

Test Report Prepared By:

Electronics Test Centre 27 East Lake Hill Airdrie, Alberta Canada T4A 2K3

sales@etc-mpbtech.com http://www.etc-mpb.com

Telephone: 1-403-912-0037

ETC Report #: t29e24a242_DTS Release 2

Report date: December 3, 2024

EMC testing of the Tektelic Communication Inc. ^{*}Kona Enterprise Gateway & Kona Photon Gateway in accordance with FCC Part 15.247 and ANSI C63.10: 2013 as referenced by FCC OET KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC ID: 2ALEPT0009193

Test Dates: July 22 - 30, 2024, Aug. 2 - 5, 2024, Oct 25, 2024

Test Personnel: Janet Mijares, Brendan Van Hee, Imran Akram

Prepared for: Tektelic Communication Inc.

7657 10th Street NE Calgary, Alberta Canada T2E 8X2 Telephone: 1-403-338-6902

Imran Akram <u>iakram@etc-mpbtech.com</u> EMC Technologist Electronics Test Centre (Airdrie)

Marc Rousseau marc.rousseau@mpbc.ca QA Manager Electronics Test Centre (Airdrie)

^{*} Both Gateways contain LTE pre-certified modules.

REVISION RECORD

ISSUE	DATE	AUTHOR	REVISIONS	
DRAFT 1	2024-08-16	I. Akram/JM	Initial draft submitted for review.	
DRAFT 2	2024-09-24	I. Akram	Added FCC ID	
DRAFT 3	2024-11-19	I. Akram	Added radiated spurious emission above 1.4GHz test result for internal antennas in section 2.8.6 and internal antenna information for enterprise gateway in section 1.3.	
Release 1	2024-11-22	I. Akram	Sign Off	
Release 2	2024-12-03	I. Akram	Cable calibration dates added in sections 2.1.3, 2.2.3, 2.3.3, 2.4.3, 2.5.3 and 2.6.3. Sign Off	

TABLE OF CONTENTS

1.0	INTF	RODUCT	ION	5
	1.1	Scope.		5
	1.2	Applica	nt	5
	1.3	Test Sa	ample Description	5
	1.4	Genera 1.5	Il Test Conditions Reference Standards	
	1.6	1.6.1 1.6.2	ethodology Variations in Test Methodology Test Sample Verification, Configuration & Modifications ncertainty of Measurement:	7 7
2.0	TES	T CONC	LUSION	8
	2.1	AC Mai 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	in Power Line Conducted Emissions: Test Guidance Deviations From The Standard Test Equipment Test Sample Verification, Configuration & Modifications Conducted Emissions Data	9 .10 .10 .10
	2.2	6dB Ba 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	ndwidth Test Guidance: ANSI C63.10-2013, Clause 11.8 / FCC OET KDB 558074 Deviations From The Standard: Test Equipment Test Sample Verification, Configuration & Modifications Channel Bandwidth Data: LoRa DTS	415 .15 .15 .16
	2.3	Max Av 2.3.1 558074 2.3.2 2.3.3 2.3.4 2.3.5	Verage Output Power Test Guidance: ANSI C63.10-2013, Clause 11.9.2.2.2/ FCC OET KDB 18 Deviations From The Standard: Test Equipment Test Sample Verification, Configuration & Modifications Max Average Output Power Data: LoRa DTS	.18 .19 .19
	2.4	2.4.1	dge Attenuation Test Guidance: ANSI C63.10-2013 Clause 11.13.2 & 6.10.4, 6.10.6 / FC0 DB 558074 Deviations From The Standard: Test Equipment Test Sample Verification, Configuration & Modifications Band Edge Data LoRa DTS	C .22 .22 .23 .23
	2.5	Power 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5	Spectral Density Test Guidance: ANSI C63.10-2013, Clause 11.10.3 / FCC OET KDB 558 25 Deviations From The Standard: Test Equipment Test Sample Verification, Configuration & Modifications Average PSD Data LoRa DTS	074 .26 .26 .26

	2.6	Conducted Spurious Emissions (Non-Restricted Band)292.6.1Test Guidance: ANSI C63.10-2013, Clause 6.7292.6.2Deviations From The Standard:292.6.3Test Equipment292.6.4Test Sample Verification, Configuration & Modifications292.6.5Conducted Emissions Data: LoRa DTS39	9 9 9 9
	2.7	EUT Positioning Assessment	3
	2.8	Radiated Spurious Emissions (within restricted band/Co-location)342.8.1Test Guidance: ANSI C63.10-2013, Clause 13.4.2342.8.2Deviations From The Standard:342.8.3Test Equipment.342.8.4Test Sample Verification, Configuration & Modifications342.8.5Radiated Emissions Data: Enterprise332.8.6Radiated Emissions Data: Photon Variant44	5 5 5 7
	2.9	Radiated Emissions (RX Mode) 52 2.9.1 Test Guidance: 52 2.9.2 Deviations From The Standard: 52 2.9.3 Test Equipment. 52 2.9.4 Test Sample Verification, Configuration & Modifications 52 2.9.5 Radiated Emissions Data: Kona Enterprise Gateway. 53 2.9.6 Radiated Emissions Data: Kona Photon Gateway Variant 53	2 2 3 5
	2.10	RF Exposure	1
3.0	TEST	FACILITY 62	2
	3.1	Location	2
	3.2	Grounding Plan	2
	3.3	Power Supply	2
Append	lix A –	Test Setup Block Diagram 63	3

1.0 INTRODUCTION

1.1 Scope

The purpose of this report is to present the results of compliance testing performed in accordance with FCC Part 15.247 and ANSI C63.10:2013/2020 to gain FCC new Authorization for Low-Power License-Exempt transmitters. All test procedures, limits, criteria, and results described in this report apply only to the Tektelic Communication Inc. Kona Enterprise Gateway & Kona Photon Gateway test sample, referred to herein as the EUT (Equipment Under Test).

This report does not imply product endorsement by the Electronics Test Centre, A2LA, nor any Canadian Government agency.

1.2 Applicant

This test report has been prepared for Tektelic Communication Inc., located in Calgary, Alberta, Canada.

1.3 Test Sample Description

As provided to ETC (Airdrie) by Tektelic Communication Inc.:

Product	t Name:	Kona Enterprise Gateway & Kona Photon Gateway			
Radio		LoRa			
Freque	ncy Band	902 – 928 MHz			
Freque	ncy Range	903 – 927.5 MHz			
TX Ope	rating Mode	500KHz DTS			
Max Transmit Power (Conducted) 0.473 W (26.75 dBm)		0.473 W (26.75 dBm)			
	Associated External Antennas	WTTX-OMNI08600930-8-NJ, Polarization Vertical, Gain= 8dBi (highest gain antenna), WTTX-OMNI08600930-6-NJ, Gain = 6dBi, WTTX-OMNI08600930-2.5-NJ, Gain = 2.5dBi			
LoRa	Associated Internal Antennas(Only for Enterprise variant)	Montana SRF2I019, Polarization Linear, Gain=1.9dBi Peak			
	Detachable/Non Detachable	External Antenna are detachable (Professional Installation)			
Model#		T0007430, T0008479			
Serial#		2308J0012, 2431K0002			
Power supply:		Kona Enterprise Gateway powered via POE and Kona Photon Gateway Variant powered via Solar Panel			
Note:	There are two main variant o	f the EUT named as			

Note: There are two main variant of the EUT named as

1 Kona Enterprise Gateway (POE) T0007430 (With LTE module), T0007432 (without LTE capability)

2 Kona Photon Gateway (Solar power). T0008479

The Kona Enterprise Gateway (POE) has two variant with LTE option and without LTE option. There is no difference in radio circuitry between the variants except Kona Enterprise Gateway powered by POE and Kona Photon Gateway variant powered by solar panel. The Kona photon Gateway enclosure is bigger than Enterprise to accommodate the internal batteries. The Kona Enterprise with LTE option and Photon Gateway both tested for radiated spurious emission. Both units are installed in one fix position at final installation. All three channels (LOW, MID, High) are analyzed to determine the worse channel at their final installation position. Full emission scan is performed on worse channel with highest external gain antenna. Enterprise gateway can be used with internal antennas. Enterprise gateway was tested with internal antennas as well for radiated spurious emission. During radiated Spurious emission analysis both LTE (Pre-certified) radio and LoRa radio are transmitting simultaneously to cover the co-location requirements.

1.4 General Test Conditions

The EUT was set up and exercised using the configurations, modes of operation and arrangements defined in this report only. All inputs and outputs to and from other equipment associated with the EUT were adequately simulated. In order to meet the operational requirements during testing as per KDB 558074 D01 15.247 Meas Guidance v05r02 and ANSI C63.10-2013 clause 5.11 the device was programmed with a special firmware to transmit at a continuous transmit mode (100% duty cycle). Special firmware is strictly for testing purpose only and not available to end user. This special test case represents the worst-case duty cycle. Both Kona Gateways contain pre-certified LTE modules. All radiated spurious emission and antenna port conducted emission tests performed when both radios are transmitting simultaneously LTE port terminated in 50Ω termination during antenna port measurements. The environmental conditions are recorded during each test, and are reported in the relevant sections of this document.

Standards	Description
FCC, title 47 CFR § 15.247	Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.
FCC, title 47 CFR § 15.207	Conducted limits for an intentional radiator that is designed to be connected to the public utility (AC) power line.
FCC, title 47 CFR § 15.107	Conducted limits for equipment that is designed to be connected to the public utility (AC) power line.
FCC, title 47 CFR § 15.209	Radiated emission limits; general requirements
FCC, title 47 CFR § 15.109	Radiated emission limits; from unintentional radiators digital devices.
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio – Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the range of 9 KHz to 40 GHz
558074 D01 15.247 Meas Guidance v05r02	Guidance For Compliance Measurements On Digital Transmission System, Frequency Hopping Spread Spectrum System, And Hybrid System Devices Operating Under Section 15.247 Of The FCC Rules

1.5 Reference Standards

1.6 Test Methodology

Test methods are specified in the Basic Standard as referenced and/or modified by the Product Standard in the part of Section 2 of this report associated with each particular test case. EUT is tested in RX mode to cover FCC Part 15 Sub Part B (Digital Circuitry), and the result is included in this test report.

1.6.1 Variations in Test Methodology

Any variance in methodology or deviation from the reference Standard is documented in the part of Section 2 of this report associated with each particular Test Case.

1.6.2 Test Sample Verification, Configuration & Modifications

EUT setup, configuration, protocols for operation and monitoring of EUT functions, and any modifications performed in order to meet the requirements, are detailed in each Test Case of Section 2 of this report.

1.6.3 Uncertainty of Measurement:

The factors contributing to measurement uncertainty are identified and calculated in accordance with CISPR 16-4-2: 2011.

This uncertainty estimate represents an expended uncertainty expressed at approximately 95% confidence using a coverage factor of k = 2.

Test Method	Uncertainty
Radiated Emissions Level (9 KHz – 30 MHz)	±4.72 dB
Radiated Emissions Level (9 KHz – 1 GHz)	±5.55 dB
Radiated Emissions Level (1 GHz – 18 GHz)	±4.90 dB
Conducted Emissions Level (150 KHz – 30 MHz)	±2.36 dB
Uncertainty Conducted Power level	±0.5 dB
Uncertainty Conducted Spurious emission level	±0.6 dB
Uncertainty for Bandwidth test	±1.5 %

2.0 TEST CONCLUSION

STATEMENT OF COMPLIANCE

The customer equipment referred to in this report was found to comply with the requirements, as summarized below.

The EUT was subjected to the following tests. Compliance status is reported as **Compliant** or **Non-compliant**. **N/A** indicates the test was Not Applicable to the EUT.

The measurement uncertainty is not accounted for determination of the statement of compliance. The statement of compliance is based only on the measurement value recorded.

Note: Maintenance of compliance is the responsibility of the Manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the EUT with respect to the standards detailed in this test report.

The following table summarizes the tests performed in terms of the specification, class or performance criterion applied, and the EUT modification state.

Test Case	Test Type	Specification	Test Sample	Result
2.1	AC Main Conducted Emissions	15.207 / 15.107	Kona Enterprise Gateway	Compliant
2.2	6dB Bandwidth	15.247(a)	Kona Enterprise Gateway Kona Photon Gateway	Compliant
2.3	Max Output Power	15.247(d)	Kona Enterprise Gateway Kona Photon Gateway	Compliant
2.4	Band Edge	15.247(d)	Kona Enterprise Gateway Kona Photon Gateway	Compliant
2.5	Power Spectral Density	15.247(e)	Kona Enterprise Gateway Kona Photon Gateway	Compliant
2.6	Conducted Spurious Emissions (Non-Restricted Band)	15.247(d)	Kona Enterprise Gateway Kona Photon Gateway	Compliant
2.7	EUT Position	ANSI C63.4	Kona Enterprise Gateway Kona Photon Gateway	N/A
2.8	Radiated Spurious Emission (Restricted Band)	15.205, 15.209 15.247(d)	Kona Enterprise Gateway Kona Photon Gateway	Compliant
2.9	Radiated Emission	15.109	Kona Enterprise Gateway Kona Photon Gateway	Compliant
2.10	RF Exposure	15.247(i)	Kona Enterprise Gateway Kona Photon Gateway	Exempt

Refer to the test data for applicable test conditions.

Basic Standard: ANSI C63.4: 2014

2.1 AC Main Power Line Conducted Emissions:

Test Lab: Electronics Test Centre, Airdrie	EUT: Kona Enterprise Gateway
Test Personnel: Janet Mijares	Standard: FCC Part 15.207, FCC Part 15.107
Date: 2024-07-26 (21.0°C, 34.1% RH)	Basic Standard: ANSI C63.10: 2013

EUT status: Compliant

Note: Test not applicable to Kona photon gateway. Photon variant is solar powered.

Specification: FCC Part 15.207

Frequency (MHz)	Quasi-Peak Limit (dBµV)	Average Limit (dBµV)	
0.15 – 0.5	66 to 56 *	56 to 46 *	
0.5 – 5	56	46	
5 – 30	60	50	
Criteria: The conducted emis	sions produced by a device sha	all not exceed the limits as	

Criteria: The conducted emissions produced by a device shall not exceed the limits as specified.

Limits decrease linearly with the logarithm of the frequency

Specification: FCC Part 15.107

Frequency (MHz)	Quasi-Peak Limit (dBµV)	Average Limit (dBµV)	
0.15 – 0.5	79	66	
0.5 – 5	73	60	
5 – 30	73	60	

Criteria: The conducted emissions produced by a device shall not exceed the limits as specified.

Note: The more stringent limit applies at transition frequencies.

2.1.1 Test Guidance

Before any testing is performed, the Ambient (measurement noise floor) is recorded, and a QC check is performed to show that the system is functioning correctly.

The EUT is powered through a 50µH Line Impedance Stabilizing Network (LISN) which is placed 80cm away from the EUT. For tabletop equipment, a vertical ground plane is placed 40cm from the edge of the table. Lastly, the spectrum analyzer is connected to the LISN via armored cable run from the control room to the test chamber. Both the LISN and vertical ground plane are grounded to the reference ground plane on the chamber floor.

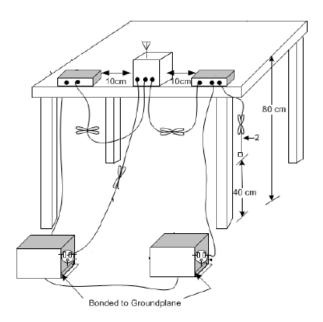
Testing starts with a scan, performed under software control. After this is complete, the list of frequencies of interest is generated. These frequencies are then investigated for quasi-peak and average amplitude, as applicable. Emissions measured with a QP detector that fall below the Average limit are deemed to meet both requirements.

2.1.2 Deviations From The Standard

There were no deviations from the EUT setup or methodology specified in the standard.

2.1.3 Test Equipment

Testing was performed with the following equipment:


Equipment Manufacturer		Model # Asset #		Calibration Date	Calibration Due
EMC Software	UL	Ver. 9.5	SWE021	N	/A
EMI receiver	Agilent	N9038A FW A.25.05	6130	2023-08-11	2024-08-11
LISN 150kHz to 30MHz	Com-Power		6180	2022-08-09	2024-08-09
T/H Data Logger	Extech Ins.	42270	5892	2024-04-08	2025-04-08
CE Cable	Insulated Wire Incorporated	KPS-1501A-3600- KPS 01102006	4436	2024-01-09	2025-01-09

2.1.4 Test Sample Verification, Configuration & Modifications

The EUT was set to transmit continuously on a selected channel with test-specific software. The output was modulated as in normal operation. EUT has option of POE. EUT tested for conducted emission on AC side of POE adaptor model#PD-9501GO-ET/AC and serial#C19026674000302. Customer is not providing POE adaptor with EUT.

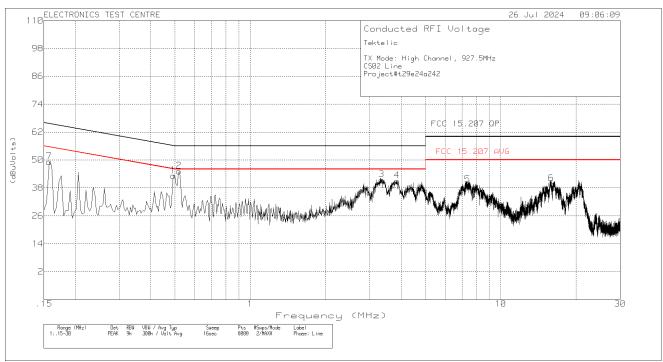
The EUT met the requirements without modification.

Diagram of setup for Conducted Emissions testing:

2.1.5 Conducted Emissions Data TX Mode

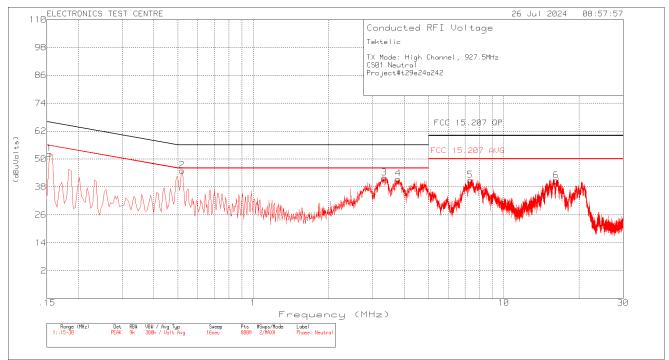
The emissions data is presented in tabular form, showing the uncorrected spectrum analyzer reading, the correction factors applied, the net result, the value(s) of limit at the frequency measured, and the Delta between the result and the limit.

Freq. Marker	Freq. (MHz)	Raw reading (dBµv)	Det.	LISN Factor (dB/m)	Cable Loss (dB)	Corrected Reading (dBµV)	FCC 207 Limit (dBµV)	Delta (dB)	L/N
1	0.497	26.72	AV	0	9.7	36.42	46.05	-9.63	Line
2	0.519	27.26	AV	0	9.7	36.96	46	-9.04	Line
3	3.34	26.15	AV	0	9.8	35.96	46	-10.05	Line
4	3.86	24.96	AV	0	9.9	34.86	46	-11.14	Line
5	7.375	23.37	AV	0	10	33.37	50	-16.63	Line
6	15.91	23.11	AV	0.1	10.5	33.71	50	-16.29	Line
7	0.155	21.89	AV	0.1	9.7	31.69	55.73	-24.04	Line
1	0.155	24.22	AV	0.1	9.7	34.02	55.73	-21.71	Neutral
2	0.520	28.77	AV	0	9.7	38.47	46	-7.53	Neutral
3	3.34	26.14	AV	0	9.8	35.94	46	-10.06	Neutral
4	3.79	25.65	AV	0	9.9	35.55	46	-10.45	Neutral
5	7.35	22.63	AV	0	10	32.63	50	-17.37	Neutral
6	16.18	21.85	AV	0	10.5	32.35	50	-17.65	Neutral


Meter Reading in dB μ V + LISN Factor in dB + Gain/Loss Factor in dB = Corrected Emission Strength in dB μ V.

Notes:

- When a preamp is used, the resulting gain is compensated, producing a negative value for the Cable Loss.
- Av = Linear Average detector


Negative values for Delta indicate compliance.

FCC Part 15.247

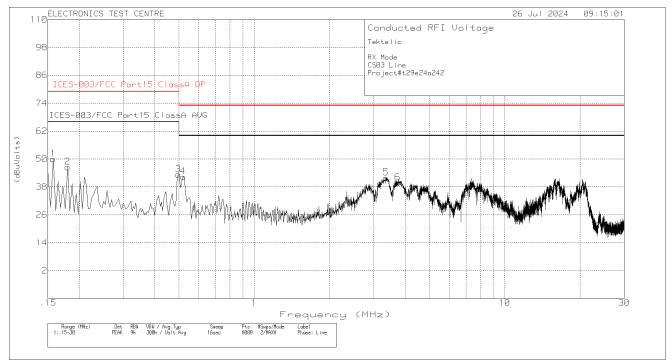
Plot of Conducted Emissions: LINE

Plot of Conducted Emissions: Neutral

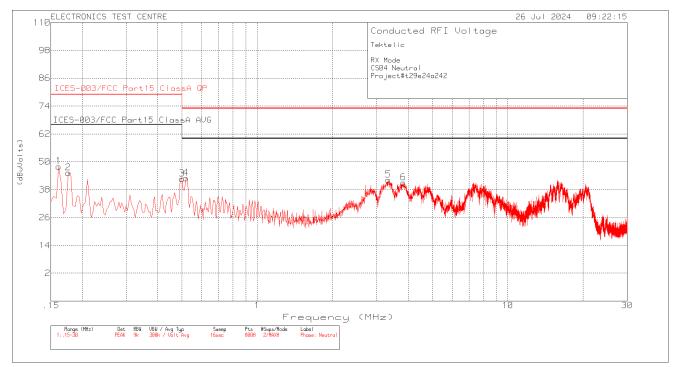
2.1.6 Conducted Emissions Data RX Mode

The emissions data is presented in tabular form, showing the uncorrected spectrum analyzer reading, the correction factors applied, the net result, the value(s) of limit at the frequency measured, and the Delta between the result and the limit.

Freq. Marker	Freq. (MHz)	Raw reading (dBµv)	Det.	LISN Factor (dB/m)	Cable Loss (dB)	Corrected Reading (dBµV)	Class A AV Limit (dBµV)	Delta (dB)	L/N
1	0.154	20.98	AV	.1	9.7	30.78	66	-35.22	Line
2	0.181	14.28	AV	.1	9.7	24.08	66	-41.92	Line
3	0.5	23.73	AV	0	9.7	33.43	60	-26.57	Line
4	0.520	23.15	AV	0	9.7	32.85	60	-27.15	Line
5	3.36	26.43	AV	0	9.8	36.23	60	-23.77	Line
6	3.74	24.28	AV	0	9.9	34.18	60	-25.82	Line
1	0.156	20.0	AV	0.1	9.7	29.8	66	-36.2	Neutral
2	0.181	16.81	AV	0.1	9.7	26.61	66	-39.39	Neutral
3	0.499	22.58	AV	0	9.7	32.28	60	-27.72	Neutral
4	0.521	23.01	AV	0	9.7	32.71	60	-27.29	Neutral
5	3.34	26.16	AV	0	9.8	35.96	60	-24.02	Neutral
6	3.84	25.37	AV	0	9.9	35.27	60	-24.73	Neutral


Meter Reading in dB μ V + LISN Factor in dB + Gain/Loss Factor in dB = Corrected Emission Strength in dB μ V.

Notes:


- When a preamp is used, the resulting gain is compensated, producing a negative value for the Cable Loss.
- Av = Linear Average detector

Negative values for Delta indicate compliance.

Plot of Conducted Emissions: LINE

Plot of Conducted Emissions: Neutral

2.2 6dB Bandwidth

Test Lab: Electronics Test Centre, Airdrie

Test Personnel: Janet Mijares

EUT: Kona Enterprise Gateway Kona Photon Gateway

Date: 2024-07-22 (25.5°C, 41.8% RH) Standard: FCC PART 15.247

Basic Standard: ANSI C63.10-2013 FCC OET KDB 558074

EUT status: Compliant

Specification: FCC Part 15.247 (a, 2), FCC 15.215 (c)

Criteria: Systems using digital modulation techniques may operate in the 902-928 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.2.1 Test Guidance: ANSI C63.10-2013, Clause 11.8 / FCC OET KDB 558074

This measurement is performed at low, mid and high frequencies, with modulation.

The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

For DTS the spectrum analyzer is set for a frequency span \geq (2 * OBW), \leq (5 * OBW), selected to clearly display the channel. The RBW is set to 100 kHz. The VBW is set to \geq (3 * RBW). The Peak detector is used, with the trace set to Max Hold.

The automated 99% BW function of the spectrum analyzer is engaged, and the 6 dB OBW and/or 20 dB OBW is measured with the x dB function.

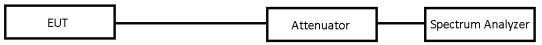
2.2.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

2.2.3 Test Equipment

Testing was performed with the following equipment:

Equipment	Manufacturer	Model #	Asset #	Cal. Date	Cal. Due
EMI receiver	Agilent	N9038A (FW A.25.05)	6130	2023-08-11	2024-08-11
Temp/Humidity	Extech	42270	5871	2024-04-08	2025-04-08
Attenuator (DC to 26 GHz)	Mini-Circuits	BW-S10-2W263+	6932	2022-12-10	2025-12-10
Coaxial Cables (RF)	W.L. GORE	PGR01R01036	7024	2024-01-09	2025-01-09
DC Blocker (9 KHz - 27 GHz)	Centric RF	C0927 SMA	6987	2024-01-19	2025-01-19


2.2.4 Test Sample Verification, Configuration & Modifications

The EUT was set to transmit continuously on a selected channel with test-specific software. The output was modulated as in normal operation.

The EUT met the requirements without modification.

Test setup diagrams for Occupied Bandwidth testing:

Conducted:

2.2.5 Channel Bandwidth Data: LoRa DTS

Mode of operation	Channel	Freq. [MHz]	6 dB BW [kHz]	Limit BW [KHz]
	Low	903.0	636.0	
LoRa 500 KHz	Mid	914.2	633.2	≥ 500
	High	927.5	629.1	

Screen Captures from the spectrum analyzer: Low Channel

۲ RF 50 x DC Span 1.5000 MHz	Trig: F	sense:INT SOURCE OFF er Freq: 903.000000 MHz Free Run Avg Hol n: 40 dB	ALIGN AUTO d:>10/10	05:13:22 PM Jul 22, 2024 Radio Std: None Radio Device: BTS	Trac	e/Detector
10 dB/div Ref 60.40 dBn	1		-			
40.4						Clear Writ
20.4 20.4 10.4 400						Averag
9.60 9.6				Margan Margan		Max Ho
enter 903 MHz Res BW 100 kHz	#	VBW 300 kHz		Span 1.5 MHz Sweep 1 ms		Min Ho
Occupied Bandwidt		Total Power	34.1	dBm		
	59.34 kHz					Detect Peal
Transmit Freq Error x dB Bandwidth	4.695 kHz 636.0 kHz	OBW Power x dB		0.00 % 00 dB	Auto	<u>Ma</u>
G			STATUS			

Screen Captures from the spectrum analyzer: MID Channel

Agilent Spectru	im Analyzer - Occupied B	8W							
<mark>w</mark> Ref Offset	RF 50 Ω DC t 10.40 dB				GN AUTO	05:40:42 PM Radio Std: Radio Dev		Trac	e/Detector
10 dB/div	Ref Offset 10.4 d Ref 59.80 dBn	dB				Ravio De l	106.010		
49.8 39.8								(Clear Write
29.8 19.8 9.80 -0.20									Average
-0.20 -10.2 -20.2 -30.2						Normal March	Mar Mar		Max Hold
Center 914 #Res BW			#VBW	300 kHz	 		n 1.5 MHz eep 1 ms	F	Min Hold
Occup	ied Bandwidt 6	th 559.82 kH		otal Power	33.9) dBm		⊨	Detector
	iit Freq Error andwidth	4.840 kH 633.2 kH		BW Power dB		9.00 % 00 dB		Auto	Peak∎ <u>Mar</u>
MSG					 STATUS	3			

Screen Captures from the spectrum analyzer: High Channel

	•					
Agilent Spectrum Analyzer - Occupied BW					_	
RF 50 Ω DC RBW 100.00 kHz	Cente	SENSE:INT SOURCE OFF	ALIGN AUTO	05:50:26 PM Jul 22, 2024 Radio Std: None	Trace	Detector
	Trig: F	Free Run Avg Ho	ld:>10/10			
/	IFGain:Low #Atter	n: 40 dB		Radio Device: BTS	_	
0 dB/div Ref 59.80 dBm						
og						
9.8						lear Wri
9.8					-11 -	
9.8			~			
9.8						
.80					- 11	Avera
20			- North			
12W'						
				hardworks		
0.2				har	~	Max Ho
0.2						
enter 927.5 MHz				Span 1.5 MH	- I	
Res BW 100 kHz	#	VBW 300 kHz		Sweep 1 m		Min Ho
					-	WIIITHC
Occupied Bandwidth		Total Power	34.4	dBm		
66	1.43 kHz					Detect
						Pea
Transmit Freq Error	5.857 kHz	OBW Power	99	0.00 %	Auto	M
x dB Bandwidth	629.1 kHz	x dB	-6.	00 dB		
G			STATUS	3		

2.3 Max Average Output Power

Test Lab: Electronics Test Centre, Airdrie
--

Test Personnel: Janet Mijares

Date: 2024-07-22 (25.5°C, 41.8% RH)

EUT: Kona Enterprise Gateway Kona Photon Gateway

Standard: FCC PART 15.247

Basic Standard: ANSI C63.10: 2013 FCC OET KDB 558074

EUT status: Compliant

Specification: FCC Part 15.247(b, 3)

Criteria (3) For systems using digital modulation in the 902-928 MHz bands: 1 Watt.

2.3.1 Test Guidance: ANSI C63.10-2013, Clause 11.9.2.2.2/ FCC OET KDB 558074

This measurement is performed at low, mid and high frequencies, with modulation.

The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

Output Power Method AVGSA-1 For LoRa DTS						
Span	≥ 1.5 times the OBW					
RBW	$1 - 5$ % of the OBW, ≤ 1 MHz					
VBW	≥ 3 x RBW					
Number of Points in sweep	≥ 2 x Span / RBW					
Sweep time	Auto					
Detector	RMS (Power Averaging)					
Sweep trigger	Free Run (Duty Cycle ≥98%)					
Trace Average	100 traces in power Averaging (RMS)					
Power measured	Integrated the spectrum across the OBW of the signal using the S/A band power measurement function, with band limit set equal to the OBW band edge.					

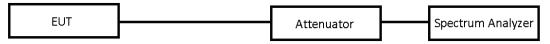
2.3.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

2.3.3 Test Equipment

Testing was performed with the following equipment:

Equipment	Manufacturer	Model #	Asset #	Cal. Date	Cal. Due
EMI receiver	Agilent	N9038A (FW A.25.05)	6130	2023-08-11	2024-08-11
Temp/Humidity	Extech	42270	5871	2024-04-08	2025-04-08
Attenuator (DC to 26 GHz)	Mini-Circuits	BW-S10-2W263+	6932	2022-12-10	2025-12-10
Coaxial Cables (RF)	W.L. GORE	PGR01R01036	7024	2024-01-09	2025-01-09
DC Blocker (9 KHz - 27 GHz)	Centric RF	C0927 SMA	6987	2024-01-19	2025-01-19

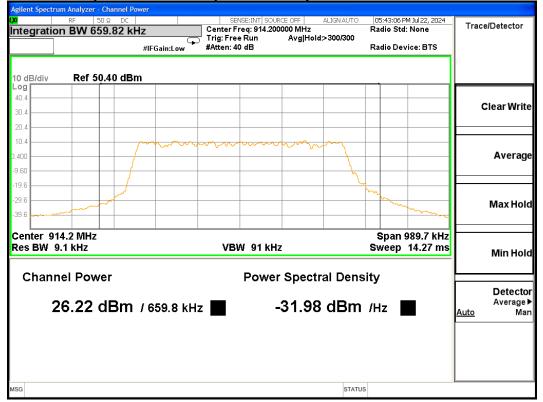

2.3.4 Test Sample Verification, Configuration & Modifications

The EUT was set to a selected channel with test-specific software. The output was modulated as in normal operation.

The EUT met the requirements without modification.

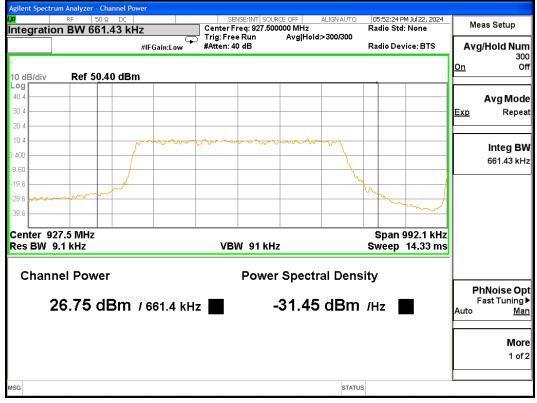
Test setup diagrams for Power testing:

Conducted:


2.3.5 Max Average Output Power Data: LoRa DTS

Mode of operation	Channel	Freq. [MHz]	Max Average Power [dBm]	Limit Power [dBm]
	Low	903.0	26.54	
LoRa 500 KHz	Mid	914.2	26.22	≤ 30 (1Watt)
	High	927.5	26.75	

ilent Spectrum Analyzer - Channel Power 05:19:39 PM Jul 22, 2024 ENSE:I/ ALIGN AUTO Trace/Detector Center Freq: 903.000000 MHz Trig: Free Run Avg|Ho Integration BW 659.24 kHz Radio Std: None Avg|Hold:>300/300 டி #IFGain:Low #Atten: 40 dB Radio Device: BTS Ref 50.40 dBm 10 dB/div _og 40.4 **Clear Write** 30.4 20.4 10.4 Average 400 .19 P 29.6 Max Hold 39 A Span 988.9 kHz Sweep 14.27 ms Center 903 MHz Res BW 9.1 kHz VBW 91 kHz Min Hold **Channel Power Power Spectral Density** Detector Average► 26.54 dBm / 659.2 kHz -31.65 dBm /Hz <u>Auto</u> Man ISG 🗼 File <pwr.png> saved STATUS


Screen Captures from the spectrum analyzer Low Channel

Screen Captures from the spectrum analyzer: MID Channel

This report shall not be reproduced, except in full, without prior written approval of Page 20 of 65 MPB Technologies

Screen Captures from the spectrum analyzer: High Channel

2.4 Band Edge Attenuation

Test Lab: Electronics	Test	Centre,	Airdrie
------------------------------	------	---------	---------

Test Personnel: Janet Mijares

Date: 2024-07-22 (25.5°C, 41.8% RH)

EUT: Kona Enterprise Gateway Kona Photon Gateway

Standard: FCC PART 15.247

Basic Standard: ANSI C63.10: 2013 FCC OET KDB 558074

EUT status: Compliant

Specification: FCC Part 15.247(d)

Criteria:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dBc below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dBc instead of 20 dBc. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

2.4.1 Test Guidance: ANSI C63.10-2013 Clause 11.13.2 & 6.10.4, 6.10.6 / FCC OET KDB 558074

This measurement is performed at the low and high frequencies, with modulation.

The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

The spectrum analyzer is set for a frequency span to show the band edge and the nearest channel. The RBW is set to \geq 100 kHz. The VBW is set to \geq (RBW * 3). The Peak detector is used, with the trace set to Max Hold.

The attenuation is measured with the Marker Delta function.

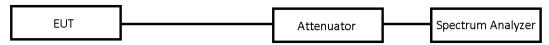
2.4.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

2.4.3 Test Equipment

Testing was performed with the following equipment:

Equipment	Manufacturer	Model #	Asset #	Cal. Date	Cal. Due
EMI receiver	Agilent	N9038A (FW A.25.05)	6130	2023-08-11	2024-08-11
Temp/Humidity	Extech	42270	5871	2024-04-08	2025-04-08
Attenuator (DC to 26 GHz)	Mini-Circuits	BW-S10-2W263+	6932	2022-12-10	2025-12-10
Coaxial Cables (RF)	W.L. GORE	PGR01R01036	7024	2024-01-09	2025-01-09
DC Blocker (9 KHz - 27 GHz)	Centric RF	C0927 SMA	6987	2024-01-19	2025-01-19


2.4.4 Test Sample Verification, Configuration & Modifications

The EUT was set to transmit continuously on a selected channel with test-specific software. The output was modulated as in normal operation.

The EUT met the requirements without modification.

Test setup diagrams for Band Edge Attenuation testing:

Conducted:

2.4.5 Band Edge Data LoRa DTS Worse Case Data

Mode of operation	Channel	Attenuation at Band Edge	Attenuation Limit at Band Edge
Lora 500KHz	903.0	56.263dBc	
	927.5	30.547dBc	≥30 dBc

Screen Capture from the spectrum analyzer: Lower Band Edge

Agilent Spectrum Analyzer - Swept SA					
🙀 🛛 RF 50 Ω DC Marker 2 Δ 790.150000 kHz		ISE:INT SOURCE OFF AL Avg Type: I		M Jul 22, 2024	Peak Search
	Z PNO: Wide 😱 Trig: Free IFGain:Low #Atten: 40	Run Avg Hold:>2	200/200 TY		NextPeak
Ref Offset 10.4 dB 10 dB/div Ref 33.40 dBm			∆Mkr2 790 56	.263 dB	
23.4			2∆3	·	
13.4			/		Next Pk Right
3.40					
-6.60				-3.46 dBm	
-16.6			New Y		Next Pk Left
-26.6		mm farment		<u>+</u> L	
-36.6					
-46.6					Marker Delta
-56.6					
Start 900.000 MHz #Res BW 100 kHz	#VBW 300 kHz	St	Stop 903 weep 1.067 ms (3.300 MHz (2001 pts)	Mkr→CF
MKR MODE TRC SCL X	Y		TION WIDTH FUNCTI	ON VALUE	
	40 MHz 26.544 dE 0.15 kHz (Δ) 56.263				
3 F 1 f 902.000	00 MHz -29.715 dE	łm			Mkr→RefLvl
4 5 6					
6 7 8					
9					More 1 of 2
11				~	1012
MSG					

Screen Capture from the spectrum analyzer: Upper Band Edge

2.5 Power Spectral Density

Test Lab: Electronics Test Centre, Airdrie

Test Personnel: Janet Mijares

Date: 2024-07-22 (25.5°C, 41.8% RH)

EUT: Kona Enterprise Gateway Kona Photon Gateway

Standard: FCC PART 15.247

Basic Standard: ANSI C63.10: 2013

EUT status: Compliant

Specification: FCC Part 15.247(e)

Criteria For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

2.5.1 Test Guidance: ANSI C63.10-2013, Clause 11.10.3 / FCC OET KDB 558074

This measurement is performed at low, mid and high frequencies, in continuous transmission, with modulation.

The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

Method AVGPSD-1 For DTS							
Span	≥ 1.5 times the OBW						
RBW	3 kHz ≤ RBW ≥ 100 kHz.						
VBW	≥ 3 x RBW						
Number of Points in sweep	≥ 2 x Span / RBW						
Sweep time	auto couple						
Detector	RMS (Power Averaging)						
Sweep trigger	Free Run (Duty Cycle ≥98%)						
Trace Average	Minimum 100 traces in power Averaging (RMS)						
PSD measured	Use the peak marker function to determine the maximum amplitude level.						
If the measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point							

requirement as the RBW is reduced).

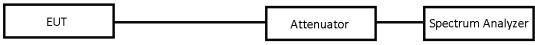
2.5.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

2.5.3 Test Equipment

Testing was performed with this equipment:

Equipment	Manufacturer	Model #	Asset #	Cal. Date	Cal. Due
EMI receiver	Agilent	N9038A (FW A.25.05)	6130	2023-08-11	2024-08-11
Temp/Humidity	Extech	42270	5871	2024-04-08	2025-04-08
Attenuator (DC to 26 GHz)	Mini-Circuits	BW-S10-2W263+	6932	2022-12-10	2025-12-10
Coaxial Cables (RF)	W.L. GORE	PGR01R01036	7024	2024-01-09	2025-01-09
DC Blocker (9 KHz - 27 GHz)	Centric RF	C0927 SMA	6987	2024-01-19	2025-01-19

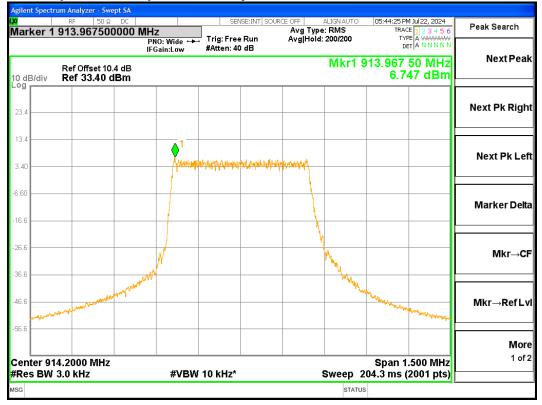

2.5.4 Test Sample Verification, Configuration & Modifications

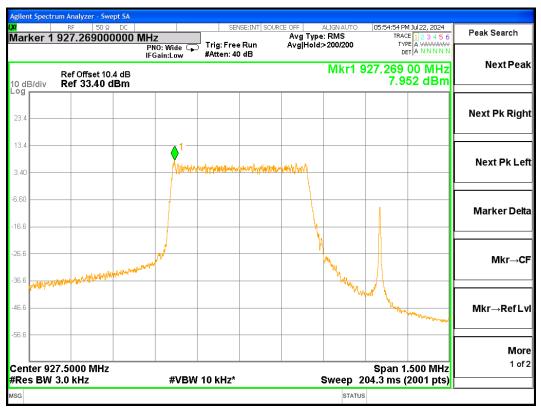
The EUT was set to transmit continuously on a selected channel with test-specific software. The output was modulated as in normal operation.

The EUT met the requirements without modification.

Test setup diagrams for Power Spectral Density testing:

Conducted:


2.5.5 Average PSD Data LoRa DTS


Mode	Channel	Frequency (MHz)	Average PSD (dBm)	Limit
	Low	903.0	7.776	
LoRa 500 KHz	Mid	914.2	6.747	≤ 8 / 3KHz
	High	927.5	7.952	

Screen Capture from Spectrum Analyzer: Low Channel

Screen Capture from Spectrum Analyzer: Mid Channel

Screen Capture from Spectrum Analyzer: High Channel

2.6 Conducted Spurious Emissions (Non-Restricted Band)

Test Lab: Electronics Test Centre, Airdrie

Test Personnel: Janet Mijares

Date: 2024-07-22 (25.5°C, 41.8% RH)

EUT: Kona Enterprise Gateway Kona Photon Gateway

Standard: FCC PART 15.247

Basic Standard: ANSI C63.4-2014 FCC OET KDB 558470 v04 DTS

EUT status: Compliant

Specification: FCC Part 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

2.6.1 Test Guidance: ANSI C63.10-2013, Clause 6.7

This measurement is performed at the low, mid and high frequencies, with modulation. The RF output of EUT with an antenna connector is fed to the input of the spectrum analyzer through appropriate attenuation. The loss from the cable and the attenuator were added on the analyzer as gain offset setting there by allowing direct measurements, without the need for any further corrections.

The spectrum analyzer is stepped through the spectrum in frequency spans selected to ensure acceptable frequency resolution. The RBW is set to 100 kHz. The VBW is set to ≥ 300 kHz. The Peak detector is used, with the trace set to Max Hold.

2.6.2 Deviations From The Standard:

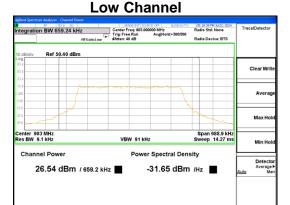
There were no deviations from the EUT setup or methodology specified in the standard.

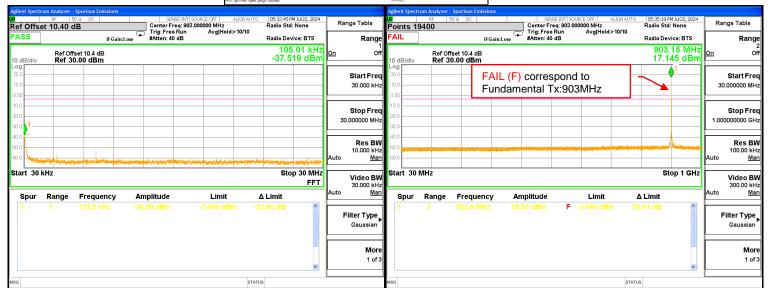
2.6.3 Test Equipment

Manufacturer Model # Equipment Asset # Cal. Date Cal. Due N9038A 2024-08-11 EMI receiver 6130 2023-08-11 Agilent (FW A.25.05) Temp/Humidity 42270 5871 2024-04-08 Extech 2025-04-08 Attenuator BW-S10-2W263+ Mini-Circuits 6932 2022-12-10 2025-12-10 (DC to 26 GHz) Coaxial Cables W.L. GORE PGR01R01036 7024 2024-01-09 2025-01-09 (RF) DC Blocker Centric RF C0927 SMA 6987 2024-01-19 2025-01-19 (9 KHz - 27 GHz)


Testing was performed with the following equipment:

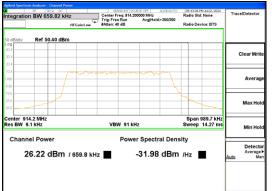
2.6.4 Test Sample Verification, Configuration & Modifications


The EUT was set to a selected channel with test-specific software. The output was modulated as in normal operation.


The EUT met the requirements without modification.

Test setup diagram for Conducted Spurious Emissions testing:

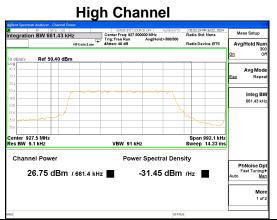
2.6.5 Conducted Emissions Data: LoRa DTS



vilent Spectru	im Analyzer -	Spurious Emissions									
	RF 5	50 Ω DC			ISE:INT SOUR		ALIGNAUTO		M Jul 22, 2024		nge Table
ef Offse	t 11.00 d	зB		Center Fr Trig: Free	req: 903.000	000 MHz Avg Hold:		Radio Std	: None	Ra	nge rabie
ASS		IFGa	in:Low 두	#Atten: 40		Avginoia:	>10/10	Radio De			Ran
) dB/div		set 11 dB 0.60 dBm						3.82 -37.2	202 GHz 71 dBm	<u>On</u>	
0.6											Start Fr
0.6										1.00	0000000 G
40											
.4										40.00	Stop Fr 0000000 G
.4			1							10.00	0000000 G
.4											
.4											Res E 100.00 k
.4										Auto	<u>N</u>
art 1 Gł	Iz					^		Sto	p 10 GHz		Video E
Spur	Range	Frequency	An	nplitude		Limit	4	Limit		Auto	300.00 k <u>N</u>
1	3	3.820 GHz		.92 dBm					^		
										'	Filter Typ
									=		Gaussia
											M
									~		10
3							STATU		~		1 c

Test Sample: Kona Enterprise Gateway, Kona Photon Gateway FCC ID:2ALEPT0009193

MID Channel



Agile	nt Spec		- Spurious Emission	15									Agile	ent Spectr		er - Spurious E	missions								
sta	rt Lir	nit -3.78 d	50 g DC 1Bm		Center F	NSE:INT SOURC req: 914.2000			05:47:55 PM Radio Std:		R	Range Table	w Sta	art Lim	RF 111 -3.78	50 Ω DC B dBm		T_1		914.200000 MH	ALIGNAUTO Iz Hold:>10/10	Radio St	PM Jul 22, 2024 d: None	Ran	nge Table
PA	SS]	IFG	ain:Low 뎍	#Atten: 4		Avginola.2	10/10	Radio Devi	e: BTS		Range	FA	IL			IFGain:Lo		tten: 40 dB		1010.2 10/10		evice: BTS		Range
	IB/div		fset 10.4 dB 0.60 dBm						135. -41.81	02 kHz 3 dBm	<u>On</u>	1 Off		dB/div		Offset 10.4 d 30.60 dBr						914 20.1	l.40 MHz 796 dBm	<u>On</u>	2 Off
20.6 10.6												Start Freq 30.000 kHz	20.6 10.6	6			L (F) c damei			o 2 MHz		-		30	Start Freq .000000 MHz
-9.40 -19.4 -29.4	1											Stop Freq 30.000000 MHz	-9.40 -19.4 -29.4	4										1.000	Stop Freq
-39,4 -49,4 -59,4			i general en sela anta interna	N, Straw (MI), and Allyny	L.p.L.waterinity#		Type of Design of the Spectrum		A phalosterate a long	uga (ang sa da da si ka da sa	Auto	Res BW 10.000 kHz <u>Man</u>	-39.4 -49.4 -59.4	4									- A	Auto	Res BW 100.00 kHz <u>Man</u>
Sta	rt 30		^							30 MHz FFT		Video BW 30.000 kHz	Sta	art 30	MHz	÷						S	itop 1 GHz		Video BW 300.00 kHz
:	Spur	Range	Frequency	· A	mplitude		Limit	Δ	Limit		Auto	<u>Man</u>		Spur	Range	e Frequ	ency	Amplit	tude	Lin	nit	∆ Limit		Auto	Man
												Filter Type Gaussian								F -3.780			-	F	Gaussian
										~		More 1 of 3											~		More 1 of 3
MSG								STATUS			L		MSG								STAT	rus			

ef Offse		50 Ω DC d B		se:INT SOURCE OFF eq: 914.200000 MHz Run Avg Hol	ALIGNAUTO	Radio Std:	1 Jul 22, 2024 None	Ra	nge Table
PASS		IFGain:I				Radio Devi			Rang
10 dB/div		fset 11 dB 1.20 dBm				3.81 -36.93	39 GHz 34 dBm	<u>On</u>	o
_og 21.2									Start Fre
11.2								1.00	0000000 Gi
1.20									
.80									
8.8								10.00	Stop Fr 0000000 GI
18.8		A1						10.00	0000000 GI
8.8						_			
8.8									Res B 100.00 kl
8.8								Auto	M
itart 1 Gi	Ηz					Sto	o 10 GHz		Video B 300.00 ki
Spur	Range	Frequency	Amplitude	Limit	1	∆ Limit		Auto	300.00 ki
1	3	3.704 GHz	-33.09 dBm				^		
							н	F	Gaussiar
									Mo
							~		1 o

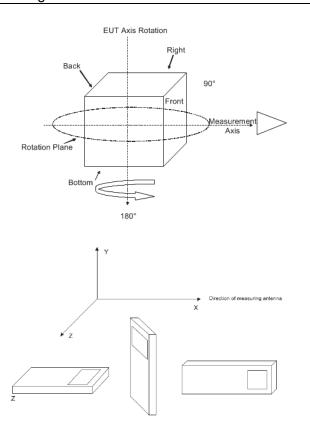
This report shall not be reproduced, except in full, without prior written approval of Page 31 of 65 **MPB Technologies**

Test Sample: Kona Enterprise Gateway, Kona Photon Gateway FCC ID:2ALEPT0009193

Agilent	Spectru		Spurious Emissions							Agilen	nt Spectru		Spurious Emissions								
Star	t Lim	RF 5	Bm	Center Fre	q: 928.573982 MHz	ALIGNAUTO	06:05:35 PM		Range Table	(X) Star	rt Limi	RF 5	οΩ DC Bm		Center Fr	ISE:INT SOURC	82 MHz		06:05:00 PM Jul 22, 20 Radio Std: None	24	Range Table
PAS			IFGain	:Low Trig: Free I #Atten: 40		>10/10	Radio Devic		Range	_			IFGair	n:Low 구	⁴ Trig: Free #Atten: 40		Avg Hold:		Radio Device: BTS		Range
10 dE	3/div		set 10.4 dB .60 dBm				85.0 -37.77	09 kHz 2 dBm	0n Off		lB/div		set 10.4 dB).60 dBm						927.25 MH 19.155 dB	iz m	2 Dn Off
Log 20.6 - 10.6 - 0.600 -									Start Freq 30.000 kHz	20.6 10.6 0.600			FAIL (F Funda				lHz		▲1 ▲		Start Freq 30.000000 MHz
-9.40 -19.4 -29.4	1								Stop Freq 30.000000 MHz	-9.40 -19.4 -29.4											Stop Freq 1.00000000 GHz
-39.4 -49.4 -59.4	without -			and going the spirit of the spirit of	North fill, ya falle, in manafani		ana internet and	and progenities in the	Res BW 10.000 kHz Auto <u>Man</u>	-39.4 -49.4 -59.4									A		Res BW 100.00 kHz Auto <u>Man</u>
Star	t 30 k	(Hz		Â			Stop	30 MHz FFT	Video BW 30.000 kHz	Star	rt 30 N	IHz							Stop 1 G	1Z	Video BW 300.00 kHz
s	pur	Range	Frequency	Amplitude	Limit	Δ	Limit		Auto <u>Man</u>	s	Spur	Range	Frequency	Am	plitude		Limit	Δ	Limit	A	Auto <u>Man</u>
1									Filter Type Gaussian	1						F-3			21 dB 2		Filter Type Gaussian
								~	More 1 of 3												More 1 of 3
MSG						STATUS	i			MSG								STATUS		_	

N Ref Offse		50 Ω DC d B	Center Freq Trig: Free R	INT SOURCE OFF ALIGN : 928.573982 MHz un Avg Hold>10/1	Radio Std: None	Peak Search
PASS		IFGain:	Low 🔭 #Atten: 40 dl	3	Radio Device: BTS	NextPea
10 dB/div		fset 11 dB 1.20 dBm			3.8242 GH -36.026 dB	12
_og 21.2						
11.2						Next Pk Righ
1.20						
8.80						
18.8						Next Pk Le
28.8		≬ 1				_
38.8		X				
48.8						Marker Del
58.8						
Start 1 G	Hz				Stop 10 GI	Hz
Spur	Range	Frequency	Amplitude	Limit	∆ Limit	
1					-29.32 dB	
						Mo
						1 of

This report shall not be reproduced, except in full, without prior written approval of Page 32 of 65 **MPB Technologies**


2.7 EUT Positioning Assessment

Test Lab: Electronics Test Centre, Airdrie Test Personnel:	EUT: Kona Enterprise Gateway Kona Photon Gateway
Date:	Standard: FCC PART 15.247
	Basic Standard: ANSI C63.4-2014

Comments: N/A (EUT will be install on 1 fix position)

Specification: ANSI C63.4-2014, Clause 6.3.2.1

Portable, small, lightweight, or modular devices that may be handheld, worn on the body, or placed on a table during operation shall be positioned on a non-conducting platform, the top of which is 80 cm above the reference ground plane. The preferred area occupied by the EUT arrangement is 1 m by 1.5 m, but it may be larger or smaller to accommodate various sized EUTs (see Figure 6, Figure 7, and Figure 9). For testing purposes, ceiling- and wall-mounted devices also shall be positioned on a tabletop (see also 6.3.4 and 6.3.5). In making any tests involving handheld, body-worn, or ceiling-mounted equipment, it is essential to recognize that the measured levels may be dependent on the orientation (attitude) of the three orthogonal axes of the EUT. Thus, exploratory tests as specified in 8.3.1 shall be carried out for various axes orientations to determine the attitude having maximum or near-maximum emission level.

2.8 Radiated Spurious Emissions (within restricted band/Co-location)

Test Lab: Electronics Test Centre, Airdrie Test Personnel: Janet Mijares /Brendan Van Hee Imran Akram	EUT: Kona Enterprise Gateway Kona Photon Gateway Standard: FCC PART 15.247/15.209						
Date: 2024-07-25/26 (21.0° C,34.1 % RH) 2024-08-2/5 (23.2° C,42.7 % RH) 2024-10-25 (20.7° C,32.7 % RH)	Basic Standard: ANSI C63.10-2013						
EUT status: Compliant							

Specification: FCC PART 15.247(d)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

MHz	MHz	MHz	MHz	MHz	GHz	GHz
0.0900000 –	8.2910000 -	16.804250 -	162.01250 -	1660.0000 -	3.6000000 -	14.470000 -
0.1100000	8.2940000	16.804750	167.17000	1710.0000	4.4000000	14.500000
0.4950000 -	8.3620000 -	25.500000 -	167.72000 -	1718.8000 –	4.5000000 –	15.350000 -
0.5050000	8.3660000	25.670000	173.20000	1722.2000	5.1500000	16.200000
2.1735000 -	8.3762500 -	37.500000 -	240.00000 –	2200.0000 –	5.3500000 –	17.700000 -
2.1905000	8.3867500	38.250000	285.00000	2300.0000	5.4600000	21.400000
4.1250000 -	8.4142500 -	73.000000 -	322.00000 -	2310.0000 -	7.2500000 –	22.010000 -
4.1280000	8.4147500	74.600000	335.40000	2390.0000	7.7500000	23.120000
4.1772500 -	12.290000 -	74.800000 -	399.90000 –	2483.5000 -	8.0250000 -	23.600000 -
4.1777500	12.293000	75.200000	410.00000	2500.0000	8.5000000	24.000000
4.2072500 -	12.519750 -	108.00000 -	608.00000 –	2655.0000 -	9.0000000 –	31.200000 -
4.2077500	12.520250	121.94000 **	614.00000	2900.0000	9.2000000	31.800000
5.6770000 -	12.576750 -	123.00000 -	960.00000 –	32600000 –	9.3000000 -	36.430000 -
5.6830000	12.577250	138.00000 <mark>**</mark>	1240.0000 ***	3267.0000	9.5000000	36.500000
6.2150000 -	13.360000 -	149.90000 -	1300.0000 –	3332.0000 –	10.600000 -	Above
6.2180000	13.410000	150.05000	1427.0000 <mark>***</mark>	3339.0000	12.700000	38.600000
6.2677500 -	16.420000 -	156.52475-	1435.0000 –	3345.8000 –	13.250000 –	
6.2682500	16.423000	156.52525	1626.5000	3358.0000	13.400000	
6.3117500 - 6.3122500	16.694750 - 16.695250	156.70000 - 156.90000	1645.5000 – 1646.5000	3500.0000 – 3600.0000		

Restricted Bands of Operation:

2.8.1 Test Guidance: ANSI C63.10-2013, Clause 13.4.2

From 9 kHz to 150 kHz (resolution bandwidth of 200 Hz) and from 150 kHz to 30 MHz (resolution bandwidth 9 kHz) measurements are performed with a loop antenna (as per KDB 460108).

From 30 MHz to 1000 MHz, measurements are performed with a broadband biconilog antenna and a resolution bandwidth of 120 kHz.

Above 1000 MHz, measurements are performed with a DRG Horn antenna or a Standard Gain horn, and a resolution bandwidth of 1 MHz The EUT is raised to 150 cm above the ground plane, and the area between the EUT and the antenna mast is covered with RF absorbent material.

The scan is performed at discreet increments of turntable azimuth and antenna height, which are selected in accordance with the applicable standard in order to assure capture of frequencies of interest. Optimization is performed based on the scan data.

Frequencies having peak emissions within 10dB of the limits are optimized. The EUT is rotated in azimuth over 360 degrees and the direction of maximum emission is noted.

Antenna height is varied from 1 - 4 meters at this azimuth to obtain the maximum emission. Then the maximum level is measured with the appropriate detector and recorded. Up to 1 GHz, measurements are performed with a Quasi-Peak detector. Above 1 GHz, measurements are recorded with Peak and/or Average detectors, as applicable.

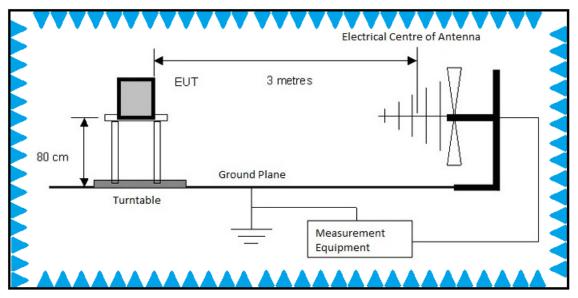
2.8.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

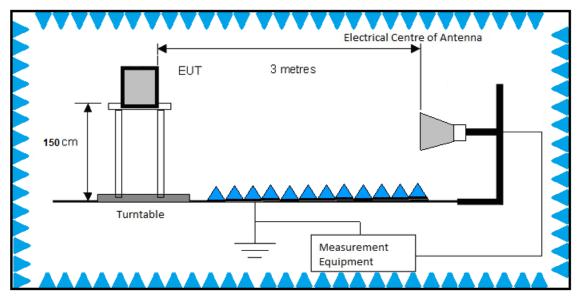
Equipment	Manufacturer	Model #	Asset #	Cal. Date (yyyy-mm-dd)	Cal. Due (yyyy-mm-dd)
EMC Software	UL	Ver. 9.5	SWE021	N/A	
EMI receiver	Agilent	N9038A (FW A.25.05)	6130	2023-08-11	2024-08-11
EMI receiver	Agilent	N9038A (FW A.22.08)	6906	2024-01-02	2025-01-02
Loop Antenna (9KHz – 30MHz)	EMCO	6502	10868	2023-06-21	2025-06-21
Biconilog Antenna (30 – 1000 MHz)	AR	JB1	6905	2023-11-29	2025-11-29
DRG Horn (1 – 18 GHz)	EMCO	3115	19357	2022-10-05	2025-10-05
STD Horn (18-26 GHz)	Quinstar	QWH-KRPS00	6163	2022-10-10	2025-10-10
Humidity/Temp Logger	Extech Ins. Corp.	42270	5892	2024-04-08	2025-04-08
Pre-Amplifier (30 – 1400 MHz)	HP	8447D	9291	2024-01-23	2025-01-23
L.N. Amplifier (1 – 18 GHz)	MITEQ	JS43-01001800-21-5P	4354	2024-01-23	2025-01-23
L.N. Amplifier (18 – 26 GHz)	MITEQ	JS44-01002650-33-3P	6163	2024-01-23	2025-01-23
RE Cable below 1GHz	Insulated Wire Inc.	KPS-1501A-3600- KPA-01102006	4419	2024-01-23	2025-01-23
Re Cable Above 1 GHz	A.H. System Inc.	SAC-26G-8.23	6187	2024-01-23	2025-01-23
0.9GHz Notch Filter	Microtronics	BRM20784	6947	2024-01-23	2025-01-23

2.8.3 Test Equipment

Testing was performed with the following equipment:


* In-house verification

2.8.4 Test Sample Verification, Configuration & Modifications


The EUT was set to a selected channel with test-specific software. The output was modulated as in normal operation. LoRa radio is transmitting at high channel for Enterprise and mid channel for Photon. LoRa and LTE was transmitting simultaneously.

The EUT met the requirements without modification.

Test setup diagram for Radiated Spurious Emissions testing (below 1GHz):

Test setup diagram for Radiated Spurious Emissions testing (above 1GHz):

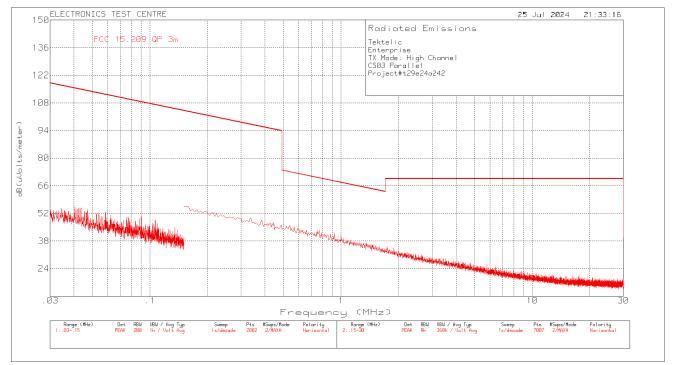
2.8.5 Radiated Emissions Data: Enterprise (Both LTE/LoRa transmitting simultaneously with external antenna)

The emissions data are presented in tabular form, showing turntable azimuth, antenna height and polarization, the uncorrected spectrum analyzer reading, the correction factors applied, the net result, the value of the limit at the frequency investigated, and the Delta between the result and the limit.

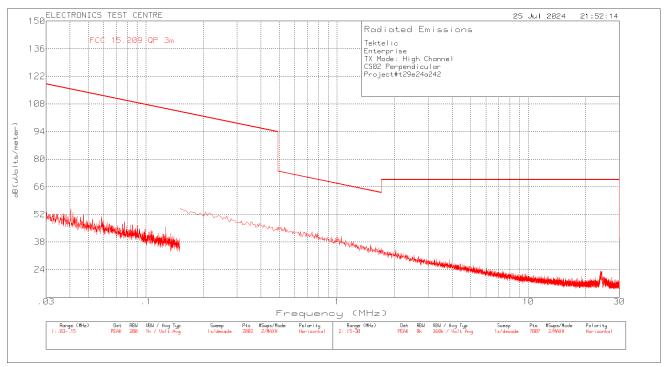
Meter Reading in dB_µV + Antenna Factor in dB/m + Gain/Loss Factor in dB = Corrected Field Strength in db_µV/m.

Delta = Field Strength – Limit

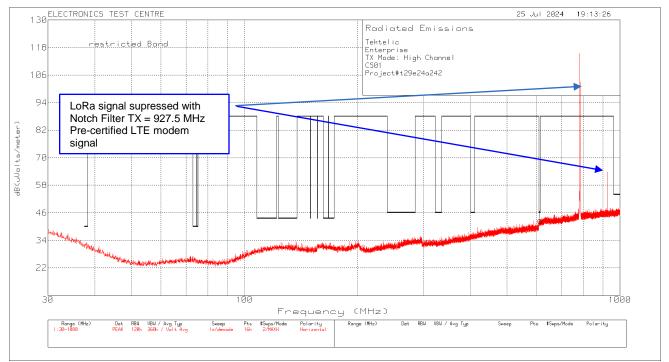
Notes:

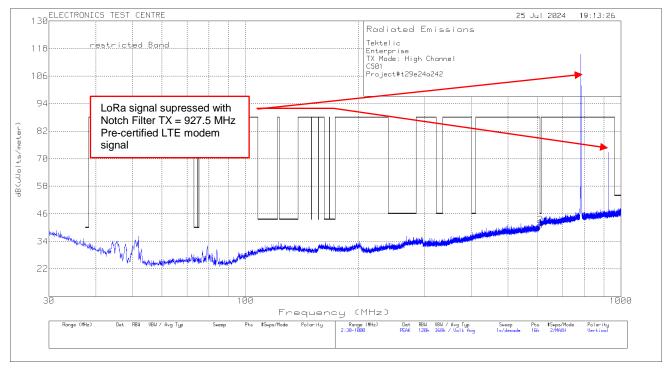

- When a preamp is used, the resulting gain is compensated, producing a negative value for the Cable Loss.
- Measurements reported are the result of adjusting the turntable azimuth and antenna height to obtain the maximum EUT emission. This may produce a different reading than the plot trace. The plot is a Peak Hold function obtained at discreet increments of height and azimuth, while the reported measurement is obtained with the appropriate Quasi Peak or Average detector after the height and azimuth have been adjusted for maximum emission.
- Preliminary scans were performed for all channels in Transmit modes. The High band channel 927.5 MHz was selected as the worst-case condition for detailed examination.
- In Transmit mode, the EUT was assessed up to 10.0 GHz.

Freq. Marker	Freq. [MHz]	Raw reading [dBµv]	Det	Antenna Factor [dB/m]	Loss/ Gain [dB]	Corrected Reading [dBµv/m]	FCC 15.209 Limit [dBµv/m]	Delta [dB]	Azimuth [Deg]	Height [cm]	Polarization
1	*613.9912	13.56	QP	23	6.5	43.06	46.02	-2.96	136	383	Horizontal
2	*609.9565	13.54	QP	22.9	6.5	42.94	46.02	-3.08	151	304	Vertical
	*4502.2	28.9	AV	26.2	-34.3	20.8	54	-33.2	297	251	Horizontal
1	*1593.3	50.81	PK	26.2	-34.3	42.71	74	-31.29	297	251	Horizontal
2	*1709.4	48.4	AV	27.1	-35.2	40.3	54	-13.7	46	226	Horizontal
2	1709.4	55.22	PK	27.1	-35.2	47.12	74	-26.88	46	226	Horizontal
3	*4504.0	44.1	AV	26.1	-33.6	36.6	54	-17.4	9	223	Vertical
3	*1564.3	54.14	PK	26.1	-33.6	46.64	74	-27.36	9	223	Vertical
4	*1594.8	29.77	AV	26.2	-34.4	21.57	54	-32.43	82	220	Vertical
4	1094.0	55.62	PK	26.2	-34.4	47.42	74	-26.58	82	220	Vertical
5	*1709.5	49.89	AV	27.1	-35.2	41.79	54	-12.21	0	322	Vertical
5	1709.5	56.29	PK	27.1	-35.2	48.19	74	-25.81	0	322	Vertical
c	*4626.6	34.83	AV	32.7	-32.0	35.53	54	-18.47	4	386	Horizontal
6	*4636.6	46.35	PK	32.7	-32.0	47.05	74	-26.95	4	386	Horizontal
7	*4637.0	42.53	AV	32.7	-32.0	43.23	54	-10.77	0	372	Vertical
1	4037.0	51.69	PK	32.7	-32.0	52.39	74	-21.61	0	372	Vertical

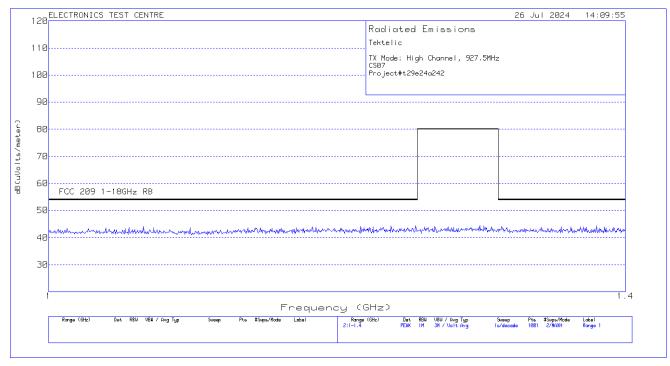

Negative values for Delta indicate compliance.

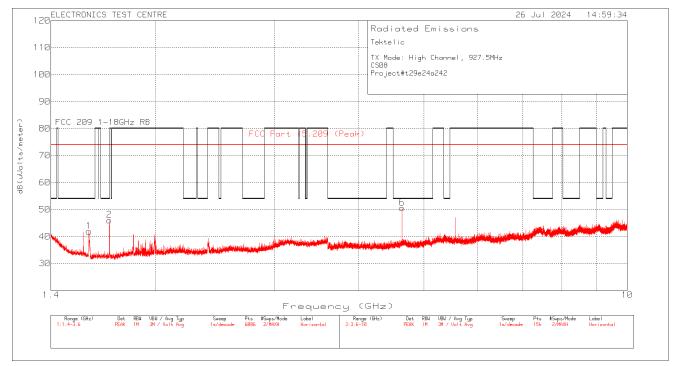
QP: Quasi-Peak Detector, PK: Peak Detector, AV: Average Detector * Spurious Emission in Restricted Band

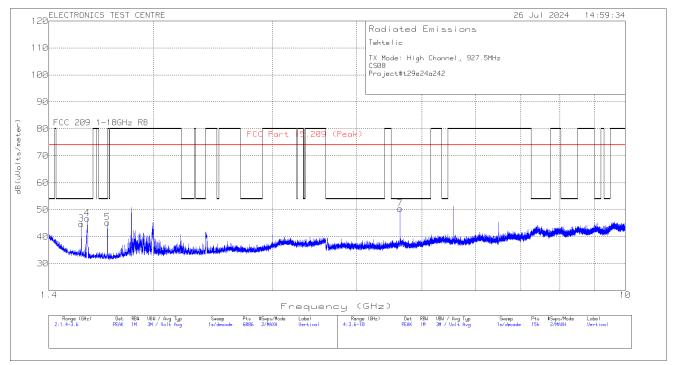

Plot of Radiated Emissions: Parallel



Plot of Radiated Emissions: Perpendicular







120	RELECTRONICS TEST CENTRE 26 Jul 2024 14	4:09:55							
110	Radiated Emissions Tektelic								
100	TX Mode: High Channel, 927.5MHz CS07 Project#t29e24a242								
90	Ø								
80	0								
70	Ø								
60	0 FCC 209 1-186Hz RB								
50	-	he where a descent							
40	0								
30	0								
1	Frequency (GHz)	1.4							
	Ronge (SH2) Det R6N VBN / Avg Typ Sweep Pts #Swps/Mode Label Range (GH2) Det R6N VBN / Avg Typ Sweep Pts #Swps/Mode Labe 1:1-1.4 PEAK IM 3M / Volt Avg Is/docade 1001 2/MAXH Range 1	d d							

2.8.6 Radiated Emissions Data: Enterprise (Both LTE/LoRa transmitting simultaneously with internal antenna)

The emissions data are presented in tabular form, showing turntable azimuth, antenna height and polarization, the uncorrected spectrum analyzer reading, the correction factors applied, the net result, the value of the limit at the frequency investigated, and the Delta between the result and the limit.

Meter Reading in $dB\mu V$ + Antenna Factor in dB/m + Gain/Loss Factor in dB = Corrected Field Strength in $db\mu V/m$.

Delta = Field Strength – Limit

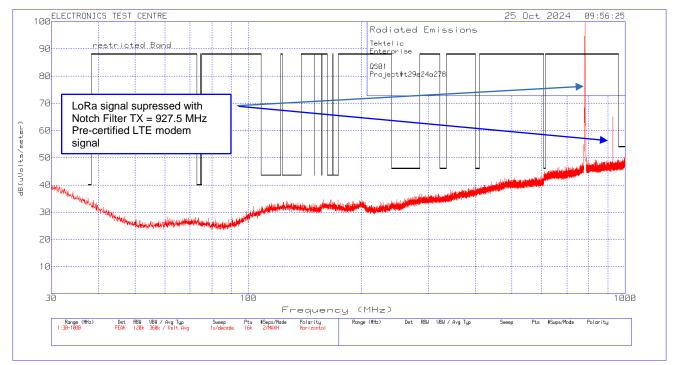
Notes:

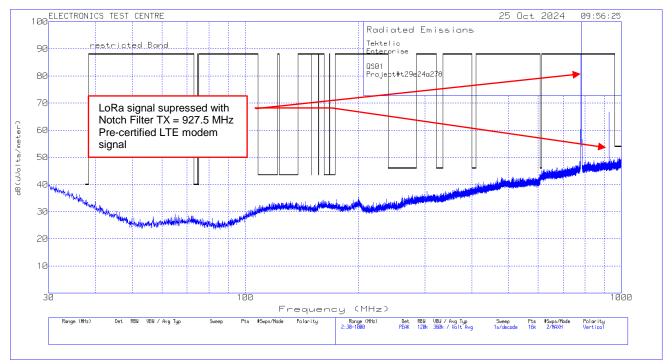
- When a preamp is used, the resulting gain is compensated, producing a negative value for the Cable Loss.
- Measurements reported are the result of adjusting the turntable azimuth and antenna height to obtain the maximum EUT emission. This may produce a different reading than the plot trace. The plot is a Peak Hold function obtained at discreet increments of height and azimuth, while the reported measurement is obtained with the appropriate Quasi Peak or Average detector after the height and azimuth have been adjusted for maximum emission.
- Preliminary scans were performed for all channels in Transmit modes. The High band channel 927.5 MHz was selected as the worst-case condition for detailed examination.
- In Transmit mode, the EUT was assessed up to 10.0 GHz.

Freq. Marker	Freq. [GHz]	Raw reading [dBµv]	Det	Antenna Factor [dB/m]	Loss/ Gain [dB]	Corrected Reading [dBµv/m]	FCC 15.209 Limit [dBµv/m]	Delta [dB]	Azimuth [Deg]	Height [cm]	Polarization
4	4 9550	60.78	AV	27.4	-35	53.18	54	-0.82	4	137	Horizontal
1	1.8552	64.23	PK	27.4	-35	56.63	74	-17.37	4	137	Horizontal
_	E E 657	40.15	AV	34.1	-30.1	44.15	54	-9.85	0	266	Horizontal
2	5.5657	51.01	PK	34.1	-30.1	55.01	74	-18.99	0	266	Horizontal
3		61.31	AV	27.4	-35	53.71	54	-0.29	41	120	Vertical
3	1.8544	66.08	PK	27.4	-35	58.48	74	-15.52	41	120	Vertical
	*4 0202	33.54	AV	32.7	-32	34.24	54	-19.76	59	100	Vertical
4	*4.6382	44.85	PK	32.7	-32	45.55	74	-28.45	59	100	Vertical
5	5 5050	39.49	AV	34.1	-30.1	43.49	54	-10.51	86	289	Vertical
5	5.5658	50.32	PK	34.1	-30.1	54.32	74	-19.68	86	289	Vertical

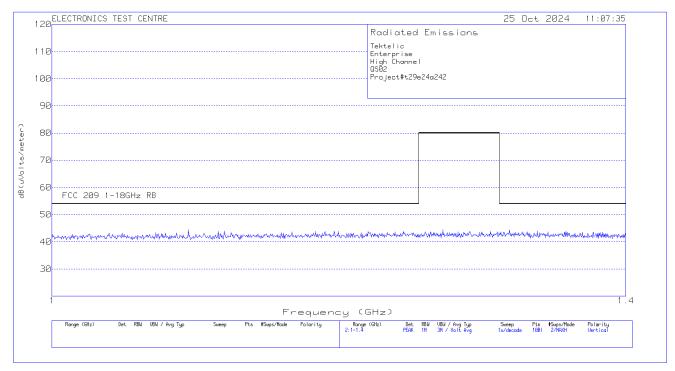
Negative values for Delta indicate compliance.

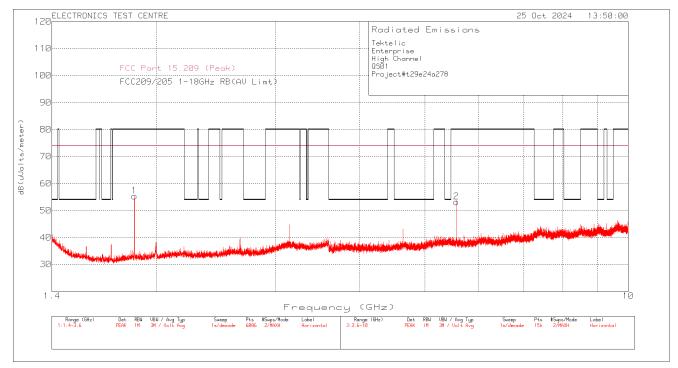
QP: Quasi-Peak Detector, PK: Peak Detector, AV: Average Detector * Spurious Emission in Restricted Band

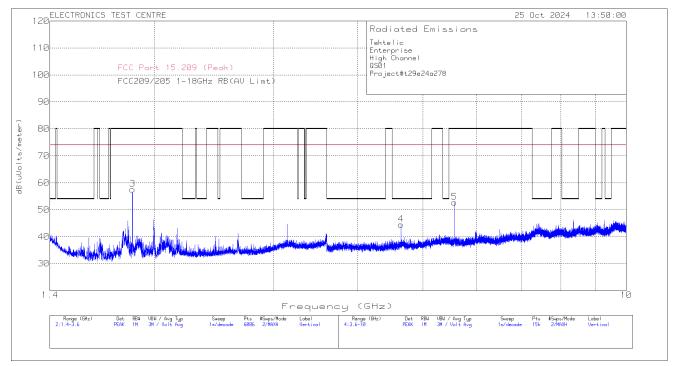

Plot of Radiated Emissions: Parallel


Emission is more than 20 dB below the limit

Plot of Radiated Emissions: Perpendicular


Emission is more than 20 dB below the limit





20 ELECTRONICS TEST CENTRE	
00	High Channel OSB2 Project#t29e24a242
98	
80	
70	
50 FCC 209 1-18GHz RB	
50	
48 minhalaman and marked and the performance	ayay kana waxaa hadana daga hada ka
38	
1	requency (GHz)
Range (6Hz) Det RBW VBV/Avg Typ Sweep Pts #5 1:1-1.4 PEAK IH 3H / Voit Avg 1s/decode 1881 2	ps/Made Polarity WMt Horizontal

2.8.7 Radiated Emissions Data: Photon Variant (Both LTE/LoRa transmitting simultaneously)

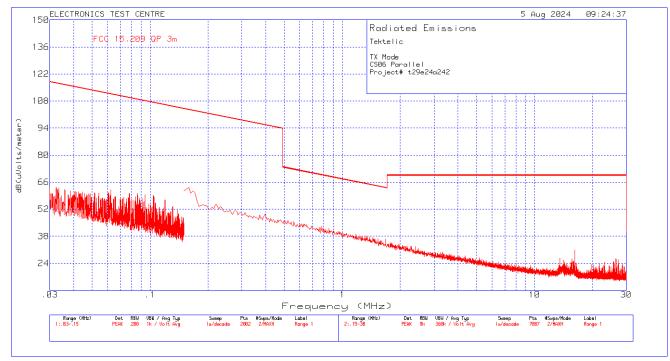
The emissions data are presented in tabular form, showing turntable azimuth, antenna height and polarization, the uncorrected spectrum analyzer reading, the correction factors applied, the net result, the value of the limit at the frequency investigated, and the Delta between the result and the limit.

Meter Reading in dB μ V + Antenna Factor in dB/m + Gain/Loss Factor in dB = Corrected Field Strength in db μ V/m.

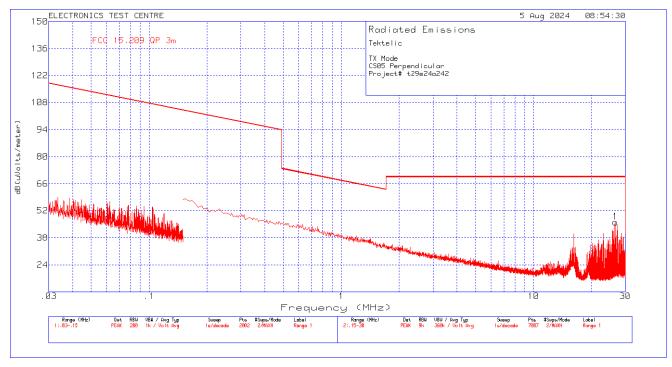
Delta = Field Strength – Limit

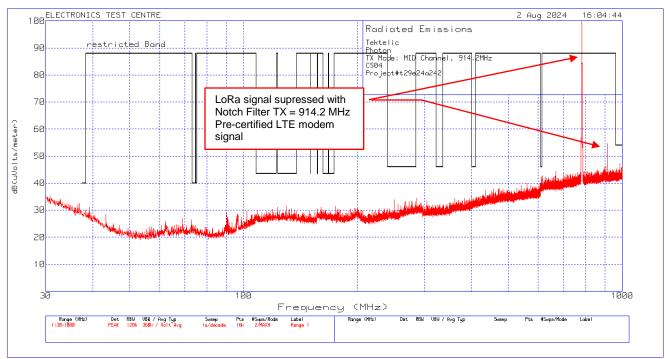
Notes:

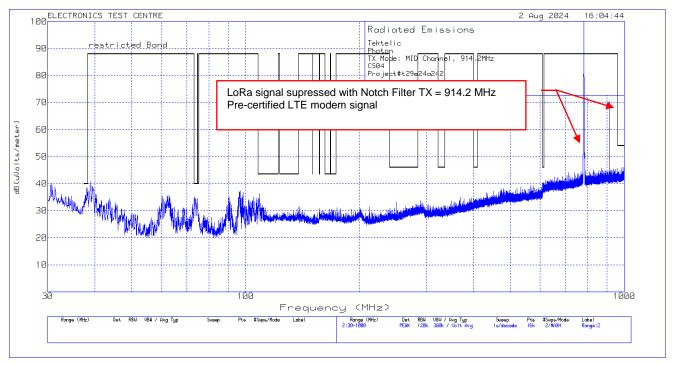
- When a preamp is used, the resulting gain is compensated, producing a negative value for the Cable Loss.
- Measurements reported are the result of adjusting the turntable azimuth and antenna height to obtain the maximum EUT emission. This may produce a different reading than the plot trace. The plot is a Peak Hold function obtained at discreet increments of height and azimuth, while the reported measurement is obtained with the appropriate Quasi Peak or Average detector after the height and azimuth have been adjusted for maximum emission.
- Preliminary scans were performed for all channels in Transmit modes. The MID band channel 914.2 MHz was selected as the worst-case condition for detailed examination.
- In Transmit mode, the EUT was assessed up to 10 GHz.

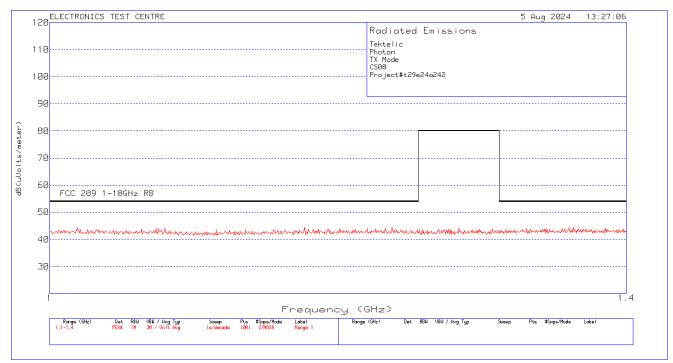

Freq. Marker	Freq. [MHz]	Raw reading [dBµv]	Det	Antenna Factor [dB/m]	Pre amp Gain [dB]	Corrected Reading [dBµv/m]	FCC 15.209 Limit [dBµv/m]	Delta [dB]	Azimuth [Deg]	Height [cm]	Polarization
1	26.6107	35.03	QP	8.7	1.4	45.13	69.56	-24.43	157	109	Perpendicular
1	*1564	33.03	Av	26.1	-33.6	25.53	54	-28.47	192	163	Horizontal
	1004	44.39	Pk	20.1	-33.0	36.89	73.98	-37.09	192	163	Horizontai
2	*2346.3	31.16	Av	28.4	-34.3	25.26	54	-28.74	185	268	Horizontal
2	2340.3	43.41	Pk	20.4	-34.3	37.51	73.98	-36.47		200	nonzontai
3	*1564.1	36.13	Av	26.1	-33.6	28.63	54	-25.37	183	247	Vertical
3	1504.1	45.85	Pk	20.1		38.35	73.98	-35.63	105		
4	*1696.2	40.11	Av	07.4	-35.2	32.01	54	-21.99	210	100	Vertical
4	1090.2	49.65	Pk	27.1	-35.2	41.55	73.98	-32.43	210	100	
-	*0045.0	27.72	Av	00.4	24.2	21.82	54	-32.18		400	Vertical
5	*2345.2	40.64	Pk	28.4	-34.3	34.74	73.98	-39.24	28	103	Vertical
6	*3910.6	35.11	Av	32.5	32.5 -32.7	34.91	54	-19.09	270	139	Horizontal
Ĵ	0010.0	45.7	Pk	02.0	02.7	45.5	73.98	-28.48	270		Tionzontai

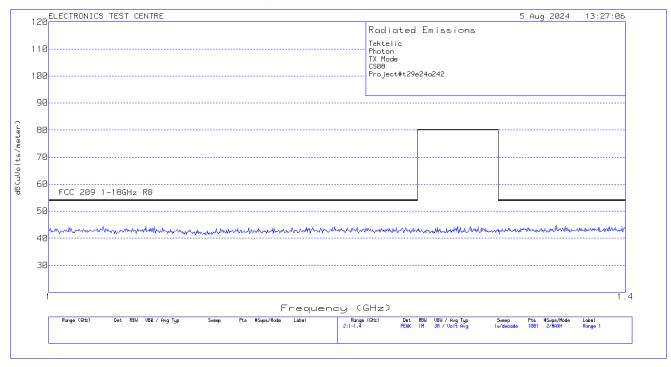
Negative values for Delta indicate compliance.

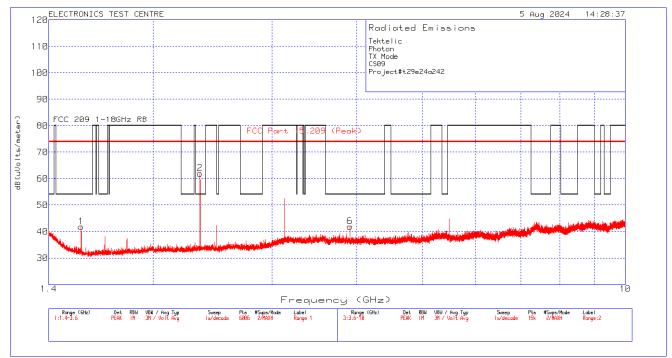

QP: Quasi-Peak Detector, PK: Peak Detector, AV: Average Detector

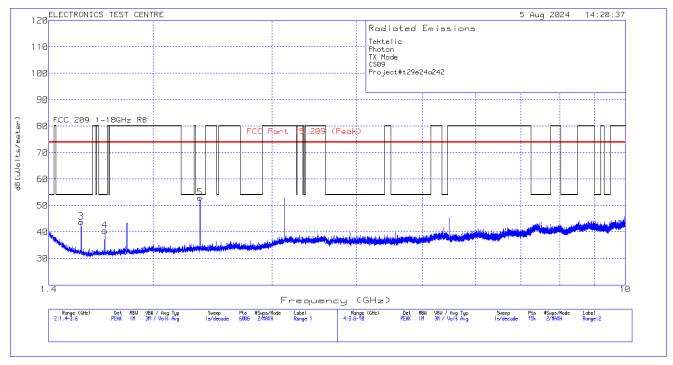

* Spurious Emission in Restricted Band


Plot of Radiated Emissions: Parallel




Plot of Radiated Emissions: Perpendicular





2.9 Radiated Emissions (RX Mode)

Test Lab: Electronics Test Centre, Airdrie

Test Personnel: Janet Mijares

Date: 2024/07/26-30 (23.8° C, 39.7% RH) 2024/08/02 (23.0° C, 33.8% RH) EUT: Kona Enterprise Gateway Kona Photon Gateway

Standard: FCC Part 15.109

Basic Standard: ANSI C63.4: 2014

Class: A

EUT status: Compliant

Frequency (MHz)	FCC Part 15.109 Class A Limit (3m)
30 – 88	49.54 (dBµV/m)
88 – 216	53.98 (dBµV/m)
216 – 960	56.90 (dBµV/m)
Above 960	60.0 (dBµV/m)
Criteria: The radiated emissions proof 3 meters, shall not exceed the lim	roduced by a device, measured at a distance nits as specified.

2.9.1 Test Guidance:

From 30 MHz to 1000 MHz, measurements are performed with a broadband biconilog antenna and a resolution bandwidth of 120 kHz.

Above 1000 MHz, measurements are performed with a DRG Horn antenna or a Standard Gain horn, and a resolution bandwidth of 1 MHz.

The scan is performed at discreet increments of turntable azimuth and stepped antenna height, with peak detector and Max Hold function which are selected in accordance with the applicable standard in order to assure capture of frequencies of interest. Optimization is performed based on the scan data.

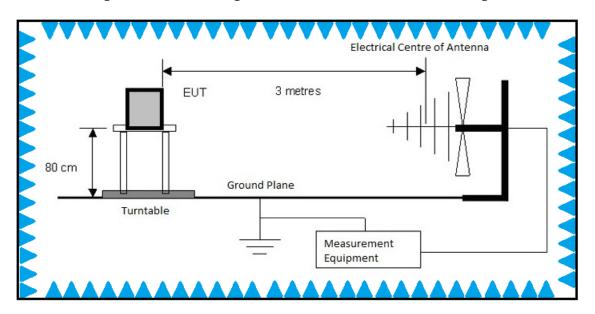
After the pre-scan is completed, the frequencies of interest are optimized. The EUT is rotated in azimuth over 360 degrees and the direction of maximum emission is noted.

Antenna height is varied from 1 - 4 meters at this azimuth to obtain the maximum emission. Then the maximum level is measured with the appropriate detector and recorded. This may produce a different reading than the pre scan trace. Up to 1 GHz, measurements are performed with a Quasi-Peak detector. Above 1 GHz, measurements are recorded with Peak and/or Average detectors, as applicable.

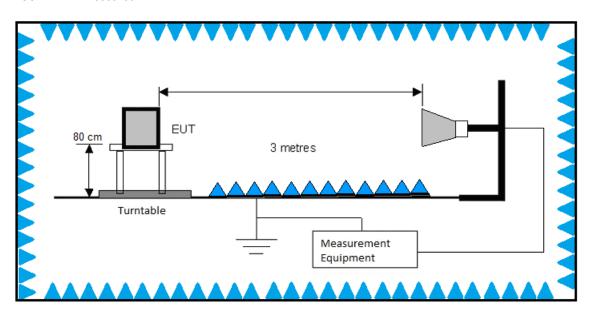
2.9.2 Deviations From The Standard:

There were no deviations from the EUT setup or methodology specified in the standard.

2.9.3 Test Equipment


Testing was performed with the following equipment:

Equipment	Manufacturer Model #		Asset #	Cal. Date (yyyy-mm-dd)	Cal. Due (yyyy-mm-dd)
EMC Software	UL	Ver. 9.5	SWE021	N/A	
EMI receiver	Agilent	N9038A (FW A.22.08)	6906	2024-01-02	2025-01-02
Biconilog Antenna (30 – 1000 MHz)	AR	JB1	6905	2023-11-29	2025-11-29
DRG Horn (1000 – 18000 MHz)	EMCO	3115	19357	2022-10-05	2025-10-05
Humidity/Temp Logger	Extech Ins. Corp.	42270	5892	2024-04-08	2025-04-08
Pre-Amplifier (30 – 1400 MHz)	HP	8447D	9291	2024-01-23	2025-01-23
Low Noise Amplifier (1 – 18 GHz)	MITEQ	JS43-01001800-21- 5P	4354	2024-01-23	2025-01-23
RE Cable below 1GHz	Insulated Wire Inc.	KPS-1501A-3600- KPA-01102006	4419	2024-01-23	2025-01-23
Re Cable Above 1 GHz	A.H. System Inc.	SAC-26G-8.23	6187	2024-01-23	2025-01-23


2.9.4 Test Sample Verification, Configuration & Modifications

To cover the unintentional radiated emission. The EUT was configured in receive mode. Unit was placed at the center of turntable in semi-anechoic chamber 80cm above the ground plane and at a distance of 3m from the test receive antenna.

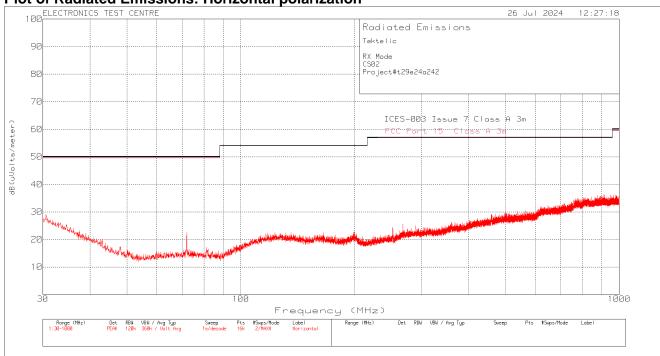
The EUT met the requirements without modification. EUTs were powered with POE and internal battery for Enterprise and Photon respectively.

EUT RX configuration Block Diagram for Radiated Emissions testing:

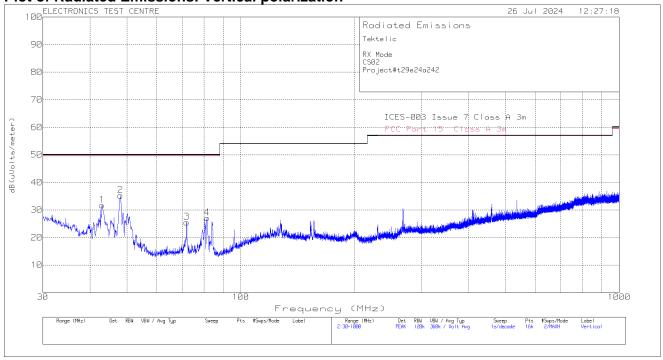
2.9.5 Radiated Emissions Data: Kona Enterprise Gateway

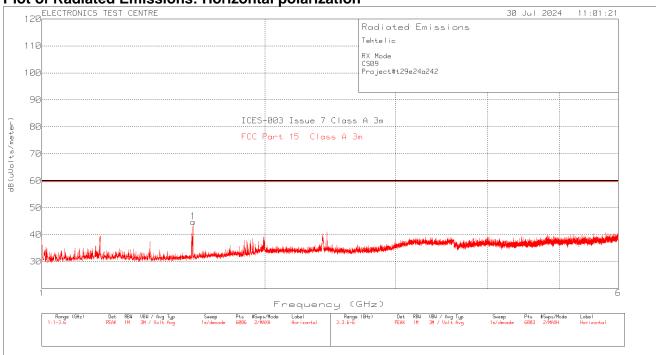
The emissions data are presented in tabular form, showing turntable azimuth, antenna height and polarization, the uncorrected spectrum analyzer reading, the correction factors applied, the net result, the value of the limit at the frequency investigated, and the Delta between the result and the limit.

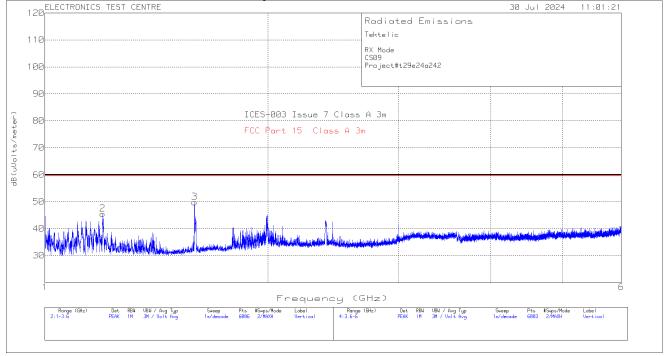
Freq. Marker	Freq. [MHz]	Raw reading [dBµv]	Det	Antenna Factor [dB/m]	Pre amp Gain [dB]	Corrected Reading [dBµv/m]	FCC 15.109 Class A Limit [dBµv/m]	Delta [dB]	Azimuth [Deg]	Height [cm]	Polarization
1	43.06	34.45	QP	15.4	-24.7	25.15	49.54	-24.39	115	100	Vertical
2	48.02	41.62	QP	12.4	-24.6	29.42	49.54	-20.12	274	100	Vertical
3	72.01	38.59	QP	12.3	-24.2	26.69	49.54	-22.85	98	223	Vertical
4	81.41	32.89	QP	11.6	-24.0	20.49	49.54	-29.05	98	177	Vertical
1	1599.6	28.79	AV	26.2	-34.6	20.39	59.5	-39.11	61	369	Horizontal
2	1197.4	30.94	AV	25.0	-35.2	20.74	59.5	-38.76	273	255	Vertical
3	1593.3	31.22	AV	26.2	-34.6	22.82	59.5	-36.68	172	193	Vertical


Meter Reading in $dB_{\mu}V$ + Antenna Factor in dB/m + Gain/Loss Factor in dB = Corrected Field Strength in $db_{\mu}V/m$.

Notes:


- When a preamp is used, the resulting gain is compensated, producing a negative value for the Cable Loss.
- Measurements reported are the result of adjusting the turntable azimuth and antenna height to obtain the maximum EUT emission. This may produce a different reading than the plot trace. The plot is a Peak Hold function obtained at discreet increments of height and azimuth, while the reported measurement is obtained with the appropriate Quasi Peak or Average detector after the height and azimuth have been adjusted for maximum emission the EUT was assessed up to 6.0 GHz.

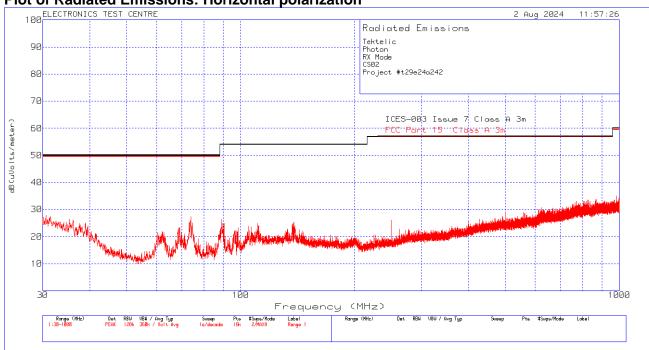

QP: Quasi-peak detector; Av: Average detector

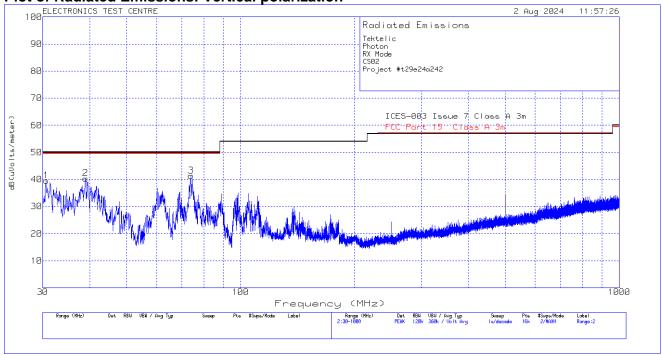

Test Sample: Kona Enterprise Gateway, Kona Photon Gateway FCC ID:2ALEPT0009193

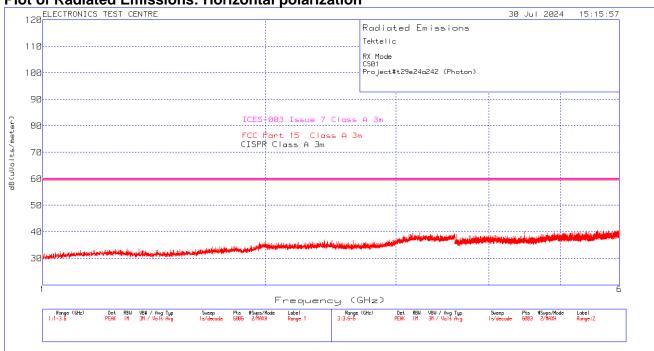
Plot of Radiated Emissions: Horizontal polarization

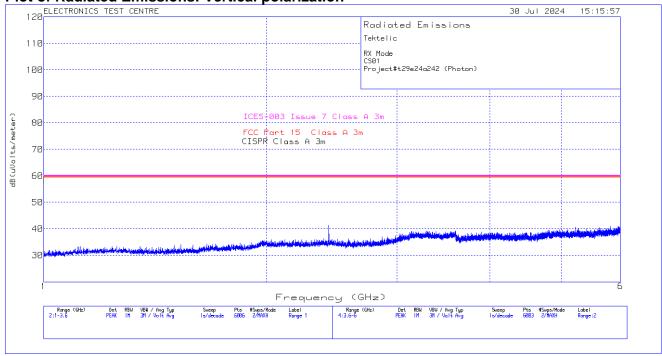
2.9.6 Radiated Emissions Data: Kona Photon Gateway Variant

The emissions data are presented in tabular form, showing turntable azimuth, antenna height and polarization, the uncorrected spectrum analyzer reading, the correction factors applied, the net result, the value of the limit at the frequency investigated, and the Delta between the result and the limit.


Freq. Marker	Freq. [MHz]	Raw reading [dBµv]	Det	Antenna Factor [dB/m]	Pre amp Gain [dB]	Corrected Reading [dBµv/m]	FCC 15.109 Class A Limit [dBµv/m]	Delta [dB]	Azimuth [Deg]	Height [cm]	Polarization
1	30.6355	37.81	QP	24.8	-25	37.61	49.54	-11.93	167	100	Vertical
2	38.9585	44.46	QP	18.5	-24.8	38.16	49.54	-11.38	195	100	Vertical
3	73.9392	51.1	QP	12.2	-24.2	39.1	49.54	-10.44	164	234	Vertical


Meter Reading in dBµV + Antenna Factor in dB/m + Gain/Loss Factor in dB = Corrected Field Strength in dbµV/m.


Notes:


- When a preamp is used, the resulting gain is compensated, producing a negative value for the Cable Loss.
- Measurements reported are the result of adjusting the turntable azimuth and antenna height to obtain the maximum EUT emission. This may produce a different reading than the plot trace. The plot is a Peak Hold function obtained at discreet increments of height and azimuth, while the reported measurement is obtained with the appropriate Quasi Peak or Average detector after the height and azimuth have been adjusted for maximum emission the EUT was assessed up to 6.0 GHz.

QP: Quasi-peak detector

2.10 RF Exposure

Test Lab: Electronics Test Centre, Airdrie

Test Personnel:

Date:

EUT: Kona Enterprise Gateway Kona Photon Gateway

Standard: FCC PART 15.247

EUT status: Exempt from SAR Evaluation

Compliant: RF exposure assessment to be provided in a separate Exhibit.

3.0 TEST FACILITY

3.1 Location

The Kona Enterprise Gateway & Kona Photon Gateway was tested at the Electronics Test Centre laboratory located in Airdrie, Alberta, Canada. The Radio Frequency Anechoic Chamber (RFAC), identified as Chamber 1, has a usable working space measuring 10.6 m long x 7.3 m wide x 6.5 m high.

Measurements taken at this site are accepted by Industry Canada as evidence of conformity per registration file # 2046A. This site is also listed with the FCC under Registration Number CA2046.

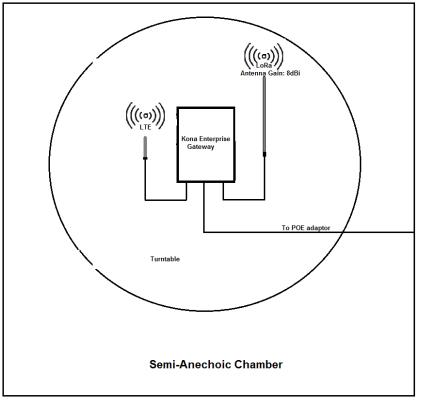
The floor, walls and ceiling consist of annealed steel panels. The walls and ceiling are covered with ferrite tile, augmented by RF absorbant foam material on the end wall nearest the turntable, and on the adjacent walls and the ceiling. The chamber floor supports a 15 cm high internal floor, constructed of annealed steel panels, that forms the ground plane, and is bonded to the chamber walls.

The 3-m diameter turntable is flush-mounted with the floor. A sub-floor cable-way is provided to route cables between the turntable pit and EUT support equipment located in the Control Room. Cables reach the EUT through an opening in the centre of the turntable.

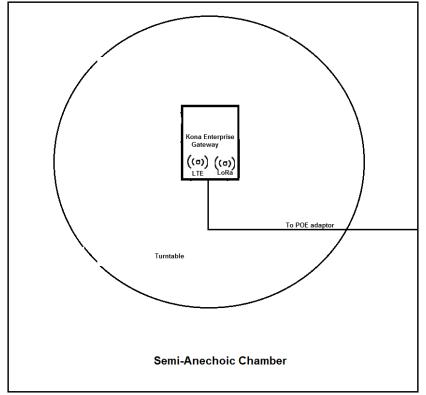
Test instrumentation and EUT support equipment is located in the Control Room, consisting of two shielded vestibules joined together at the side of the main room. Cables are routed through bulkhead panels between the rooms and the test chamber as required. Power feeds are routed into the main room and vestibules through line filters providing at least 100 dB of attenuation between 10 kHz and 10 GHz.

Either floor mounted or table-top equipment can be tested at this facility.

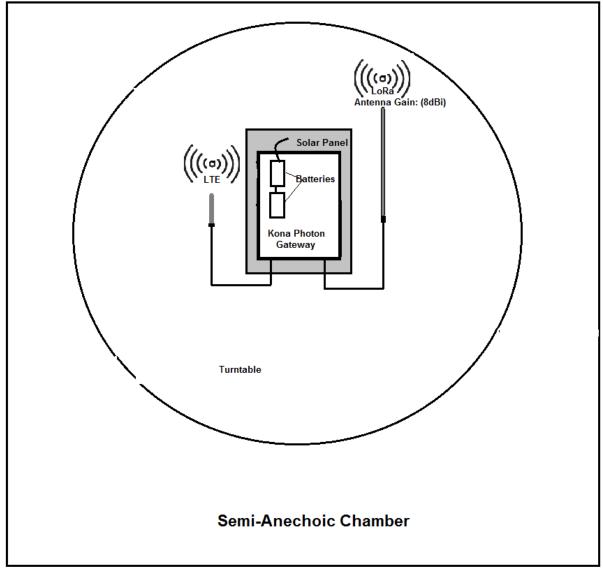
3.2 Grounding Plan


The Kona Enterprise Gateway was placed at the center of the test chamber turntable 80-cm high below 1GHz and at 1.5m high above 1 GHz for transmits mode and 80cm high for RX mode from ground reference plane. The Kona Enterprise Gateway & Kona Photon Gateway earth ground is connected to GRP.

3.3 Power Supply


Power supplied via POE for Kona Enterprise Gateway and Kona Photon Gateway is powered via internal battery.

Appendix A – Test Setup Block Diagram


TX MODE with External Antenna

TX MODE with Internal Antenna

TX Mode with External Antenna

End of Document