

TEST REPORT

Applicant:	1byone Products Inc.				
Address of Applicant:	1230 E Belmont Street, Ontario, California 91761, United States				
Manufacturer/Factory:	SHENZHEN QIAOHUA INDUSTRIES LIMITED				
Address of Manufacturer/Factory:	301, No.1 Building, Qiaohua Industrial Zone, Luotian Forestry Center, Yanchuan, Yanluo, Bao An, Shenzhen, Guangdong, China.518127				
Equipment Under Test (E	EUT)				
Product Name:	HIGH FIDELITY BELT DRIVE TURNTABLE				
Model No.:	1-AD07US15, LP03A, 1-AD07US10, 1-AD07US11, 1- AD07US12, 1-AD07US13, LP02A, 1-AD07US14, 1- AD07US16, 1-AD07US17, 1-AD07US18, 1-AD07US19, 1- AD07US20				
FCC ID:	2A6AD1-AD07US15				
Applicable standards:	FCC CFR Title 47 Part 15 Subpart C Section 15.247				
Date of sample receipt:	October10, 2024				
Date of Test:	October11, 2024-November 25, 2024				
Date of report issued:	November 25, 2024				
Test Result :	PASS *				

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 35

2 Version

Version No.	Date	Description
00	November 25, 2024	Original

Prepared By:

handlu

Date:

November 25, 2024

Project Engineer

Check By:

oppinson lund Reviewer

Date:

November 25, 2024

GTS

Report No.: GTS2024090349F01

3 Contents

		Pa	ge
1	COV	/ER PAGE	1
2	VER	SION	. 2
3	CON	ITENTS	3
4	TES	T SUMMARY	. 4
5	GEN	IERAL INFORMATION	. 5
	5.1	GENERAL DESCRIPTION OF EUT	. 5
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	. 7
	5.4	DEVIATION FROM STANDARDS	
	5.5	ABNORMALITIES FROM STANDARD CONDITIONS	. 7
	5.6	TEST FACILITY	. 7
	5.7	TEST LOCATION	
	5.8	Additional Instructions	. 7
6	TES	T INSTRUMENTS LIST	. 8
7	TES	T RESULTS AND MEASUREMENT DATA	
	7.1	ANTENNA REQUIREMENT	10
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	20DB EMISSION BANDWIDTH	
	7.5	CARRIER FREQUENCIES SEPARATION	
	7.6	HOPPING CHANNEL NUMBER	
	7.7	DWELL TIME	
	7.8	SPURIOUS EMISSION IN NON-RESTRICTED & RESTRICTED BANDS	
	7.8.		-
	7.8.2	2 Radiated Emission Method	20
8	TES	Т SETUP PHOTO	35
9	EUT	CONSTRUCTIONAL DETAILS	35

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

No.	Item	Measurement Uncertainty			
1	Radio Frequency	±7.25×10 ⁻⁸			
2	Duty cycle	±0.37%			
3	Occupied Bandwidth	±3%			
4	RF conducted power	±0.75dB			
5	RF power density	±3dB			
6	Conducted Spurious emissions	±2.58dB			
7	AC Power Line Conducted Emission	±3.44dB (0.15MHz ~ 30MHz)			
		±3.1dB (9kHz-30MHz)			
		±3.8039dB (30MHz-200MHz)			
8	Radiated Spurious emission test	±3.9679dB (200MHz-1GHz)			
		±4.29dB (1GHz-18GHz)			
		±3.30dB (18GHz-40GHz)			
9	Temperature test	±1°C			
10	Humidity test	±3%			
11	Time	±3%			

5 General Information

5.1 General Description of EUT

Product Name:	HIGH FIDELITY BELT DRIVE TURNTABLE			
Model No.:	1-AD07US15, LP03A, 1-AD07US10, 1-AD07US11, 1-AD07US12, 1- AD07US13, LP02A, 1-AD07US14, 1-AD07US16, 1-AD07US17, 1- AD07US18, 1-AD07US19, 1-AD07US20			
Test Model No.:	1-AD07US15			
	identical in the same PCB layout, interior structure and electrical circuits. ce color and model name for commercial purpose.			
Test sample(s) ID:	GTS2024090349-1			
Sample(s) Status:	Engineer sample			
S/N:	N/A			
Operation Frequency:	2402MHz~2480MHz			
Channel numbers:	79			
Channel separation:	1MHz			
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK			
Antenna Type:	PCB Antenna			
Antenna gain:	2.25dBi(declare by applicant)			
Power supply:	Adapter 1:			
	Model: HH0024Z-120200-AU			
	Input: AC 100-240V, 50/60Hz, 0.8A Max			
	Output: DC 12.0V, 2.0A			
	Adapter 2:			
	Model: XTB36W1202000U			
	Input: AC 100-240V, 50/60Hz, 1.2A Max			
	Output: DC 12.0V, 2.0A, 24.0W			

Remark:

1. Antenna gain information provided by the customer

2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

3. Both adapter 1 and adapter 2 have been tested, and adapter 1 is the worst case, so only adapter 1 data is recorded in the report.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

5.3 Description of Support Units

Manufacturer	Description	Model	Serial Number
HUAWEI	Mobile Phone	MATE 30	N/A

5.4 Deviation from Standards

None.

5.5 Abnormalities from Standard Conditions

None.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC—Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.7 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.8 Additional Instructions

Test Software	Special test software provided by manufacturer	
Power level setup	Default	

6 Test Instruments list

Radia	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Jun. 22, 2024	Jun. 21, 2027			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Apr. 11, 2024	Apr. 10, 2025			
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9168	GTS640	Mar. 19, 2023	Mar. 18, 2025			
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	Apr. 17, 2023	Apr. 16, 2025			
6	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	Apr. 11, 2024	Apr. 10, 2025			
7	Loop Antenna	ZHINAN	ZN30900A	GTS534	Nov.12, 2024	Nov.11, 2025			
8	Broadband Preamplifier	SCHWARZBECK	BBV9718	GTS535	Apr. 11, 2024	Apr. 10, 2025			
9	Amplifier(1GHz-26.5GHz)	HP	8449B	GTS601	Apr. 11, 2024	Apr. 10, 2025			
10	Horn Antenna (15GH-40GHz)	SCHWARZBECK	01296	GTS691	Mar. 07, 2024	Mar. 06, 2025			
11	FSV·Signal Analyzer (10Hz-40GHz)	Keysight	FSV-40-N	GTS666	Mar. 12, 2024	Mar. 11, 2025			
12	Amplifier	/	LNA-1000-30S	GTS650	Apr. 11, 2024	Apr. 10, 2025			
13	CDNE M2+M3-16A	НСТ	30MHz-300MHz	GTS692	Nov. 07, 2024	Nov. 06, 2025			
14	Wideband Amplifier	1	WDA-01004000-15P35	GTS602	Apr. 11, 2024	Apr. 10, 2025			
15	Thermo meter	JINCHUANG	GSP-8A	GTS643	Apr. 18, 2024	Apr. 17, 2025			
16	RE cable 1	GTS	N/A	GTS675	Jul. 02, 2024	Jul. 01, 2025			
17	RE cable 2	GTS	N/A	GTS676	Jul. 02, 2024	Jul. 01, 2025			
18	RE cable 3	GTS	N/A	GTS677	Jul. 02, 2024	Jul. 01, 2025			
19	RE cable 4	GTS	N/A	GTS678	Jul. 02, 2024	Jul. 01, 2025			
20	RE cable 5	GTS	N/A	GTS679	Jul. 02, 2024	Jul. 01, 2025			
21	RE cable 6	GTS	N/A	GTS680	Jul. 02, 2024	Jul. 01, 2025			
22	RE cable 7	GTS	N/A	GTS681	Jul. 05, 2024	Jul. 04, 2025			
23	RE cable 8	GTS	N/A	GTS682	Jul. 05, 2024	Jul. 04, 2025			
24	EMI Test Software	AUDIX	E3-6.100614a	GTS725	N/A	N/A			

Cond	Conducted Emission							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.3(L)x3.1(W)x2.9(H)	GTS252	Jul. 12, 2022	Jul. 11, 2027		
2	EMI Test Receiver	R&S	ESCI 7	GTS552	Apr. 11, 2024	Apr. 10, 2025		
3	LISN	ROHDE & SCHWARZ	ENV216	GTS226	Apr. 11, 2024	Apr. 10, 2025		
4	Coaxial Cable	GTS	N/A	GTS227	N/A	N/A		
5	Thermo meter	JINCHUANG	GSP-8A	GTS642	Apr. 18, 2024	Apr. 17, 2025		
6	Absorbing clamp	Elektronik- Feinmechanik	MDS21	GTS229	Apr. 11, 2024	Apr. 10, 2025		
7	ISN	SCHWARZBECK	NTFM 8158	GTS565	Apr. 11, 2024	Apr. 10, 2025		
8	High voltage probe	SCHWARZBECK	TK9420	GTS537	Apr. 11, 2024	Apr. 10, 2025		
9	Antenna end assembly	Weinschel	1870A	GTS560	Apr. 11, 2024	Apr. 10, 2025		
10	EMI Test Software	AUDIX	E3-6.100622	GTS726	N/A	N/A		

RF Co	RF Conducted Test:								
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	Apr. 13, 2024	Apr. 12, 2025			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	Apr. 13, 2024	Apr. 12, 2025			
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	Apr. 13, 2024	Apr. 12, 2025			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	Apr. 13, 2024	Apr. 12, 2025			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	Apr. 13, 2024	Apr. 12, 2025			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	Apr. 13, 2024	Apr. 12, 2025			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	Apr. 13, 2024	Apr. 12, 2025			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	Apr. 13, 2024	Apr. 12, 2025			
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	Apr. 18, 2024	Apr. 17, 2025			

Ger	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Barometer	KUMAO	SF132	GTS647	Apr. 18, 2024	Apr. 17, 2025			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:	FCC Part15 C Section 15.203 /247(c)
-----------------------	-------------------------------------

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

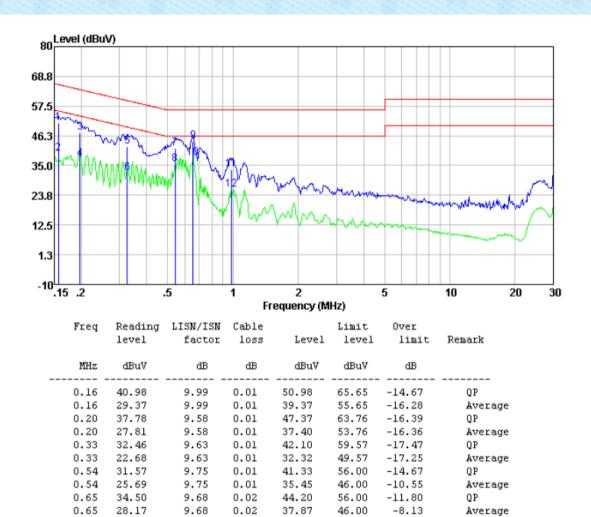
E.U.T Antenna:

The antenna is PCB antenna, reference to the appendix II for details.

Report No.: GTS2024090349F01

7.2 Conducted Emissions						
Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Test Frequency Range:	150KHz to 30MHz					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto				
Limit:	Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56* 56	56 to 46* 46			
	5-30	60	50			
	* Decreases with the logarithm					
Test setup:	Reference Plane					
Test procedure:	40cm LISN 40cm 40cm 40cm 40cm 80cm LISN Filter AC power Filter AC power Remark E.U.T Filter AC power EMI Receiver Remark E.U.T EMI Receiver					
	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test environment:	Temp.: 25 °C Hum	nid.: 52%	Press.: 1012mbar			
Test voltage:	AC 120V, 60Hz					
Test results:	Pass		No. A Contraction			

Measurement data:


0.98

0.98

23.88

16.34

Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of it Line:

9.51

9.51

0.03

0.03

33.42

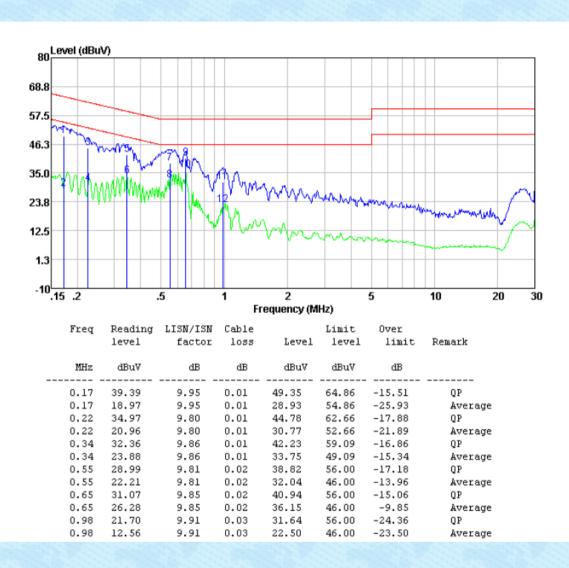
25.88

56.00

46.00

-22.58

-20.12


QP

Average

GTS

Neutral:

Report No.: GTS2024090349F01

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)			
Test Method:	ANSI C63.10:2013			
Limit:	20.97dBm			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 6.0 for details			
Test mode:	Refer to section 5.2 for details			
Test results:	Pass			

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Limit:	I/A				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.4 20dB Emission Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=300KHz, VBW=300KHz, detector=Peak				
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=VBW=300kHz, Frequency range=2398MHz-2485.5MHz, Detector=Peak				
Limit:	15 channels				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.6 Hopping Channel Number

7.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)				
Test Method:	ANSI C63.10:2013				
Receiver setup:	RBW=VBW=1MHz, Span=0Hz, Detector=Peak RBW=VBW=100kHz, Span=0Hz, Detector=Peak				
Limit:	0.4 Second				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				

7.8 Spurious Emission in Non-restricted & restricted Bands

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013					
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.2 for details					
Test results:	Pass					

7.8.1 Conducted Emission Method

GTS

7.8.2 Radiated Emission Method								
Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency [Detector	RBV	V VBW	Value		
	9KHz-150KHz Qua		uasi-peak	200H	z 600Hz	Quasi-peak		
	150KHz-30MHz	Qu	uasi-peak	9KH	z 30KHz	Quasi-peak		
	30MHz-1GHz	Qu	uasi-peak	120K	Hz 300KHz	Quasi-peak		
	Above 1GHz		Peak	1MH	z 3MHz	Peak		
			Peak	1MH	z 10Hz	Average		
	Note: For Duty cyc cycle < 98%, avera			-				
Limit:	Frequency		Limit (u\	//m)	Value	Measurement Distance		
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)	PK/QP/AV	300m		
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP	30m		
	1.705MHz-30MH	z	30		QP	30m		
	30MHz-88MHz		100		QP			
	88MHz-216MHz	-	150		QP			
	216MHz-960MH	Z	200		QP	3m		
	960MHz-1GHz		500		QP			
	Above 1GHz		500		Average			
Testestus			5000		Peak			
Test setup:	For radiated emiss	ions	from 9kH	z to 30	MHz			
	< 3m > Test Antenna EUT- EUT- Tum Table- Receiver- Receiver-							

7.8.2 Radiated Emission Method

Report No.: GTS2024090349F01 For radiated emissions from 30MHz to1GHz < 3m Test Antenna 4m > < 1m EUT. Turn Table+ 80cm Receiver. Preamplifier. For radiated emissions above 1GHz < 3m > Test Antenna-<1m...4m> EUT. Tum Table <150cm> 2 Receiver+ Preamplifier-Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, guasi-peak or average method as specified and then reported in a data sheet. Test Instruments: Refer to section 6.0 for details Test mode: Refer to section 5.2 for details

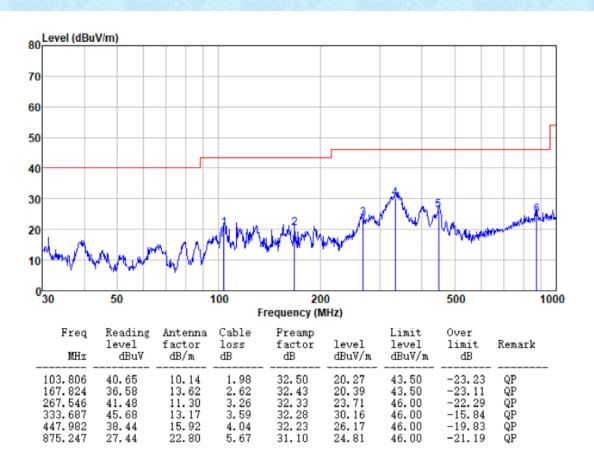
GTS

				Report No.: GTS2024090349F01			
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

Measurement data:

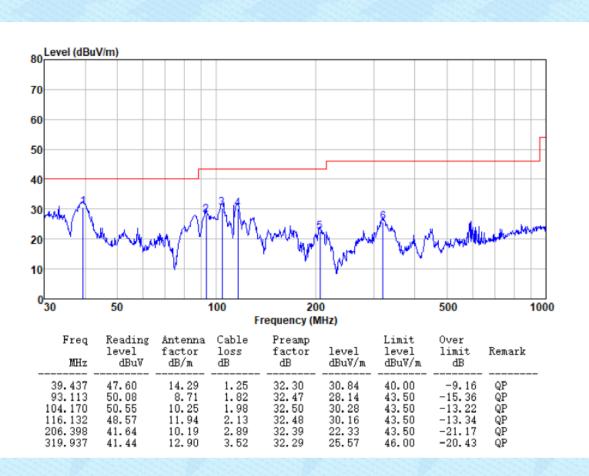
Remarks:

- 1. During the test, pre-scan the GFSK, π /4-DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.


9kHz~30MHz

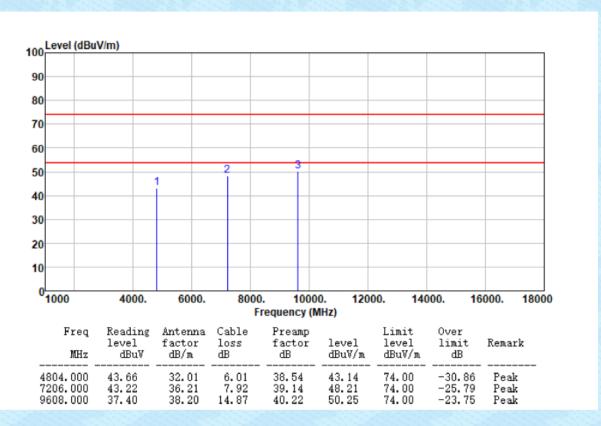
The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

Below 1GHz


Pre-scan all test modes, found worst case at GFSK 2402MHz, and so only show the test result of it **Horizontal:**

Vertical:

Report No.: GTS2024090349F01



Above 1GHz

Only show the worst case(adapter 1)

Unwanted Emissions in Non-restricted Frequency Bands

Test channel:	Lowest	Polarization:	Horizontal

Report No.: GTS2024090349F01

Test channel:	Lowest	Polarization:	Vertical
100 Level (dBuV/m	1)		
90			
80			
70			
60			
50	2	3	
40	1		
30			
20			
10			
0			
⁰ 1000	4000. 6000. 8000. Fr	10000. 12000. 1400 equency (MHz)	0. 16000. 18000
	eading Antenna Cable evel factor loss	Preamp Limit factor level level	Over limit Remark
	dBuV dB/m dB	dB dBuV/m dBuV/m	dB
7206.000 4	4.46 32.01 6.01 3.53 36.21 7.92 7.30 38.20 14.87	38.54 43.94 74.00 39.14 48.52 74.00 40.22 50.15 74.00	-30.06 Peak -25.48 Peak -23.85 Peak

Report No.: GTS2024090349F01

est channel:	Midd	le		Polar	ization:		Horizo	ontal
100 Level (dBu	V/m)							
90								
80								
70								
60			2	3				
50		1	Í	Ī				
40								
30								
20								
10								
0 <mark></mark>	4000.	6000.	8000 Fi	. 1000 requency (N		00. 140	000. 16	5000. 1800 0
Freq	Reading level	Antenna factor	Cable	Preamp factor	level	Limit level	Over limit	Remark
MHz	dBuV	dB/m	loss dB	dB	dBuV/m	levei dBu∛/m	dB	Nemark
4882.000 7323.000 9764.000	42.98 43.35 40.97	32.10 36.30 38.20	6.03 8.04 11.26	38.52 39.23 40.25	42.59 48.46 50.18	74.00 74.00 74.00	-31.41 -25.54 -23.82	Peak Peak Peak

Report No.: GTS2024090349F01

Test channel:	Mido	dle		Pola	rization:		Vert	lical
100 Level (dE	BuV/m)							
90								
80								
70								
60								
50			2	3				
40		1						
30								
20								
10								
0	4000.	6000.	8000	0. 1000	0. 1200	00. 140	00 16	\$000. 1800 0
1000	4000.	0000.		requency (N		. 140	00. 10	10000
Freq	level	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBu∛/m	Limit level dBuV/m	Over limit dB	Remark
4882.000 7323.000 9764.000	44.47	32.10 36.30 38.20	6.03 8.04 11.26	38.52 39.23 40.25	42.41 49.58 50.12	74.00 74.00 74.00	-31.59 -24.42 -23.88	Peak Peak Peak

Report No.: GTS2024090349F01

Test channel:	Highest	Pola	rization:	Horizontal
	Tignest	Fold		TIONZONIA
Level (dBuV/m				
100				
90				
80				
70				
60				
50		2 3		
40	1	Ī		
30				
20				
10				
0	4000. 6000.	8000. 1000	0. 12000. 14000	0. 16000. 18000
		Frequency (M		
		Cable Preamp loss factor		Over limit Remark
MHz		1055 1 accor 18 dB	dBuV/m dBuV/m	dB
	2.32 32.20	6.05 38.51 8.16 39.31	42.06 74.00	 -31.94 Peak -26.78 Peak
	2.07 36.30 0.65 38.24 1	8.16 39.31 10.76 40.28		-26.78 Peak -24.63 Peak

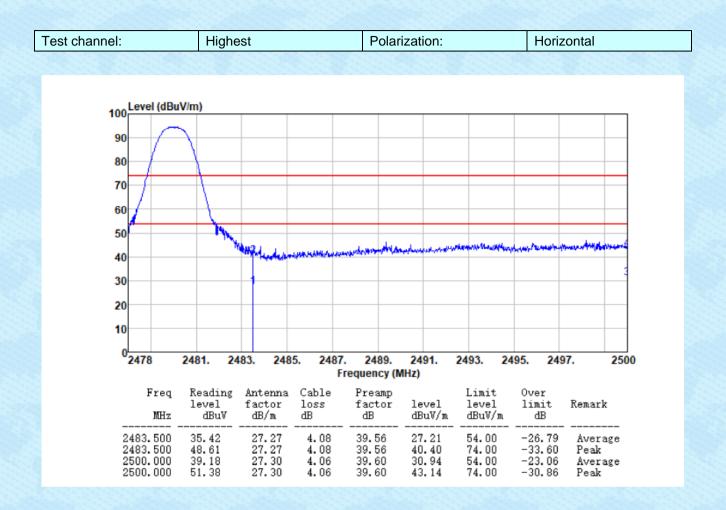
Report No.: GTS2024090349F01

Highest	Po	arization:		Vertica	
-					
1)					
	2	3			
4000. 6000.			0. 140	00. 16	000. 1800
eading Antenna evel factor dBuV dB/m			Limit level dBuV/m	Over limit dB	Remark
2.20 36.30	8.16 39.3	47.35	74.00 74.00 74.00	-31.97 -26.65 -23.88	Peak Peak Peak
	1 1 4000. 6000. eading Antenna factor dBuV dB/m 2.29 32.20 2.20 36.30	1) 2 1 2 1 4000. 6000. 8000. 14 Frequenc eading Antenna Cable Pream evel factor loss facto dBuV dB/m dB dB 2.29 32.20 6.05 38.51 2.20 36.30 8.16 39.31) 2 1 2 1 2 3 1 4000. 6000. 8000. 1 <t< td=""><td>) 2 1 2 3 1 <td< td=""><td>n) 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td></td<></td></t<>) 2 1 2 3 1 <td< td=""><td>n) 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td></td<>	n) 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

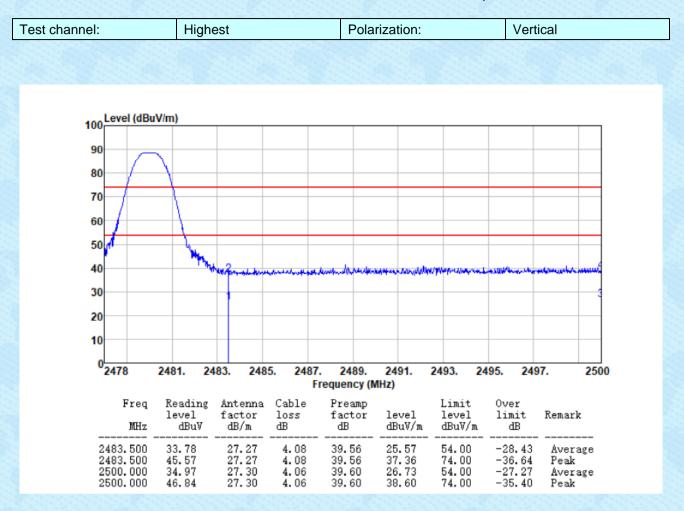
Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

hannel:	Low	est		Pola	rization:		Horiz	zontal
	(
100 Level (dBu	v/m)							
90								A
80								
70								
60								
50								
40				MA.		and the second second	transmith,	mound
30	*	Herbert server and a	dit the second state	nor Maraganda	****		3	
20								
10								
0 ^L 2310 23	20. 233	0. 234		50. 2360 requency (N). 2380.	2390	. 2404
Freq MHz	Reading level dBu∛	Antenna factor dB/m	Cable loss dB	Preamp factor dB	level dBu∛/m	Limit level dBuV/m	Over limit dB	Remark
2310.000 2310.000 2390.000	36.41 46.29 42.36	27.00 27.00 27.08	4.13 4.13 4.17	39.14 39.14 39.34	28.40 38.28 34.27	54.00 74.00 54.00	-25.60 -35.72 -19.73	Average Peak Average
2390.000	52.27	27.08	4.17	39.34	44.18	74.00	-29.82	Peak


Unwanted Emissions in Restricted Frequency Bands

Report No.: GTS2024090349F01


hannel:	Lowest	Polarization:		Vertical
100 Level (dBuV/m)				
90				0
80				AI
70				
60				
50				
40	water a fly we to be a subject on an interest of the second second second second second second second second se	en Anglen and encourant when	and the second s	and an and and
30				3
20				
10				
0 <mark>2310 2320.</mark>	2330. 2340. 235 F	50. 2360. 2370. requency (MHz)	2380. 2	2390. 2404
lev	ding Antenna Cable el factor loss BuV dB/m dB	Preamp factor level dB dBuV/m	Limit Over level limi dBuV/m dB	t Remark
2310.000 33. 2310.000 46. 2390.000 35. 2390.000 47.	13 27.00 4.13 79 27.08 4.17	39.14 25.23 39.14 38.12 39.34 27.70 39.34 39.53	54.00 -28. 74.00 -35. 54.00 -26. 74.00 -34.	88 Peak 30 Average

GTS

Report No.: GTS2024090349F01

Remarks:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

GTS

Report No.: GTS2024090349F01

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----