2	22TEST REI	PORT			
FCC ID :	2A8CV-INV00783				
Test Report No:	TCT220815E020				
Date of issue:	Sep. 21, 2022				
Testing laboratory::	SHENZHEN TONGCE TE	STING LAB			
Testing location/ address:	2101 & 2201, Zhenchang F Fuhai Subdistrict, Bao'an E 518103, People's Republic	District, Shenzhen, G			
Applicant's name: :	IDEA SOURCE MARKETII	NG INC.	$\left(\mathcal{C}^{\prime}\right)$		
Address:	152 Madison Ave, Suite 901, New York, New York 10016, United States				
Manufacturer's name :	KINGSUN ENTERPRISES		(\mathcal{S})		
Address:	25F, CEC information Building, Xinwen Road, Futian District, Shenzhen, Guangdong, P.R.China				
Standard(s) :	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013				
Product Name:	WIRELESS CHARGING D	UAL ALARM CLOCH	<		
Trade Mark:	N/A		$\langle \mathcal{C} \rangle$		
Model/Type reference :	INV00783				
Rating(s):	Rechargeable Li-ion Batter	y DC 3.7V			
Date of receipt of test item	Aug. 15, 2022				
Date (s) of performance of test:	Aug. 15, 2022 - Sep. 21, 2	022			
Tested by (+signature) :	Aaron MO	Soron A	TONGCETE		
Check by (+signature) :	Beryl ZHAO	Bart 26	TCT		
Approved by (+signature):	Tomein	Tomsin	45 84		

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information
1.1. EUT description
1.2. Model(s) list
1.3. Operation Frequency
 Test Result Summary
3. General Information
3.1. Test environment and mode
3.2. Description of Support Units5
4. Facilities and Accreditations
4.1. Facilities
4.2. Location6
4.3. Measurement Uncertainty6
5. Test Results and Measurement Data7
5.1. Antenna requirement7
5.2. Conducted Emission
5.3. Conducted Output Power12
5.4. 20dB Occupy Bandwidth13
5.5. Carrier Frequencies Separation14
5.6. Hopping Channel Number15
5.7. Dwell Time
5.8. Pseudorandom Frequency Hopping Sequence
5.9. Conducted Band Edge Measurement18
5.10.Conducted Spurious Emission Measurement
5.11.Radiated Spurious Emission Measurement
Appendix A: Test Result of Conducted Test
Appendix B: Photographs of Test Setup
Appendix C: Photographs of EUT

1. General Product Information

1.1. EUT description

Product Name:	WIRELESS CHARGING DUAL ALARM CLOCK	<u>()</u>
Model/Type reference:	INV00783	
Sample Number:	TCT220815E020-0101	
Bluetooth Version:	V5.0	
Operation Frequency:	2402MHz~2480MHz	
Transfer Rate:	1/2/3 Mbits/s	$\langle \mathcal{O} \rangle$
Number of Channel:	79	
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK	
Modulation Technology:	FHSS	
Antenna Type:	PCB Antenna	
Antenna Gain:	-0.58dBi	\mathbf{S}
Rating(s):	Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		$\left(- \right)$
Remark:	Channel 0, 3	39 & 78 h	ave been tes	sted for G	GFSK, π/4-D	QPSK, 8I	DPSK

modulation mode.

Page 3 of 99

2. Test Result Summary

Requirement	CFR 47 Section	Result		
Antenna Requirement	§15.203/§15.247 (c)	PASS		
AC Power Line Conducted Emission	§15.207	PASS		
Conducted Peak Output Power	§15.247 (b)(1)	PASS		
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS		
Carrier Frequencies Separation	§15.247 (a)(1)	PASS		
Hopping Channel Number	§15.247 (a)(1)	PASS		
Dwell Time	§15.247 (a)(1)	PASS		
Radiated Emission	§15.205/§15.209	PASS		
Band Edge	§15.247(d)	PASS		

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 4 of 99

3. General Information

3.1. Test environment and mode

Operating Environment:				
Condition	Conducted Emission	Radiated Emission		
Temperature:	25.3 °C	25.2°C		
Humidity:	56 % RH	49 % RH		
Atmospheric Pressure:	1010 mbar	1010 mbar		
Test Software:				
Software Information:	FCC_assist_1.0.2.2exe			
Power Level:	10			
Test Mode:				
Engineer mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery				
above the ground plane of 3 polarities were performed.	8m & 1.5m for the measure 8m chamber. Measurements in During the test, each emissio	n both horizontal and vertical n was maximized by: having		

the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested, only worse case DH1 is reported.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	JD-050200	2012010907576 735	/	JD
		733		

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

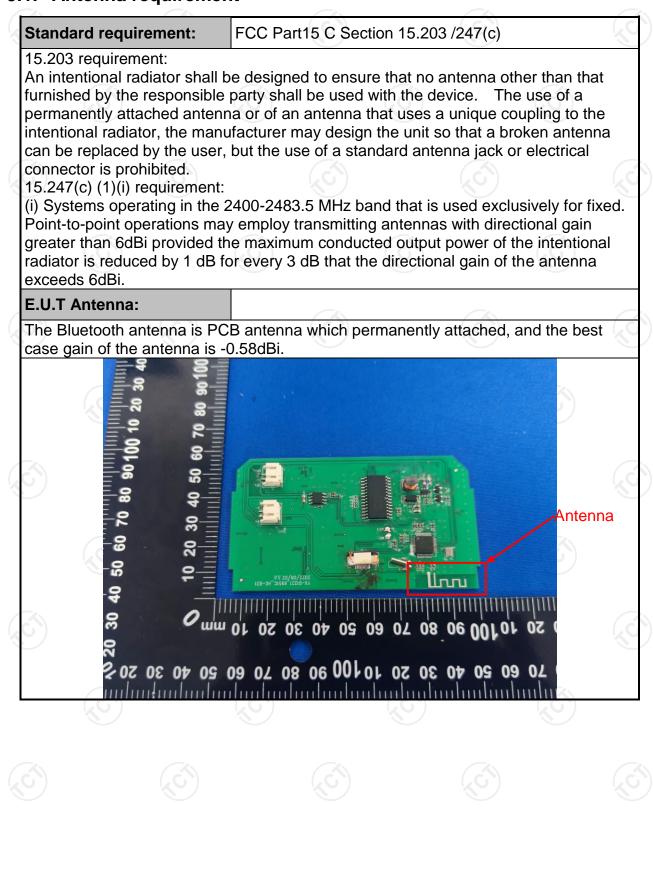
The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty


The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

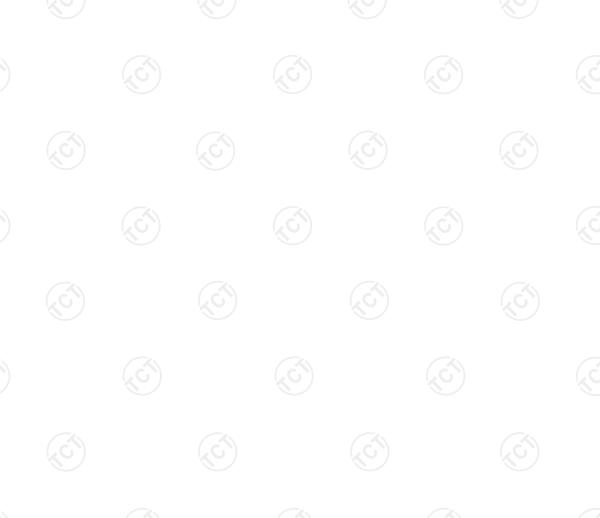
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

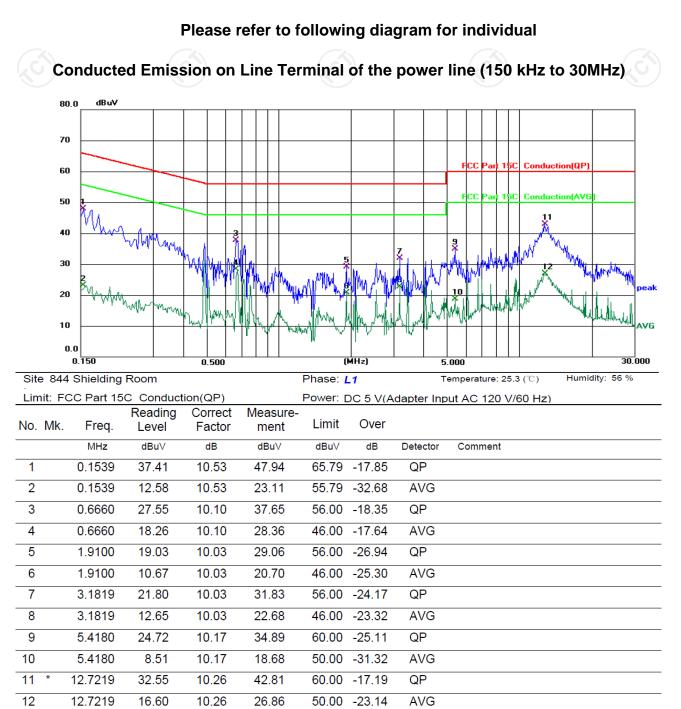
5.1. Antenna requirement

5.2. Conducted Emission

5.2.1. Test Specification

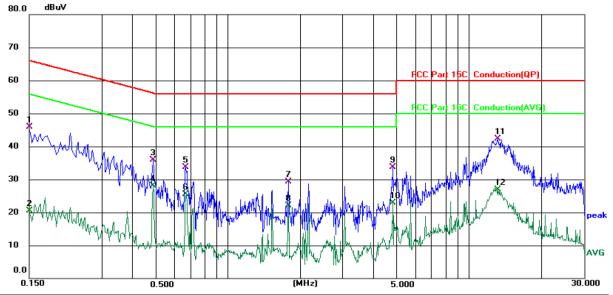

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto					
	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Referenc	e Plane				
Test Setup:	40cm 80cm Filter AC power Filter AC power Filter AC power EMI Receiver Remark EUT: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test Mode:	Charging + Transmittir	ng Mode				
	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 					
Test Procedure:	 coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interfere emission, the relativ the interface cables 	e with 50ohm terr diagram of the . line are checkence. In order to five positions of equ must be changed	nination. (Please test setup and ed for maximun nd the maximun ipment and all o l according to			
Test Procedure:	 coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interfere emission, the relative 	e with 50ohm terr diagram of the . line are checkence. In order to five positions of equ must be changed	nination. (Please test setup and ed for maximun nd the maximun ipment and all o l according to			

Page 8 of 99



5.2.2. Test Instruments

	Conducted Emission Shielding Room Test Site (843)						
(Equipment	Manufacturer	Model	Serial Number	Calibration Due		
10	EMI Test Receiver	R&S	ESCI3	100898	Jul. 03, 2023		
	Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Feb. 24, 2023		
	Line-5	тст	CE-05	/	Jul. 03, 2024		
	EMI Test Software	Shurple Technology	EZ-EMC	1	1		


5.2.3. Test data

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 10 of 99

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room Phase: N Temperature: 25.3 (°C) Humidity: 56 %

Limit: FO	Limit: FCC Part 15C Conduction(QP)			F	Power: D	0C 5 V(A	dapter Inpu	ut AC 120 V/60 Hz)
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBuV	dBu∨	dB	Detector	Comment
1	0.1500	35.46	10.44	45.90	66.00	-20.10	QP	
2	0.1500	9.97	10.44	20.41	56.00	-35.59	AVG	
3	0.4900	25.79	10.15	35.94	56.17	-20.23	QP	
4	0.4900	17.89	10.15	28.04	46.17	-18.13	AVG	
5	0.6700	23.64	10.10	33.74	56.00	-22.26	QP	
6	0.6700	15.32	10.10	25.42	46.00	-20.58	AVG	
7	1.7820	19.20	10.12	29.32	56.00	-26.68	QP	
8	1.7820	12.05	10.12	22.17	46.00	-23.83	AVG	
9	4.8380	23.57	10.17	33.74	56.00	-22.26	QP	
10	4.8380	12.83	10.17	23.00	46.00	-23.00	AVG	
11 *	13.2260	31.90	10.37	42.27	60.00	-17.73	QP	
12	13.2260	16.61	10.37	26.98	50.00	-23.02	AVG	

Note1:

Freq. = Emission frequency in MHz

TCT 通测检测 TCT 通测检测

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \, level (dB\mu V) + Corr. Factor (dB)$

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and 8DPSK) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Transmitting mode with modulation		
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.		
Test Result:	PASS		

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	\bigcirc 1	

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	N/A
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	<u> </u>	

5.6. Hopping Channel Number

5.6.1. Test Specification

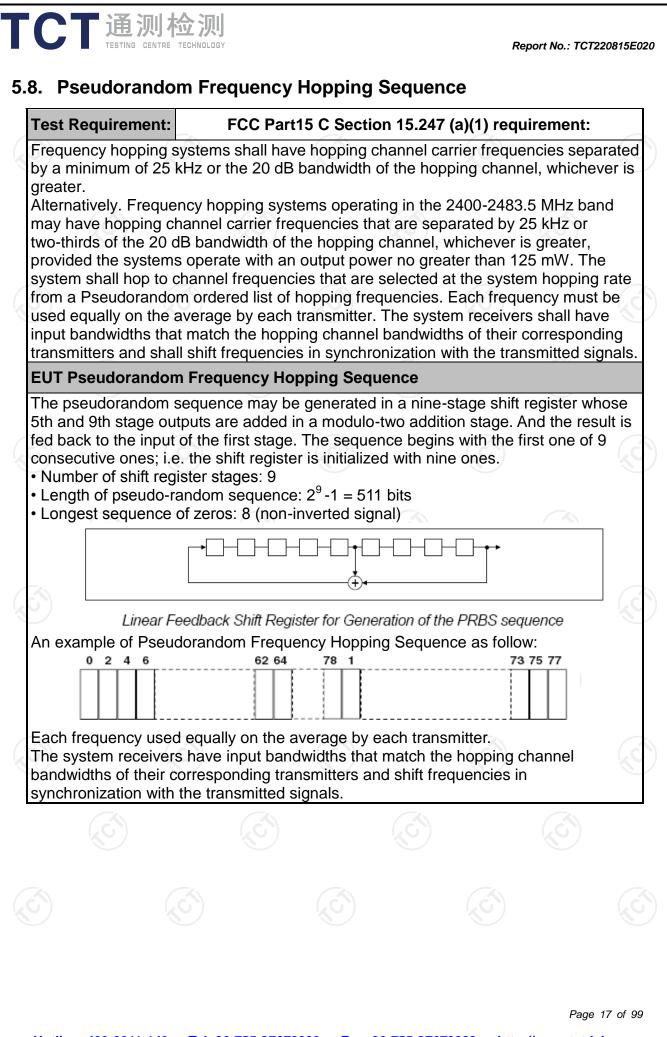
C Part15 C Section 15.247 (a)(1) 3 558074 D01 v05r02 quency hopping systems in the 2400-2483.5 MHz d shall use at least 15 channels. EUT EUT EUT
quency hopping systems in the 2400-2483.5 MHz d shall use at least 15 channels.
d shall use at least 15 channels.
etrum Analyzer EUT
The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The bath loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	/	/

5.7. Dwell Time

5.7.1. Test Specification


TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.7.2. Test Instruments

~	Equipment	Manufacturer	Model	Serial Number	Calibration Due
1	Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
	Combiner Box	Ascentest	AT890-RFB		

Page 16 of 99

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

FCC Part15 C Section 15.247 (d)
KDB 558074 D01 v05r02
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Spectrum Analyzer EUT
Transmitting mode with modulation
 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
PASS

5.9.2. Test Instruments

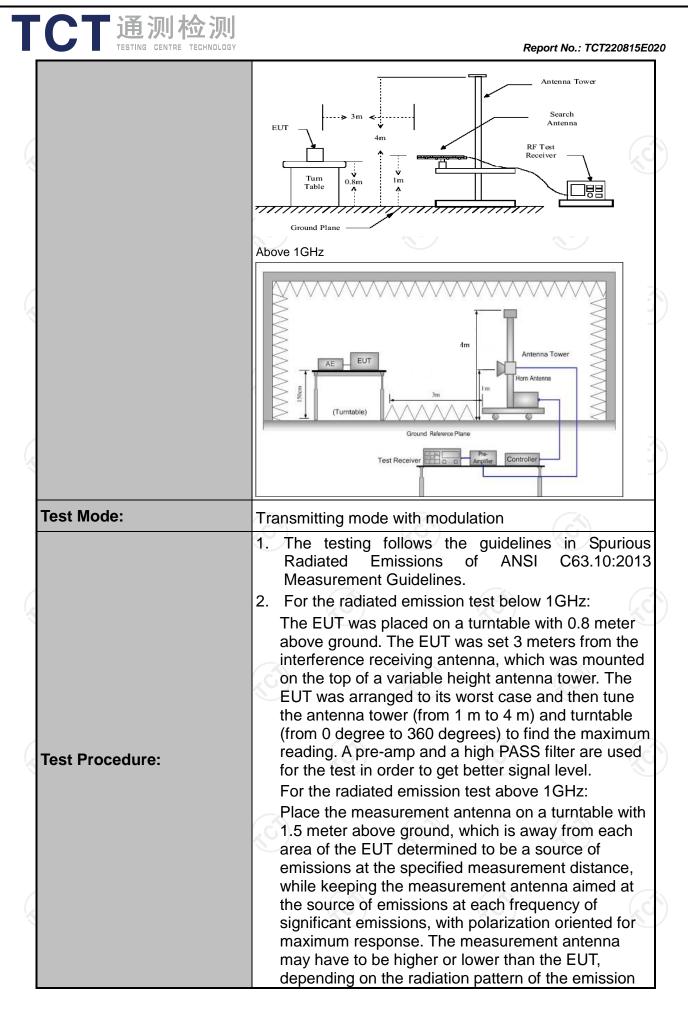
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB	1	1
(\mathcal{S})	(G)		C)	(\mathcal{G})

5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 			
Test Result:	PASS			

5.10.2. Test Instruments


Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 04, 2023
Combiner Box	Ascentest	AT890-RFB		

5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

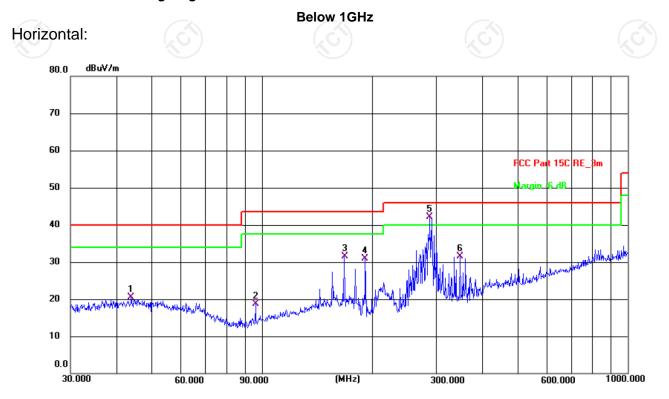
			5.209	ection 1	CS	FCC Part15	nt:	quiremen	Test Req	
				13	0:20	ANSI C63.10		thod:	Test Meth	
			6		GH	9 kHz to 25	ge:	ncy Range	Frequenc	
	S		9	No.		3 m	istance:	ement Dis	Measurer	
				tical	k Ve	Horizontal &	ation:	a Polariza	Antenna	
mark	Rema	VBW	RBW	etector		Frequency				
eak Value	Quasi-pea	1kHz	200Hz	asi-peak	Qu	9kHz- 150kHz				
	Quasi-pea	30kHz	9kHz	asi-peak		150kHz- 30MHz		er Setup:	Receiver	
	Quasi-pea	300KHz	120KHz	asi-peak	Qu	30MHz-1GHz				
	Peak V Average	3MHz 10Hz	1MHz 1MHz	Peak Peak		Above 1GHz				
				Teak						
	Measure Distance (r	-	Field Stre (microvolts/		ncy	Frequer				
	300		2400/F(K		.490	0.009-0.4				
	30		24000/F(I		<u> </u>	0.490-1.				
30	30		30		-30	1.705-3				
	3		100			30-88		imite		
3			150			88-21				
	3		<u>200</u> 500			216-96 Above 9	_imit:			
Detector Average Peak	s) Av	Distance (meters 3 3	Strength olts/meter) 500 000	(microvo	Freduency					
]	Computer -			- 3m	Distance	0.8m		up:	Test setu	
		C)			S)		Ś		5)	
		Ś	ane	Ground Pl		30MHz to 1GHz			3)	

Page 21 of 99

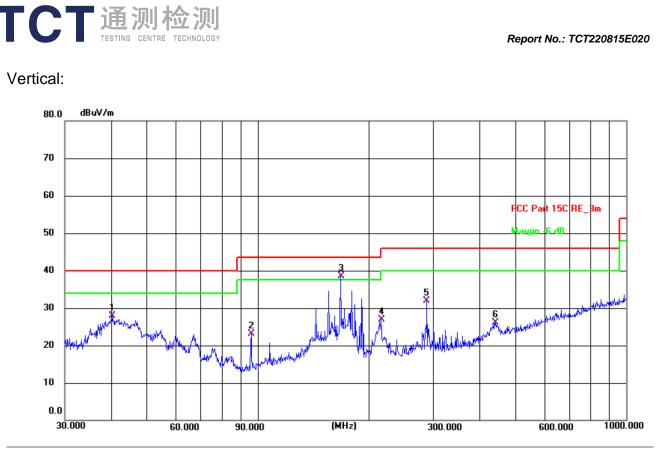
	receiving the maxim measurement anter maximizes the emi antenna elevation to restricted to a rang above the ground of 3. Set to the maximus EUT transmit cont 4. Use the following s (1) Span shall wide emission being (2) Set RBW=120 for f>1GHz ; V Sweep = auto = max hold for (3) For average r	spectrum analyzer settings: de enough to fully capture the g measured;) kHz for f < 1 GHz, RBW=1MH /BW≥RBW; o; Detector function = peak; Tra or peak measurement: use duty cycle ctor method per	ich pe n the
	15.35(c). Duty On time =N1*I Where N1 is length of type Average Emi Level + 20*lo Corrected Rea	cycle = On time/100 millisecor L1+N2*L2++Nn-1*LNn-1+Nn number of type 1 pulses, L1 is a 1 pulses, etc. ssion Level = Peak Emission g(Duty cycle) ading: Antenna Factor + Cable	n*Li
Test results:	15.35(c). Duty On time =N1*I Where N1 is length of type Average Emi Level + 20*lo Corrected Rea	L1+N2*L2++Nn-1*LNn-1+Nn number of type 1 pulses, L1 is a 1 pulses, etc. ssion Level = Peak Emission og(Duty cycle)	h*Lr
Test results:	15.35(c). Duty On time =N1*I Where N1 is length of type Average Emi Level + 20*lo Corrected Rea Loss + Read L	L1+N2*L2++Nn-1*LNn-1+Nn number of type 1 pulses, L1 is a 1 pulses, etc. ssion Level = Peak Emission g(Duty cycle) ading: Antenna Factor + Cable	n*Li
Test results:	15.35(c). Duty On time =N1*I Where N1 is length of type Average Emi Level + 20*lo Corrected Rea Loss + Read L	L1+N2*L2++Nn-1*LNn-1+Nn number of type 1 pulses, L1 is a 1 pulses, etc. ssion Level = Peak Emission g(Duty cycle) ading: Antenna Factor + Cable	*Li
Test results:	15.35(c). Duty On time =N1*I Where N1 is length of type Average Emi Level + 20*lo Corrected Rea Loss + Read L	L1+N2*L2++Nn-1*LNn-1+Nn number of type 1 pulses, L1 is a 1 pulses, etc. ssion Level = Peak Emission g(Duty cycle) ading: Antenna Factor + Cable	*Li

5.11.2. Test Instruments

TCT 通测检测 TESTING CENTRE TECHNOLOGY


		nission Test Site	= (300)	
Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 03, 2023
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 03, 2023
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Feb. 24, 2023
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Feb. 24, 2023
Pre-amplifier	HP	8447D	2727A05017	Jul. 03, 2023
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 11, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 05, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 05, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023
Antenna Mast	Keleto	RE-AM	/	/
Coaxial cable	SKET	RC-18G-N-M		Feb. 24, 2024
Coaxial cable	SKET	RC_40G-K-M	1	Feb. 24, 2024
EMI Test Software	Shurple Technology	EZ-EMC		1

TCT通测检测 TESTING CENTRE TECHNOLOGY


Please refer to following diagram for individual

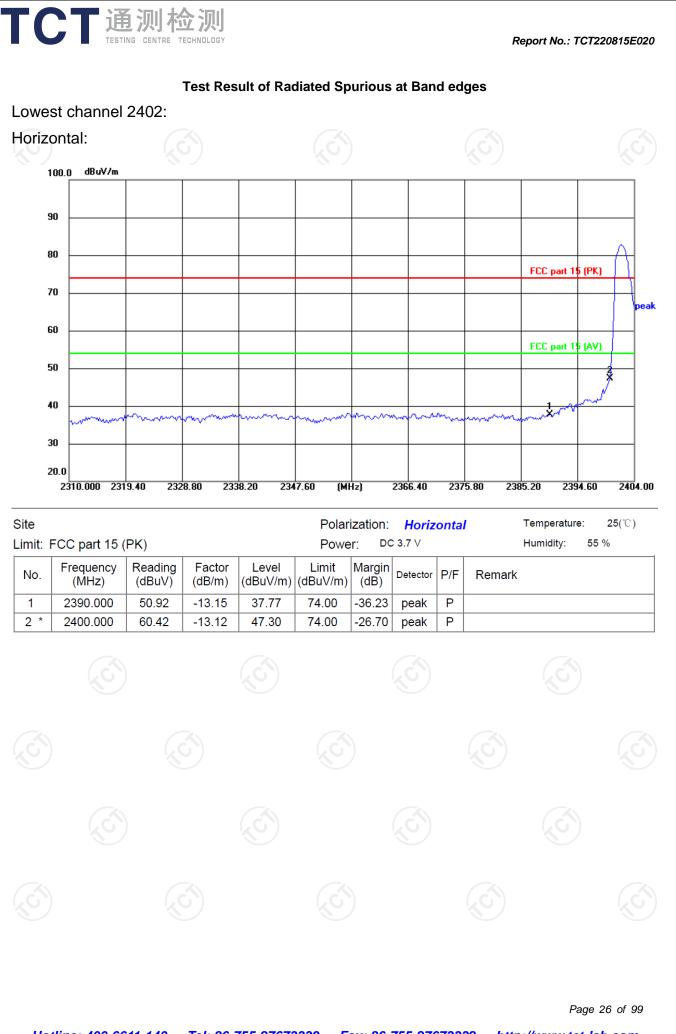
Site #	1 3m Anechoi	ic Chambe	r	Polarization: Horizontal					Temperature: 25.2(C)	Humidity: 49 %
Limit:	FCC Part 150	CRE 3m		Powe	r: DC 3.7	V				
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	43.9658	6.96	13.62	20.58	40.00	-19.42	QP	Р		
2	96.0985	9.39	9.35	18.74	43.50	-24.76	QP	Ρ		
3	167.8241	18.80	12.62	31.42	43.50	-12.08	QP	Ρ		
4	191.7450	20.18	10.68	30.86	43.50	-12.64	QP	Ρ		
5 *	287.9904	28.78	13.25	42.03	46.00	-3.97	QP	Ρ		
6	348.0274	16.72	14.73	31.45	46.00	-14.55	QP	Р		
	-						-			

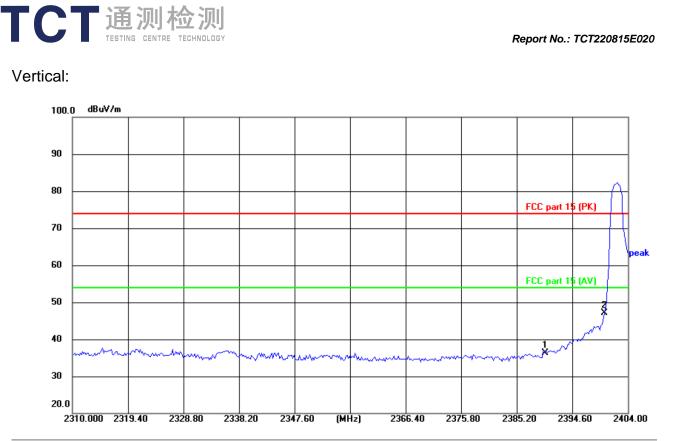
Page 24 of 99

Report No.: TCT220815E020

Site #	1 3m Anechoi	ic Chambe	er	Polaria	zation: Ve	rtical			Temperature: 25.2(C)	Humidity: 49 %
Limit:	imit: FCC Part 15C RE_3m Power: DC 3.7 V									
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1	40.4170	14.21	13.72	27.93	40.00	-12.07	QP	Ρ		
2	96.0985	13.67	9.35	23.02	43.50	-20.48	QP	Ρ		
3 *	167.8243	25.98	12.62	38.60	43.50	-4.90	QP	Ρ		
4	216.0238	16.07	10.74	26.81	46.00	-19.19	QP	Ρ		
5	287.9904	18.64	13.25	31.89	46.00	-14.11	QP	Ρ		
6	441.7425	8.97	17.07	26.04	46.00	-19.96	QP	Ρ		

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

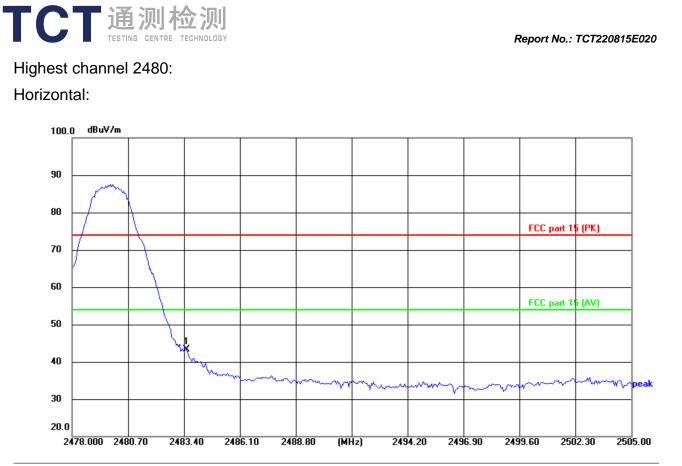

2. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Lowest channel and 8DPSK) was submitted only.


 Freq. = Emission frequency in MHz Measurement (dBμV/m) = Reading level (dBμV) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit (dBμV/m) = Limit stated in standard

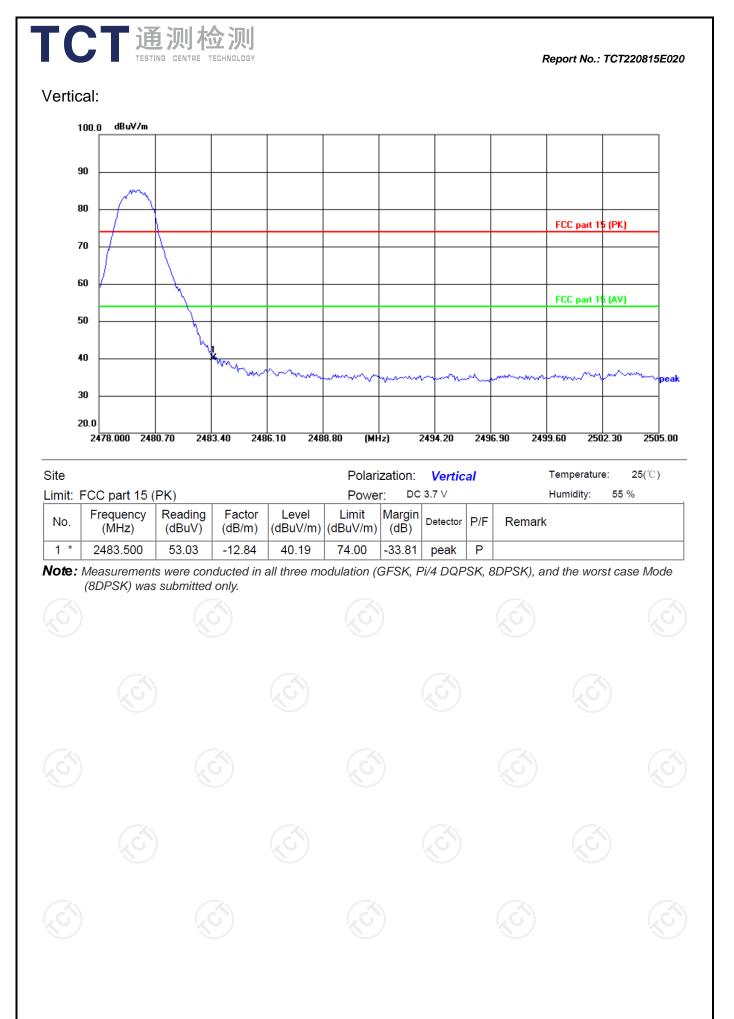
 $Over (dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$

* is meaning the worst frequency has been tested in the test frequency range.

Page 25 of 99



Site				Polarization: Vertical						mperature	: 25(℃))
Limit:	FCC part 15	(PK)		Power: DC 3.7 V						midity:	55 %	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark			
1	2390.000	49.54	-13.15	36.39	74.00	-37.61	peak	Ρ				
2 *	2400.000	60.31	-13.12	47.19	74.00	-26.81	peak	Ρ				


Page 27 of 99

Site					Polari	zation:	Horizo	ontal	Temperature	e: 25(℃)
Limit: FCC part 15 (PK) Power: DC 3							3.7 ∨		Humidity:	55 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1 *	2483.500	56.19	-12.84	43.35	74.00	-30.65	peak	Ρ		

Page 28 of 99

Page 29 of 99

Above 1GHz

Modulation	Type: 8D	PSK							
Low chann	el: 2402 N	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	46.42		0.66	47.08		74	54	-6.92
7206	Н	36.07		9.50	45.57		74	54	-8.43
	Н								
	.G`)		(.C)		(.G`		(.c.)	
4804	V	48.28		0.66	48.94		74	54	-5.06
7206	V	39.09		9.50	48.59		74	54	-5.41
	V								

Middle cha	nnel: 2441	MHz) (ХC С
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4882	Н	48.12		0.99	49.11		74	54	-4.89
7323	KCĤ)	37.45	-4	9.87	47.32	<u>()</u>	74	54	-6.68
	Ĥ								
4882	V	48.53		0.99	49.52		74	54	-4.48
7323	V	38.44		9.87	48.31		74	54	-5.69
<u> </u>	V			1	/		K9.		

High chann	nel: 2480 N	/IHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4960	H	46.72		1.33	48.05		74	54	-5.95
7440	Н	38.05		10.22	48.27		74	54	-5.73
	Н	—							
				((\mathbf{G})		(.C
4960	V	46.49		1.33 🔪	47.82		74	54	-6.18
7440	V	35.72		10.22	45.94		74	54	-8.06
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

CT 通测检测 TESTING CENTRE TECHNOLOGY

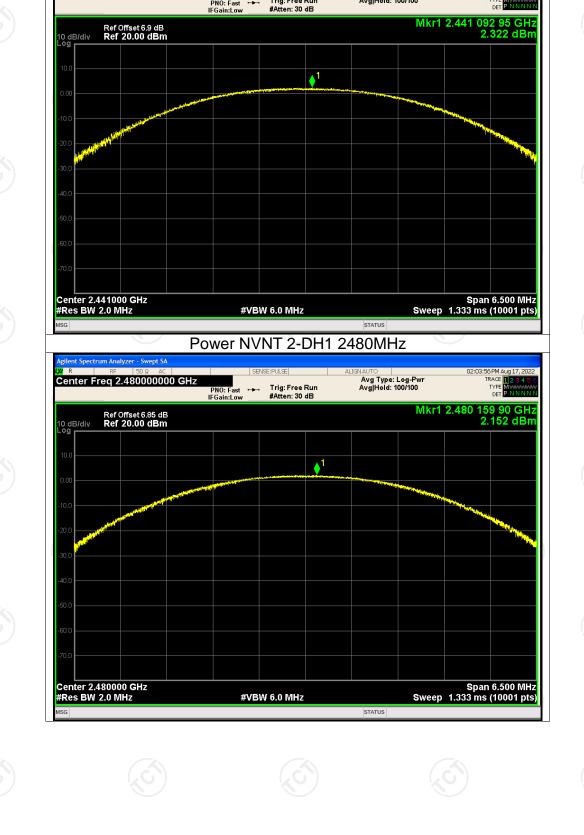
6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

Maximum Conducted Output Power


Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	1.52	21	Pass
NVNT	1-DH1	2441	1.79	21	Pass
NVNT	1-DH1	2480	1.54	21	Pass
NVNT	2-DH1	2402	2.09	21	Pass
NVNT	2-DH1	2441	2.32	21	Pass
NVNT	2-DH1	2480	2.15	21	Pass
NVNT	3-DH1	2402	3.15	21	Pass
NVNT	3-DH1	2441	2.56	21	Pass
NVNT	3-DH1	2480	1.22	21	Pass


Page 31 of 99

Power NVNT 1-DH1 2402MHz

Test Graphs

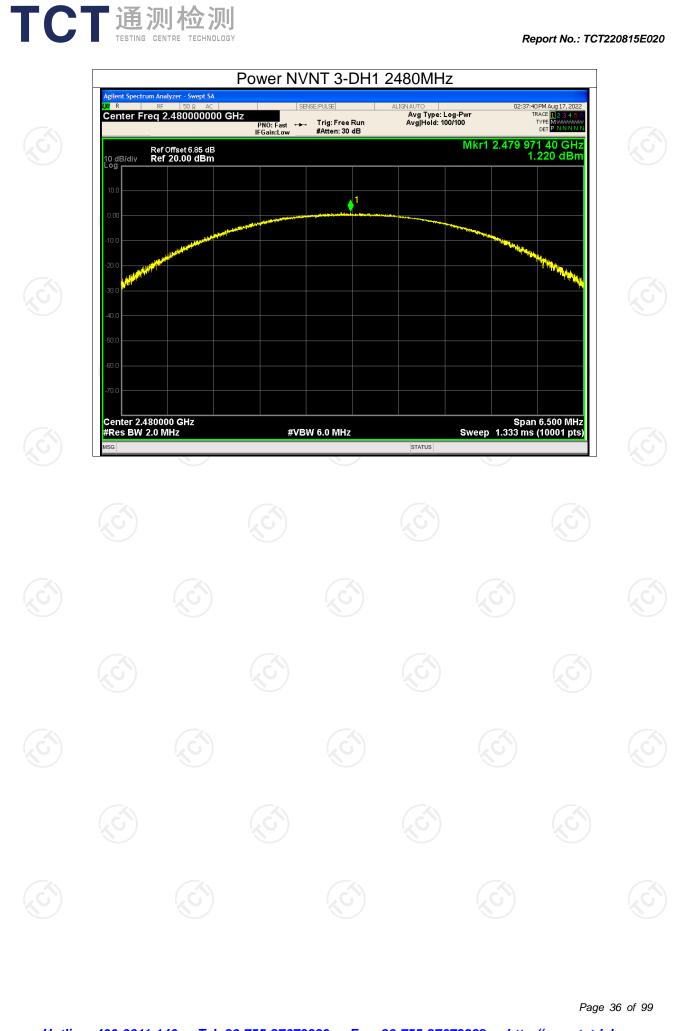
TCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spectrum Analyzer - Swept SA 02:00:46 PM Aug 17, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N R SENSE:PULSE ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 100/100 Center Freq 2.441000000 GHz PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

Power NVNT 2-DH1 2441MHz

#VBW 6.0 MHz

Center 2.402000 GHz #Res BW 2.0 MHz #VBW 6.0 MHz STATUS Power NVNT 3-DH1 2441MHz Swe l R SENSE:PULSE 36:04 PM Aug 17, 20 Center Freq 2.441000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 TRACE 1 2 3 TYPE MWW DET P N N PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.440 788 75 GHz 2.564 dBm Ref Offset 6.9 dB Ref 20.00 dBm 10 dB/div Log 1


Center 2.441000 GHz #Res BW 2.0 MHz

Power NVNT 3-DH1 2402MHz gilent Spectrum Analyzer - Swept SA 02:33:50 PM Aug 17, 202 TRACE 1 2 3 4 5 TYPE MWWW DET P N N N N R ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 100/100 SENSE:PULSE Center Freq 2.402000000 GHz PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 949 30 GHz 3.147 dBm Ref Offset 6.8 dB Ref 20.00 dBm 10 dB/div Dg The second se Span 6.500 MHz Sweep 1.333 ms (10001 pts)

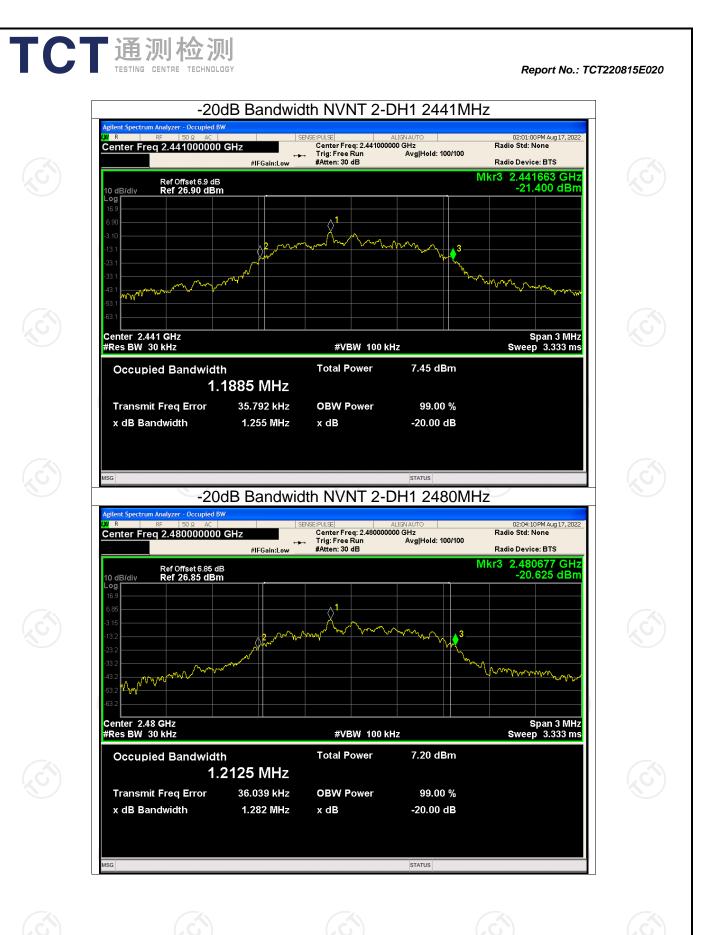
STATUS

Span 6.500 MHz Sweep 1.333 ms (10001 pts)

|--|

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.997	Pass
NVNT 🚫	1-DH1	2441	1.026	Pass
NVNT	1-DH1	2480	1.024	Pass
NVNT	2-DH1	2402	1.254	Pass
NVNT	2-DH1	2441	1.255	Pass
NVNT	2-DH1	2480	1.282	Pass
NVNT	3-DH1	2402	1.248	Pass
NVNT	3-DH1	2441	1.246	Pass
NVNT	3-DH1	2480	1.259	Pass
8)		KU)	

Page 37 of 99



Page 38 of 99

Page 39 of 99

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 40 of 99

Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict	
NVNT	1-DH1	2402.018	2403.027	1.009	0.684	Pass	
NVNT	1-DH1	2441.036	2442.052	1.016	0.684	Pass	
NVNT	1-DH1	2479.034	2480.036	1.002	0.684	Pass	
NVNT	2-DH1	2401.866	2402.862	0.996	0.855	Pass	
NVNT	2-DH1	2440.860	2441.860	1	0.855	Pass	
NVNT 🐰	2-DH1	2478.866	2479.864	0.998	0.855	Pass	
NVNT	3-DH1	2401.860	2402.862	1.002	0.839	Pass	
NVNT	3-DH1	2440.870	2441.862	0.992	0.839	Pass	
NVNT	3-DH1	2478.862	2479.864	1.002	0.839	Pass	
KU)		ku)				KO)	

Carrier Frequencies Separation

Page	43	of	99
------	----	----	----

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Span 2.000 MHz Sweep 2.133 ms (1001 pts) #VBW 100 kHz FUNCTION FUNCTION WIDTH FUNCTION VALUE 2.402 018 GHz 2.403 027 GHz -1.197 dBm -1.285 dBm

Test Graphs CFS NVNT 1-DH1 2402MHz

Avg Type: Log-Pwr Avg|Hold:>100/100

⊘<mark>2</mark>

PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB

Mr Ar

STATUS CFS NVNT 1-DH1 2441MHz

Report No.: TCT220815E020

Page 44 of 99

01:45:45 PM Aug 17, 202: TRACE 12345 TYPE MWWWW DET PNNNN

Mkr1 2.402 018 GHz -1.197 dBm

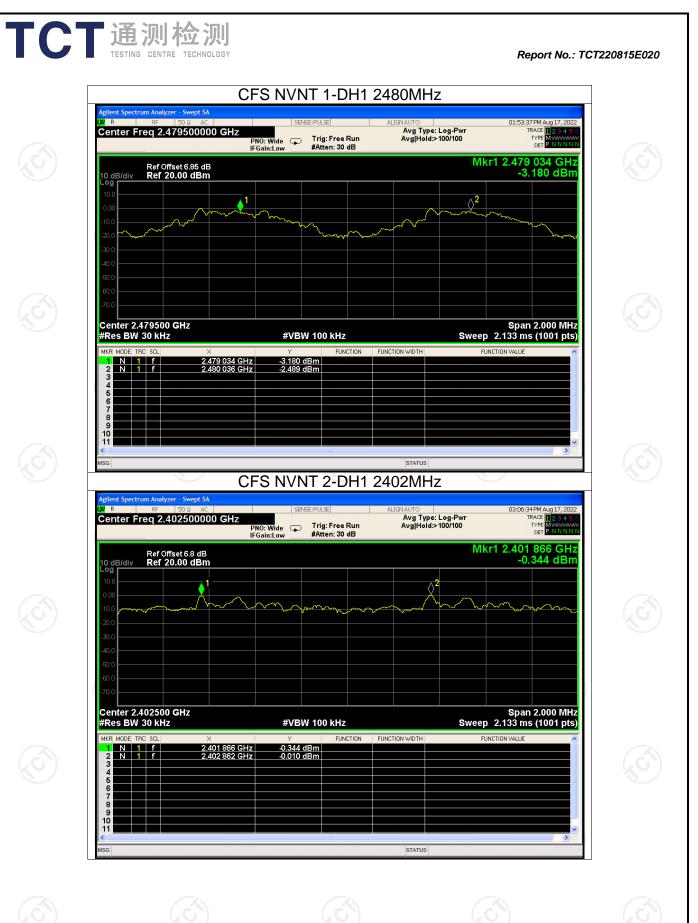
M

R

10 dB/div ∟og **r**

gilent Spectrum Analyzer - Swept SA

Center 2.402500 GHz #Res BW 30 kHz

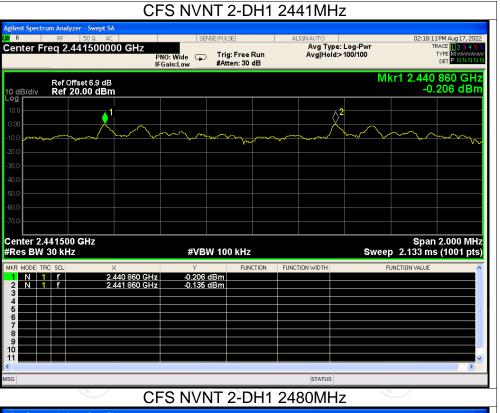

N 1 f N 1 f

5

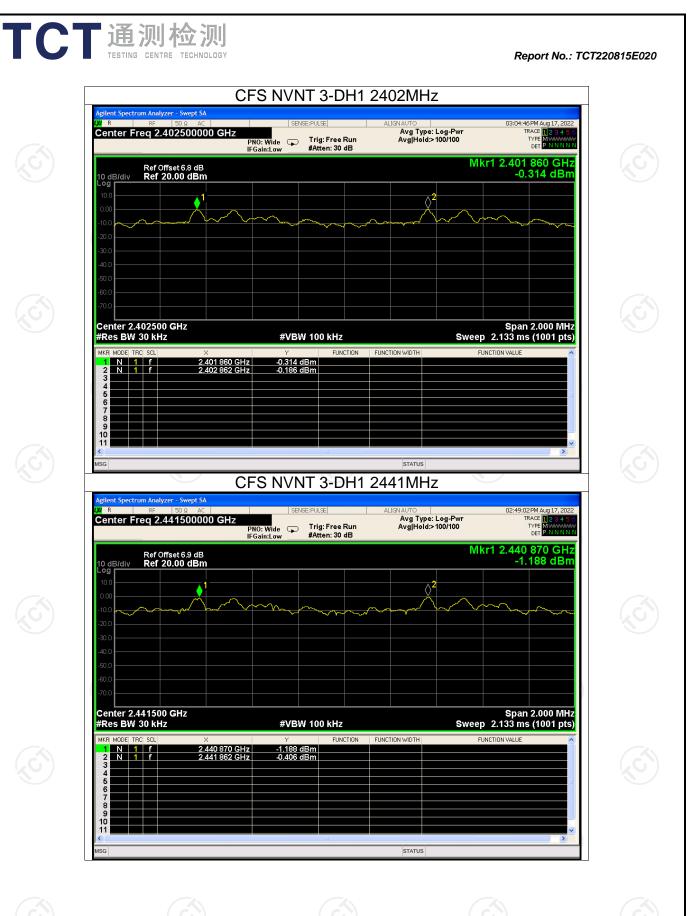
Center Freq 2.402500000 GHz

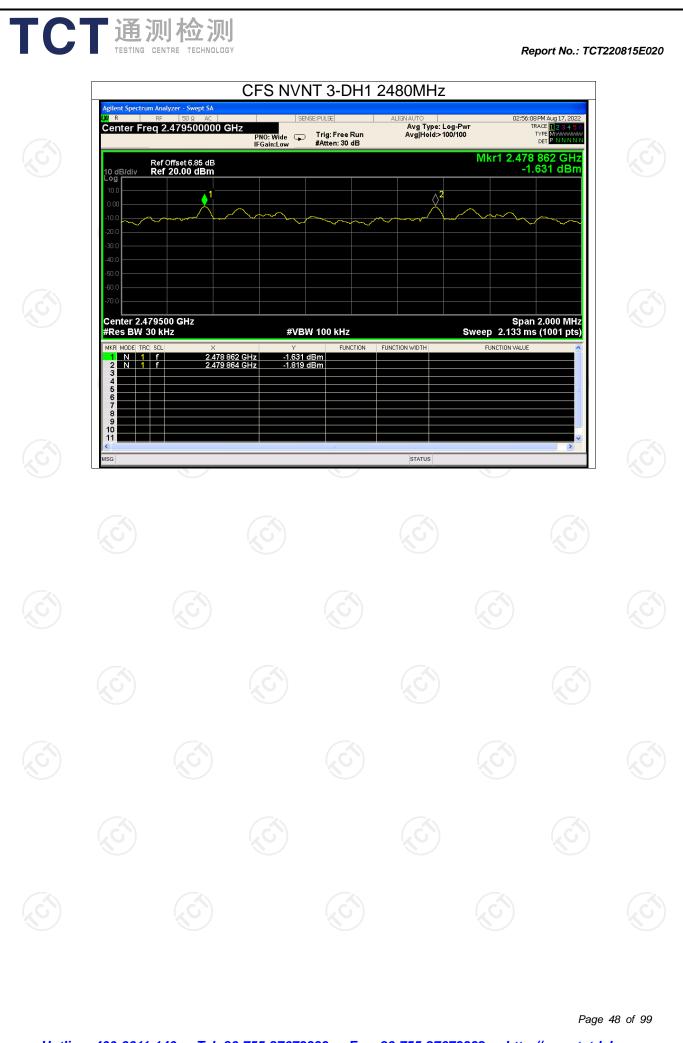
Ref Offset 6.8 dB Ref 20.00 dBm

▲1



Page 45 of 99


STATUS CFS NVNT 2-DH1 2480MHz


Agilent Spect										
LXI R	RF	50 Ω AC		SENSE	PULSE		ALIGNAUTO			PM Aug 17, 2022
Center F	req 2.4	79500000	GHz		Trig: Free Ru		Avg Type: Avg Hold>			ACE 123456
					#Atten: 30 dE		Avginoia:>	100/100		DET P N N N N N
			IFGa	n:Low	#Atten: 50 dE					
	RefOff	set 6.85 dB						M	kr1 2.478	866 GHz
10 dB/div		0.00 dBm							-1.8	595 dBm
Log										
10.0		_						2		
0.00		• '						2		
			\sim					\sim		
-10.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				\sim	~~~~				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-20.0										
-30.0										
-40.0										
-50.0										
-60.0										
-70.0										
Center 2.		GHz							Span	2.000 MHz
#Res BW	30 kHz			#VBW	100 kHz			Swee	p 2.133 ms	(1001 pts)
MKR MODE T	BCL SCL	×		Y	FUNCTI	⊐N ⊨ E	UNCTION WIDTH	F	UNCTION VALUE	~
1 N 1			866 GHz	-1.595 dE						
	1 f		864 GHz	-1.685 dE	3m					
3										
4 5										
6										
7										
8					_					
10										
11										~
<					Ш					>
MSG							STATUS			
						_				

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	No-Hopping	-50.87	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-51.42	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-51.07	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-52.66	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-52.45	-20	Pass
NVNT 🐇	3-DH1	2480	No-Hopping 🖔	-50.88	-20	Pass

Band Edge

Report No.: TCT220815E020

Page 49 of 99

port Ammonia \mathcal{M} anthe N Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS **No-Hopping Emission**

Band Edge NVNT 1-DH1 2402MHz

Test Graphs

≜¹

Band Edge NVNT 1-DH1 2402MHz

PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB

<mark>u</mark> R

10 dB/div Log

gilent Spectrum Analyzer - Swept SA

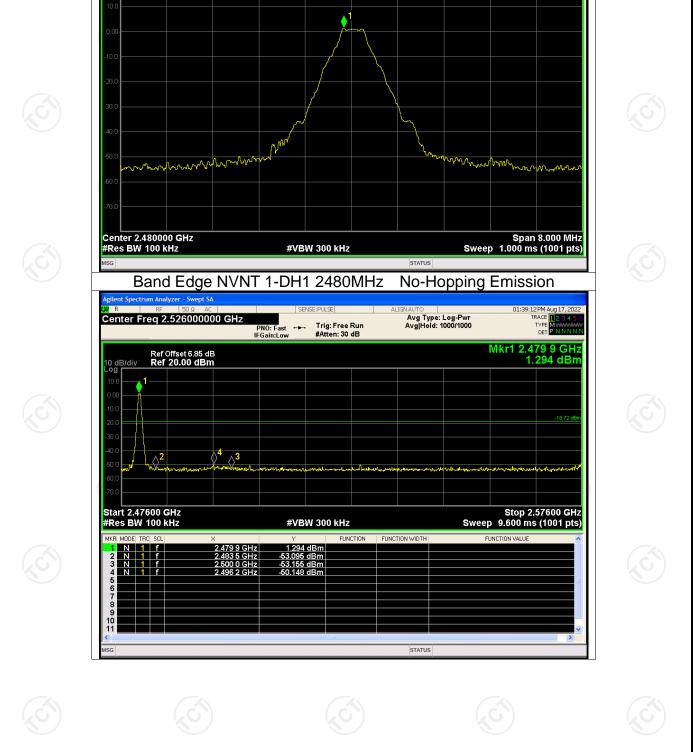
Center 2.402000 GHz #Res BW 100 kHz

Center Freq 2.402000000 GHz

Ref Offset 6.8 dB Ref 20.00 dBm

R	RF	lyzer - Swept SA 50 Ω AC			SENSE:PUL	SE		ALI	GNAUTO				3 PM Aug 17, 2
enter Fi	req 2	.35600000	Р	'NO:Fast ↔ Gain:Low		g: Free I ten: 30				e: Log-Pwr I: 1000/1000			RACE 1234 TYPE MWWA DET PNNN
) dB/div		Offset 6.8 dB 20.00 dBm									Mkr		01 9 GI 138 dB
0.0 .00													1
0.0													-18.69
0.0													
0.0	a shere	www.	°aaantaharagy/aplant ^a alaanta	had the second	dan me	·metha	mphosed	-	[whypersonally]	and here and here and) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2
0.0 0.0													
tart 2.30 Res BW				#V	BW 30	0 kHz				Si	s weep 9.6		40600 G (1001 p
R MODE TR		>		Y		FUN	CTION	FUNCT	ION WIDTH		FUNCTION	I VALUE	
N 1	f		2.401 9 GHz 2.400 0 GHz	<u> </u>	38 dBm 39 dBm								
N 1 N 1	f		2.390 0 GHz 2.387 2 GHz	-52.97	1 dBm 7 dBm								
						Ш							>

Report No.: TCT220815E020


Page 50 of 99

5:01PM Aug 17, 2022 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N

Mkr1 2.401 864 GHz 1.314 dBm

No-Hopping Ref

Avg Type: Log-Pwr Avg|Hold: 1000/1000

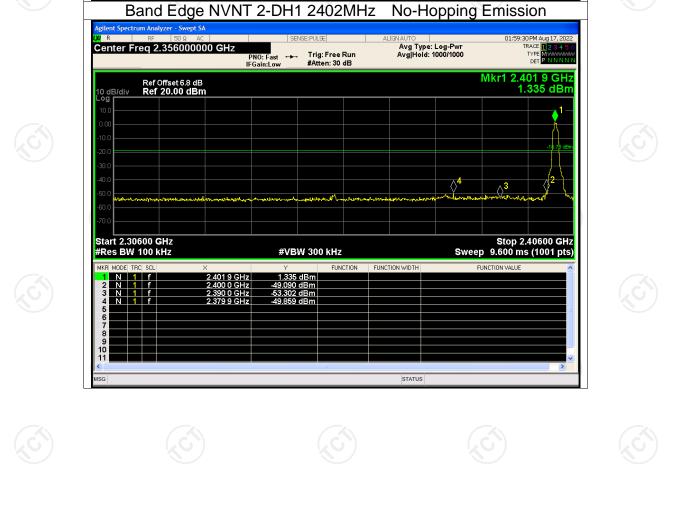
Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref

SENSE:PULSE

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000

10 dB/div

Center Freq 2.480000000 GHz


Ref Offset 6.85 dB Ref 20.00 dBm

Report No.: TCT220815E020

01:38:55 PM Aug 17, 20 TRACE 1 2 3 4 TYPE MWWWW DET P N N N

Mkr1 2.479 872 GHz 1.280 dBm

Page 51 of 99

Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref

\

SENSE:PULSE

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

#VBW 300 kHz

ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000

STATUS

10 dB/div

Center Freq 2.402000000 GHz

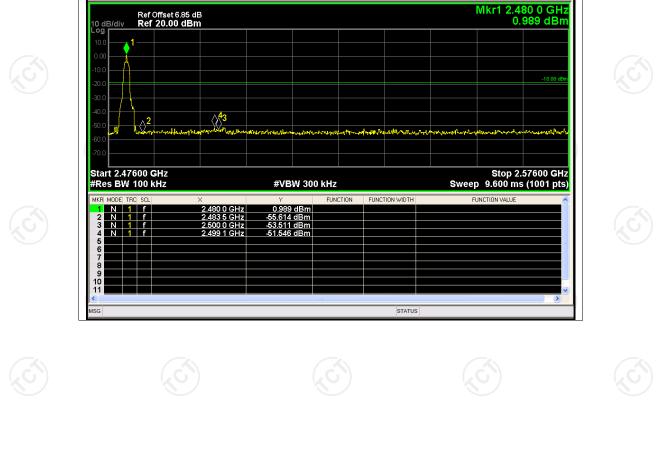
Ref Offset 6.8 dB Ref 20.00 dBm

M

mm

Center 2.402000 GHz #Res BW 100 kHz

Page 52 of 99


Report No.: TCT220815E020

01:59:13PM Aug 17, 20 TRACE 1234

ТУРЕ Милини Det P NNNN Mkr1 2.401 864 GHz 1.222 dBm

mmmm

Span 8.000 MHz Sweep 1.000 ms (1001 pts)

02:04:20 PM Aug 17, 20 TRACE 1 2 3 4 ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freq 2.480000000 GHz PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB TYPE DET Mkr1 2.479 872 GHz 1.116 dBm Ref Offset 6.85 dB Ref 20.00 dBm 10 dB/div ▲1 \sim M mphyment www.www mann Center 2.480000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT 2-DH1 2480MHz **No-Hopping Emission**

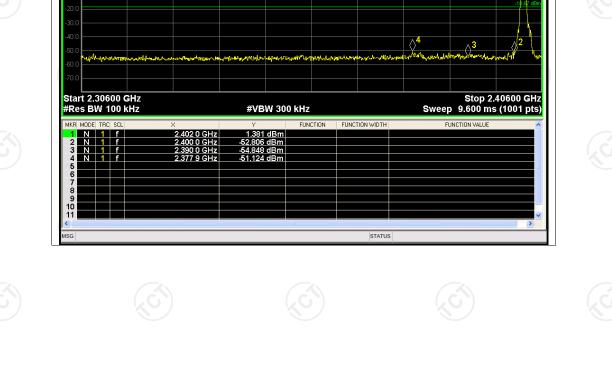
Avg Type: Log-Pwr Avg|Hold: 100/100

Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref

SENSE:PULSE

PNO: Fast 🔸 Trig: Free Run IFGain:Low #Atten: 30 dB

l R


Center Freq 2.526000000 GHz

Page 53 of 99

Report No.: TCT220815E020

3PM Aug 17, 20

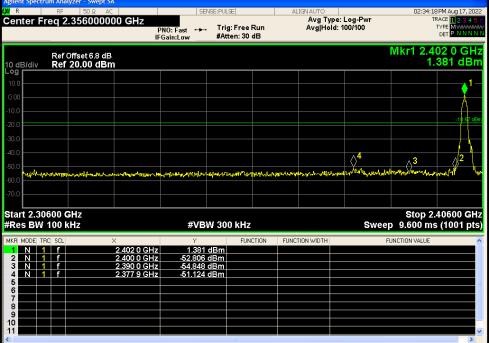
TRACE TYPE N DET

1 \sim WW ᠕ᠰ ᡅ᠕ mannan myyluy Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS

Band Edge NVNT 3-DH1 2402MHz No-Hopping Ref

SENSE:PULSE

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

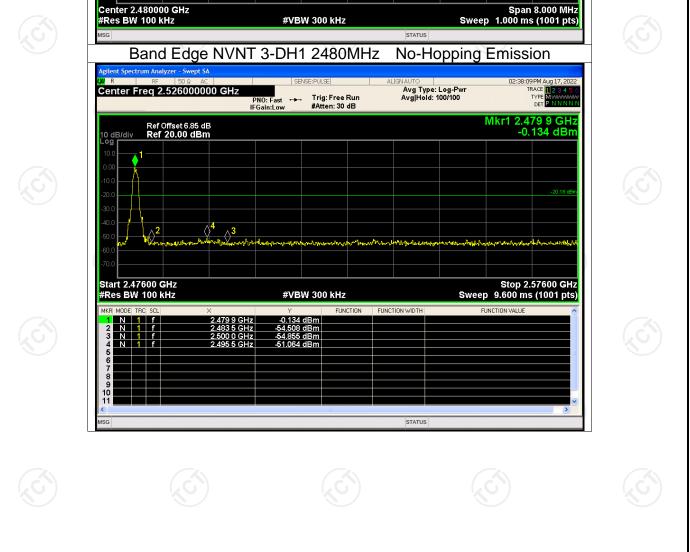

ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000

Band Edge NVNT 3-DH1 2402MHz **No-Hopping Emission**

10 dB/div

Center Freq 2.402000000 GHz

Ref Offset 6.8 dB Ref 20.00 dBm



02:34:15PM Aug 17, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N

Mkr1 2.402 016 GHz 1.330 dBm

Page 54 of 99

٨ \mathcal{W} М

#VBW 300 kHz

Band Edge NVNT 3-DH1 2480MHz No-Hopping Ref

SENSE:PULSE

PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB

ALIGNAUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000

10 dB/div

Center Freq 2.480000000 GHz

Ref Offset 6.85 dB Ref 20.00 dBm

m

1 a month and

Center 2.480000 GHz #Res BW 100 kHz

Report No.: TCT220815E020

02:38:06 PM Aug 17, 20 TRACE 1 2 3 4

TYPE DET

Mkr1 2.479 872 GHz -0.180 dBm

MMM Man Mary Mary

Page 55 of 99

Report No 101220015E020	Report No.:	TCT220815E020
-------------------------	-------------	---------------

Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	Hopping	-49.92	-20	Pass
NVNT	1-DH1	2480	Hopping	-49.27	-20	Pass
NVNT	2-DH1	2402	Hopping	-49.43	-20	Pass
NVNT	2-DH1	2480	Hopping	-49.80	-20	Pass
NVNT	3-DH1	2402	Hopping	-50.45	-20	Pass
NVNT 🐇	3-DH1	2480	Hopping	-49.11	-20	Pass

Band Edge(Honning)

Page 56 of 99

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

<u>1</u> M mann ~ Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Emission R SENSE:PULSE 01:45:10 PM Aug 17, 2022 Center Freq 2.356000000 GHz TRACE TYPE DET Avg Type: Log-Pwr Avg|Hold: 8000/8000 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.403 9 GHz 1.480 dBm Ref Offset 6.8 dB Ref 20.00 dBm 10 dB/div Log r γų \bigcirc^3 \Diamond հմատվեր 415 Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) Start 2.30600 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION WIDTH 2.400 0 GHz 2.390 0 GHz 2.383 9 GHz -49.908 dBn -51.466 dBn -48.503 dBn NN 10

Test Graphs

Band Edge(Hopping) NVNT 1-DH1 2402MHz

PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB

TCT通测检测 TESTING CENTRE TECHNOLOGY

R

10 dB/div Log

gilent Spectrum Analyzer - Swept SA

Center Freq 2.402000000 GHz

Ref Offset 6.8 dB Ref 20.00 dBm Report No.: TCT220815E020

Page 57 of 99

Report No.:

Hopping Ref

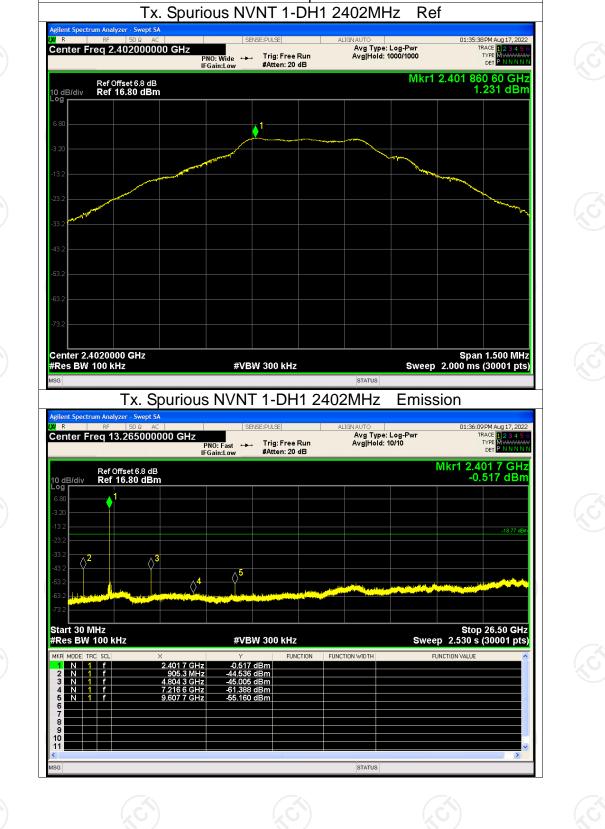
Avg Type: Log-Pwr Avg|Hold: 8000/8000 :43:04 PM Aug 17, 202

Mkr1 2.402 872 GHz 1.416 dBm

TRACE 123456 TYPE MMMMMM DET PNNNNN


Page 58 of 99

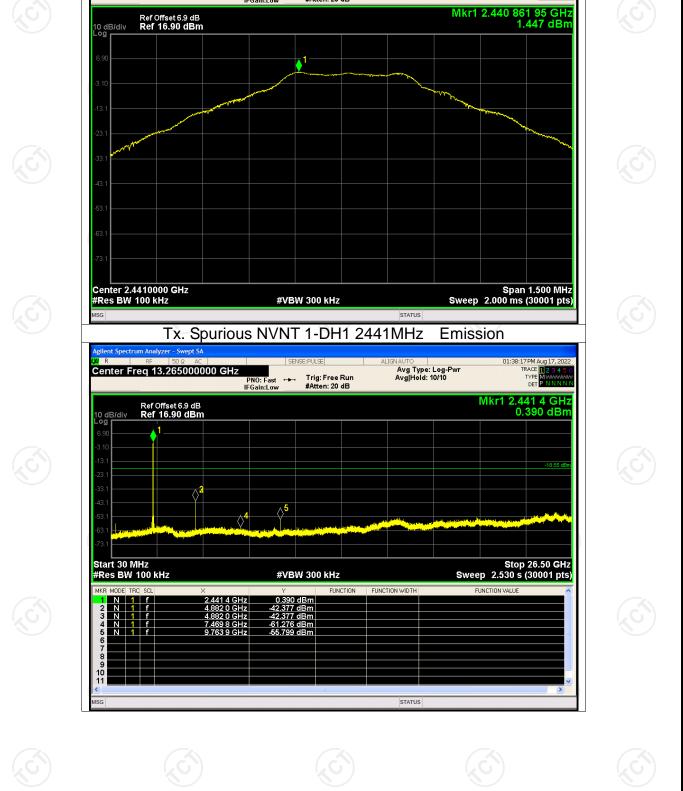
Page 60 of 99


Page 62 of 99

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	-45.76	-20	Pass
NVNT	1-DH1	2441	-43.82	-20	Pass
NVNT	1-DH1	2480	-42.21	-20	Pass
NVNT	2-DH1	2402	-44.25	-20	Pass
NVNT	2-DH1	2441	-44.35	-20	Pass
NVNT	2-DH1	2480	-42.90	-20	Pass
NVNT 🚫	3-DH1	2402	-49.15	-20	Pass
NVNT	3-DH1	2441	-42.48	-20	Pass
NVNT	3-DH1	2480	-42.37	-20	Pass
Ch					

Page 63 of 99


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Test Graphs

Page 64 of 99

Report No.: TCT220815E020

Tx. Spurious NVNT 1-DH1 2441MHz

SENSE:PULSE

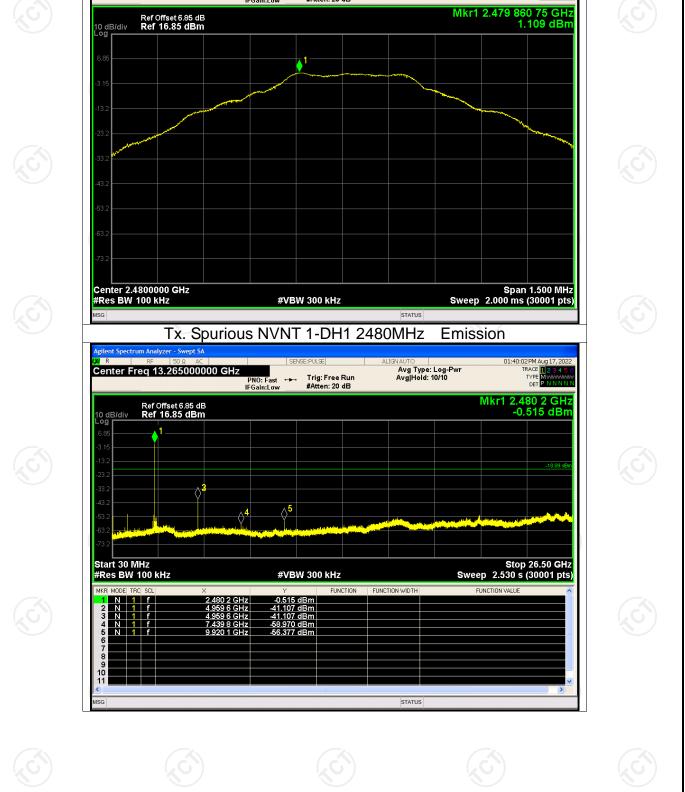
PNO: Wide \leftrightarrow Trig: Free Run IFGain:Low #Atten: 20 dB

gilent Sp

Center Freq 2.441000000 GHz

R

Report No.: TCT220815E020


46 PM Aug 17, 20 TRACE 1 2 3 4 TYPE MWWW DET PNNN

01:37

Ref

ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000

Page 65 of 99

Tx. Spurious NVNT 1-DH1 2480MHz

SENSE:PULSE

PNO: Wide \leftrightarrow Trig: Free Run IFGain:Low #Atten: 20 dB

gilent Sp

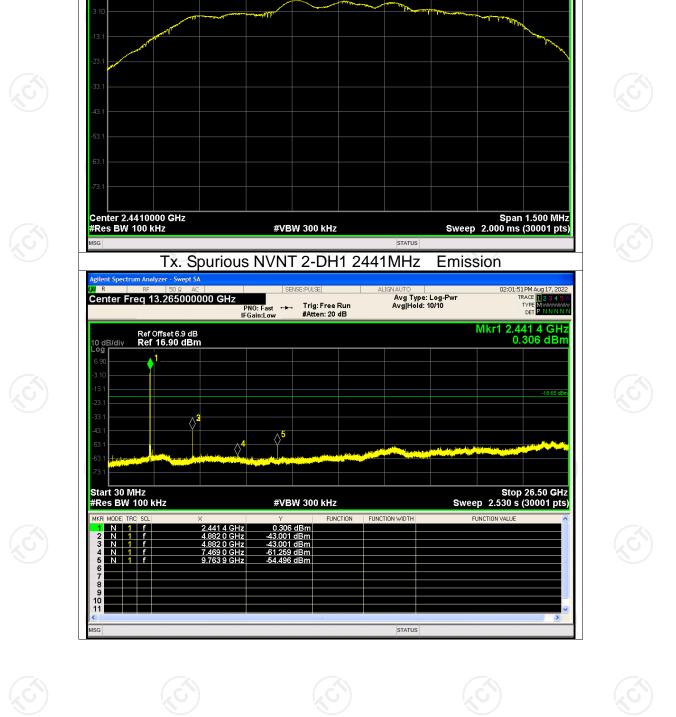
Center Freq 2.480000000 GHz

Ref Offset 6.85 dB Ref 16.85 dBm

R

Report No.: TCT220815E020

01:39:32 PM Aug 17, 20 TRACE 1234 TYPE MWWWM DET PNNN


Ref

ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000

Page 66 of 99

Page 67 of 99

Tx. Spurious NVNT 2-DH1 2441MHz

SENSE:PULSE

PNO: Wide \leftrightarrow Trig: Free Run IFGain:Low #Atten: 20 dB

⊼1

gilent Sp

10 dB/div

Center Freq 2.441000000 GHz

Ref Offset 6.9 dB Ref 16.90 dBm

R

Report No.: TCT220815E020

02:01:20 PM Aug 17, 20 TRACE 1234 TYPE MWWW DET PNNN

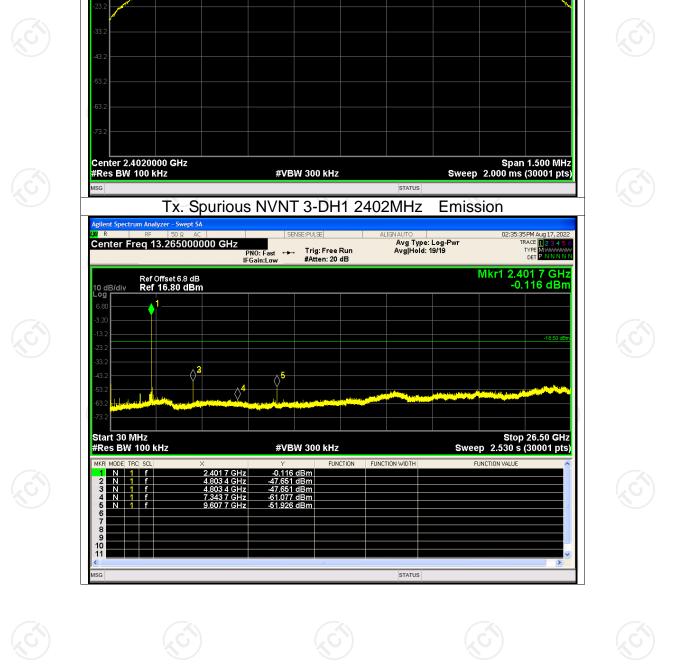

Mkr1 2.440 859 30 GHz 1.352 dBm

Ref

ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000

Page 68 of 99

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Tx. Spurious NVNT 2-DH1 2480MHz gilent Sp R ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000 SENSE:PULSE Center Freq 2.480000000 GHz PNO: Wide 🔸 Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 2.479 863 00 GHz 1.026 dBm Ref Offset 6.85 dB Ref 16.85 dBm 10 dB/div ø 100

Page 69 of 99

Report No.: TCT220815E020

02:04:44 PM Aug 17, 20 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N

Ref

Tx. Spurious NVNT 3-DH1 2402MHz

SENSE:PULSE

PNO: Wide \leftrightarrow Trig: Free Run IFGain:Low #Atten: 20 dB

ø

R Center Freq 2.402000000 GHz 10 dB/div

gilent Sp

Ref Offset 6.8 dB Ref 16.80 dBm

Report No.: TCT220815E020

02:34:39 PM Aug 17, 20 TRACE 1234 TYPE MWWW DET PNNN

Mkr1 2.401 862 15 GHz 1.499 dBm

Ref

ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000

ſ Ľ

Page 70 of 99

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Tx. Spurious NVNT 3-DH1 2441MHz

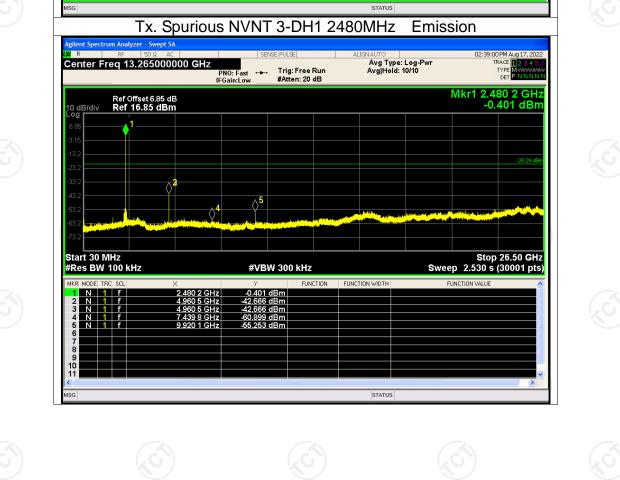
gilent Sp

l R

Center Freq 13.265000000 GHz

Tx. Spurious NVNT 3-DH1 2441MHz Emission

Avg Type: Log-Pwr Avg|Hold: 10/10


SENSE:PULSE

Page 71 of 99

Report No.: TCT220815E020

11 PM Aug 17, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N

Ref

 885
 1

 3.15
 1

 -13.2

 -23.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2

 -33.2
 -<

Tx. Spurious NVNT 3-DH1 2480MHz

SENSE:PULSE

PNO: Wide 🔸 Trig: Free Run IFGain:Low #Atten: 20 dB

gilent Sp

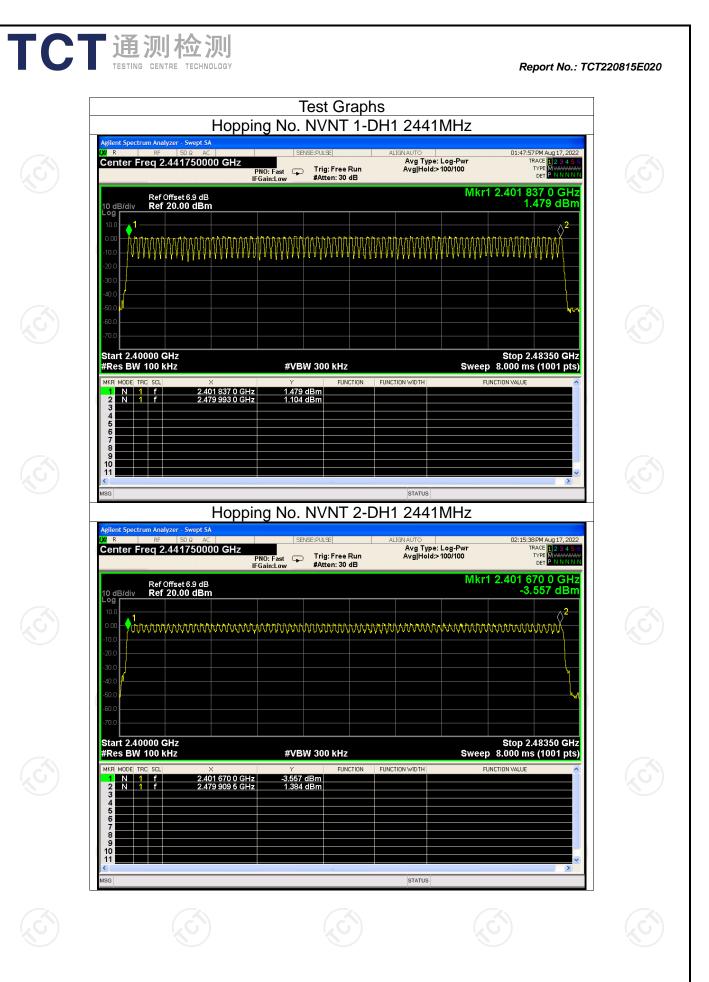
10 dB/div

Center Freq 2.480000000 GHz

Ref Offset 6.85 dB Ref 16.85 dBm

R

Report No.: TCT220815E020


02:38:30 PM Aug 17, 20 TRACE 1234 TYPE MWWW DET PNNN

Mkr1 2.479 865 75 GHz -0.290 dBm

Ref

ALIGN AUTO Avg Type: Log-Pwr Avg|Hold: 1000/1000

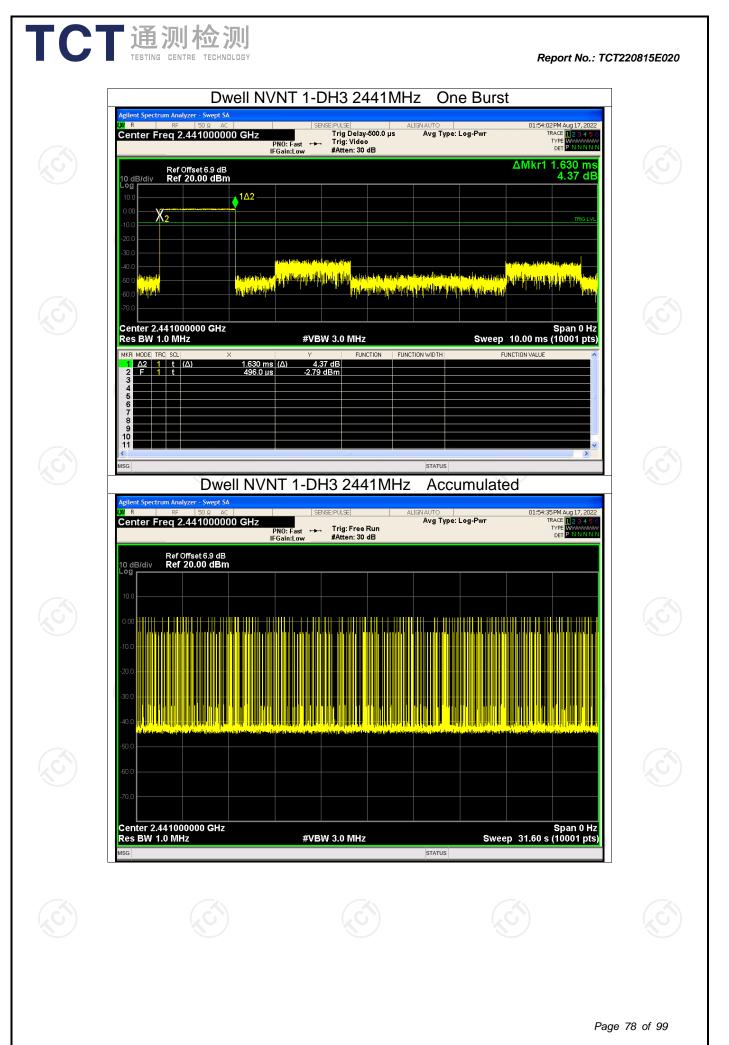
(Condition NVNT	Mode 1-DH1		of Hopping Hopping N 79	lumber	Limit 15	Verd		
3)	NVNT NVNT NVNT	2-DH1 3-DH1		79 79 79		15	Pas	Pass Pass Pass	
			I					-	

TESTING C	则检测					eport No.: TCT2	220815E020
0000 10.0000 10.00000 10.00000 10.0000	Analyzer - Swept SA SE 50.0 AC 1 2.441750000 G ef Offset 6.9 dB ef 20.00 dBm	HZ PNO: Fast IFGain:Low	ENSE:PULSE	H1 2441MH	02:46: 0 Mkr1 2.401 6 -2	.848 dBm	
-30.0 -40.0 -50.0 -70.0 Start 2.4000 #Res BW 10 MKR MODE TRC S 1 N 1 1 2 N 1 1 3 4 5 5 6 7 8	0 KHZ CL × f 2.401 670	Y 0 GHz -2.848	BW 300 kHz Function 3 dBm 9 dBm	FUNCTION WIDTH	Stop 2 Sweep 8.000 m FUNCTION VALUE	2.48350 GHz s (1001 pts)	
9 10 11 K				STATUS		×	

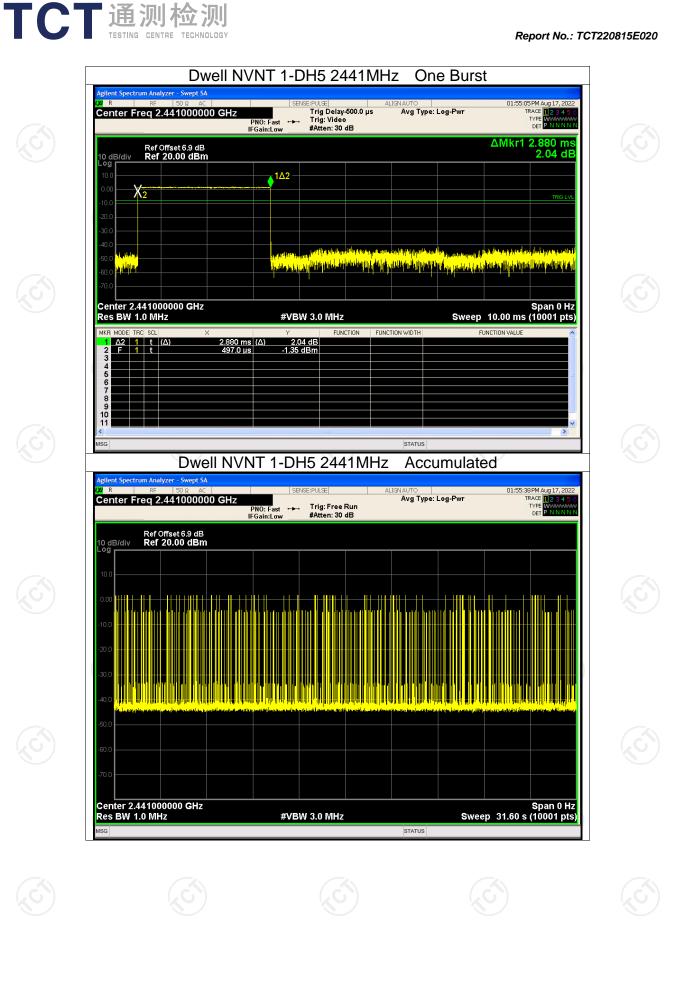
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

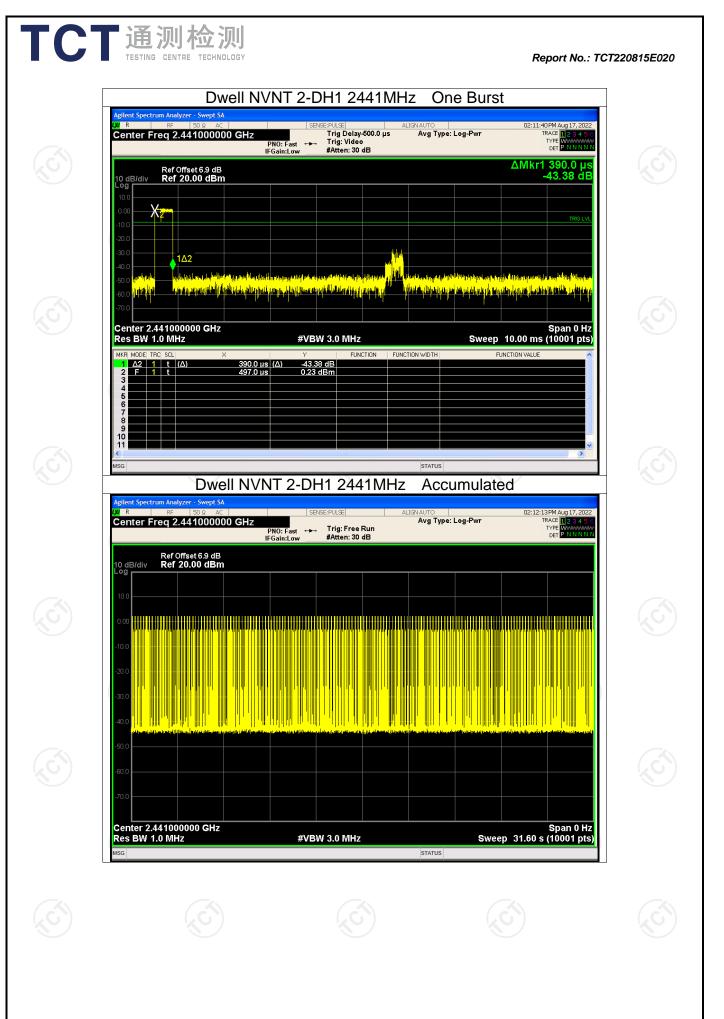

٢(Т	通	测	检	测	
		TESTING	CENTR	RE TECH	NOLOGY	

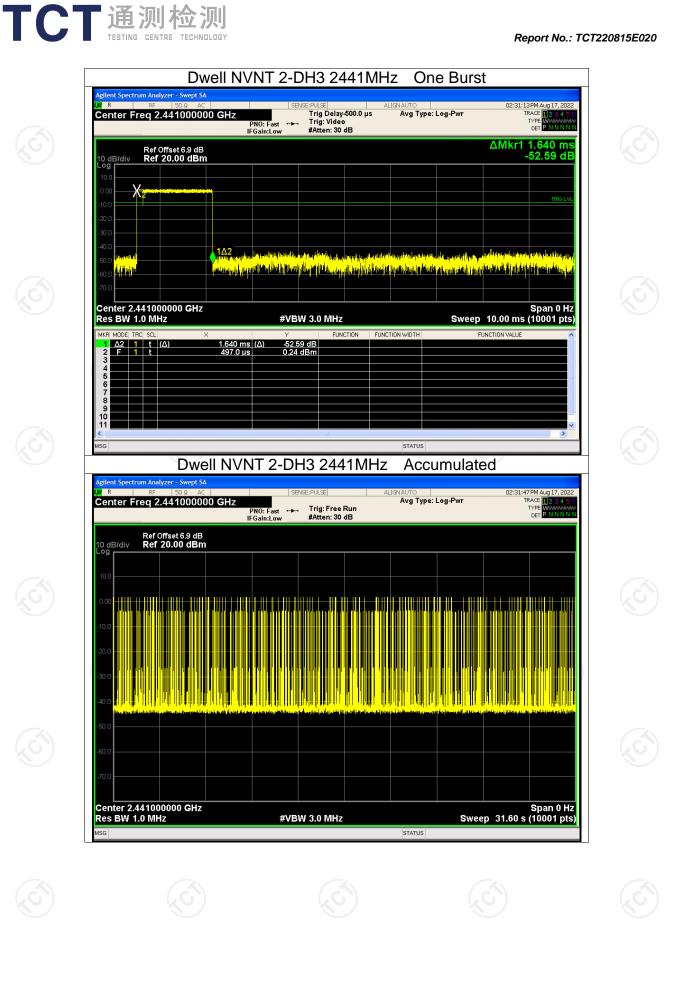
Report No.: TCT220815E020


Dwell Time									
Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict	
NVNT	1-DH1	2441	0.38	120.46	317	31600	400	Pass	
NVNT	1-DH3	2441	1.63	267.32	164	31600	400	Pass	
NVNT	1-DH5	2441	2.88	267.84	93	31600	400	Pass	
NVNT 🐇	2-DH1	2441	0.39	123.63	317	31600	400	Pass	
NVNT	2-DH3	2441	1.64	255.84	156	31600	400	Pass	
NVNT	2-DH5	2441	2.89	268.77	93	31600	400	Pass	
NVNT	3-DH1	2441	0.39	124.02	318	31600	400	Pass	
NVNT	3-DH3	2441	1.64	265.68	162	31600	400	Pass	
NVNT	3-DH5	2441	2.89	291.89	101	31600	400	Pass	

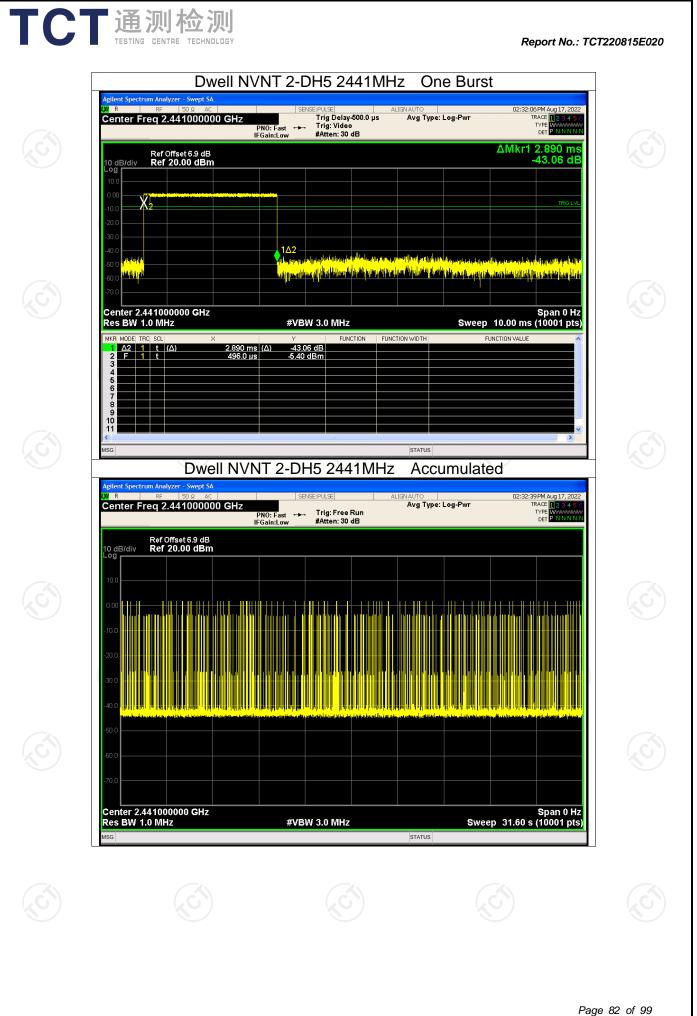
Page 76 of 99


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

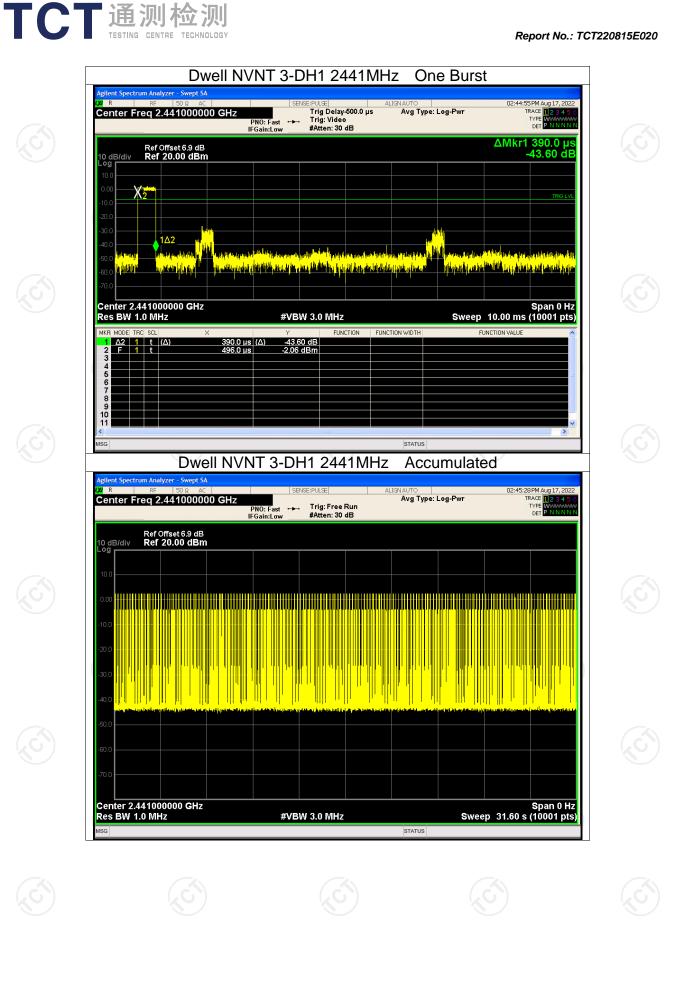

Page 77 of 99

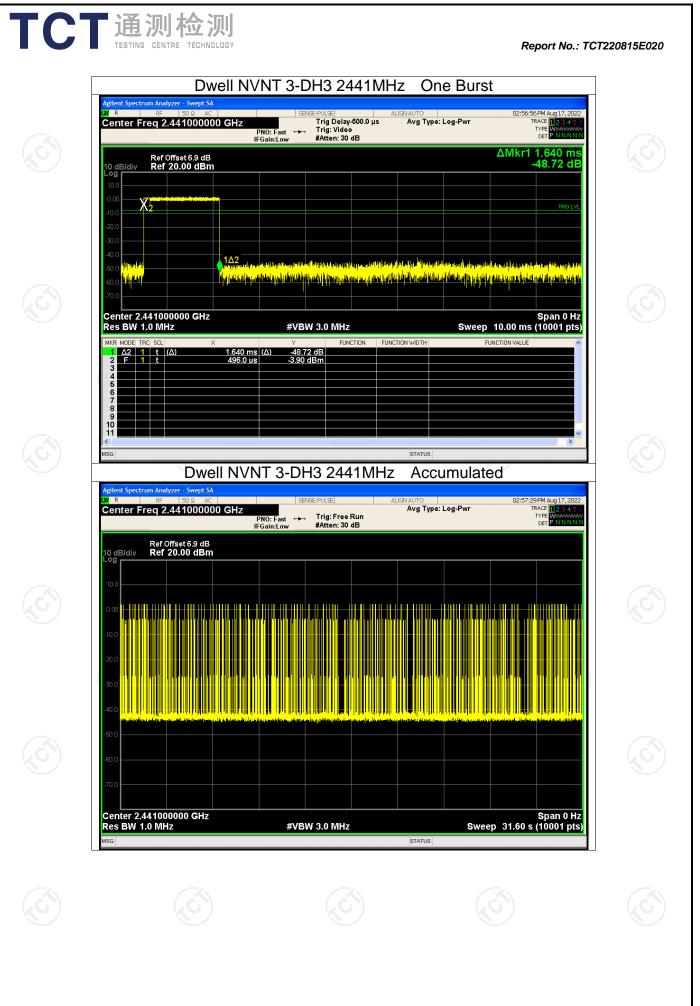


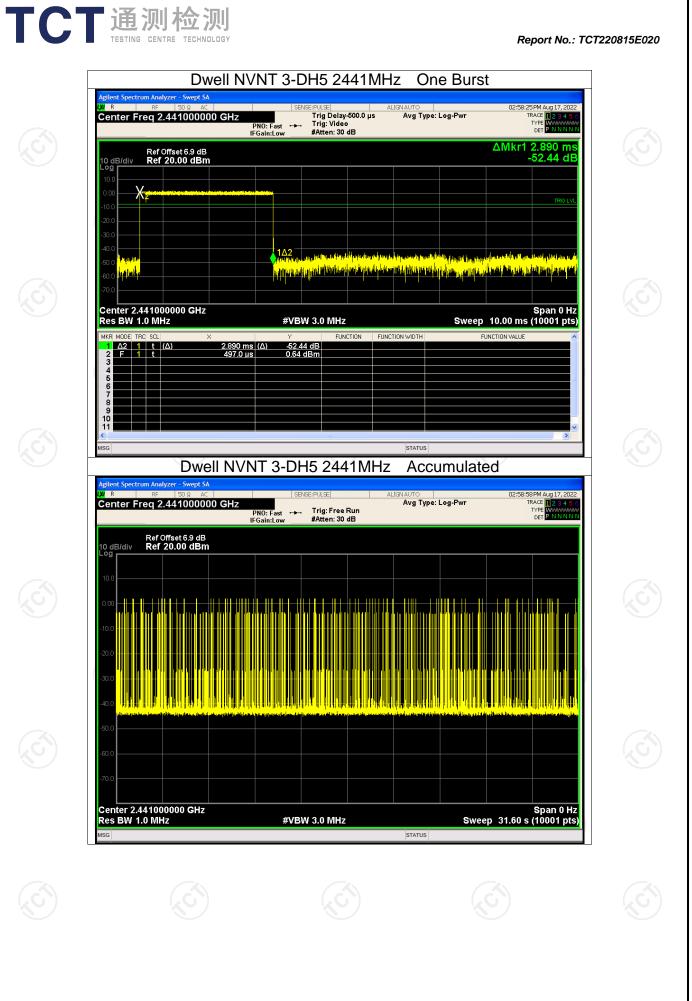
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



Page 79 of 99




Page 81 of 99


. age 62 e. ee

Page 83 of 99

Page 84 of 99

Page 85 of 99