

## **COMOSAR E-Field Probe Calibration Report**

Ref: ACR.197.12.23.BES.A

# WALTEK TESTING GROUP (SHENZHEN) CO., LTD 1/F., ROOM 101, BUILDING 1, HONGWEI INDUSTRIAL PARK, LIUXIAN 2ND ROAD, BLOCK 70 BAO'AN DISTRICT, SHENZHEN, GUANGDONG , CHINA MVG COMOSAR DOSIMETRIC E-FIELD PROBE SERIAL NO.: SN 18/21 EPG0356

Calibrated at MVG Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

#### Calibration date: 07/07/2023



Accreditations #2-6789 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

#### Summary:

This document presents the method and results from an accredited COMOSAR E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).



|               | Name           | Function                | Date     | Signature    |
|---------------|----------------|-------------------------|----------|--------------|
| Prepared by : | Jérôme Le Gall | Measurement Responsible | 7/7/2023 | A            |
| Checked by :  | Jérôme Luc     | Technical Manager       | 7/7/2023 | JES          |
| Approved by : | Yann Toutain   | Laboratory Director     | 7/7/2023 | Yann TOUTAAN |

Yann Toutain ID Date : 2023.07.07 08:53:35 +01'00'

|                | Customer Name                                  |
|----------------|------------------------------------------------|
| Distribution : | Waltek Testing<br>Group (Shenzhen)<br>Co., Ltd |

| Issue | Name       | Date     | Modifications   |
|-------|------------|----------|-----------------|
| Α     | Jérôme Luc | 7/7/2023 | Initial release |
|       |            |          |                 |
|       |            |          |                 |
|       |            |          |                 |
|       |            |          |                 |

Page: 2/11

Template\_ACR.DDD.N.YY.MVGB.ISSUE\_COMOSAR Probe vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



#### **TABLE OF CONTENTS**

| 1 | Devi | ce Under Test4               |   |
|---|------|------------------------------|---|
| 2 | Prod | uct Description4             |   |
|   | 2.1  | General Information          | 4 |
| 3 | Mea  | surement Method4             |   |
|   | 3.1  | Linearity                    | 4 |
|   | 3.2  | Sensitivity                  | 5 |
|   | 3.3  | Lower Detection Limit        | 5 |
|   | 3.4  | Isotropy                     | 5 |
|   | 3.1  | Boundary Effect              | 5 |
| 4 | Mea  | surement Uncertainty6        |   |
| 5 | Cali | oration Measurement Results6 |   |
|   | 5.1  | Sensitivity in air           | 6 |
|   | 5.2  | Linearity                    | 7 |
|   | 5.3  | Sensitivity in liquid        | 8 |
|   | 5.4  | Isotropy                     | 9 |
| 6 | List | of Equipment10               |   |

Page: 3/11

Template\_ACR.DDD.N.YY.MVGB.ISSUE\_COMOSAR Probe v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



#### **1 DEVICE UNDER TEST**

| Device Under Test                        |                                  |  |
|------------------------------------------|----------------------------------|--|
| Device Type                              | COMOSAR DOSIMETRIC E FIELD PROBE |  |
| Manufacturer                             | MVG                              |  |
| Model                                    | SSE2                             |  |
| Serial Number                            | SN 18/21 EPGO356                 |  |
| Product Condition (new / used)           | New                              |  |
| Frequency Range of Probe                 | 0.15 GHz-6GHz                    |  |
| Resistance of Three Dipoles at Connector | Dipole 1: R1=0.221 MΩ            |  |
|                                          | Dipole 2: R2=0.197 MΩ            |  |
|                                          | Dipole 3: R3=0.195 MΩ            |  |

#### 2 PRODUCT DESCRIPTION

#### 2.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR E field Probes are built in accordance to the IEEE 1528, FCC KDB865664 D01, CENELEC EN62209 and CEI/IEC 62209 standards.



**Figure 1** – *MVG COMOSAR Dosimetric E field Dipole* 

| Probe Length                               | 330 mm |
|--------------------------------------------|--------|
| Length of Individual Dipoles               | 2 mm   |
| Maximum external diameter                  | 8 mm   |
| Probe Tip External Diameter                | 2.5 mm |
| Distance between dipoles / probe extremity | 1 mm   |

#### **3 MEASUREMENT METHOD**

The IEEE 1528, FCC KDB865664 D01, CENELEC EN62209 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

#### 3.1 <u>LINEARITY</u>

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/11

Template\_ACR.DDD.N.YY.MVGB.ISSUE\_COMOSAR Probe vI

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



#### 3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

#### LOWER DETECTION LIMIT 3.3

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

#### 3.4 **ISOTROPY**

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

#### **BOUNDARY EFFECT** 3.1

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and  $d_{be}$  +  $d_{\text{step}}$  along lines that are approximately normal to the surface:

$$SAR_{uncertainty} [\%] = \delta SAR_{be} \frac{\left(d_{be} + d_{step}\right)^2}{2d_{step}} \frac{\left(e^{-d_{be}/\left(\delta/2\right)}\right)}{\delta/2} \quad \text{for } \left(d_{be} + d_{step}\right) < 10 \text{ mm}$$

| where              |                                                                                                                         |
|--------------------|-------------------------------------------------------------------------------------------------------------------------|
| SARuncertainty     | is the uncertainty in percent of the probe boundary effect                                                              |
| dbe                | is the distance between the surface and the closest zoom-scan measurement                                               |
|                    | point, in millimetre                                                                                                    |
| $\Delta_{step}$    | is the separation distance between the first and second measurement points that                                         |
|                    | are closest to the phantom surface, in millimetre, assuming the boundary effect<br>at the second location is negligible |
| δ                  | is the minimum penetration depth in millimetres of the head tissue-equivalent                                           |
|                    | liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;                                                |
| ⊿SAR <sub>be</sub> | in percent of SAR is the deviation between the measured SAR value, at the                                               |
|                    | distance $d_{be}$ from the boundary, and the analytical SAR value.                                                      |

Page: 5/11

Template ACR.DDD.N.YY.MVGB.ISSUE COMOSAR Probe vI

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



The measured worst case boundary effect SARuncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

#### 4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

| Uncertainty analysis of the probe calibration in waveguide |                          |                             |         |    |                             |
|------------------------------------------------------------|--------------------------|-----------------------------|---------|----|-----------------------------|
| ERROR SOURCES                                              | Uncertainty<br>value (%) | Probability<br>Distribution | Divisor | ci | Standard<br>Uncertainty (%) |
| <b>Expanded uncertainty</b><br>95 % confidence level k = 2 |                          |                             |         |    | 14 %                        |

#### 5 CALIBRATION MEASUREMENT RESULTS

| Calibration Parameters         |             |  |  |
|--------------------------------|-------------|--|--|
| Liquid Temperature 20 +/- 1 °C |             |  |  |
| Lab Temperature                | 20 +/- 1 °C |  |  |
| Lab Humidity                   | 30-70 %     |  |  |

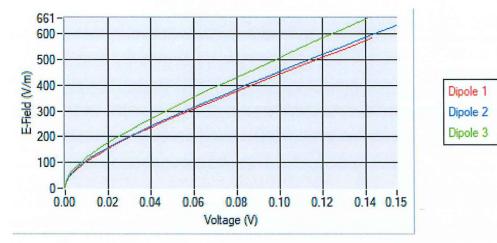
#### 5.1 SENSITIVITY IN AIR

|      | Normy dipole $2 (\mu V/(V/m)^2)$ | Normz dipole 3 $(\mu V/(V/m)^2)$ |
|------|----------------------------------|----------------------------------|
| 0.99 | 0.94                             | 0.76                             |

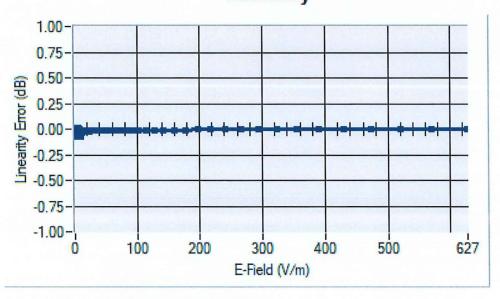
| DCP dipole 1 | DCP dipole 2 | DCP dipole 3 |
|--------------|--------------|--------------|
| (mV)         | (mV)         | (mV)         |
| 106          | 107          | 104          |

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$


Page: 6/11

Template\_ACR.DDD.N.YY.MVGB.ISSUE\_COMOSAR Probe vI


This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



**Calibration curves** 



#### 5.2 LINEARITY



Linearity:+/-1.73% (+/-0.08dB)

Page: 7/11

Template\_ACR.DDD.N.YY.MVGB.ISSUE\_COMOSAR Probe v1 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Linearity

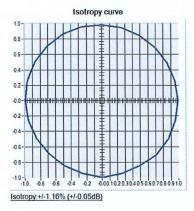


#### 5.3 SENSITIVITY IN LIQUID

| <u>Liquid</u> | <u>Frequency</u><br>(MHz+/- | <u>ConvF</u> |
|---------------|-----------------------------|--------------|
|               | <u>100MHz)</u>              |              |
| HL750         | 750                         | 1.67         |
| BL750         | 750                         | 1.76         |
| HL850         | 835                         | 1.71         |
| BL850         | 835                         | 1.79         |
| HL900         | 900                         | 1.88         |
| BL900         | 900                         | 1.85         |
| HL1800        | 1800                        | 2.11         |
| BL1800        | 1800                        | 2.15         |
| HL1900        | 1900                        | 2.21         |
| BL1900        | 1900                        | 2.31         |
| HL2000        | 2000                        | 2.41         |
| BL2000        | 2000                        | 2.39         |
| HL2100        | 2100                        | 2.37         |
| BL2100        | 2100                        | 3.41         |
| HL2300        | 2300                        | 2.34         |
| BL2300        | 2300                        | 2.45         |
| HL2450        | 2450                        | 2.29         |
| BL2450        | 2450                        | 2.62         |
| HL2600        | 2600                        | 2.22         |
| BL2600        | 2600                        | 2.41         |
| HL3300        | 3300                        | 2.64         |
| BL3300        | 3300                        | 2.16         |
| HL3500        | 3500                        | 2.07         |
| BL3500        | 3500                        | 2.20         |
| HL3700        | 3700                        | 2.27         |
| BL3700        | 3700                        | 2.24         |
| HL3900        | 3900                        | 2.37         |
| BL3900        | 3900                        | 2.47         |
| HL4200        | 4200                        | 2.42         |
| BL4200        | 4200                        | 2.55         |
| HL4600        | 4600                        | 2.41         |
| BL4600        | 4600                        | 2.68         |
| HL4900        | 4900                        | 2.21         |
| BL4900        | 4900                        | 2.46         |
| HL5200        | 5200                        | 1.91         |
| BL5200        | 5200                        | 1.82         |
| HL5400        | 5400                        | 2.12         |
| BL5400        | 5400                        | 2.02         |
| HL5600        | 5600                        | 2.25         |
| BL5600        | 5600                        | 2.20         |
| HL5800        | 5800                        | 2.15         |
| BL5800        | 5800                        | 2.11         |

### LOWER DETECTION LIMIT: 8mW/kg

Page: 8/11


Template\_ACR.DDD.N.YY.MVGB.ISSUE\_COMOSAR Probe vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



Ref: ACR.197.12.23.BES.A

#### 5.4 <u>ISOTROPY</u>

#### HL1800 MHz



Page: 9/11

Template\_ACR.DDD.N.YY.MVGB.ISSUE\_COMOSAR Probe vI This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



#### LIST OF EQUIPMENT 6

|                                       | Equipment Summary Sheet    |                            |                                               |                                               |  |  |  |
|---------------------------------------|----------------------------|----------------------------|-----------------------------------------------|-----------------------------------------------|--|--|--|
| Equipment<br>Description              |                            |                            |                                               |                                               |  |  |  |
| CALIPROBE Test<br>Bench               | Version 2                  | NA                         | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |  |  |
| Network Analyzer                      | Rohde & Schwarz<br>ZVM     | 100203                     | 08/2021                                       | 08/2024                                       |  |  |  |
| Network Analyzer                      | Agilent 8753ES             | MY40003210                 | 10/2019                                       | 10/2023                                       |  |  |  |
| Network Analyzer –<br>Calibration kit | HP 85033D                  | 3423A08186                 | 06/2021                                       | 06/2027                                       |  |  |  |
| Network Analyzer –<br>Calibration kit | Rohde & Schwarz<br>ZV-Z235 | 101223                     | 07/2022                                       | 07/2025                                       |  |  |  |
| Multimeter                            | Keithley 2000              | 1160271                    | 02/2020                                       | 02/2023                                       |  |  |  |
| Signal Generator                      | Rohde & Schwarz<br>SMB     | 106589                     | 03/2022                                       | 03/2025                                       |  |  |  |
| Amplifier                             | MVG                        | MODU-023-C-0002            | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |  |
| Power Meter                           | NI-USB 5680                | 170100013                  | 06/2021                                       | 06/2024                                       |  |  |  |
| Directional Coupler                   | Krytar 158020              | 131467                     | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |  |  |
| Waveguide                             | MVG                        | SN 32/16 WG4_1             | Validated. No cal<br>required.                | Validated. No cal required.                   |  |  |  |
| Liquid transition                     | MVG                        | SN 32/16<br>WGLIQ_0G900_1  | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |  |  |
| Waveguide                             | MVG                        | SN 32/16 WG6_1             | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |  |  |
| Liquid transition                     | MVG                        | SN 32/16<br>WGLIQ_1G500_1  | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |  |  |
| Waveguide                             | MVG                        | SN 32/16 WG8_1             | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |  |  |
| Liquid transition                     | MVG                        | SN 32/16<br>WGLIQ_1G800B_1 | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |  |  |
| Liquid transition                     | MVG                        | SN 32/16<br>WGLIQ_1G800H_1 | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |  |  |
| Waveguide                             | MVG                        | SN 32/16 WG10_1            | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |  |  |
| Liquid transition                     | MVG                        | SN 32/16<br>WGLIQ_3G500_1  | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |  |  |
| Waveguide                             | MVG                        | SN 32/16 WG12_1            | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |  |  |

Page: 10/11

Template\_ACR.DDD.N.YY.MVGB.ISSUE\_COMOSAR Probe vK This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



#### COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.197.12.23.BES.A

| Liquid transition                | MVG          |          | Validated. No cal<br>required. | Validated. No cal<br>required. |
|----------------------------------|--------------|----------|--------------------------------|--------------------------------|
| Temperature / Humidity<br>Sensor | Testo 184 H1 | 44225320 | 06/2021                        | 06/2024                        |

Page: 11/11

Template\_ACR.DDD.N.YY.MVGB.ISSUE\_COMOSAR Probe vK This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



## **SAR Reference Dipole Calibration Report**

Ref: ACR.104.1.23.SATU.A

## Waltek Testing Group (Shenzhen) Co., Ltd. 1/F, Building A, Hongwei Industrial Park, Liuxian 2<sup>nd</sup> Road BAO'AN DISTRICT SHENZHEN, P.R.C. (518101) MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 2450 MHZ SERIAL NO.: SN 13/15 DIP 2G450-364

Calibrated at MVG

Z.I. de la pointe du diable Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

Calibration date: 08/20/2023



Accreditations #2-6789 and #2-6814 Scope available on <u>www.cofrac.fr</u>

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.



|               | Name         | Function            | Date       | Signature        |
|---------------|--------------|---------------------|------------|------------------|
| Prepared by : | Jérôme Luc   | Technical Manager   | 08/20/2023 | JS               |
| Checked by :  | Jérôme Luc   | Technical Manager   | 08/20/2023 | JS               |
| Approved by : | Yann Toutain | Laboratory Director | 08/20/2023 | Gann TOUTAAN     |
|               |              |                     |            | 2023.08.20       |
|               |              |                     |            | 11:56:55 +01'00' |

|                | Customer Name                                   |
|----------------|-------------------------------------------------|
| Distribution : | Waltek Testing<br>Group (Shenzhen)<br>Co., Ltd. |

| Issue | Name       | Date       | Modifications   |
|-------|------------|------------|-----------------|
| А     | Jérôme Luc | 08/20/2023 | Initial release |
|       |            |            |                 |
|       |            |            |                 |
|       |            |            |                 |



#### **TABLE OF CONTENTS**

| 1 | Intro | duction                                  |    |
|---|-------|------------------------------------------|----|
| 2 | Dev   | ice Under Test                           |    |
| 3 | Proc  | uct Description                          |    |
|   | 3.1   | General Information                      | 4  |
| 4 | Mea   | surement Method5                         |    |
|   | 4.1   | Return Loss Requirements                 | 5  |
|   | 4.2   | Mechanical Requirements                  | 5  |
| 5 | Mea   | surement Uncertainty                     |    |
|   | 5.1   | Return Loss                              | 5  |
|   | 5.2   | Dimension Measurement                    | 5  |
|   | 5.3   | Validation Measurement                   | 5  |
| 6 | Cali  | bration Measurement Results6             |    |
|   | 6.1   | Return Loss and Impedance In Head Liquid | 6  |
|   | 6.2   | Return Loss and Impedance In Body Liquid | 6  |
|   | 6.3   | Mechanical Dimensions                    | 7  |
| 7 | Vali  | dation measurement                       |    |
|   | 7.1   | Head Liquid Measurement                  | 8  |
|   | 7.2   | SAR Measurement Result With Head Liquid  | 8  |
|   | 7.3   | Body Liquid Measurement                  | 11 |
|   | 7.4   | SAR Measurement Result With Body Liquid  | 12 |
| 8 | List  | of Equipment13                           |    |

Page: 3/13



#### 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

#### **2 DEVICE UNDER TEST**

| Device Under Test              |                                   |  |  |  |
|--------------------------------|-----------------------------------|--|--|--|
| Device Type                    | COMOSAR 2450 MHz REFERENCE DIPOLE |  |  |  |
| Manufacturer                   | MVG                               |  |  |  |
| Model                          | SID2450                           |  |  |  |
| Serial Number                  | SN 13/15 DIP 2G450-364            |  |  |  |
| Product Condition (new / used) | New                               |  |  |  |

#### **3 PRODUCT DESCRIPTION**

#### 3.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.



**Figure 1** – *MVG COMOSAR Validation Dipole* 

Page: 4/13



#### 4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

#### 4.1 <u>RETURN LOSS REQUIREMENTS</u>

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

#### 4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Loss |  |  |
|----------------|-------------------------------------|--|--|
| 400-6000MHz    | 0.08 LIN                            |  |  |

#### 5.2 **DIMENSION MEASUREMENT**

The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Length |
|-------------|--------------------------------|
| 0 - 300     | 0.20 mm                        |
| 300 - 450   | 0.44 mm                        |

#### 5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

| Scan Volume | Expanded Uncertainty |
|-------------|----------------------|
| 1 g         | 19 % (SAR)           |
| 10 g        | 19 % (SAR)           |

#### 6 CALIBRATION MEASUREMENT RESULTS

#### 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID



#### 6.2 <u>RETURN LOSS AND IMPEDANCE IN BODY LIQUID</u>



Page: 6/13



#### 6.3 <u>MECHANICAL DIMENSIONS</u>

| Frequency MHz | Ln          | nm       | <b>h</b> m  | ım       | d r        | nm       |
|---------------|-------------|----------|-------------|----------|------------|----------|
|               | required    | measured | required    | measured | required   | measured |
| 300           | 420.0 ±1 %. |          | 250.0 ±1 %. |          | 6.35 ±1 %. |          |
| 450           | 290.0 ±1 %. |          | 166.7 ±1 %. |          | 6.35 ±1 %. |          |
| 750           | 176.0 ±1 %. |          | 100.0 ±1 %. |          | 6.35 ±1 %. |          |
| 835           | 161.0 ±1 %. |          | 89.8 ±1 %.  |          | 3.6 ±1 %.  |          |
| 900           | 149.0 ±1 %. |          | 83.3 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1450          | 89.1 ±1 %.  |          | 51.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1500          | 86.2 ±1 %.  |          | 50.0 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1640          | 79.0 ±1 %.  |          | 45.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1750          | 75.2 ±1 %.  |          | 42.9 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1800          | 72.0 ±1 %.  |          | 41.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1900          | 68.0 ±1 %.  |          | 39.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 1950          | 66.3 ±1 %.  |          | 38.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2000          | 64.5 ±1 %.  |          | 37.5 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2100          | 61.0 ±1 %.  |          | 35.7 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2300          | 55.5 ±1 %.  |          | 32.6 ±1 %.  |          | 3.6 ±1 %.  |          |
| 2450          | 51.5 ±1 %.  | 51.79    | 30.4 ±1 %.  | 30.69    | 3.6 ±1 %.  | 3.60     |
| 2600          | 48.5 ±1 %.  |          | 28.8 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3000          | 41.5 ±1 %.  |          | 25.0 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3300          | -           |          | -           |          | -          |          |
| 3500          | 37.0±1 %.   |          | 26.4 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3700          | 34.7±1 %.   |          | 26.4 ±1 %.  |          | 3.6 ±1 %.  |          |
| 3900          | -           |          | -           |          | -          |          |
| 4200          | -           |          | -           |          | -          |          |
| 4600          | -           |          | -           |          | -          |          |
| 4900          | -           |          | -           |          | -          |          |

#### 7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.



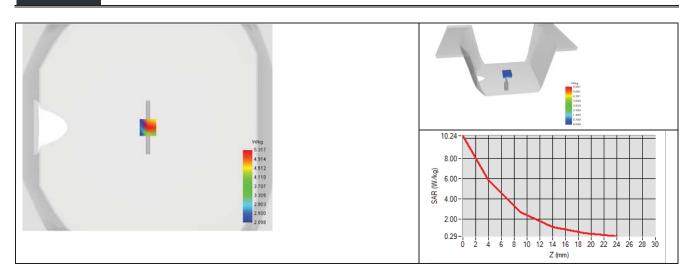
#### 7.1 <u>HEAD LIQUID MEASUREMENT</u>

| Frequency<br>MHz | Relative per | mittivity (ε <sub>r</sub> ') | Conductiv  | ity (σ) S/m |
|------------------|--------------|------------------------------|------------|-------------|
|                  | required     | measured                     | required   | measured    |
| 300              | 45.3 ±10 %   |                              | 0.87 ±10 % |             |
| 450              | 43.5 ±10 %   |                              | 0.87 ±10 % |             |
| 750              | 41.9 ±10 %   |                              | 0.89 ±10 % |             |
| 835              | 41.5 ±10 %   |                              | 0.90 ±10 % |             |
| 900              | 41.5 ±10 %   |                              | 0.97 ±10 % |             |
| 1450             | 40.5 ±10 %   |                              | 1.20 ±10 % |             |
| 1500             | 40.4 ±10 %   |                              | 1.23 ±10 % |             |
| 1640             | 40.2 ±10 %   |                              | 1.31 ±10 % |             |
| 1750             | 40.1 ±10 %   |                              | 1.37 ±10 % |             |
| 1800             | 40.0 ±10 %   |                              | 1.40 ±10 % |             |
| 1900             | 40.0 ±10 %   |                              | 1.40 ±10 % |             |
| 1950             | 40.0 ±10 %   |                              | 1.40 ±10 % |             |
| 2000             | 40.0 ±10 %   |                              | 1.40 ±10 % |             |
| 2100             | 39.8 ±10 %   |                              | 1.49 ±10 % |             |
| 2300             | 39.5 ±10 %   |                              | 1.67 ±10 % |             |
| 2450             | 39.2 ±10 %   | 38.9                         | 1.80 ±10 % | 1.79        |
| 2600             | 39.0 ±10 %   |                              | 1.96 ±10 % |             |
| 3000             | 38.5 ±10 %   |                              | 2.40 ±10 % |             |
| 3300             | 38.2 ±10 %   |                              | 2.71 ±10 % |             |
| 3500             | 37.9 ±10 %   |                              | 2.91 ±10 % |             |
| 3700             | 37.7 ±10 %   |                              | 3.12 ±10 % |             |
| 3900             | 37.5 ±10 %   |                              | 3.32 ±10 % |             |
| 4200             | 37.1 ±10 %   |                              | 3.63 ±10 % |             |
| 4600             | 36.7 ±10 %   |                              | 4.04 ±10 % |             |
| 4900             | 36.3 ±10 %   |                              | 4.35 ±10 % |             |

#### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.




| Software                                  | OPENSAR V5                                  |
|-------------------------------------------|---------------------------------------------|
| Phantom                                   | SN 13/09 SAM68                              |
| Probe                                     | SN 41/18 EPGO333                            |
| Liquid                                    | Head Liquid Values: eps': 38.9 sigma : 1.79 |
| Distance between dipole center and liquid | 10.0 mm                                     |
| Area scan resolution                      | dx=8mm/dy=8mm                               |
| Zoon Scan Resolution                      | dx=5mm/dy=5mm/dz=5mm                        |
| Frequency                                 | 2450 MHz                                    |
| Input power                               | 20 dBm                                      |
| Liquid Temperature                        | 20 +/- 1 °C                                 |
| Lab Temperature                           | 20 +/- 1 °C                                 |
| Lab Humidity                              | 30-70 %                                     |

| <b>Frequency</b><br>MHz | 1 g SAR  | (W/kg/W)     | 10 g SAR | (W/kg/W)     |
|-------------------------|----------|--------------|----------|--------------|
|                         | required | measured     | required | measured     |
| 300                     | 2.85     |              | 1.94     |              |
| 450                     | 4.58     |              | 3.06     |              |
| 750                     | 8.49     |              | 5.55     |              |
| 835                     | 9.56     |              | 6.22     |              |
| 900                     | 10.9     |              | 6.99     |              |
| 1450                    | 29       |              | 16       |              |
| 1500                    | 30.5     |              | 16.8     |              |
| 1640                    | 34.2     |              | 18.4     |              |
| 1750                    | 36.4     |              | 19.3     |              |
| 1800                    | 38.4     |              | 20.1     |              |
| 1900                    | 39.7     |              | 20.5     |              |
| 1950                    | 40.5     |              | 20.9     |              |
| 2000                    | 41.1     |              | 21.1     |              |
| 2100                    | 43.6     |              | 21.9     |              |
| 2300                    | 48.7     |              | 23.3     |              |
| 2450                    | 52.4     | 54.31 (5.43) | 24       | 24.20 (2.42) |
| 2600                    | 55.3     |              | 24.6     |              |
| 3000                    | 63.8     |              | 25.7     |              |
| 3300                    | -        |              | -        |              |
| 3500                    | 67.1     |              | 25       |              |
| 3700                    | 67.4     |              | 24.2     |              |
| 3900                    | -        |              | -        |              |
| 4200                    | -        |              | -        |              |
| 4600                    | -        |              | -        |              |
| 4900                    | -        |              | -        |              |

Page: 9/13

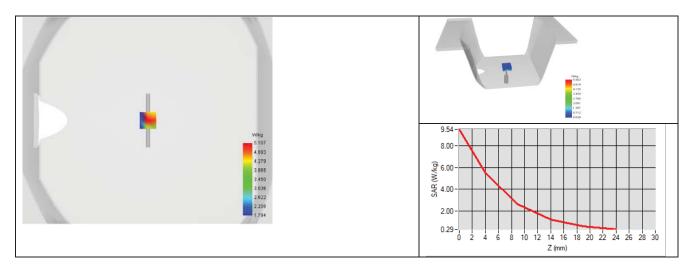




Page: 10/13



#### 7.3 BODY LIQUID MEASUREMENT


| <b>Frequency</b><br>MHz | Relative permittivity (ɛr') |          | Conductiv  | i <b>ty (</b> σ <b>) S/m</b> |
|-------------------------|-----------------------------|----------|------------|------------------------------|
|                         | required                    | measured | required   | measured                     |
| 150                     | 61.9 ±10 %                  |          | 0.80 ±10 % |                              |
| 300                     | 58.2 ±10 %                  |          | 0.92 ±10 % |                              |
| 450                     | 56.7 ±10 %                  |          | 0.94 ±10 % |                              |
| 750                     | 55.5 ±10 %                  |          | 0.96 ±10 % |                              |
| 835                     | 55.2 ±10 %                  |          | 0.97 ±10 % |                              |
| 900                     | 55.0 ±10 %                  |          | 1.05 ±10 % |                              |
| 915                     | 55.0 ±10 %                  |          | 1.06 ±10 % |                              |
| 1450                    | 54.0 ±10 %                  |          | 1.30 ±10 % |                              |
| 1610                    | 53.8 ±10 %                  |          | 1.40 ±10 % |                              |
| 1800                    | 53.3 ±10 %                  |          | 1.52 ±10 % |                              |
| 1900                    | 53.3 ±10 %                  |          | 1.52 ±10 % |                              |
| 2000                    | 53.3 ±10 %                  |          | 1.52 ±10 % |                              |
| 2100                    | 53.2 ±10 %                  |          | 1.62 ±10 % |                              |
| 2300                    | 52.9 ±10 %                  |          | 1.81 ±10 % |                              |
| 2450                    | 52.7 ±10 %                  | 52.7     | 1.95 ±10 % | 1.94                         |
| 2600                    | 52.5 ±10 %                  |          | 2.16 ±10 % |                              |
| 3000                    | 52.0 ±10 %                  |          | 2.73 ±10 % |                              |
| 3300                    | 51.6 ±10 %                  |          | 3.08 ±10 % |                              |
| 3500                    | 51.3 ±10 %                  |          | 3.31 ±10 % |                              |
| 3700                    | 51.0 ±10 %                  |          | 3.55 ±10 % |                              |
| 3900                    | 50.8 ±10 %                  |          | 3.78 ±10 % |                              |
| 4200                    | 50.4 ±10 %                  |          | 4.13 ±10 % |                              |
| 4600                    | 49.8 ±10 %                  |          | 4.60 ±10 % |                              |
| 4900                    | 49.4 ±10 %                  |          | 4.95 ±10 % |                              |
| 5200                    | 49.0 ±10 %                  |          | 5.30 ±10 % |                              |
| 5300                    | 48.9 ±10 %                  |          | 5.42 ±10 % |                              |
| 5400                    | 48.7 ±10 %                  |          | 5.53 ±10 % |                              |
| 5500                    | 48.6 ±10 %                  |          | 5.65 ±10 % |                              |
| 5600                    | 48.5 ±10 %                  |          | 5.77 ±10 % |                              |
| 5800                    | 48.2 ±10 %                  |          | 6.00 ±10 % |                              |

Template\_ACR.DDD.N.YY.MVGB.ISSUE\_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

#### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

| Software                                  | OPENSAR V5                                   |
|-------------------------------------------|----------------------------------------------|
| Phantom                                   | SN 13/09 SAM68                               |
| Probe                                     | SN 41/18 EPGO333                             |
| Liquid                                    | Body Liquid Values: eps' : 52.7 sigma : 1.94 |
| Distance between dipole center and liquid | 10.0 mm                                      |
| Area scan resolution                      | dx=8mm/dy=8mm                                |
| Zoon Scan Resolution                      | dx=5mm/dy=5mm/dz=5mm                         |
| Frequency                                 | 2450 MHz                                     |
| Input power                               | 20 dBm                                       |
| Liquid Temperature                        | 20 +/- 1 °C                                  |
| Lab Temperature                           | 20 +/- 1 °C                                  |
| Lab Humidity                              | 30-70 %                                      |

| Frequency<br>MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) |
|------------------|------------------|-------------------|
|                  | measured         | measured          |
| 2450             | 50.33 (5.03)     | 23.38 (2.34)      |





#### LIST OF EQUIPMENT 8

| Equipment Summary Sheet               |                            |                    |                                               |                                               |
|---------------------------------------|----------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|
| Equipment<br>Description              | Manufacturer /<br>Model    | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |
| SAM Phantom                           | MVG                        | SN 13/09 SAM68     | Validated. No cal<br>required.                | Validated. No cal<br>required.                |
| COMOSAR Test Bench                    | Version 3                  | NA                 | Validated. No cal<br>required.                | Validated. No cal<br>required.                |
| Network Analyzer                      | Rohde & Schwarz<br>ZVM     | 100203             | 08/2021                                       | 08/2024                                       |
| Network Analyzer                      | Agilent 8753ES             | MY40003210         | 10/2022                                       | 10/2025                                       |
| Network Analyzer –<br>Calibration kit | Rohde & Schwarz<br>ZV-Z235 | 101223             | 05/2022                                       | 05/2025                                       |
| Network Analyzer –<br>Calibration kit | HP 85033D                  | 3423A08186         | 06/2021                                       | 06/2027                                       |
| Calipers                              | Mitutoyo                   | SN 0009732         | 10/2022                                       | 10/2025                                       |
| Reference Probe                       | MVG                        | SN 41/18 EPGO333   | 10/2022                                       | 10/2023                                       |
| Multimeter                            | Keithley 2000              | 1160271            | 02/2023                                       | 02/2026                                       |
| Signal Generator                      | Rohde & Schwarz<br>SMB     | 106589             | 04/2022                                       | 04/2025                                       |
| Amplifier                             | MVG                        | MODU-023-C-0002    | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |
| Power Meter                           | NI-USB 5680                | 170100013          | 06/2021                                       | 06/2024                                       |
| Power Meter                           | Rohde & Schwarz<br>NRVD    | 832839-056         | 11/2022                                       | 11/2025                                       |
| Directional Coupler                   | Krytar 158020              | 131467             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |
| Temperature / Humidity<br>Sensor      | Testo 184 H1               | 44225320           | 06/2021                                       | 06/2024                                       |

Template\_ACR.DDD.N.YY.MVGB.ISSUE\_SAR Reference Dipole vJ This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



## **SAR Reference Dipole Calibration Report**

Ref : ACR.202.4.21.BES.B

Cancel and replace the report ACR.202.4.21.BES.A

## WALTEK TESTING GROUP (SHENZHEN) CO., LTD

1/F., ROOM 101, BUILDING 1, HONGWEI INDUSTRIAL PARK, LIUXIAN 2ND ROAD, BLOCK 70 BAO'AN DISTRICT, SHENZHEN, GUANGDONG , CHINA MVG COMOSAR REFERENCE DIPOLE FREQUENCY: 5200-5800 MHZ

SERIAL NO.: SN 02/21 DIP 5G000-543

Calibrated at MVG Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon 29280 PLOUZANE - FRANCE

## Calibration date: 07/21/2021



Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).



|               | Name         | Function            | Date      | Signature    |
|---------------|--------------|---------------------|-----------|--------------|
| Prepared by : | Jérôme Luc   | Technical Manager   | 7/21/2021 | JES          |
| Checked by :  | Jérôme Luc   | Technical Manager   | 7/21/2021 | JS           |
| Approved by : | Yann Toutain | Laboratory Director | 8/23/2021 | Gann TOUTAAN |
|               |              | ·                   |           | 0            |

|                | Customer Name                                  |
|----------------|------------------------------------------------|
| Distribution : | Waltek Testing<br>Group (Shenzhen)<br>Co., Ltd |

| Issue | Name       | Date      | Modifications                |
|-------|------------|-----------|------------------------------|
| А     | Jérôme Luc | 1/15/2021 | Initial release              |
| В     | Jérôme Luc | 8/16/2021 | Change customer name/address |
|       |            |           |                              |
|       |            |           |                              |

Template\_ACR.DDD.N.YY.MVGB.ISSUE\_SAR Reference Dipole5GHz vB This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



#### **TABLE OF CONTENTS**

| 1 | Intro | duction4                                |    |
|---|-------|-----------------------------------------|----|
| 2 | Devi  | ce Under Test4                          |    |
| 3 | Prod  | uct Description4                        |    |
|   | 3.1   | General Information                     | 4  |
| 4 | Mea   | surement Method                         |    |
|   | 4.1   | Return Loss Requirements                | 5  |
|   | 4.2   | Mechanical Requirements                 | 5  |
| 5 | Mea   | surement Uncertainty                    |    |
|   | 5.1   | Return Loss                             | 5  |
|   | 5.2   | Dimension Measurement                   | 5  |
|   | 5.3   | Validation Measurement                  | 5  |
| 6 | Calil | oration Measurement Results6            |    |
|   | 6.1   | Return Loss In Head Liquid              | 6  |
|   | 6.2   | Return Loss In Body Liquid              | 6  |
|   | 6.3   | Mechanical Dimensions                   | 7  |
| 7 | Vali  | dation measurement7                     |    |
|   | 7.1   | Head Liquid Measurement                 | 7  |
|   | 7.2   | SAR Measurement Result With Head Liquid | 8  |
|   | 7.3   | Body Liquid Measurement                 | 11 |
|   | 7.4   | SAR Measurement Result With Body Liquid | 11 |
| 8 | List  | of Equipment14                          |    |



#### 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, FCC KDB865664 D01 and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

#### 2 **DEVICE UNDER TEST**

|                                | Device Under Test                      |
|--------------------------------|----------------------------------------|
| Device Type                    | COMOSAR 5200-5800 MHz REFERENCE DIPOLE |
| Manufacturer                   | MVG                                    |
| Model                          | SID5000                                |
| Serial Number                  | SN 02/21 DIP 5G000-543                 |
| Product Condition (new / used) | New                                    |

#### **3 PRODUCT DESCRIPTION**

#### 3.1 <u>GENERAL INFORMATION</u>

MVG's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, FCC KDB865664 D01 and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



### Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/14

 Template\_ACR.DDD.N.YY.MVGB.ISSUE\_SAR Reference Dipole5GHz vB

 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



#### 4 MEASUREMENT METHOD

The IEEE 1528, FCC KDB865664 D01 and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

#### 4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

#### 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Loss |
|----------------|-------------------------------------|
| 400-6000MHz    | 0.08 LIN                            |

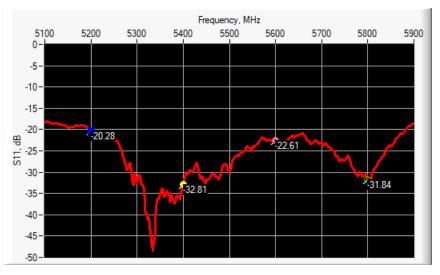
#### 5.2 **DIMENSION MEASUREMENT**

The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Length |  |
|-------------|--------------------------------|--|
| 0 - 300     | 0.20 mm                        |  |

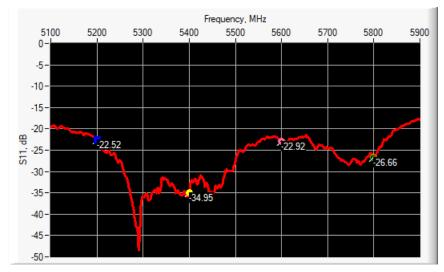
#### 5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.


| Scan Volume | Expanded Uncertainty |
|-------------|----------------------|
| 1 g         | 19 % (SAR)           |
| 10 g        | 19 % (SAR)           |

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.




#### **6** CALIBRATION MEASUREMENT RESULTS

#### 6.1 <u>RETURN LOSS IN HEAD LIQUID</u>



| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance                     |
|-----------------|------------------|------------------|-------------------------------|
| 5200            | -20.28           | -20              | 50.15 Ω - 9.64 jΩ             |
| 5400            | -32.81           | -20              | 52.29 Ω - 0.09 jΩ             |
| 5600            | -22.61           | -20              | 53.96 Ω - 6.22 jΩ             |
| 5800            | -31.84           | -20              | $49.17 \Omega + 2.42 j\Omega$ |

#### 6.2 <u>RETURN LOSS IN BODY LIQUID</u>



Page: 6/14

 Template\_ACR.DDD.N.YY.MVGB.ISSUE\_SAR Reference Dipole5GHz vB

 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance                         |
|-----------------|------------------|------------------|-----------------------------------|
| 5200            | -22.52           | -20              | 50.89 Ω - 7.40 jΩ                 |
| 5400            | -34.95           | -20              | $51.59 \Omega + 0.81 j\Omega$     |
| 5600            | -22.92           | -20              | 56.03 Ω - 3.77 jΩ                 |
| 5800            | -26.66           | -20              | $49.02 \ \Omega + 4.53 \ j\Omega$ |

#### 6.3 MECHANICAL DIMENSIONS

| Frequency MHz | Lmm               |       | h mm       |          | <b>d</b> mm |          |
|---------------|-------------------|-------|------------|----------|-------------|----------|
|               | required measured |       | required   | measured | required    | measured |
| 5000 to 6000  | 20.6±1 %.         | 20.78 | 40.3 ±1 %. | 40.41    | 3.6 ±1 %.   | 3.58     |

#### 7 VALIDATION MEASUREMENT

The IEEE Std. 1528, FCC KDB865664 D01 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

#### 7.1 HEAD LIQUID MEASUREMENT

| <b>Frequency</b><br>MHz | Relative permittivity ( $\epsilon_r'$ ) |          | Conductivi | i <b>ty (</b> σ <b>) S/m</b> |
|-------------------------|-----------------------------------------|----------|------------|------------------------------|
|                         | required                                | measured | required   | measured                     |
| 5000                    | 36.2 ±10 %                              |          | 4.45 ±10 % |                              |
| 5100                    | 36.1 ±10 %                              |          | 4.56 ±10 % |                              |
| 5200                    | 36.0 ±10 %                              | 34.06    | 4.66 ±10 % | 4.70                         |
| 5300                    | 35.9 ±10 %                              |          | 4.76 ±10 % |                              |
| 5400                    | 35.8 ±10 %                              | 33.39    | 4.86 ±10 % | 4.91                         |
| 5500                    | 35.6 ±10 %                              |          | 4.97 ±10 % |                              |
| 5600                    | 35.5 ±10 %                              | 32.77    | 5.07 ±10 % | 5.13                         |
| 5700                    | 35.4 ±10 %                              |          | 5.17 ±10 % |                              |
| 5800                    | 35.3 ±10 %                              | 32.40    | 5.27 ±10 % | 5.34                         |
| 5900                    | 35.2 ±10 %                              |          | 5.38 ±10 % |                              |
| 6000                    | 35.1 ±10 %                              |          | 5.48 ±10 % |                              |

#### Page: 7/14

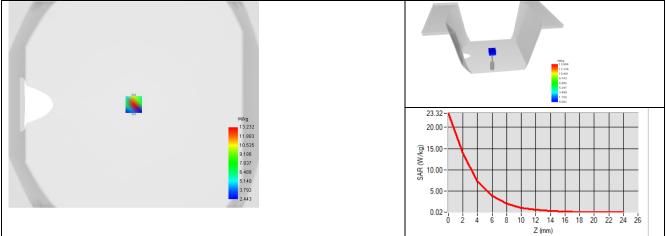
 Template\_ACR.DDD.N.YY.MVGB.ISSUE\_SAR Reference Dipole5GHz vB

 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

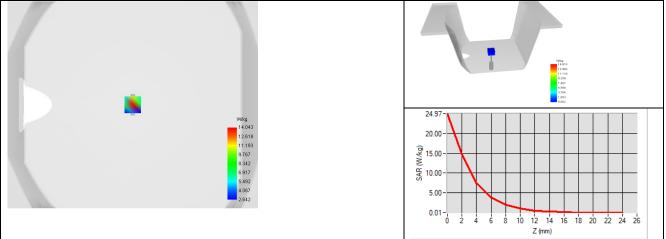


#### 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

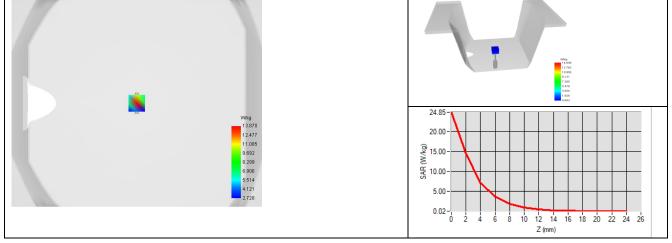
At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.


| Software                           | OPENSAR V5                                                                                                                                                                                                                       |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phantom                            | SN 13/09 SAM68                                                                                                                                                                                                                   |
| Probe                              | SN 41/18 EPGO333                                                                                                                                                                                                                 |
| Liquid                             | Head Liquid Values 5200 MHz: eps' :34.06 sigma : 4.70<br>Head Liquid Values 5400 MHz: eps' :33.39 sigma : 4.91<br>Head Liquid Values 5600 MHz: eps' :32.77 sigma : 5.13<br>Head Liquid Values 5800 MHz: eps' :32.40 sigma : 5.34 |
| Distance between dipole and liquid | 10 mm                                                                                                                                                                                                                            |
| Area scan resolution               | dx=8mm/dy=8mm                                                                                                                                                                                                                    |
| Zoon Scan Resolution               | dx=4mm/dy=4m/dz=2mm                                                                                                                                                                                                              |
| Frequency                          | 5200 MHz<br>5400 MHz<br>5600 MHz<br>5800 MHz                                                                                                                                                                                     |
| Input power                        | 20 dBm                                                                                                                                                                                                                           |
| Liquid Temperature                 | 20 +/- 1 °C                                                                                                                                                                                                                      |
| Lab Temperature                    | 20 +/- 1 °C                                                                                                                                                                                                                      |
| Lab Humidity                       | 30-70 %                                                                                                                                                                                                                          |

| Frequency (MHz) | 1 g SAR (W/kg) |              | 10 g SA  | R (W/kg)     |
|-----------------|----------------|--------------|----------|--------------|
|                 | required       | measured     | required | measured     |
| 5200            | 76.50          | 75.31 (7.53) | 21.60    | 22.23 (2.22) |
| 5400            | -              | 79.56 (7.96) | -        | 23.40 (2.34) |
| 5600            | -              | 78.31 (7.83) | -        | 23.25 (2.33) |
| 5800            | 78.00          | 78.05 (7.80) | 21.90    | 22.86 (2.29) |


This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



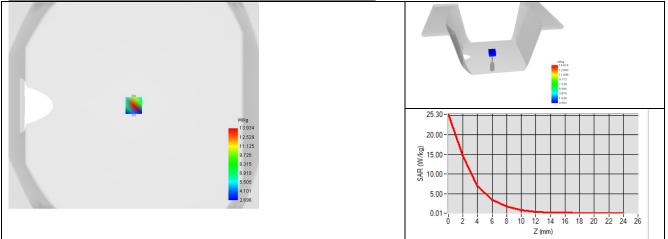

### SAR MEASUREMENT PLOTS @ 5200 MHz



## SAR MEASUREMENT PLOTS @ 5400 MHz



## SAR MEASUREMENT PLOTS @ 5600 MHz




Page: 9/14

Template\_ACR.DDD.N.YY.MVGB.ISSUE\_SAR Reference Dipole5GHz vB This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



## SAR MEASUREMENT PLOTS @ 5800 MHz



Page: 10/14

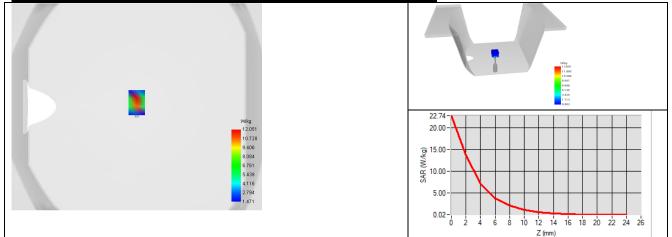
#### 7.3 BODY LIQUID MEASUREMENT

| Frequency<br>MHz | Relative permittivity (ɛ <sub>r</sub> ') |          | Conductivi | <b>ty (</b> σ <b>) S/m</b> |
|------------------|------------------------------------------|----------|------------|----------------------------|
|                  | required                                 | measured | required   | measured                   |
| 5200             | 49.0 ±10 %                               | 45.50    | 5.30 ±10 % | 5.63                       |
| 5300             | 48.9 ±10 %                               |          | 5.42 ±10 % |                            |
| 5400             | 48.7 ±10 %                               | 44.78    | 5.53 ±10 % | 5.95                       |
| 5500             | 48.6 ±10 %                               |          | 5.65 ±10 % |                            |
| 5600             | 48.5 ±10 %                               | 44.85    | 5.77 ±10 % | 6.26                       |
| 5800             | 48.2 ±10 %                               | 44.45    | 6.00 ±10 % | 6.58                       |

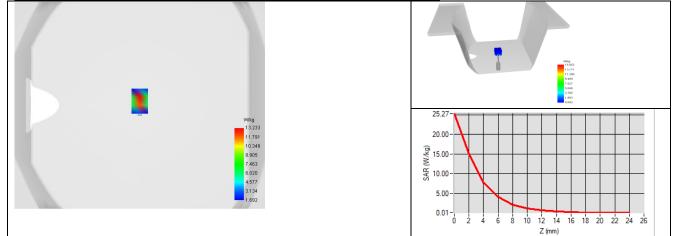
#### 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

| Software                           | OPENSAR V5                                                                                                                                                                                                                       |  |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Phantom                            | SN 13/09 SAM68                                                                                                                                                                                                                   |  |
| Probe                              | SN 41/18 EPGO333                                                                                                                                                                                                                 |  |
| Liquid                             | Body Liquid Values 5200 MHz: eps' :45.50 sigma : 5.63<br>Body Liquid Values 5400 MHz: eps' :44.78 sigma : 5.95<br>Body Liquid Values 5600 MHz: eps' :44.85 sigma : 6.26<br>Body Liquid Values 5800 MHz: eps' :44.45 sigma : 6.58 |  |
| Distance between dipole and liquid | 10 mm                                                                                                                                                                                                                            |  |
| Area scan resolution               | dx=8mm/dy=8mm                                                                                                                                                                                                                    |  |
| Zoon Scan Resolution               | dx=4mm/dy=4m/dz=2mm                                                                                                                                                                                                              |  |
| Frequency                          | 5200 MHz<br>5400 MHz<br>5600 MHz<br>5800 MHz                                                                                                                                                                                     |  |
| Input power                        | 20 dBm                                                                                                                                                                                                                           |  |
| Liquid Temperature                 | 20 +/- 1 °C                                                                                                                                                                                                                      |  |
| Lab Temperature                    | 20 +/- 1 °C                                                                                                                                                                                                                      |  |
| Lab Humidity                       | 30-70 %                                                                                                                                                                                                                          |  |

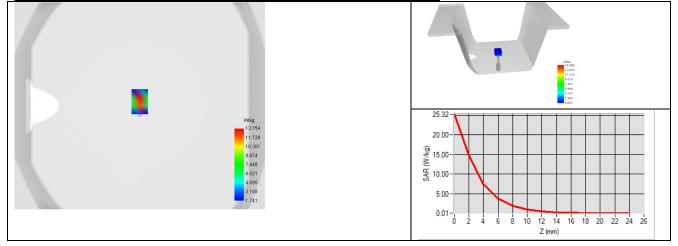
| Frequency (MHz) | 1 g SAR (W/kg) | 10 g SAR (W/kg) |
|-----------------|----------------|-----------------|
|                 | measured       | measured        |
| 5200            | 72.47 (7.25)   | 21.16 (2.12)    |
| 5400            | 79.06 (7.91)   | 22.85 (2.29)    |
| 5600            | 78.50 (7.85)   | 22.96 (2.30)    |
| 5800            | 72.20 (7.22)   | 21.13 (2.11)    |


Page: 11/14

 Template\_ACR.DDD.N.YY.MVGB.ISSUE\_SAR Reference Dipole5GHz vB


 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.




#### **BODY SAR MEASUREMENT PLOTS @ 5200 MHz**

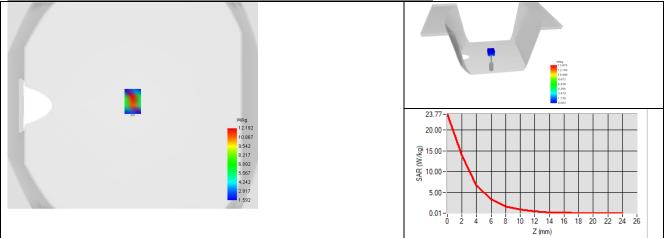


### **BODY SAR MEASUREMENT PLOTS @ 5400 MHz**



### **BODY SAR MEASUREMENT PLOTS @ 5600 MHz**




Page: 12/14

 Template\_ACR.DDD.N.YY.MVGB.ISSUE\_SAR Reference Dipole5GHz vB

 This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.



## **BODY SAR MEASUREMENT PLOTS @ 5800 MHz**



Page: 13/14



#### 8 LIST OF EQUIPMENT

| Equipment Summary Sheet               |                            |                    |                                               |                                               |  |
|---------------------------------------|----------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|--|
| Equipment<br>Description              | Manufacturer /<br>Model    | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |  |
| Flat Phantom                          | MVG                        | SN-13/09-SAM68     | Validated. No cal required.                   | Validated. No cal<br>required.                |  |
| COMOSAR Test Bench                    | Version 3                  | NA                 | Validated. No cal<br>required.                | Validated. No cal<br>required.                |  |
| Network Analyzer                      | Rohde & Schwarz<br>ZVM     | 100203             | 05/2019                                       | 05/2022                                       |  |
| Network Analyzer –<br>Calibration kit | Rohde & Schwarz<br>ZV-Z235 | 101223             | 05/2019                                       | 05/2022                                       |  |
| Calipers                              | Mitutoyo                   | SN 0009732         | 10/2019                                       | 10/2022                                       |  |
| Reference Probe                       | MVG                        | EPGO333 SN 41/18   | 05/2021                                       | 05/2022                                       |  |
| Multimeter                            | Keithley 2000              | 1160271            | 02/2020                                       | 02/2023                                       |  |
| Signal Generator                      | Rohde & Schwarz<br>SMB     | 106589             | 04/2019                                       | 04/2022                                       |  |
| Amplifier                             | Aethercomm                 | SN 046             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |
| Power Meter                           | NI-USB 5680                | 170100013          | 05/2019                                       | 05/2022                                       |  |
| Directional Coupler                   | Narda 4216-20              | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |
| Temperature and<br>Humidity Sensor    | Testo 184 H1               | 44220687           | 05/2020                                       | 05/2023                                       |  |

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

## Appendix A. Extended Calibration SAR Dipole

Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dBm, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

| Head                   |                  |              |                         |             |                                  |                 |  |
|------------------------|------------------|--------------|-------------------------|-------------|----------------------------------|-----------------|--|
| Date of<br>Measurement | Return-Loss (dB) | Delta<br>(%) | Real Impedance<br>(ohm) | Delta (ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |
| 2021-07-21             | -20.28           | /            | 50.15                   | /           | 9.64                             | /               |  |
| 2022-07-20             | -20.22           | 1.39         | 51.32                   | 1.17        | 8.51                             | 1.13            |  |
| 2023-07-20             | -20.04           | 5.68         | 52.10                   | 1.95        | 8.23                             | 1.41            |  |

Justification of Extended Calibration SAR Dipole SWG5500 – serial no. SN 02/21 DIP 5G000-543@5200 MHz

| Body                   |                  |              |                         |             |                                  |                 |  |
|------------------------|------------------|--------------|-------------------------|-------------|----------------------------------|-----------------|--|
| Date of<br>Measurement | Return-Loss (dB) | Delta<br>(%) | Real Impedance<br>(ohm) | Delta (ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |
| 2021-07-21             | -22.52           | /            | 50.89                   | /           | 7.40                             | /               |  |
| 2022-07-20             | -22.35           | 3.99         | 49.84                   | 1.05        | 7.51                             | 0.14            |  |
| 2023-07-20             | -21.95           | 14.02        | 49.12                   | 1.77        | 7.98                             | 0.58            |  |

Justification of Extended Calibration SAR Dipole SWG5500 - serial no. SN 02/21 DIP 5G000-543@5400 MHz

| Head                   |                  |              |                         |             |                                  |                 |  |  |
|------------------------|------------------|--------------|-------------------------|-------------|----------------------------------|-----------------|--|--|
| Date of<br>Measurement | Return-Loss (dB) | Delta<br>(%) | Real Impedance<br>(ohm) | Delta (ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |  |
| 2021-07-21             | -32.81           | /            | 52.29                   | /           | 0.09                             | /               |  |  |
| 2022-07-20             | -32.52           | 6.91         | 52.94                   | 0.65        | 0.06                             | 0.03            |  |  |
| 2023-07-20             | -32.29           | 12.72        | 53.62                   | 1.33        | 0.04                             | 0.05            |  |  |

| Body                   |                  |              |                         |             |                                  |                 |  |  |
|------------------------|------------------|--------------|-------------------------|-------------|----------------------------------|-----------------|--|--|
| Date of<br>Measurement | Return-Loss (dB) | Delta<br>(%) | Real Impedance<br>(ohm) | Delta (ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |  |
| 2021-07-21             | -34.95           | /            | 51.59                   | /           | 0.81                             | /               |  |  |
| 2022-07-20             | -34.79           | 3.75         | 52.14                   | 0.55        | 0.69                             | 0.12            |  |  |
| 2023-07-20             | -34.63           | 7.65         | 53.26                   | 1.67        | 0.65                             | 0.16            |  |  |

|                        | Head             |              |                         |             |                                  |                 |  |  |  |
|------------------------|------------------|--------------|-------------------------|-------------|----------------------------------|-----------------|--|--|--|
| Date of<br>Measurement | Return-Loss (dB) | Delta<br>(%) | Real Impedance<br>(ohm) | Delta (ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |  |  |
| 2021-07-21             | -22.61           | /            | 53.96                   | /           | 6.22                             | /               |  |  |  |
| 2022-07-20             | -23.02           | 9.01         | 52.41                   | 1.55        | 6.41                             | 0.19            |  |  |  |
| 2023-07-20             | -23.27           | 14.10        | 51.89                   | 2.07        | 6.69                             | 0.47            |  |  |  |

Justification of Extended Calibration SAR Dipole SWG5500- serial no. SN 02/21 DIP 5G000-543@5600 MHz

| Body                   |                  |              |                         |             |                                  |                 |  |
|------------------------|------------------|--------------|-------------------------|-------------|----------------------------------|-----------------|--|
| Date of<br>Measurement | Return-Loss (dB) | Delta<br>(%) | Real Impedance<br>(ohm) | Delta (ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |
| 2021-07-21             | -22.92           | /            | 56.03                   | /           | 3.77                             | /               |  |
| 2022-07-20             | -23.15           | 5.16         | 57.46                   | 1.43        | 3.56                             | 0.21            |  |
| 2023-07-20             | -23.49           | 12.30        | 57.95                   | 1.92        | 3.12                             | 0.65            |  |

Justification of Extended Calibration SAR Dipole SWG5500 - serial no. SN 02/21 DIP 5G000-543@5800 MHz

| Head                   |                  |              |                         |             |                                  |                 |  |  |
|------------------------|------------------|--------------|-------------------------|-------------|----------------------------------|-----------------|--|--|
| Date of<br>Measurement | Return-Loss (dB) | Delta<br>(%) | Real Impedance<br>(ohm) | Delta (ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |  |
| 2021-07-21             | -31.84           | /            | 49.17                   | /           | 2.42                             | /               |  |  |
| 2022-07-20             | -32.02           | 4.06         | 50.47                   | 1.30        | 2.29                             | 0.13            |  |  |
| 2023-07-20             | -32.33           | 10.67        | 51.08                   | 1.91        | 2.13                             | 0.29            |  |  |

| Body                   |                  |              |                         |             |                                  |                 |  |  |
|------------------------|------------------|--------------|-------------------------|-------------|----------------------------------|-----------------|--|--|
| Date of<br>Measurement | Return-Loss (dB) | Delta<br>(%) | Real Impedance<br>(ohm) | Delta (ohm) | Imaginary<br>Impedance<br>(johm) | Delta<br>(johm) |  |  |
| 2021-07-21             | -26.66           | /            | 49.02                   | /           | 4.53                             | /               |  |  |
| 2022-07-20             | -26.25           | 9.90         | 48.44                   | 0.58        | 4.74                             | 0.21            |  |  |
| 2023-07-20             | -26.11           | 13.50        | 47.03                   | 1.99        | 4.96                             | 0.43            |  |  |

The Return-Loss is <-20dB, and within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the value result should support extended.