion battery

Frequency: 2402MHz-2480MHz (Tx and Rx)

Antenna gain: 2 dBi

Number of operated channel: 79

Modulation: GFSK, π/4DQPSK, 8DPSK

Auxiliary Equipment and Software Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.	S/N
Adaptor	Apple	A1357	EMC-126
iPhone	Apple	iPhone 6	2014CJ9409/352089
			077956552
Laptop	Lenovo	X240	L34015282

Auxiliary Software Used during Test:

DESCRIPTION	SOFTWARE NAME	VERSION	REMARK
RF Test Mode Software			Provided by applicant

3 Summary of Test Standards

Test Standards

FCC Part 15 Subpart C 10-1-20 Edition

Federal Communications Commission, PART 15 — Radio Frequency Devices,

Subpart C —Intentional Radiators

All the test methods were according to ANSI C63.10 (2013).

4 Details about the Test Laboratory

Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13 Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Shenzhen 518052, P.R.China FCC Registration Number: 514049 ISED test site number: 10320A

Emission Tests					
Test Item	Test Site				
FCC Part 15 Subpart C	•				
FCC Title 47 Part 15.205, 15.209 & 15.247(d) Spurious Radiated Emission	Site 1				
FCC Title 47 Part 15.207(a) AC Line Conducted Emission	Site 1				
FCC Title 47 Part 15.247(a)(1) 20dB & 99% Bandwidth	Site 1				
FCC Title 47 Part 15.247(b) Peak Output Power	Site 1				
FCC Title 47 Part 2.1051 & 15.247(d) Spurious Emissions at Antenna Terminals	Site 1				
FCC Title 47 Part 15.247(d) 100kHz Bandwidth of band edges	Site 1				
FCC Title 47 Part 15.247(a)(1) Minimum Number of Hopping Frequencies	Site 1				
FCC Title 47 Part 15.247(a)(1) Minimum Hopping Channel Carrier Frequency Separation	Site 1				
FCC Title 47 Part 15.247(a)(1) Average Time of Occupancy	Site 1				
FCC Title 47 Part 15.203 & 15.247(b) Antenna Requirement	Site 1				

4.1 Test Equipment Site List

Radiated Emission Test - Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 7	102176	2023-5-27
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2023-5-27
Horn Antenna	Rohde & Schwarz	HF907	102294	2023-6-19
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100398	2023-8-25
Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2023-5-28
Attenuator	Mini-circuits	UNAT-6+	15542	2023-5-27
3m Semi-anechoic chamber	TDK	SAC-3 #1		2023-5-28
Test software	Rohde & Schwarz	EMC32	Version10.35.02	N/A

Conducted Emission Test - Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2023-5-27
LISN	Rohde & Schwarz	ENV4200	100249	2023-5-27
LISN	Rohde & Schwarz	ENV432	101318	2023-5-27
LISN	Rohde & Schwarz	ENV216	100326	2023-5-27
ISN	Rohde & Schwarz	ENY81	100177	2023-5-27
ISN	Rohde & Schwarz	ENY81-CA6	101664	2023-5-27
High Voltage Probe	Schwarzbeck	TK9420(VT9420)	9420-584	2023-5-27
RF Current Probe	Rohde & Schwarz	EZ-17	100816	2023-5-31
Attenuator	Shanghai Huaxiang	TS2-26-3	080928189	2023-5-27
Test software	Rohde & Schwarz	EMC32	Version9.15.00	N/A
Shielding Room	TDK	CSR #1		2023-5-27

20dB & 99% Bandwidth, Peak Output Power, Spurious Emissions at Antenna Terminals,

100kHz Bandwidth of band edges, hopping items - Site 1

DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2023-5-27
RF Switch Module	Rohde & Schwarz	OSP120/OSP- B157	101226/100851	2023-5-27

4.2 Measurement System Uncertainty

Measurement System Uncertainty Emissions

System Measurement Uncertainty						
Items	Extended Uncertainty					
Uncertainty for Radiated Emission in 3m chamber 9kHz-30MHz	4.76dB					
Uncertainty for Radiated Emission in 3m chamber 30MHz-1000MHz	Horizontal: 5.12dB; Vertical: 5.10dB;					
Uncertainty for Radiated Emission in 3m chamber 1000MHz-25000MHz	Horizontal: 5.01dB; Vertical: 5.00dB;					
Uncertainty for Conducted Emission at AC Power Line 150kHz-30MHz	3.21dB					
Uncertainty for conducted power test	1.16dB					
Uncertainty for frequency test	0.6×10 ⁻⁷					

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115: 2007, clause 4.4.3 and 4.5.1.

5 Summary of Test Results

Emission Tests				
FCC Part 15 Subpart C				
Test Condition	Pages	Te	st Resi	ult
		Pass	Fail	N/A
FCC Title 47 Part 15.205, 15.209 & 15.247(d) Spurious Radiated Emission	12-18			
FCC Title 47 Part 15.207(a) AC Line Conducted Emission	19-20			
FCC Title 47 Part 15.247(a)(2) 20dB & 99% Bandwidth	21-29			
FCC Title 47 Part 15.247(b) Peak Output Power	30-38			
FCC Title 47 Part 2.1051 & 15.247(d) Spurious Emissions at Antenna Terminals	39-56			
FCC Title 47 Part 15.247(d) 100kHz Bandwidth of band edges	57-62			
FCC Title 47 Part 15.247(a)(1) Min. No. of Hopping Frequencies	63-65			
FCC Title 47 Part 15.247(a)(1) Min. of Hopping Channel Carrier Frequency Separation	66-68	\boxtimes		
FCC Title 47 Part 15.247(a)(1) Average Time of Occupancy	69-71	\boxtimes		
FCC Title 47 Part 15.203 & 15.247(b) Antenna Requirement	72			

6 General Remarks

Remarks

This submittal(s) (test report) is intended for **FCC ID: 2AJ90-HG9913**, complies with Section 15.203, 15.205, 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C rules for the DSS grant.

Client informs that the **HG09913A-US** and **HG09913B-US** have the same technical construction including circuit diagram, PCB layout, components and component layout, all electrical construction and mechanical construction. The difference lies only on color & model of different model.

All tests were performed on model: **HG09913A-US**. All data packet type modes have been tested, only the worst case is shown on the report.

The TX and RX range is 2402MHz-2480MHz.

SUMMARY:

- All tests according to the regulations cited on page 8 were
 - n Performed
 - o Not Performed
- The Equipment Under Test
 - n Fulfills the general approval requirements.
 - O Does not fulfill the general approval requirements.

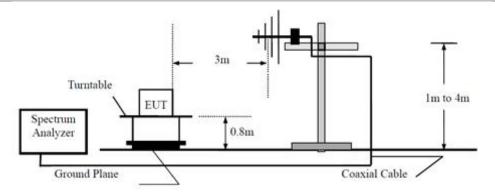
Sample Received Date: September 30, 2022

Testing Start Date: October 1, 2022

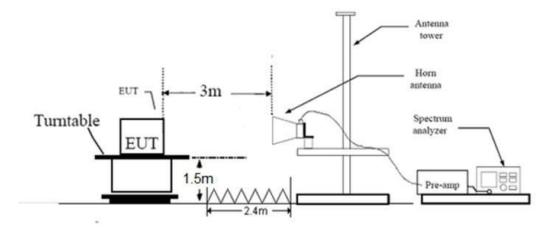
Testing End Date: November 17, 2022

- TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch -

Reviewed by: Prepared by: Tested by:

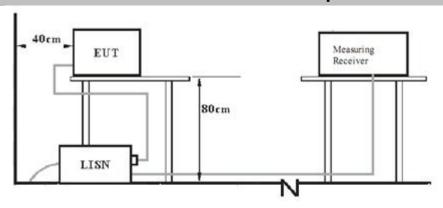

Eric LI Section Manager Hosea CHAN EMC Project Engineer

Louise Liu EMC Test Engineer

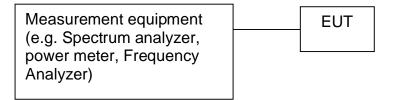


7 Test Setups

7.1 Radiated test setups Below 1GHz



7.2 Radiated test setups Above 1GHz



7.3 AC Power Line Conducted Emission test setups

7.4 Conducted RF test setups

Test Result

Not Passed

□ Passed

8 Emission Test Results

8.1 Spurious Radiated Emission

EUT: HG09913A-US

Op Condition: Operated, TX Mode (3DH5)

(Highest channel is the worst case)

Test Specification: FCC15.205, 15.209 & 15.247(d)

Comment: DC 5V

Remark: Below 1GHz

Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
47.998889	20.97	40.00	19.03	PK	Н	20.70
57.537222	19.90	40.00	20.10	PK	Н	20.10
97.037778	20.30	43.50	23.20	PK	Н	18.00
119.671111	20.03	43.50	23.47	PK	Н	16.54
198.402778	19.95	43.50	23.55	PK	Н	18.81
473.828889	29.17	46.00	16.83	PK	Н	24.94
47.998889	27.93	40.00	12.07	PK	V	20.70
56.513333	21.86	40.00	18.14	PK	V	20.31
104.205000	19.84	43.50	23.66	PK	V	18.43
197.540556	20.89	43.50	22.61	PK	V	18.85
356.458889	24.60	46.00	21.40	PK	V	22.30
611.137778	30.94	46.00	15.06	PK	V	27.60

Remark:

- As the measured peak value not exceeded the Quasi-peak limit, Quasi-peak value no need to be measured
- 2. Result Level=Reading Level + Correction Factor

Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain

Below 1GHz: Corrector factor = Antenna Factor + Cable Loss

(The Reading Level is recorded by software which is not shown in the sheet)

Test Result ⊠ Passed

Not Passed

3.73

9.20

V

Spurious Radiated Emission

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402MHz, 3DH5)

Test Specification: FCC15.205, 15.209 & 15.247(d)

51.71

47.66

Comment: DC 5V

Remark: 1GHz to 25GHz

Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
2388.000000	40.98	74.00	33.02	PK	Н	-2.95
2496.500000	41.35	74.00	32.65	PK	Н	-2.19
4432.500000	47.53	74.00	26.47	PK	Н	3.01
6405.000000	45.53	74.00	28.47	PK	Н	9.20
2391.000000	40.11	74.00	33.89	PK	V	-2.90
2480.000000	44.39	74.00	29.61	PK	V	-2.15

74.00

74.00

Remark:

4804.000000

6405.000000

1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.

22.29

26.34

PK

PK

- Consequence Level=Reading Level + Correction Factor
 Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
 Below 1GHz: Corrector factor = Antenna Factor + Cable Loss
 (The Reading Level is recorded by software which is not shown in the sheet)
- 3. No significant emissions were detected above 18GHz.

Test Result

⊠ Passed

Η

V

V

V

Not Passed

-2.92

-2.19

3.89

9.10

Spurious Radiated Emission

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2441MHz, 3DH5)

Test Specification: FCC15.205, 15.209 & 15.247(d)

44.13

42.72

51.60

45.52

Comment: DC 5V

2390.000000

2495.000000

4880.500000

6506.500000

Remark: 1GHz to 25GHz

Frequency MHz	Result	Limit	Margin	Detector PK/QP/AV	Ant. Polarity H/V	Corr.
2392.000000	dBμV/m 42.08	dBμV/m 74.00	dB 31.92	PK/QP/AV PK	 Н	(dB) -2.88
2488.500000	42.89	74.00	31.11	PK	н	-2.17
4193.000000	46.89	74.00	27.11	PK	Н	2.01
6507.000000	45.86	74.00	28.14	PK	Н	9.11

29.87

31.29

22.40

28.48

PK

PK

PK

PK

74.00

74.00

74.00

74.00

- 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- 2. Consequence Level=Reading Level + Correction Factor
 Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
 Below 1GHz: Corrector factor = Antenna Factor + Cable Loss
 (The Reading Level is recorded by software which is not shown in the sheet)
- 3. No significant emissions were detected above 18GHz.

Spurious Radiated Emission

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, 3DH5)

Test Specification: FCC15.205, 15.209 & 15.247(d)

Comment: DC 5V

Remark: 1GHz to 25GHz

Test Result
⊠ Passed
☐ Not Passed

Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBμV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
2390.000000	41.61	74.00	32.39	PK	Н	-2.92
2489.000000	41.47	74.00	32.53	PK	Н	-2.17
4388.000000	48.15	74.00	25.85	PK	Н	2.74
6613.000000	47.14	74.00	26.86	PK	Н	9.88
2383.000000	40.78	74.00	33.22	PK	V	-3.03
2492.000000	42.32	74.00	31.68	PK	V	-2.18
4960.500000	50.86	74.00	23.14	PK	V	4.23
6613.000000	47.17	74.00	26.83	PK	V	9.88

- 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- 2. Consequence Level=Reading Level + Correction Factor
 Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
 Below 1GHz: Corrector factor = Antenna Factor + Cable Loss
 (The Reading Level is recorded by software which is not shown in the sheet)
- 3. No significant emissions were detected above 18GHz.

Test Result

□ Passed

Not Passed

Spurious Radiated Emission

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402MHz, DH5)

Test Specification: FCC15.205, 15.209 & 15.247(d)

Comment: DC 5V

Remark: 1GHz to 25GHz

Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
2391.500000	41.87	74.00	32.13	PK	Н	-2.89
2495.500000	41.25	74.00	32.75	PK	Н	-2.19
4804.000000	51.52	74.00	22.48	PK	Н	3.73
6405.500000	47.44	74.00	26.56	PK	Н	9.20
9607.500000	48.79	74.00	25.21	PK	Н	13.15
2391.500000	40.87	74.00	33.13	PK	V	-2.89
2483.500000	40.38	74.00	33.62	PK	V	-2.16
4804.500000	52.18	74.00	21.82	PK	V	3.73
6405.000000	48.41	74.00	25.59	PK	V	9.20

- 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- 2. Consequence Level=Reading Level + Correction Factor
 Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
 Below 1GHz: Corrector factor = Antenna Factor + Cable Loss
 (The Reading Level is recorded by software which is not shown in the sheet)
- 3. No significant emissions were detected above 18GHz.

Test Result ⊠ Passed

V

9.38

Not Passed

Spurious Radiated Emission

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2441MHz, DH5)

Test Specification: FCC15.205, 15.209 & 15.247(d)

46.65

Comment: DC 5V

Remark: 1GHz to 25GHz

Frequency	Result	Limit	Margin	Detector	Ant.	Corr.
. ,			Margin		Polarity	
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
2398.500000	40.81	74.00	33.19	PK	Н	-2.77
2491.500000	41.65	74.00	32.35	PK	Н	-2.18
4571.000000	47.74	74.00	26.26	PK	Н	3.03
6506.500000	45.16	74.00	28.84	PK	Н	9.10
2393.000000	41.12	74.00	32.88	PK	V	-2.86
2489.500000	41.47	74.00	32.53	PK	V	-2.17
4880.000000	52.21	74.00	21.79	PK	V	3.89

74.00

Remark:

6380.500000

1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.

27.35

PΚ

- 2. Consequence Level=Reading Level + Correction Factor
 Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
 Below 1GHz: Corrector factor = Antenna Factor + Cable Loss
 (The Reading Level is recorded by software which is not shown in the sheet)
- 3. No significant emissions were detected above 18GHz.

Spurious Radiated Emission

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, DH5)

Test Specification: FCC15.205, 15.209 & 15.247(d)

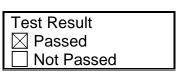
Comment: DC 5V

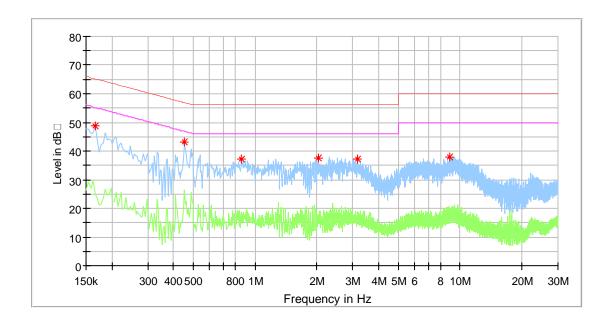
Remark: 1GHz to 25GHz

Test Result	
□ Passed	
☐ Not Passed	

Frequency	Result	Limit	Margin	Detector	Ant. Polarity	Corr.
MHz	dBµV/m	dBµV/m	dB	PK/QP/AV	H/V	(dB)
2390.500000	41.69	74.00	32.31	PK	Н	-2.91
2489.000000	41.69	74.00	32.31	PK	Н	-2.17
4960.500000	49.43	74.00	24.57	PK	Н	4.23
6613.500000	47.07	74.00	26.93	PK	Н	9.89
2389.500000	40.59	74.00	33.41	PK	V	-2.92
2495.500000	41.61	74.00	32.39	PK	V	-2.19
4960.000000	52.85	74.00	21.15	PK	V	4.23
6613.000000	49.28	74.00	24.72	PK	V	9.88

- 1. According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in data table if the peak value complies with average limit.
- 2. Consequence Level=Reading Level + Correction Factor
 Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain
 Below 1GHz: Corrector factor = Antenna Factor + Cable Loss
 (The Reading Level is recorded by software which is not shown in the sheet)
- 3. No significant emissions were detected above 18GHz.


8.2 Conducted Emission at AC Power line

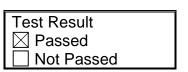

EUT: HG09913A-US

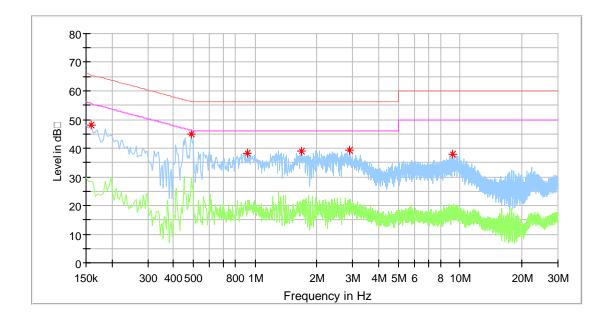
Op Condition: BT Link

Test Specification: AC Mains, L Line

Comment: 120V AC, 60Hz (supporting adapter input)

Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)
0.166000	48.83		65.16	16.33
0.454000	43.18		56.80	13.62
0.858000	37.21		56.00	18.79
2.030000	37.42		56.00	18.58
3.150000	37.19		56.00	18.81
8.922000	37.80		60.00	22.20


Conducted Emission Test

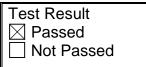

EUT: HG09913A-US

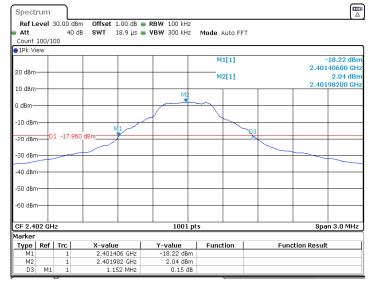
Op Condition: BT Link

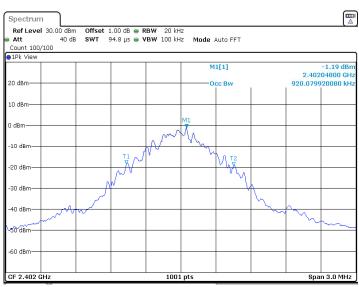
Test Specification: AC Mains, N Line

Comment: 120V AC, 60Hz (supporting adapter input)

	Frequency (MHz)	MaxPeak (dBµV)	Average (dBµV)	Limit (dBµV)	Margin (dB)
ĺ	0.158000	48.00		65.57	17.57
ĺ	0.486000	44.96		56.24	11.27
	0.918000	38.22		56.00	17.78
	1.682000	38.80		56.00	17.20
	2.906000	39.42		56.00	16.58
	9.234000	37.96		60.00	22.04

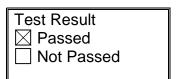

8.3 20dB & 99% Bandwidth

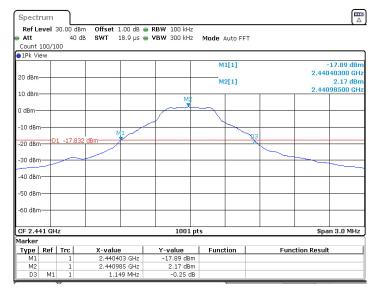

EUT: HG09913A-US

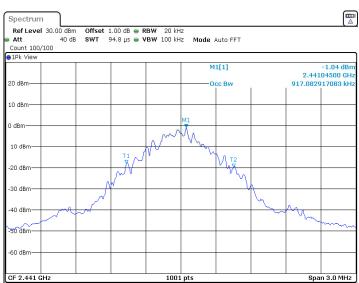

Op Condition: Operated, TX Mode (2402MHz, DH5)

Test Specification: FCC15.247(a)(1), 20dB Bandwidth & 99%

Bandwidth

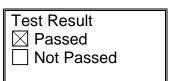

Bandwidth	Measured Value	Limit
20dB bandwidth	1.152 MHz	NA
99% OCB	0.920 MHz	NA

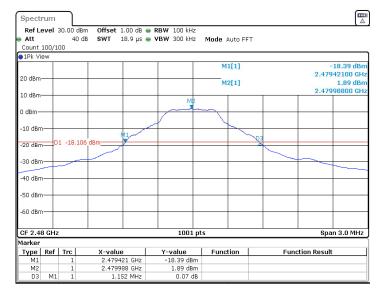


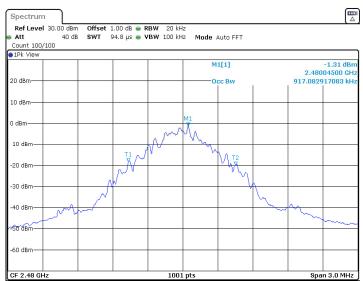

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2441MHz, DH5)
Test Specification: FCC15.247(a)(1), 20dB Bandwidth & 99%

Bandwidth

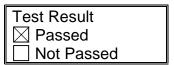

Bandwidth	Measured Value	Limit
20dB bandwidth	1.149 MHz	NA
99% OCB	0.917 MHz	NA

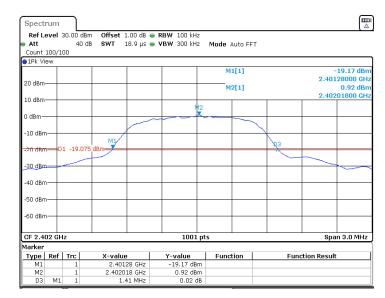


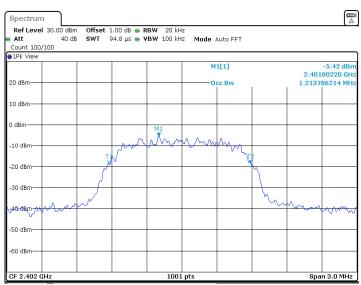

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, DH5)
Test Specification: FCC15.247(a)(1), 20dB Bandwidth & 99%

Bandwidth

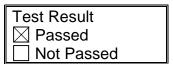

Bandwidth	Measured Value	Limit
20dB bandwidth	1.152 MHz	NA
99% OCB	0.917 MHz	NA

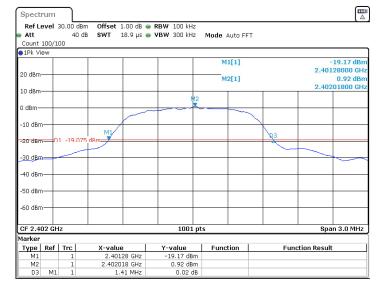


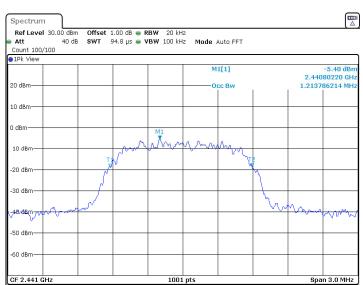

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402MHz, 2DH5)

Test Specification: FCC15.247(a)(1), 20dB Bandwidth & 99% Bandwidth

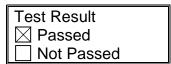

Bandwidth	Measured Value	Limit
20dB bandwidth	1.410 MHz	NA
99% OCB	1.214 MHz	NA

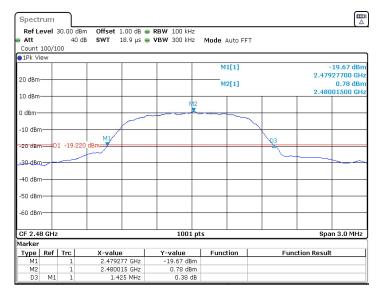


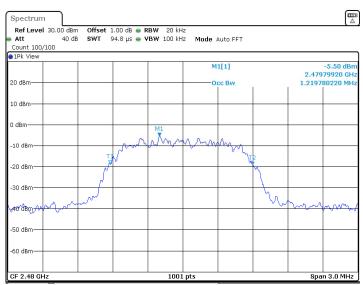

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2441MHz, 2DH5)

Test Specification: FCC15.247(a)(1), 20dB Bandwidth & 99% Bandwidth

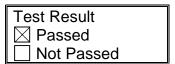

Bandwidth	Measured Value	Limit
20dB bandwidth	1.410 MHz	NA
99% OCB	1.214 MHz	NA

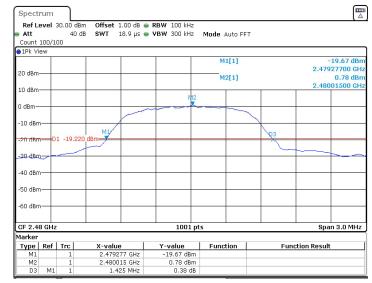


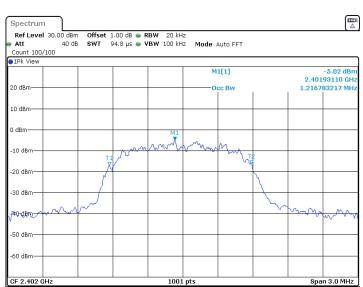

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, 2DH5)

Test Specification: FCC15.247(a)(1), 20dB Bandwidth & 99% Bandwidth

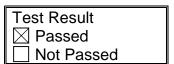

Bandwidth	Measured Value	Limit
20dB bandwidth	1.425 MHz	NA
99% OCB	1.220 MHz	NA

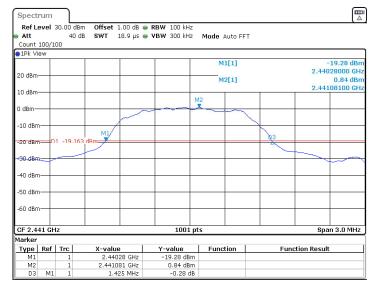


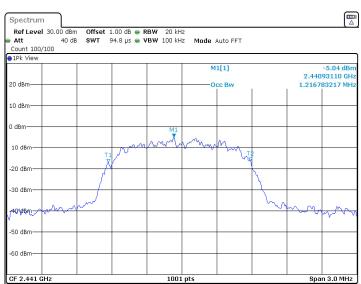

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402MHz, 3DH5)

Test Specification: FCC15.247(a)(1), 20dB Bandwidth & 99% Bandwidth

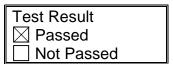

Bandwidth	Measured Value	Limit
20dB bandwidth	1.425 MHz	NA
99% OCB	1.217 MHz	NA

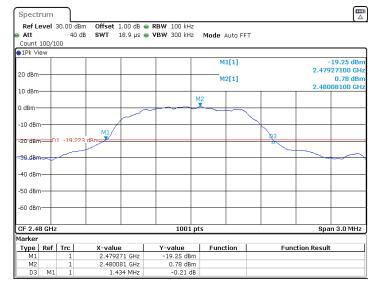


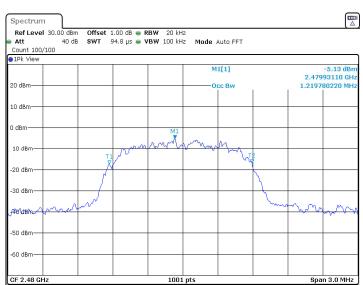

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2441MHz, 3DH5)

Test Specification: FCC15.247(a)(1), 20dB Bandwidth & 99% Bandwidth


Bandwidth	Measured Value	Limit
20dB bandwidth	1.425 MHz	NA
99% OCB	1.217 MHz	NA

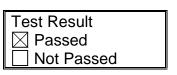


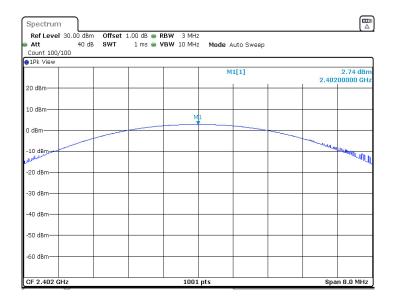

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, 3DH5)

Test Specification: FCC15.247(a)(1), 20dB Bandwidth & 99% Bandwidth

Ī	Bandwidth	Measured Value	Limit
Ī	20dB bandwidth	1.434 MHz	NA
	99% OCB	1.220 MHz	NA



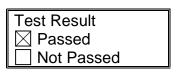

8.4 Peak Output Power

EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402MHz, DH5)

Test Specification: FCC15.247(b)

Conducted Output Power	Limit
2.74 dBm	< 30dBm



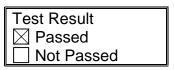
Peak Output Power

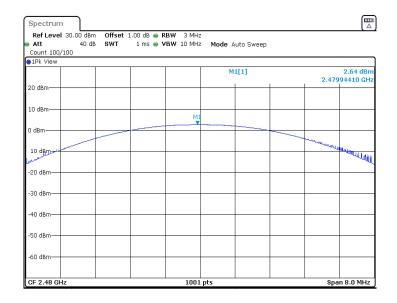
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2441MHz, DH5)

Test Specification: FCC15.247(b)

Conducted Output Power	Limit
2.69 dBm	< 30dBm



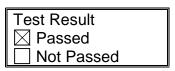

Peak Output Power

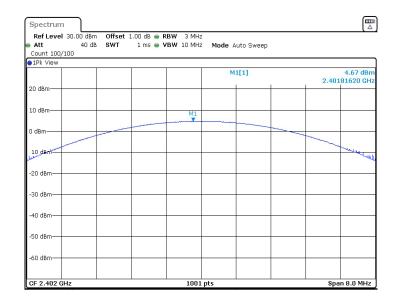
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, DH5)

Test Specification: FCC15.247(b)

Conducted Output Power	Limit
2.64 dBm	< 30dBm



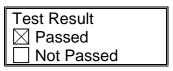

Peak Output Power

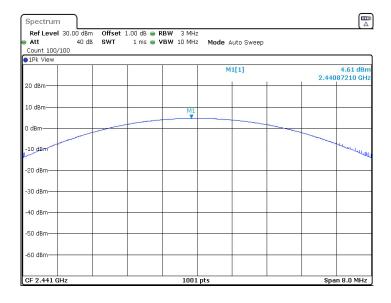
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402MHz, 2DH5)

Test Specification: FCC15.247(b)

Conducted Output Power	Limit
4.67 dBm	< 30dBm



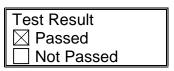

Peak Output Power

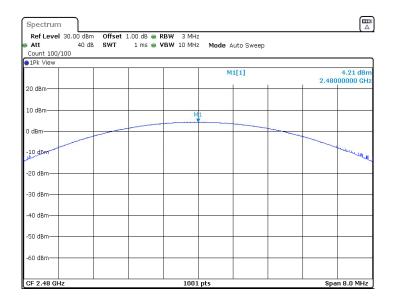
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2441MHz, 2DH5)

Test Specification: FCC15.247(b)

Conducted Output Power	Limit
4.61 dBm	< 30dBm



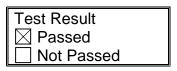

Peak Output Power

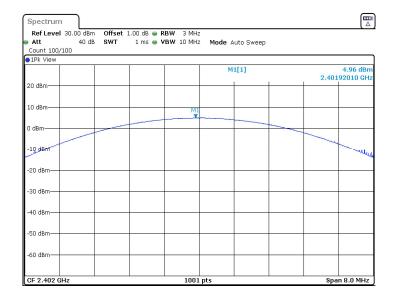
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, 2DH5)

Test Specification: FCC15.247(b)

Conducted Output Power	Limit
4.21 dBm	< 30dBm



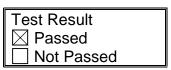

Peak Output Power

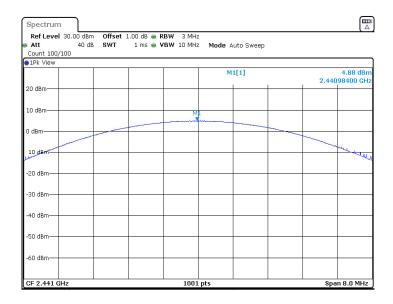
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402MHz, 3DH5)

Test Specification: FCC15.247(b)

Conducted Output Power	Limit
4.96 dBm	< 30dBm



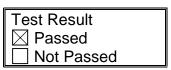

Peak Output Power

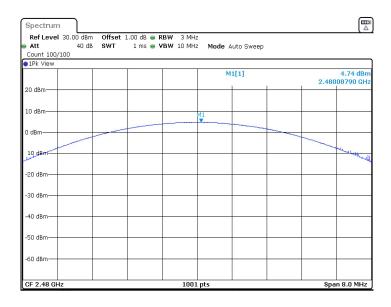
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2441MHz, 3DH5)

Test Specification: FCC15.247(b)

Conducted Output Power	Limit
4.88 dBm	< 30dBm




Peak Output Power

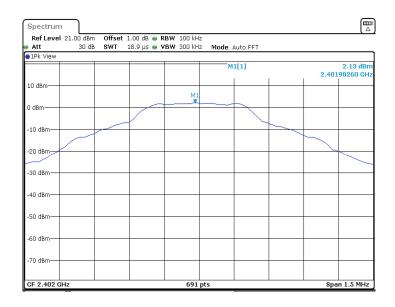
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, 3DH5)

Test Specification: FCC15.247(b)

Conducted Output Power	Limit
4.74 dBm	< 30dBm

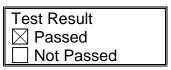
8.5 Spurious Emissions at Antenna Terminals

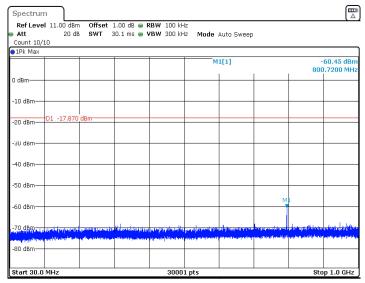

EUT: HG09913A-US

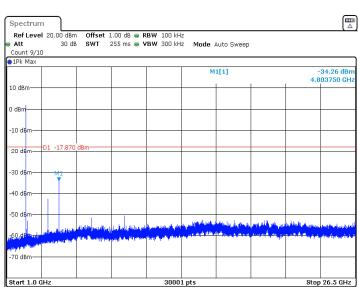
Op Condition: Operated, TX Mode (2402MHz, DH5)

Test Specification: FCC2.1051 & 15.247(d)

Test Result	
□ Passed	
■ Not Passed	

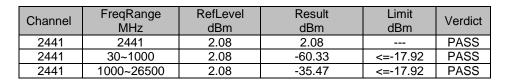


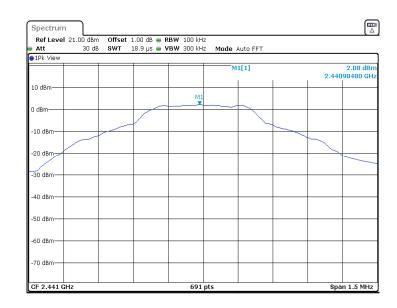

Spurious Emissions at Antenna Terminals


EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402MHz, DH5)

Test Specification: FCC2.1051 & 15.247(d)

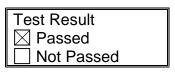

Spurious Emissions at Antenna Terminals

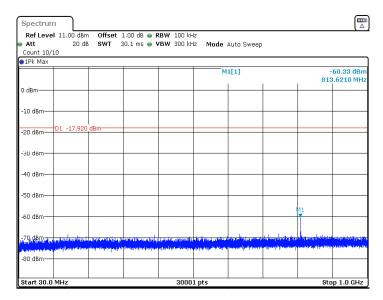

EUT: HG09913A-US

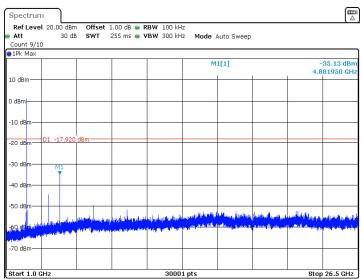
Op Condition: Operated, TX Mode (2441MHz, DH5)

Test Specification: FCC2.1051 & 15.247(d)

Test Result	
□ Passed	
☐ Not Passed	



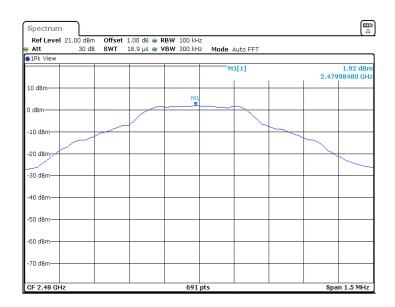

Spurious Emissions at Antenna Terminals


EUT: HG09913A-US

Op Condition: Operated, TX Mode (2441MHz, DH5)

Test Specification: FCC2.1051 & 15.247(d)

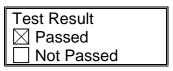
Spurious Emissions at Antenna Terminals

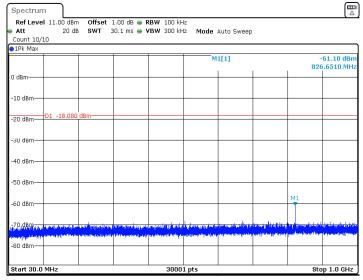

EUT: HG09913A-US

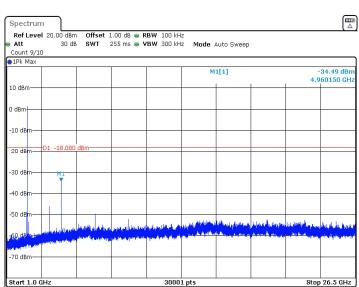
Op Condition: Operated, TX Mode (2480MHz, DH5)

Test Specification: FCC2.1051 & 15.247(d)

Test Result
□ Passed
☐ Not Passed

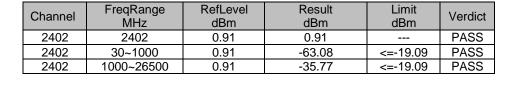


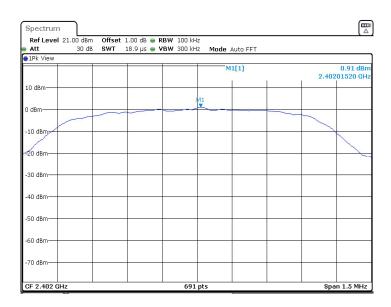

Spurious Emissions at Antenna Terminals


EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, DH5)

Test Specification: FCC2.1051 & 15.247(d)

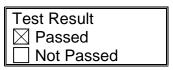

Spurious Emissions at Antenna Terminals

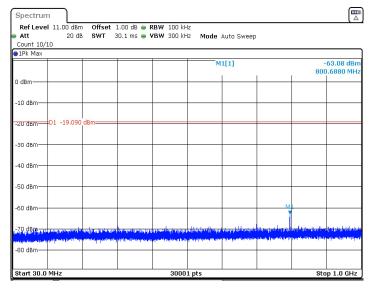

EUT: HG09913A-US

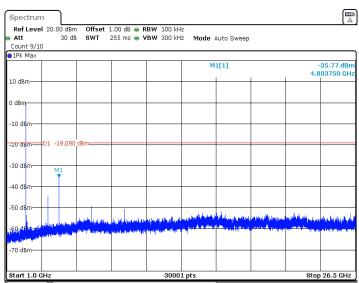
Op Condition: Operated, TX Mode (2402MHz, 2DH5)

Test Specification: FCC2.1051 & 15.247(d)

Test Result	
□ Passed	
☐ Not Passed	



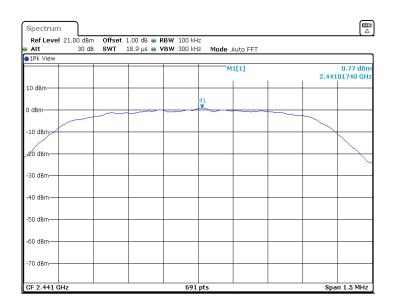

Spurious Emissions at Antenna Terminals


EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402MHz, 2DH5)

Test Specification: FCC2.1051 & 15.247(d)

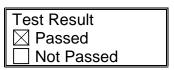
Spurious Emissions at Antenna Terminals

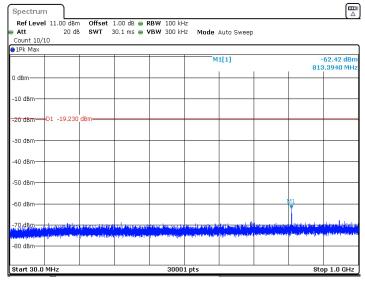

EUT: HG09913A-US

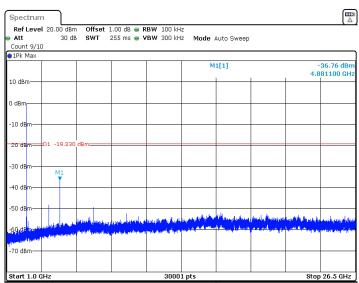
Op Condition: Operated, TX Mode (2441MHz, 2DH5)

Test Specification: FCC2.1051 & 15.247(d)

Test Result	
□ Passed	
☐ Not Passed	



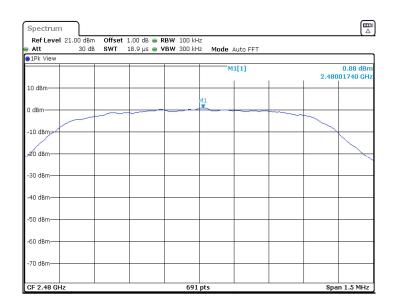

Spurious Emissions at Antenna Terminals


EUT: HG09913A-US

Op Condition: Operated, TX Mode (2441MHz, 2DH5)

Test Specification: FCC2.1051 & 15.247(d)

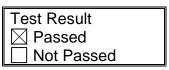
Spurious Emissions at Antenna Terminals

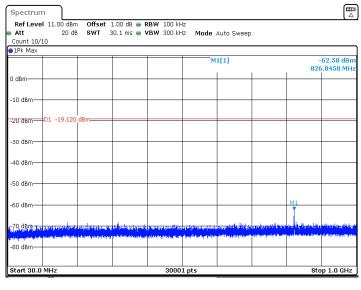

EUT: HG09913A-US

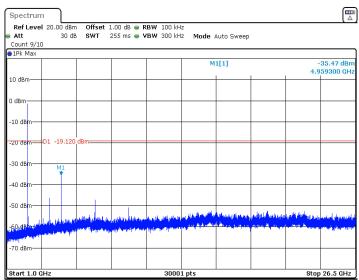
Op Condition: Operated, TX Mode (2480MHz, 2DH5)

Test Specification: FCC2.1051 & 15.247(d)

Test Result	
□ Passed	
☐ Not Passed	




Spurious Emissions at Antenna Terminals


EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, 2DH5)

Test Specification: FCC2.1051 & 15.247(d)

Spurious Emissions at Antenna Terminals

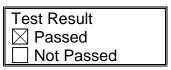

EUT: HG09913A-US

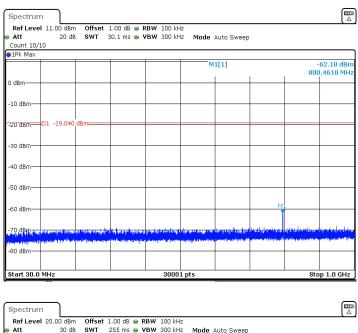
Op Condition: Operated, TX Mode (2402MHz, 3DH5)

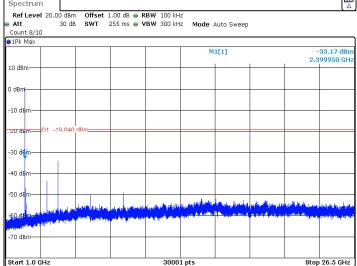
Test Specification: FCC2.1051 & 15.247(d)

Test Result	
□ Passed	
☐ Not Passed	

Channel	FreqRange MHz	RefLevel dBm	Result dBm	Limit dBm	Verdict
2402	2402	0.96	0.96		PASS
2402	30~1000	0.96	-62.1	<=-19.04	PASS
2402	1000~26500	0.96	-33.17	<=-19.04	PASS



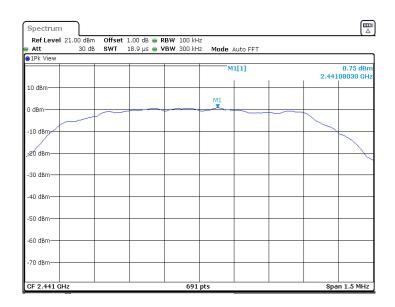

Spurious Emissions at Antenna Terminals


EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402MHz, 3DH5)

Test Specification: FCC2.1051 & 15.247(d)

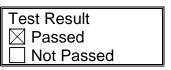
Spurious Emissions at Antenna Terminals

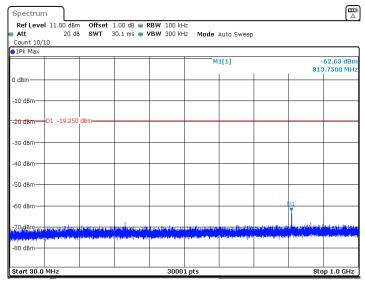

EUT: HG09913A-US

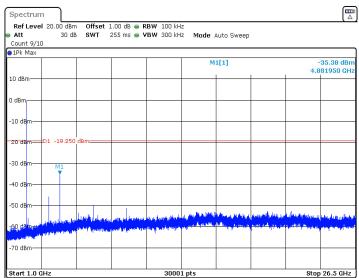
Op Condition: Operated, TX Mode (2441MHz, 3DH5)

Test Specification: FCC2.1051 & 15.247(d)

Test Result	
□ Passed	
□ Not Passed	



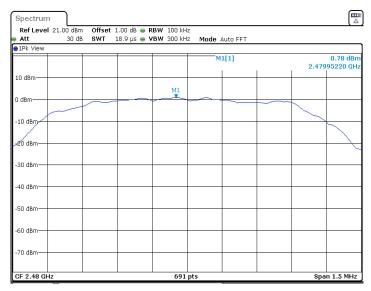

Spurious Emissions at Antenna Terminals


EUT: HG09913A-US

Op Condition: Operated, TX Mode (2441MHz, 3DH5)

Test Specification: FCC2.1051 & 15.247(d)

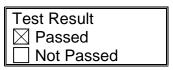
Spurious Emissions at Antenna Terminals

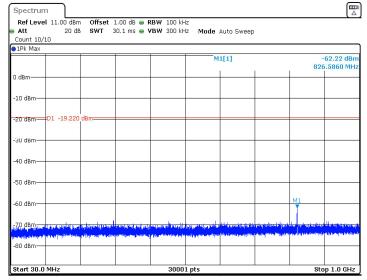

EUT: HG09913A-US

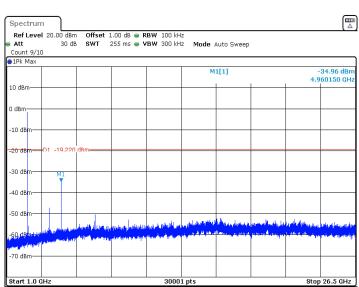
Op Condition: Operated, TX Mode (2480MHz, 3DH5)

Test Specification: FCC2.1051 & 15.247(d)

Test Result	
□ Passed	
☐ Not Passed	

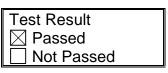


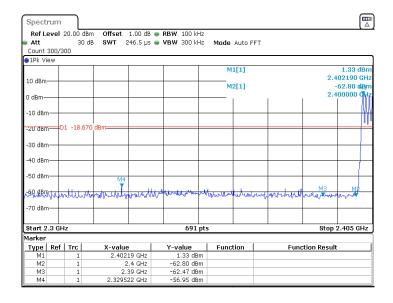

Spurious Emissions at Antenna Terminals


EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, 3DH5)

Test Specification: FCC2.1051 & 15.247(d)



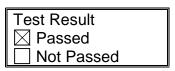

8.6 100kHz Bandwidth of band edges

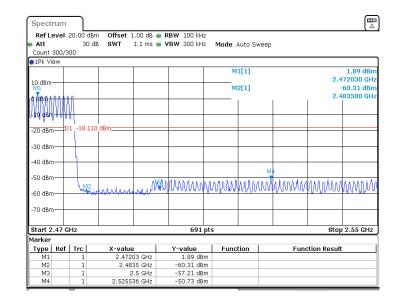
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402MHz, DH5)

Test Specification: FCC15.247(d), Conducted

Band edges	Limit
56.95 dB	> 20dB



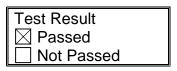

100kHz Bandwidth of band edges

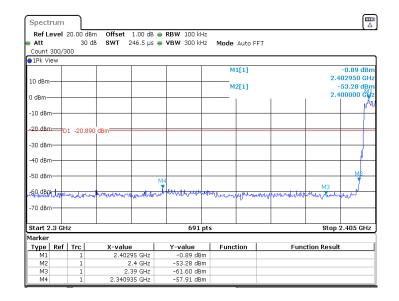
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, DH5)

Test Specification: FCC15.247(d), Conducted

Band edges	Limit
50.73 dB	> 20dB



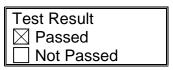

100kHz Bandwidth of band edges

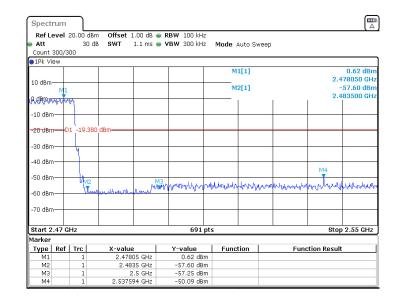
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402MHz, 2DH5)

Test Specification: FCC15.247(d), Conducted

Band edges	Limit
57.91 dB	> 20dB



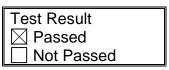

100kHz Bandwidth of band edges

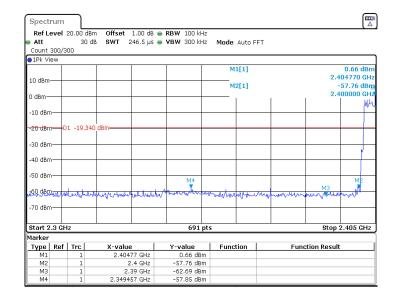
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, 2DH5)

Test Specification: FCC15.247(d), Conducted

Band edges	Limit
50.09 dB	> 20dB



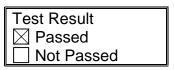

100kHz Bandwidth of band edges

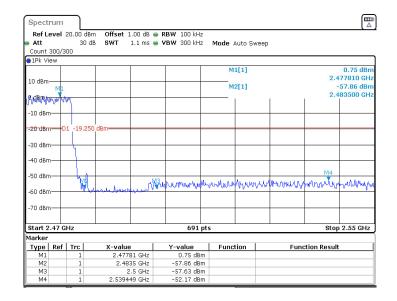
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402MHz, 3DH5)

Test Specification: FCC15.247(d), Conducted

Band edges	Limit
57.85 dB	> 20dB



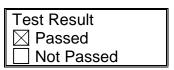

100kHz Bandwidth of band edges

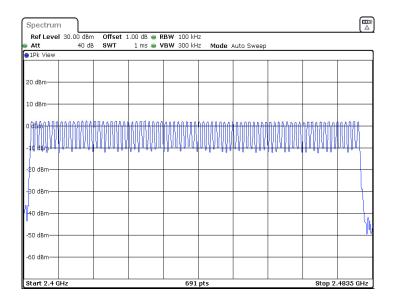
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2480MHz, 3DH5)

Test Specification: FCC15.247(d), Conducted

Band edges	Limit
52.17 dB	> 20dB



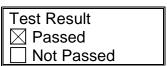

8.7 Minimum. Number of Hopping Frequencies

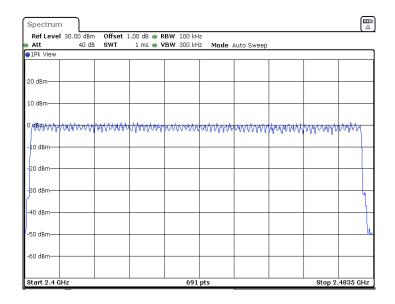
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402-2480MHz, DH5)

Test Specification: FCC15.247(a)(1)

Hopping Channels	Limit
79	≥ 15



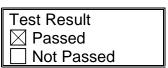

Minimum. Number of Hopping Frequencies

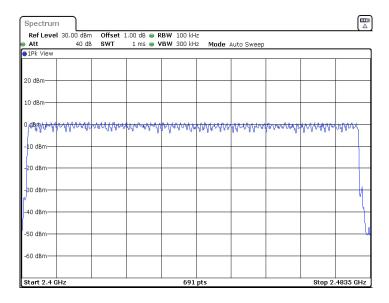
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402-2480MHz, 2DH5)

Test Specification: FCC15.247(a)(1)

Hopping Channels	Limit
79	≥ 15



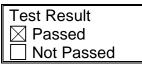

Minimum. Number of Hopping Frequencies

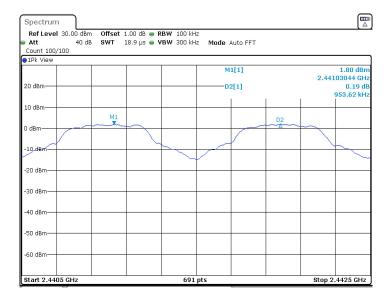
EUT: HG09913A-US

Op Condition: Operated, TX Mode (2402-2480MHz, 3DH5)

Test Specification: FCC15.247(a)(1)

Hopping Channels	Limit
79	≥ 15


8.8 Minimum Hopping Channel Carrier Frequency Separation


EUT: HG09913A-US

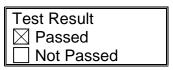
Op Condition: Operated, TX Mode (2441MHz, DH5)

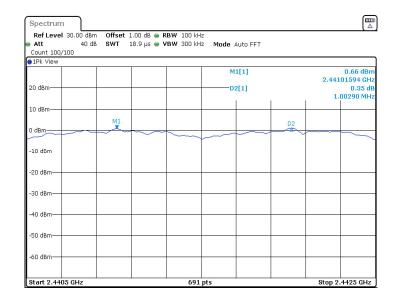
Test Specification: FCC15.247(a)(1)

Comment: DC 5V

Chanel Separation	Limit
954 kHz	≥ 768 kHz

Limit: 2/3 of 20dB bandwidth of hopping channel


Minimum Hopping Channel Carrier Frequency Separation


EUT: HG09913A-US

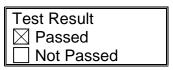
Op Condition: Operated, TX Mode (2441MHz, 2DH5)

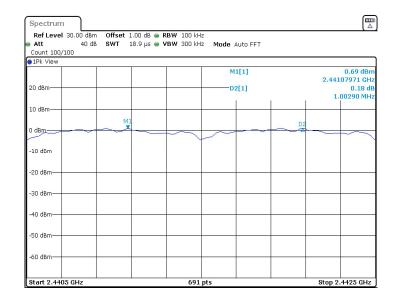
Test Specification: FCC15.247(a)(1)

Comment: DC 5V

Chanel Separation	Limit
1003 kHz	≥ 950 kHz

Limit: 2/3 of 20dB bandwidth of hopping channel


Minimum Hopping Channel Carrier Frequency Separation


EUT: HG09913A-US

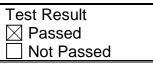
Op Condition: Operated, TX Mode (2441MHz, 2DH5)

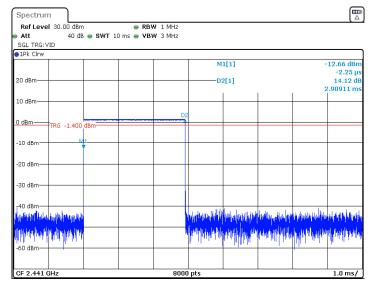
Test Specification: FCC15.247(a)(1)

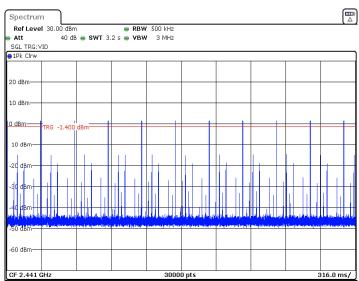
Comment: DC 5V

Chanel Separation	Limit
1003 kHz	≥ 956 kHz

Limit: 2/3 of 20dB bandwidth of hopping channel



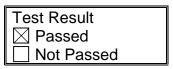

8.9 Average Channel Occupancy Time

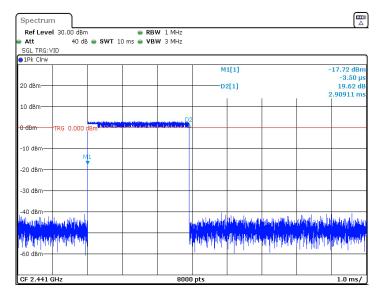

EUT: HG09913A-US

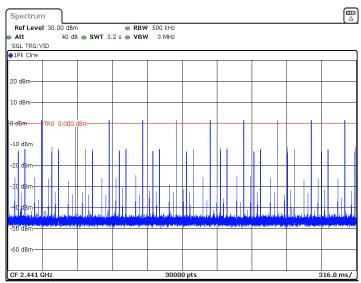
Op Condition: Operated, TX Mode (2441MHz, DH5)

Test Specification: FCC15.247(a)(1)

TestMode	BurstWidth	TotalHops	Result	Limit	Verdict
DH5	2.91 ms	110	0.32 s	<=0.4 s	PASS



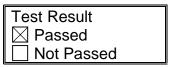

Average Channel Occupancy Time

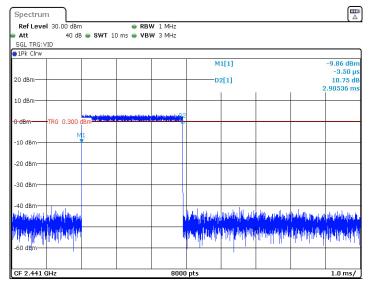

EUT: HG09913A-US

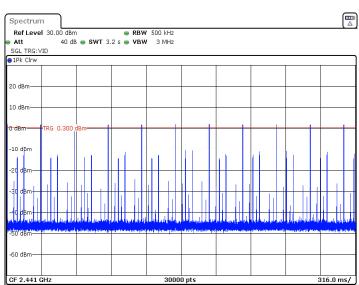
Op Condition: Operated, TX Mode (2441MHz, 2DH5)

Test Specification: FCC15.247(a)(1)

TestMode	BurstWidth	TotalHops	Result	Limit	Verdict
2DH5	2.91 ms	110	0.32 s	<=0.4 s	PASS




Average Channel Occupancy Time


EUT: HG09913A-US

Op Condition: Operated, TX Mode (2441MHz, 3DH5)

Test Specification: FCC15.247(a)(1)

TestMode	BurstWidth	TotalHops	Result	Limit	Verdict
3DH5	2.91ms	110	0.32 s	<=0.4 s	PASS

8.10 Antenna Requirement

EUT: HG09913A-US Test Result

Op Condition: Operated, TX Mode

Test Specification: FCC15.203 & 15.247(b)

Comment: DC 5V

Test Result

□ Passed
□ Not Passed

Limit

For intentional device, according to FCC Title 47 Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC Title 47 Part 15.247(b), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The antenna used in this product is an integrated antenna on PCB, and the maximum gain of this antenna is 0dBi.

9 Test setup procedure

9.1 Spurious Radiated Emission

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement, Sweep = auto,

Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW=10Hz, Sweep = auto, Detector function = peak, Trace = max hold. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.

If the emission is pulsed, modify the unit for continuous operation; use the settings shown above, then correct the reading by subtracting the peak-average correct factor, derived from the appropriate the duty cycle calculation.

The setting method can refer to DA00-705.

Spurious Radiated Emission

Limit

The radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Frequency MHz	Field Strength uV/m	Field Strength dBµV/m	Detector
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

9.2 Conducted Emission at AC Power line

Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

According to §15.207 & RSS-GEN 8.8, conducted emissions limit as below:

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Remark: "*" Decreasing linearly with logarithm of the frequency

9.3 20dB & 99% Bandwidth

Test Method

- Use the following spectrum analyzer settings:
- RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold

NA

- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 20 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 20 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

Limit	
	Limit [kHz]

9.4 Peak Output Power

Test Method

- Connect the spectrum analyzer to the EUT
 - a) The EUT is configured to transmit continuously, or to transmit with a constant duty factor.
 - b) At all times the EUT is transmitting at its maximum power control level.
 - c) The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- 2. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 3. Adjust the measurement in dBm by adding 10log (1/x), where x is the duty cycle to the measurement result.

Limits

According to §15.247 (b) (1) & RSS-247 5.4(d), conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

For e.i r.p:

Frequency Range	Limit	Limit	
MHz	W	dBm	
2400-2483.5	≤4	≤36	

9.5 Spurious Emissions at Antenna Terminals

Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

9.6 100kHz Bandwidth of band edges

Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit

Frequency Range MHz	Limit (dBc)
30-25000	-20

9.7 Number of hopping frequencies

Test Method

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW ≥ RBW.d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.
- h) Count the number of hopping frequencies

Limit		
	Limit	
	<u> </u>	_

9.8 Minimum Hopping Channel Carrier Frequency Separation

Test Method

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

	•	v	•		
_	•	•	•	•	•

Limit
≥ 2/3 of 20dB bandwidth of hopping channel

9.9 Average Channel Occupancy Time

Test Method

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function: Peak.
- e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this testfor each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) =

(number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

Limit

Limit
 ≤0.4s

10 Appendix A - General Product Information

Radiofrequency radiation exposure evaluation

This exposure evaluation is intended for FCC ID: 2AJ9O-HG9913

According to KDB 447498 D01v06 section 4.3.1, For frequencies between 100 MHz to 6GHz and test separation distances ≤ 50 mm, the Numeric threshold is determined as:

Step a)

[(max. power of channel, including tune-up tolerance, mW) / (min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR

>> The fundamental frequency of the EUT is 2402-2480MHz, the test separation distance is ≤ 50mm.

(Manufacturer specified the separation distance is: 5mm) (5mm is the worst case according to the KDB)

Step b)

- >> Numeric threshold (2402MHz), mW / 5mm * $\sqrt{2.402}$ GHz ≤ 3.0 Numeric threshold (2402MHz) ≤ 9.678 mW
- >> Numeric threshold (2441MHz), mW / 5mm * $\sqrt{2.440}$ GHz \leq 3.0 Numeric threshold (2441MHz) \leq 9.602mW
- >> Numeric threshold (2480MHz), mW / 5mm * $\sqrt{2.480}$ GHz \leq 3.0 Numeric threshold (2480MHz) \leq 9.525mW
- >> The power (measured + tune up tolerance) of EUT at 2402MHz is: 4.96dBm = 3.13mW The power (measured + tune up tolerance) of EUT at 2441MHz is: 4.88dBm = 3.07mW The power (measured + tune up tolerance) of EUT at 2480MHz is: 4.74dBm = 2.98mW

Which is smaller than the Numeric threshold.

Therefore, the device is exempt from stand-alone SAR test requirements.

Reviewed by:

Prepared by:

Eric LI Section Manager Hosea CHAN EMC Project Engineer