

Page 1 of 58

Verified code: 171508

Test Report

Report No.: E202405222827-2

Customer:	Wet Sounds Inc.			
Address:	2975 Louise Street, ST Rosenbe	erg, TX 77471		
Sample Name:	MAL M-LINK			
Sample Model:	MAL M-LINK			
Receive Sample Date:	May.27,2024			
Test Date:	May.31,2024 ~ Jun.13,2024			
Reference Document:	CFR 47, FCC Part 15 Subpart C RADIO FREQUENCY DEVICE	ES:Subpart C—Inte	ntional Radiators	
Test Result:	Pass			
Prepared by: Wa	n. Wawaa Reviewed by:	Un Unoting	Approved by:	Xiao Liang
W	Ven Wenwen	Wu Haoting	C. C	Xiao Liang
		GRG METRO	LOGY & TEST G	ROUP CO., LTD
			Issued Date:	2024-07-31
	GRG METROLOGY & T	EST GROUP CO	ATD	
Address: No Tel: (+86)	400-602-0999 FAX: (+86)	angpu Avenue, Guar 020-38698685 W	ngzhou, Guangdon eb: http://www.gi	g, China gtest.co

Statement

1. The report is invalid without "special seal for inspection and testing"; some copies are invalid; The report is invalid if it is altered or missing; The report is invalid without the signature of the person who prepared, reviewed and approved it.

2. The sample information is provided by the client and responsible for its authenticity; The content of the report is only valid for the samples sent this time.

3. When there are reports in both Chinese and English, the Chinese version will prevail when the language problems are inconsistent.

4. If there is any objection concerning the report, please inform us within 15 days from the date of receiving the report.

5. This testing report is only for scientific research, teaching, internal quality control, etc.

TABLE OF CONTENTS

1.	TEST RI	ESULT SUMMARY		6
2.	GENER	AL DESCRIPTION OF EUT		7
	2.1	APPLICANT		7
	2.2	MANUFACTURER		7
	2.3	FACTORY		7
	2.4	BASIC DESCRIPTION OF EQUIPMENT UNDER TEST		7
	2.5	TEST OPERATION MODE	, <u>, , , , , , , , , , , , , , , , , , </u>	8
	2.6	LOCAL SUPPORTIVE	<u> </u>	8
	2.7	CONFIGURATION OF SYSTEM UNDER TEST		9
	2.8	DUTY CYCLE		9
3.	LABOR	ATORY AND ACCREDITATIONS		11
	3.1	LABORATORY		11
	3.2	ACCREDITATIONS		11
4.	MEASU	REMENT UNCERTAINTY		12
5.	LIST OF	USED TEST EQUIPMENT AT GRGT		13
6.	E.U.T. T	EST CONDITIONS		14
7.	20dB BA	NDWIDTH		15
	7.1	LIMITS		15
	7.2	TEST PROCEDURES		15
	7.3	TEST SETUP		15
	7.4	TEST RESULTS		15
8.	CARRIE	R FREQUENCIES SEPARATED		18
	8.1	LIMITS		18
	8.2	TEST PROCEDURES		18
	8.3	TEST SETUP		18
	8.4	TEST RESULTS		18
9.	HOPPIN	G CHANNEL NUMBER		19
	9.1	LIMITS		19
	9.2	TEST PROCEDURES		19
	9.3	TEST SETUP		19
	9.4	TEST RESULTS		19
10.	DW	ELL TIME		20
	10.1	LIMITS		20
	10.2	TEST PROCEDURES	/	20
	10.3	TEST SETUP		20
	10.4	TEST RESULTS	<u> </u>	20
11.	CO	NDUCTED EMISSION		24
	11.1	LIMITS		24
	11.2	TEST PROCEDURES		24
	11.3	TEST SETUP		25
	11.4	DATA SAMPLE		25

20

	11.5	TEST RESULTS		26
12.	MA	XIMUM PEAK OUTPUT POWER		28
	12.1	LIMITS		28
	12.2	TEST PROCEDURES	<u> </u>	28
	12.3	TEST SETUP		28
	12.4	TEST RESULTS		28
13.	CO	NDUCTED BAND EDGES AND SPURIOUS EMISSIONS		29
	13.1	LIMITS		29
	13.2	TEST PROCEDURES	,	29
	13.3	TEST SETUP	<u>>)</u>	29
	13.4	TEST RESULTS		29
14.	RA	DIATED SPURIOUS EMISSIONS		37
	14.1	LIMITS		37
	14.2	TEST PROCEDURES		37
	14.3	TEST SETUP		
	14.4	DATA SAMPLE		42
	14.5	TEST RESULTS	(3%)	44
15.	RE	STRICTED BANDS OF OPERATION		52
	15.1	LIMITS		52
	15.2	TEST PROCEDURES		53
	15.3	TEST SETUP		53
	15.4	TEST RESULTS		54
API	PENDIX	A. PHOTOGRAPH OF THE TEST CONNECTION DIAGRAM		58
API	PENDIX	B. PHOTOGRAPH OF THE EUT		58

—Blank space below this page—

_

REPORT ISSUED HISTORY

Report Version	Report No.	Description	Compile Date
1.0	E202405222827-2	Original Issue	2024-07-31
		Č*/	
	-Blank space	below this page——	

1. TEST RESULT SUMMARY

FCC 47 CFR Part 15 Subpart C 15.247, ANSI C63.10-2020 KDB 558074 D01 15.247 measurement guidance v05r02				
Standard	Item	Limit / Severity	Result	
	Antenna Requirement	Section 15.203	PASS	
	20dB Bandwidth	Section 15.247(a)(1)	PASS	
	Carrier Frequencies Separated	encies Separated Section 15.247(a)(1) PAS	PASS	
<u> </u>	Hopping Channel Number Section 15.2	Section 15.247(a)(1)(ii)	PASS	
ECC 47 CER Part 15	Dwell Time	Section 15.247(a)(1)(iii)	PASS	
Subpart C (15.247)	Maximum Peak Output Power	Section 15.247(b)(1)	PASS	
	Conducted Emission	Section 15.207	PASS	
	Conducted band edges and Spurious Emission	Section 15.209 &15.247(d)	PASS	
	Radiated Spurious Emission	Section 15.209 &15.247(d)	PASS	
	Restricted bands of operation	Section 15.247 (d) &15.205	PASS	

Note: The EUT antenna is PCB printed antenna. The max gain of antenna is 2.30dBi. which accordance 15.203.is considered sufficient to comply with the provisions of this section.

2. **GENERAL DESCRIPTION OF EUT**

2.1 APPLICANT

Name: Wet Sounds Inc. Address: 2975 Louise Street, ST Rosenberg, TX 77471

2.2 MANUFACTURER

Name:	Wet Sounds Inc.
Address:	2975 Louise Street, ST Rosenberg, TX 77471

2.3 FACTORY

Name:	Dongguan Longjoin Electronics Co. Ltd.
Address:	Industrial road No.10, Shuilang Village, Dalingshan Town, Dongguan City,
	Guangdong Province, PRC

2.4 BASIC DESCRIPTION OF EQUIPMENT UNDER TEST

of the results and/or conclusions.

Equipment:	MAL M-LINK
Model No.:	MAL M-LINK
Adding Model:	
Trade Name:	WET SOUNDS
FCC ID:	2AT9N-MALM-LINK
Power Supply:	DC 12V
Frequency Range:	2403.58MHz - 2477.31MHz
Maximum conducted output Power:	16.91dBm
Type of Modulation:	FSK
Antenna Specification:	PCB printed antenna: with maximum 2.30dBi gain
Temperature Range:	-20°C~+80°C
Hardware Version:	A0850
Software Version:	v2.7.0 -580
Sample No:	E202405222827-0001, E202405222827-0002
Note:	The basic description of the EUT is provided by the applicant. This report is made Solely yon the basis of such data and/or information.We accept no responsibility for the authenticity and completeness of the above data and information and the validity

Page 7 of 58

Channel Fi No. 00 00 04	Trequency (MHz) 2403.58 2400.72	Channel No.	Frequency (MHz)	Channel No.	Frequency (MH ₇)	Channel	Frequency
No. 00 1 04 1	(MHz) 2403.58 2400.72	No. 01	(MHz)	No.	(MH ₇)		
00 04	2403.58	01				No.	(MHz)
04	2400 72	~1	2405.12	02	2406.66	03	2408.19
	2409.75	05	2411.26	06	2412.80	07	2414.34
08	2415.87	09	2417.41	10	2418.94	11	2420.48
12	2422.02	13	2423.55	14	2425.09	15	2426.62
16	2428.16	17	2429.70	18	2431.23	19	2432.77
20	2434.30	21	2435.84	22	2437.38	23	2438.91
24	2440.45	25	2441.98	26	2443.52	27	2445.06
28	2446.59	29	2448.13	30	2449.66	31	2451.20
32	2452.74	33	2454.27	34	2455.81	35	2457.34
36	2458.88	37	2460.42	38	2461.95	39	2463.49
40	2465.02	41	2466.56	42	2468.10	43	2469.63
44	2471.17	45	2472.70	46	2474.24	47	2475.78
48	2477.31	/	1 / 🔊	/ /	/	/	/

2.5 TEST OPERATION MODE

No.	Mode No.	Description of the modes			
>	1	EUT fixed frequency transmitting			
	2	EUT hopping frequency transmitting			

2.6 LOCAL SUPPORTIVE

No.	Name of equipment	Manufacturer	Model	Serial number	Note	
А	Notebook	DELL Latitude3420 4KBCGL3		7#		
В	Test board	/	/	/	1	
C	DC source	Keysight	E36131A	(J)	, (
D	Adapter	Shenzhen shi yingqin electronic co.,ltd.	YQ-1202000Z		/	

No.	Cable Type	Qty.	Shielded Type	Ferrite Core(Qty.)	Length
5)1	Serial cable	1	No	0	0.2m
2	USB cable	1	No	0	1.0m
3	DC cable	1	No	0	1.0m

2.7 CONFIGURATION OF SYSTEM UNDER TEST

For 20dB bandwidth, Carrier Frequencies Separated, Hopping Channel Number, Dwell Time, Maximum Peak Output Power, Conducted band edges and Spurious Emission measurement:

2.8 DUTY CYCLE

EUT Name	MAL M-LINK	Model	MAL M-LINK
Environmental Conditions	26.2°C/56%RH/101.0kPa	Test Voltage	DC 12V
Tested By	Huang tianmei	Tested Date	2024-06-04

Page 10 of 58

0

(A)				A.
Frequency [MHz]	ON Time [ms]	Period [ms]	DC [%]	T [s]
2440.45	4.65	5.55	83.78	0.00465

3. LABORATORY AND ACCREDITATIONS

3.1 LABORATORY

The tests & measurements refer to this report were performed by Shenzhen EMC Laboratory of GRG METROLOGY & TEST GROUP CO., LTD.

٨dd	Address: No.1301 Guanguang Road Xinlan Community, Guanlan Street, Longhua
Auu	. District Shenzhen, 518110, People's Republic of China

P.C.	:	518110
Tel	:	0755-61180008
Fax	:	0755-61180008

3.2 ACCREDITATIONS

Our laboratories are accredited and approved by the following approval agencies according to GB/T 27025(ISO/IEC 17025:2017)

USA A2LA(Certificate #2861.01)

The measuring facility of laboratories has been authorized or registered by the following approval agencies.

Canada ISED (Company Number: 24897, CAB identifier:CN0069)

USA FCC (Registration Number: 759402, Designation Number:CN1198)

Copies of granted accreditation certificates are available for downloading from our web site, <u>http://www.grgtest.com</u>

Page 12 of 58

4. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement		Frequency	Uncertainty	
	X	9kHz~30MHz	$4.4 dB^{1)}$	
	Y	9kHz~30MHz	4.4dB ¹⁾	
	Z	9kHz~30MHz	4.4dB ¹⁾	
15	Horizontal	30MHz~200MHz	4.6dB ¹⁾	
		200MHz~1000MHz	4.8dB ¹⁾	
Radiated Emission		1GHz~18GHz	5.0dB ¹⁾	
		18GHz~26.5GHz	5.2dB ¹⁾	
	S.	30MHz~200MHz	4.7dB ¹⁾	
		200MHz~1000MHz	$4.7 dB^{1)}$	
	Vertical	1GHz~18GHz	5.1dB ¹⁾	
		18GHz~26.5GHz	5.4dB ¹⁾	

Measurement	Uncertainty
RF frequency	6.0×10 ⁻⁶
RF power conducted	0.80dB
Power spectral density conducted	0.80dB
Occupied channel bandwidth	0.40dB
Unwanted emission, conducted	0.70dB
Humidity	6.0%
Temperature	2.0°C

Note: ¹⁾This uncertainty represents an expanded uncertainty expressed at approximately the 95%.

This uncertainty represents an expanded uncertainty factor of k=2.

Page 13 of 58

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Conducted Emissions				
EMI TEST RECEIVER	R&S	ESCI	100783	2024-08-11
LISN(EUT)	R&S	ENV216	101543	2024-08-03
Test S/W	EZ	CCS-3A1-CE		
Hopping Channel Number Emission & Conducted ba	r & Dwell Time & 20 nd edges and Spurio) dB Bandwidth & ous Emission & Ca	Conducted band ed rrier Frequencies S	lges and Spurious eparated
Spectrum Analyzer	R&S	FSW43	102072	2024-07-09
Automatic power test unit	TONSCEND	JS0806-2	21B8060365	2024-12-28
BT/WIFI System	Tonscend	JS1120-3	/	/
Radiated Spurious Emissi	on & Restricted ban	ds of operation		
Test S/W	Tonscend	JS32-RE/5.0.0		
Loop Antenna	Schwarzbeck	FMZB 1513-60	1513-60-56	2024-07-15
Bi-log Antenna	Schwarzbeck	VULB9160	VULB9160-3402	2024-10-06
Horn Antenna	Schwarzbeck	BBHA 9120D	02143	2024-09-23
Test Receiver	R&S	ESR26	101758	2024-09-22
Board-Band	Schwarzbeck	BBHA 9170	BBHA 9170-497	2024-09-18
Amplifier	SHIRONG	DLNA-30M1G-	20200928001	2025-01-30
Amplifier	Tonscend	TAP01018048	AP20E8060075	2025-03-01
Amplifier	Tonscend	TAP184050	AP20E806071	2025-03-01
Amplifier	SHIRONG	DLNA-1G18G-	20200928005	2024-08-17
Maximum Peak Output Pe	ower			
Pulse power sensor	Anritsu	MA2411B	1126150	2025-01-11
Power meter	Anritsu	ML2495A	1204003	2025-01-11

5. LIST OF USED TEST EQUIPMENT AT GRGT

Note: The calibration interval of the above test instruments is 12 months.

6. E.U.T. TEST CONDITIONS

Test frequencies:

According to the 15.31(m) Measurements on intentional radiators or receivers, other than TV broadcast receivers, shall be performed and. if required. reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table:

Frequency range over which device operates	Number of frequencies	Location in the range of operation
1 MHz or less		Middle
1 to 10 MHz	2	1 near top and 1 near bottom
More than 10 MHz	3	1 near top 1 near middle and 1 near bottom

EUT channels and frequencies list:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2403.58	17	2429.70	34	2455.81
1	2405.12	18	2431.23	35	2457.34
2	2406.66	19	2432.77	36	2458.88
3	2408.19	20	2434.30	37	2460.42
4	2409.73	21	2435.84	38	2461.95
5	2411.26	22	2437.38	39	2463.49
6	2412.80	23	2438.91	40	2465.02
7	2414.34	24	2440.45	41	2466.56
8	2415.87	25	2441.98	42	2468.10
9	2417.41	26	2443.52	43	2469.63
10	2418.94	27	2445.06	44	2471.17
11	2420.48	28	2446.59	45	2472.70
12	2422.02	29	2448.13	46	2474.24
13	2423.55	30	2449.66	47	2475.78
14	2425.09	31	2451.20	48	2477.31
15	2426.62	32	2452.74	S,	/
16	2428.16	33	2454.27	/	/

Test frequency is the lowest channel: 0 frequency(2403.58MHz), middle channel: 24 frequency (2440.45MHz) and highest channel: 48 frequency(2477.31MHz).

7. 20dB BANDWIDTH

7.1 LIMITS

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

7.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT, and then connect a low loss RF cable from antenna port to the spectrum analyzer.
- 2) Set the spectrum analyzer as RBW=30 kHz, VBW=100 kHz, Span=6MHz, Sweep = auto. Allow the trace to stabilize, record 20dB bandwidth value
- 3) Repeat until all the test channels are investigated.

7.3 TEST SETUP

7.4 TEST RESULTS

Environment: 26.2°C/56%RH/101.0kPa Tested By: Huang tianmei

Voltage: DC 12V Date: 2024-06-04 to 2024-06-13

Channel	Frequency (MHz)	20 dB Bandwidth (MHz)
Lowest	2403.58	2.454
Middle	2440.45	2.370
Highest	2477.31	2.400

Page 16 of 58

Result plot as follows:

Lowest Channel

m M CF 2.403 58 GHz 00.0 kHz/ Span 6.0 MHz 1001 p V-Value -10.58 dBm 9.77 dBm -0.26 dB 2.402 344 GHz 2.403 61 GHz 2.454 MHz 11:24:55 04.06.2024 Middle Channel MultiVie Offse An 1001 pts 600.0 kHz/ - 2.440 45 G⊦ Span 6.0 MHz Y-Value -9.02 dBm 11.00 dBm -0.86 dB 11:27:30 04.06.2024

Ē

AS A

Highest Channel

13:51:55 13.06.2024

Page 18 of 58

8. CARRIER FREQUENCIES SEPARATED

8.1 LIMITS

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

8.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2) Set the spectrum analyzer start frequency = 2439.685MHz, stop frequency = 2442.745MHz.
- 3) Set the spectrum analyzer as RBW=300kHz, VBW=300kHz, Sweep = auto (
- 4) Use the marker-delta function to mark hopping channel carrier frequencies and record the channel separation.

8.3 TEST SETUP

8.4 TEST RESULTS

Environment: 26.2°C/56%RH/101.0kPa Tested By: Huang tianmei

Voltage: DC 12V Date: 2024-06-13

Channel Separation (MHz)	Two-thirds of the 20 dB Bandwidth (MHz)	Channel Separation Limit	Result	
1.654	1.636	> Two-thirds of the 20 dB Bandwidth	Pass	

Note: 20 dB Bandwidth=2.454MHz, 2/3*2.454=1.636MHz.

Result plot as follows:

Measurement of Channel Separation

9. HOPPING CHANNEL NUMBER

9.1 LIMITS

Regulation 15.247 (a) (1)(iii) Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

9.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 2) Set the spectrum analyzer as RBW=300kHz, VBW=300kHz.
- 3) Set the spectrum analyzer: start frequency = 2400MHz. stop frequency = 2483.5MHz. Submit the test result graph.

9.3 TEST SETUP

EUT Spectrum analyzer

9.4 TEST RESULTS

Environment: 26.2°C/56%RH/101.0kPa Tested By: Huang tianmei Voltage: DC 12V Date: 2024-06-04

FSK 49 ≥ 15 PASS	Type of Modulation	Result (No. of CH)	Limit (No. of CH)	Result
	FSK	49	≥15	PASS

Att	40 dB SW	T 1.01 ms	● VBW 3	OO kHz N	lode Auto Sweep	1				o 10k Mie
Trequency of	*CCP									
tu dem	and an an									
0 dBm	M. A. M. M.	mmm	rym	mr	mm	mmm	MUMMUM	mmm	mm	MM
			`	· · ·					· ·	
) dBm		_	_							
10 dBm			_							
ſ I										<u>}</u>
20 dBm-										l.
										1 7
30 dBm										
40 dBm										
Ho upin										
50 dBm										
60 dBm										
2.4 GHz				1001 pt	s	8.	35 MHz/			2.483.5.6

Page 20 of 58

10. DWELL TIME

10.1 LIMITS

Regulation 15.247(a)(1)(iii) Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

10.2 TEST PROCEDURES

Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 1) Set spectrum analyzer span = 0. centered on a hopping channel;
- 2) Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Detector Function = Peak. Trace = Max hold;
- 3) Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.). Repeat this test for each variation.
- 4) Packet maximum duration of the pulse times 0.4s*49=19.6s, repeat this test for each channel.

10.3 TEST SETUP

10.4 TEST RESULTS

Environment: 26.2°C/56%RH/101.0kPa Tested By: Huang tianmei

The test period: $T = 0.4s \times 49$ Channel = 19.6s

Voltage: DC 12V Date: 2024-06-04

Frequency (MHz)	Burst Width (ms)	Total hopping NO.	Result(s)	Limit(s)	Verdict
2403.58	4.638	73	0.339	≤0.4	PASS
2440.45	4.638	73	0.339	≤0.4	PASS
2477.31	4.639	73	0.339	≤0.4	PASS

Note: Results=burst width(ms)*total hopping No.=4.638ms*73=0.339s

Please refer the graph as below:

4

2403.58MHz

16:11:49 04.06.2024

16:13:44 04.06.2024

2

2440.45MHz

16:16:31 04.06.2024

 MultiView
 Spectrum

 Rel Level 30:00 dbm
 Offset 10.85 db = RBW 500 Htt

 * Att
 A db = SWT

 1 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 1 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 1 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 1 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm</tdm
 <td>Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

 2 dbm
 Offset 10.85 db = RBW 30 Htt

16:16:54 04.06.2024

2477.31MHz

2

11. CONDUCTED EMISSION

11.1 LIMITS

Frequency range	Limits	(dBµV)
Frequency range	Quasi-peak	Average
$150 \text{kHz} \sim 0.5 \text{MHz}$	66~56	56~46
0.5MHz~5MHz	56	46
5MHz~30MHz	60	50

11.2 TEST PROCEDURES

Procedure of Preliminary Test

For measurement of the disturbance voltage the equipment under test (EUT) is connected to the power supply mains and any other extended network via one or more artificial network(s). An EUT, whether intended to be grounded or not, and which is to be used on a table is configured as follows:

- Either the bottom or the rear of the EUT shall be at a controlled distance of 40 cm from a reference ground plane. This ground plane is normally the wall or floor of a shielded room. It may also be a grounded metal plane of at least 2 m by 2 m. This is physically accomplished as follows:

1) Place the EUT on a table of non-conducting material which is at least 80 cm high. Place the EUT so that it is 40 cm from the wall of the shielded room, or

2) place the EUT on a table of non-conducting material which is 40 cm high so that the bottom of the EUT is 40 cm above the ground plane;

- All other conductive surfaces of the EUT shall be at least 80 cm from the reference ground plane;

- The EUT are placed on the floor that one side of the housings is 40 cm from the vertical reference ground plane and other metallic parts;

- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth forming a bundle 30 cm to 40 cm long, hanging approximately in the middle between the ground plane and the table.

- I/O cables that are connected to a peripheral shall be bundled in the centre. The end of the cable may be terminated if required using correct terminating impedance. The total length shall not exceed 1 m.

The test mode(s) described in Item 2.5 were scanned during the preliminary test. After the preliminary scan, we found the test mode described in Item 2.5 producing the highest emission level. The EUT configuration and cable configuration of the above highest emission levels were recorded for reference of the final test.

Procedure of Final Test

EUT and support equipment were set up on the test bench as per the configuration with highest emission level in the preliminary test. A scan was taken on both power lines, recording at least the six highest emissions. Emission frequency and amplitude were recorded into a computer in which correction factors were used to calculate the emission level and compare reading to the applicable limit. The test data of the worst-case condition(s) was recorded.

Page 25 of 58

11.3 TEST SETUP

11.4 DATA SAMPLE

Cal	Frequency (MHz)	QuasiPeak Reading (dBuV)	Average Reading (dBuV)	Correction Factor (dB)	QuasiPeak Result (dBuV)	Average Result (dBuV)	QuasiPeak Limit (dBuV)	Average Limit (dBuV)	QuasiPeak Margin (dB)	Average Margin (dB)	Remark (Pass/Fail)
	X.XXXX	32.69	25.65	11.52	44.21	37.17	65.78	55.79	-21.57	-18.62	Pass

= Insertion loss of LISN + Cable Loss Factor

= Quasi-peak Reading/ Average Reading + Factor = Limit stated in standard Result

Limit

= Result (dBuV) – Limit (dBuV) Margin

11.5 TEST RESULTS

Note: Pre-scan all test mode, recorded the worst case mode 1 middle channel test results in the report.

EUT Name	MAL M-LINK	Model	MAL M-LINK
Environmental Conditions	25.6°C/66%RH/101.0kPa	Test Mode	Mode 1
Tested By	Wen wenwen	Line	L
Tested Date	2024-05-31	Test Voltage	AC 120V/60Hz

(The chart below shows the highest readings taken from the final data.)

REMARKS: L = Live Line

No	Eroquopey	OuaciPoak	Average	Correction	QuasiBook	Average	QuasiBaak	Average	QuasiBaak	Average	Remark
110.	Frequency	reading	reading	factor	result	result	limit	limit	margin	margin	rvemark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1500	43.04	22.38	9.75	52.79	32.13	65.99	56.00	-13.20	-23.87	Pass
2	0.4940	34.32	25.02	9.69	44.01	34.71	56.10	46.10	-12.09	-11.39	Pass
3*	3.7060	37.07	32.97	9.83	46.90	42.80	56.00	46.00	-9.10	-3.20	Pass
4	4.3260	37.85	32.55	9.75	47.60	42.30	56.00	46.00	-8.40	-3.70	Pass
5	20.6980	42.83	30.55	10.13	52.96	40.68	60.00	50.00	-7.04	-9.32	Pass
6	21.6220	41.06	35.66	10.14	51.20	45.80	60.00	50.00	-8.80	-4.20	Pass

EUT Name	MAL M-LINK	Model	MAL M-LINK
Environmental Conditions	25.6°C/66%RH/101.0kPa	Test Mode	Mode 1
Tested By	Wen wenwen	Line	N
Tested Date	2024-05-31	Test Voltage	AC 120V/60Hz
\frown			

(The chart below shows the highest readings taken from the final data.)

REMARKS: N = Neutral Line.

No	Frequency	QuasiPeak	Average	Correction	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1580	42.74	26.97	9.68	52.42	36.65	65.56	55.57	-13.14	-18.92	Pass
2	0.4860	34.76	26.77	9.68	44.44	36.45	56.24	46.24	-11.80	-9.79	Pass
3*	3.7100	37.19	33.29	9.81	47.00	43.10	56.00	46.00	-9.00	-2.90	Pass
4	4.3260	38.15	32.85	9.75	47.90	42.60	56.00	46.00	-8.10	-3.40	Pass
5	20.7060	39.76	32.16	10.24	50.00	42.40	60.00	50.00	-10.00	-7.60	Pass
6	21.3180	41.07	22.10	10.25	51.32	32.35	60.00	50.00	-8.68	-17.65	Pass

Page 28 of 58

12. MAXIMUM PEAK OUTPUT POWER

12.1 LIMITS

Regulation 15.247 (b)(1)For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

12.2 TEST PROCEDURES

- 1) Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the power meter and enable the EUT transmit continuously.
- 2) Keep the EUT in transmitting at lowest, middle and highest channel individually. Record the max value.

12.3 TEST SETUP

12.4 TEST RESULTS

Environment: 26.2°C/56%RH/101.0kPa Tested By: Huang tianmei

Voltage: DC 12V

Date: 2024-06-04

			9 7		
Test Channel	Fundamental Frequency (MHz)	Maximum conducted Output Power(dBm)	Limit (dBm)	Peak/ Average	Pass/Fail
Lowest	2403.58	16.78			Pass
Middle	2440.45	16.91	20.97	Peak	Pass
Highest	2477.31	12.05		S°/	Pass

13. CONDUCTED BAND EDGES AND SPURIOUS EMISSIONS

13.1 LIMITS

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB.

13.2 TEST PROCEDURES

Test procedures follow KDB 558074 D01 DTS Measurement Guidance v05r02.

- 1) Remove the antenna from the EUT and then connect a low attenuation cable from the antenna port to the spectrum.
- 2) Set the spectrum analyzer: RBW =100kHz; VBW =300kHz, Frequency range = 30MHz to 26.5GHz;
- Sweep = auto; Detector Function = Peak. Trace = Max, hold.
- 3) Measure and record the results in the test report.
- 4) The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Band Edges Lowest channel

(2.35GHz ~2.41GHz)

 MultiView *
 Spectrum

 Ref Level 30:00 dm
 Offset 11.51:db * RBW 100 Hz

 * Att
 30:db * SWT
 30:mb * VEW 300 Hz

 * Att
 30:db * SWT
 30:mb * VEW 300 Hz

 20 dm
 0.150 Mins
 15.24 dBm

 10 dm
 0.150 Mins
 2.400 000 0 GHz

 10 dm
 0.150 Mins
 7.010 Mins

 10 dm
 0.100 Mins
 1.010 Mins

 10 dm
 0.100 Mins
 1.010 Mins

 10 dm
 0.010 Mins
 1.010 Mins

 11 dim
 1.02.400 Mins
 1.010 Mins

 12 dim
 0.010 Mins
 1.010 Mins

 10 dim
 0.010 Mins
 1.010 Mins

 10 dim
 0.010 Mins
 1.01

14:22:15 04.06.2024

Highest channel (2.47GHz ~ 2.55GHz)

Ref Level 20

14:42:00 13.06.2024

.46 GHz

14:23:05 13.06.2024

Offset 11.43 dB SWT 1.07 cm

mandala

Y-Value 4.61 dBm -50.39 dBm -51.90 dBm -47.68 dBm

1001 r

MM MMM MMM

1001 pt

V-Value 14.51 dBm -42.08 dBm -45.62 dBm -38.81 dBm

X-Value 2.477 313 GHz 2.483 5 GHz 2.5 GHz 2.526 56 GHz

SWT

Ĭ,

X-Value 2.475779 GHz 2.4835 GHz 2.5 GHz 2.486568 GHz

M M M

MMM

UNUMINA

3.0 MHz/

mundyunnamana

9.0 MHz/

•

2.55 GH

7777

2.55 GHz

42[1]

Mahah

Π

Page 32 of 58

Spurious Emissions

Lowest channel

					(*)
ultiView Spectrum					
Ref Level 30.00 dBm Offset	11.21 dB = RBW 100 kHz				SGL
Att 30 dB SWT 41	1.71 µs (~9.3 ms) • VBW 300 kHz Mo	de Auto FFT			Count 10/10
requency Sweep					O1Pk View
				M1[1]	11.85 dBm
				2.4	403 503 60 GHz
dBm					
	M1				
dBm				-	
	\sim \sim				
Bm					\sim
) dBm					
) dBm					
U GBRI					
) dBm			-		
) dBm					
J dBm					
2.403 58 GHz	1001 pts	150.0 kHz/			Span 1.5 MHz
LI 100 00 GIL	1001 pta	10010 14 12 /	Ready		. 04.06.2024

11:26:26 04.06.2024

IultiView Spectrum							601
Att 20.dB SWT	30.1 ms • VBW 300 kHz	Mode Auto Sween					Count 30/
Frequency Sweep							O1Pk Vie
						M1[1]	-56.76 d
dBm							344.05901
#Bm							
H1 -8.150 dBm		_					
J dBm-							
0 dBm-							
0 dBm							
o ubiii							
0 dBm-							
0 dBm							
o dom	MI						
	1			1.1			
0 dBm	فالمصاد المتعاقبين بالتراجي	اللافار وسرادة أرميتها	na di tangana di sana d	Late All estable	hit dittlementer og	and the first late	distriction of the
entrip of the and the instance of the second se	distriction of the static static	and an Income Manness	a statistication of the	Annalumodao	distribution and a second	n and the second data	tables to be t
Alexand and the straight from the part	and a second from the second se	al de conserte a c			1	and the state of the	1
0 dBm		-					+

 Multiview
 Spectrum

 Ref Level 25:00 dbm
 Offset 11:21:db * RBW 100 Hz
 Stat

 1
 30:db * W1
 25:ms * VBW 300 Hz
 Mode Auto Sweep

 1
 1
 14:39 dbm
 25:ms * VBW 300 Hz
 Mode Auto Sweep

 1
 0:db * W1
 25:ms * VBW 300 Hz
 Mode Auto Sweep
 Cauto 30:30

 1
 0:db * w1
 25:ms * VBW 300 Hz
 Mode Auto Sweep
 Mode Auto Sweep

 1
 0:db * w1
 25:ms * VBW 300 Hz
 Mode Auto Sweep
 Mode Auto Sweep

 1
 0:db * w1
 14:39 dbm
 25:75 650 GHz
 39:30 dbm

 10:db * w1
 10:db * w1
 10:db * w1
 39:30 dbm
 25:75 650 GHz

 10:db * w1
 11:10:10:00
 11:10:10:00
 11:10:10:00
 11:10:10:00

 10:db * w1
 11:10:00
 11:10:00
 11:10:00
 11:10:00
 11:10:00

 10:db * w1
 11:10:00
 11:10:00
 11:10:00
 11:10:00
 11:10:00
 11:10:00

 10:db * w1
 10:10:00
 10:10:00
 10:10:00
 10:10:00
 10:10:00
 10:10:00

 <t

15

Middle channel

								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
MultiView	Spectrum							
Ref Level 30.00	dBm Offset	10.8	35 dB 🖷 RBW 10	00 kHz				SGL
• Att	30 dB SWT	41.71 µs (~9.3	8 ms) 🖷 VBW 30	00 kHz Mode /	Auto FFT			Count 10/10
1 Frequency Sw	eep						M1[1]	0 1PK VIEW
							2.4	40 602 80 GH
20 dBm-								
					, i i i i i i i i i i i i i i i i i i i	41		
10 dBm-						<u> </u>	 	
	$\frown$							
0 dBm		~						
-10 dbm								
-10 (Bill								
-20 dBm-								
-30 dBm-								
-40 dBm-								
-50 dBm								
-60 dBm								
					L			
CF 2.440 45 GHz			1001 pt	5	13	0.0 KH2/	 	span 1.5 MHz

11:27:37 04.06.2024

CECTES



NY U

Page 34 of 58

Ref Level 15.0 Att	0 dBm Offse 20 dB SWT	t 10.85 dB • R 30.1 ms • Vi	BWF 100 kHz BWF 300 kHz IN	1ode Auto Sweep	,				SGL Count 30/
Frequency Sw	/eep								01Pk Vie
								M1[1]	-56.65 d
J GBM									344.05901
dBm									
0 dBm	-H1 -8.750 dBn								
U dBm									
ID dBm-									
i0 dBm									
0 dBm-									
			Ť						
0 dBm		and the	I.I.I.I	too a state to be	a sin Mariel Broom	in the state of a	town in court	ladi di se referi dita	and the set of the set
nditanati	d Billifelia and	արություն	ion familie value	dikali al lana siti anti a	a la collection de series e	And Million and Anna	alasing the states	an a lat til i stellare de la	death, in case of
ad abjacard A	derive which the set	Alter States and Street B	Sector States and the sector of the sector o	and the state of the second			The second states	at Beenseli to a to	. In the second
U UDIII									
IO dBm									

MultiVia		nectrum								×
- fullerere										
Ref Lev	el 25.00 dBi	m Offse	t 10.85 dB = R	BW 100 kHz						SGL
Att	30 0	18 SWI	255 ms 🖷 V	BW 300 kHz N	Node Auto Sweep	)				Count 30/30
Tricque	icy sweep			1				1	M1[1]	14.07 dBm
20 dBm										2 440 280 GHz
M1									M2[1]	-41.59 dBm
										2.612 450 GHz
10 dBm										
0 dBm										
ŝ		-0.750 dbm								
-10 dBm-		-6.130 Ubi								
×										
-20 dBm										
20 0011										
-30 dBm-									-	
di di m	2									
-40 060										
l il			سا ر						فالاربان الطريعيان	م الطريقة وحاطر الأخرية
-50, dBm	A THE REPORT	a a cara a ca	A DECEMBER OF	a proposition	and the second second	in the second second	a feline and	4	فيعنى وترست مليهم	a sta plan advertant
ALC: NO DEC	and make	1 Distance	and the second second	and the second stress of	The last state of the second	and the second se	far the state state of the			
-60 gBu										
-70 dBm										
1.0 GHz	_			30001 p	ts	2	.55 GHz/			26.5 GHz
								Ready		4.06.2024 11:27:55

11:27:55 04.06.2024

# Page 35 of 58

5

# Highest channel



MultiView	Spectrum	1							•
Ref Level 15	.00 dBm Offse	t 11.43 dB 🖷 RE	3W 100 kHz						SGL
• Att	20 dB SWT	30.1 ms 🖷 VE	W 300 kHz M	lode Auto Sweer					Count 30/30
1 Frequency S	Sweep								O1Pk View
								M1[1]	-56.71 dBm
10 dBm									549.6280 MHz
0.48m									
0.0011									
-10 dBm-									
	H1 -13.130 d8	im							
-20 dBm									
-20 Ubiii									
-30 dBm-									
·									
-40 dBm-									
-50 dBm-									
					M1				
					بالمنا والمراب	n Lorisona	all a la		
-60 dBm	الماه والمتعاد	بفريا واستنقفتهم	فيبدأ ورافية أطبق	a fadd front olygod	A STATISTICS OF A STATISTICS O	Property of the	It. Budt Bilan	antes a children a pre-	स्टिन्स् स्टिन्स् स्टिन्स्
de contrat life de	and the state	a second second second	and second the black	a	wanter and the second	Ward Hind Ares	1000 Contraction (Contraction)	distant and the state of the	ANUMANT
-70 dBm	dine lie tates a soldille	a to de la compañía d	a to feature	In the second			1.1		
-80 dBm									
30.0 MHz			30001 m	te		7.0 MHz/			1004-
30.0 8112			50001 p	1.5	9.	10 141127			13.86.2824

13:52:10 13.06.2024

MultiView Ref Level 25.

1.0 GHz

13:52:25 13.06.2024

Offset 11.43 dB

-H1 -13.130

RBW 100

30001 pts

2.55 GHz/

-Blank space below this page-

1

M2[1]

5.5 GHz

#### 14. RADIATED SPURIOUS EMISSIONS

#### 14.1 LIMITS

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30dB instead of 20dB. Attenuation below the general limits specified in §15.209(a) is not required.

Frequency (MHz)	Quasi-peak(µV/m)	Measurement distance(m)	Quasi-peak(dBµV/m)@distance 3m
0.009-0.490	2400/F(kHz)	300	128.5~93.8
0.490-1.705	24000/F(kHz)	30	73.8~63
1.705-30.0	30	30	69.5
30 ~ 88	100	3	40
88~216	150	3	43.5
216 ~ 960	200	3	46
Above 960	500	3	54

NOTE:

- (1) The emission limits for the ranges 9-90kHz and 110-490kHz are based on measurements employing a linear average detector.
- (2) The lower limit shall apply at the transition frequencies.
- (3) Above 18GHz test distance is 1m, so the Peak Limit= $74+20*\log(3/1)=83.54$  (dB $\mu$ V/m). The Avg Limit= $54+20*\log(3/1)=63.54$  (dB $\mu$ V/m).

#### **14.2 TEST PROCEDURES**

#### 1) Sequence of testing 9kHz to 30MHz

#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

#### Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna height is 1.0 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

#### **Final measurement:**

--- Identified emissions during the pre measurement the software maximizes by rotating the turntable position (0  $^{\circ}$  to 360  $^{\circ}$ ) and by rotating the elevation axes (0  $^{\circ}$  to 360  $^{\circ}$ ).

--- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QP detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

#### 2) Sequence of testing 30MHz to 1GHz

#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

#### Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 4 meter.

--- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

#### **Final measurement:**

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable rotates from  $0^{\circ}$  to  $360^{\circ}$  and antenna movement between 1 and 4 meter.

--- The final measurement will be done with QP detector with an EMI receiver.

--- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

#### 3) Sequence of testing 1GHz to 18GHz

#### Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

--- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.

- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.



- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

#### Pre measurement:

- --- The turntable rotates from 0 ° to 360 °.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 4 meter.

--- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

#### **Final measurement:**

--- The final measurement will be performed with minimum the six highest peaks.

--- According to the maximum antenna and turntable positions of pre measurement the software maximize the peaks by changing turntable rotates from  $0^{\circ}$  to  $360^{\circ}$  and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.

--- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.

--- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement with marked maximum final measurements and the limit will be stored.

#### 4) Sequence of testing above 18GHz Setup:

--- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.

- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

#### Pre measurement:

--- The antenna is moved spherical over the EUT in different polarisations of the antenna.

#### **Final measurement:**

--- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the pre measurements with Peak and Average detector. --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the pre measurement and the limit will be stored.

#### NOTE:

(a).The frequency from 9kHz to 150kHz, Set RBW=300Hz(for Peak&AVG), RBW=300Hz(for Peak&AVG). the frequency from 150kHz to 30MHz, Set RBW=9kHz, RBW=9kHz, (for QP Detector).
(b).The frequency from 30MHz to 1GHz, Set RBW=120kHz, RBW=300kHz, (for QP Detector).
(c).The frequency above 1GHz, for Peak detector: Set RBW=1MHz, RBW=3MHz.

Page 40 of 58

(d).The frequency above 1GHz, for Avg detector: Set RBW=1MHz, if the EUT is configured to transmit with duty cycle  $\geq$ 98%, set VBW $\leq$ RBW/100 (i.e.,10kHz) but not less than 10 Hz. if the EUT duty cycle is <98%, set VBW $\geq$ 1/T, Where T is defined in section 2.8.

Page 41 of 58













Figure 3. 1GH to 18GHz radiated emissions test configuration

Page 42 of 58



### Figure 4. 18GHz to 26.5GHz radiated emissions test configuration

## 14.4 DATA SAMPLE

**Below 1GHz** 

)	Below 1GHz											
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Height [cm]	Angle	Polarity	Verdict	
XXX	XXX	45.30	15.56	-29.74	40.00	24.44	РК	100	16	Horizontal	PASS	
	Frequency ( Reading (dE	MHz) βμV/m)	= E = U	mission f	requency in l ed Analyzer /	MHz Receiver	reading					
	Factor (dB)		= A	ntenna fa	actor + Cable	loss – Am	plifier g	ain				
	Level (dBµV	V/m)	= R	eading (d	$B\mu V/m$ ) + Fa	actor (dB)						
	Limit (dBµV	//m)	=L	imit state	d in standard							
	Margin(dB)		=L	imit(dBµ	V/m) - Level	(dBµV/m)	)					
	Polarity		= V	ertical/ H	Iorizontal							
_	1GHz-18G	Hz										

#### 1GHz-18GHz

NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polarity			
1	XXX	57.45	49.56	-7.89	74.00	24.44	200	3	Horizontal			
Freque	ency (MHz)		= Emission	frequency	in MHz							
Readin	ng (dBµV/m)		= Uncorrecte	corrected Analyzer / Receiver reading								
Factor	(dB)		= Antenna fa	Antenna factor + Cable loss – Amplifier gain								
Level	(dBµV/m)		= Reading (	dBμV/m)	+ Factor (dB)							
Limit	(dBµV/m)		= Limit state	ed in stand	lard							
Margi	n(dB)		= Limit(dBµ	= Limit( $dB\mu V/m$ ) - Level( $dB\mu V/m$ )								
Polari	ty		= Vertical/ H	Iorizontal								



Above	18GHz								
Suspe	cted Data Li	ist		ſ	L	I	I		
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polarity
XXX	XXX	63.16	46.07	-17.09	83.54	37.47	100	180	Vertical
Freque	ency (MHz)		= Emission	frequenc	y in MHz				
Ant.Pc	ol. (H/V)		= Antenna	polarizati	on				
Readir	ng (dBµV/m)	(	= Uncorrec	ted Analy	zer / Receiver	reading			
Factor	(dB)		= Antenna	factor + C	able loss – Ar	nplifier gain	n 🔊		
Level	(dBµV/m)		= Reading	(dBµV/m)	+ Factor (dB)	)			
Limit (	(dBµV/m)		= Limit sta	ted in star	idard				
Margin	n (dB)		= Remark l	Result (dE	βμV/m) – Limi	t (dBµV/m	)		
Peak			= Peak Rea	ding					
QP			= Quasi-pe	ak Readin	g				
AVG			= Average	Reading					
			——Bla	nk space	below this pag	ge			



#### **14.5 TEST RESULTS**

Note: The test is according to the typical placement method of the product.

#### **Below 1GHz**

Note: Pre-scan all test modes and recorded the worst case middle frequency 2403.58MHz test results in the report.

Middle Frequency (2403.58MHz) Environment: 24.5°C/60%RH/101.0kPa Test Engineer: Wen wenwen Date: 2024-06-04 Test Voltage:AC 120V/60Hz Probe : Horizontal



		9/									
NO	Freq.	Reading	Level	Factor	Limit	Margin	Traca	Height	Angle	Dolarity	
NO.	[MHz]	$[dB\mu V/m]$	$[dB\mu V/m]$	[dB]	$[dB\mu V/m]$	[dB]	Trace	[cm]	[ ]	Folanty	Verdict
1	33.1529	45.30	15.56	-29.74	40.00	24.44	QP	100	16	Horizontal	PASS
2	79.9612	54.01	20.30	-33.71	40.00	19.70	QP	200	210	Horizontal	PASS
3	147.3847	53.65	25.43	-28.22	43.50	18.07	QP	100	296	Horizontal	PASS
4	282.5953	56.13	28.12	-28.01	46.00	17.88	QP	100	239	Horizontal	PASS
5	553.0166	58.56	38.12	-20.44	46.00	7.88	QP	100	133	Horizontal	PASS
6	776.3870	52.60	35.68	-16.92	46.00	10.32	QP	100	109	Horizontal	PASS



Middle Frequency (2403.58MHz) Environment: 24.5°C/60%RH/101.0kPa Test Engineer: Wen wenwen Date: 2024-06-04 Test Voltage: AC 120V/60Hz Probe : Vertical



NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Trace	Height [cm]	Angle	Polarity	Verdict
1	76.8084	62.47	29.61	-32.86	40.00	10.39	QP	100	239	Vertical	PASS
2	85.9032	67.94	34.22	-33.72	40.00	5.78	QP	100	105	Vertical	PASS
3	184.2493	63.13	32.78	-30.35	43.50	10.72	QP	100	239	Vertical	PASS
4	233.4829	65.86	35.94	-29.92	46.00	10.06	QP	200	111	Vertical	PASS
5	257.9785	68.65	39.38	-29.27	46.00	6.62	QP	100	37	Vertical	PASS
6	577.5122	59.66	39.90	-19.76	46.00	6.10	QP	100	326	Vertical	PASS

Final	Data List									
NO.	Freq. [MHz]	Factor [dB]	QP Reading [dBµV/m]	Level [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Height [cm]	Angle	Polarity	Verdict
1	86.0213	-33.72	67.80	34.08	40.00	5.92	152	97.9	Vertical	PASS

#### Remark:

- 1 No emission found between lowest internal used/generated frequency to 30MHz.
- 2 Measuring frequencies from 9kHz to the 1GHz.
- 3 Radiated emissions measured in frequency range from 30MHz to 1GHz were made with an instrument using Peak/Quasi-peak detector mode.
- 4 The IF bandwidth of SPA between 30MHz to 1GHz was 120kHz.

#### Page 46 of 58

#### 1GHz to 18GHz

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Lowest Frequency (2403.58MHz) Environment: 24.6°C/62%RH Test Engineer: Wen wenwen Date: 2024-06-07 Test Voltage:AC 120V/60Hz

NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolority
NO.	[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[ ]	Polarity
1	1296.0000	51.36	42.68	-8.68	74.00	31.32	200	235	Horizontal
2	2631.2000	49.97	47.45	-2.52	74.00	26.55	200	87	Horizontal
3	4807.5000	57.34	50.21	-7.13	74.00	23.79	200	231	Horizontal
4	7212.0000	50.38	51.34	0.96	74.00	22.66	200	339	Horizontal
5	12138.0000	36.86	50.87	14.01	74.00	23.13	100	22	Horizontal
6	15663.0000	38.23	50.52	12.29	74.00	23.48	200	162	Horizontal

NO.	Freq. [MHz]	Reading [dBuV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle	Polarity
1	1295.8000	51.22	43.33	-7.89	74.00	30.67	200	358	Vertical
2	1894.4000	47.81	44.40	-3.41	74.00	29.60	200	48	Vertical
3	2578.0000	51.85	49.03	-2.82	74.00	24.97	200	115	Vertical
4	4807.5000	49.70	42.53	-7.17	74.00	31.47	200	339	Vertical
5	7209.0000	44.66	45.55	0.89	74.00	28.45	100	0	Vertical
6	12087.0000	36.94	50.10	13.16	74.00	23.90	200	339	Vertical



Lowest Frequency (2440.45MHz) Environment: 24.6°C/62%RH Test Engineer: Wen wenwen

Date: 2024-06-07 Test Voltage: AC 120V/60Hz

C)					L.C.				
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dolomity
NO.	[MHz]	$[dB\mu V/m]$	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[ ]	Polarity
1	1296.0000	51.13	42.45	-8.68	74.00	31.55	100	170	Horizontal
2	2067.2000	48.33	44.31	-4.02	74.00	29.69	200	21	Horizontal
3	2758.6000	49.19	47.29	-1.90	74.00	26.71	100	22	Horizontal
4	4879.5000	61.53	54.64	-6.89	74.00	19.36	200	216	Horizontal
5	7320.0000	49.42	50.79	1.37	74.00	23.21	100	272	Horizontal
6	12105.0000	37.71	51.22	13.51	74.00	22.78	200	176	Horizontal
				/					

AV Fina	al Data List								
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBµV/m]	AV Value [dBµV/m]	AV Limit [dBµV/m]	AV Margin [dB]	Height [cm]	Angle	Polarity
1	4880.8415	-6.89	54.87	47.98	54.00	6.02	179	212.9	Horizontal

Suspect	Suspected Data List													
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Deleviter					
NO.	[MHz]	$[dB\mu V/m]$	[dBµV/m]	[dB]	[dBµV/m]	[dB]	[cm]	[ ]	Polarity					
1	1296.2000	51.03	43.13	-7.90	74.00	30.87	100	282	Vertical					
2	1921.6000	48.44	44.60	-3.84	74.00	29.40	100	360	Vertical					
3	2796.8000	48.39	47.02	-1.37	74.00	26.98	200	143	Vertical					
4	4879.5000	55.07	47.76	-7.31	74.00	26.24	200	311	Vertical					
5	7320.0000	46.99	48.44	1.45	74.00	25.56	200	298	Vertical					
6	17998.5000	38.13	51.60	13.47	74.00	22.40	100	176	Vertical					

----Blank space below this page----



Lowest Frequency (2477.31MHz) Environment: 24.6°C/62%RH Test Engineer: Wen wenwen Date: 2024-06-07 Test Voltage:AC 120V/60Hz

Suspect	ted Data List								
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity
1.0.	[MHz]	[dBµV/m]	$[dB\mu V/m]$	[dB]	[dBµV/m]	[dB]	[cm]	[ ]	rolailty
1	2092.4000	49.68	45.64	-4.04	74.00	28.36	200	259	Horizontal
2	2610.8000	52.50	50.06	-2.44	74.00	23.94	200	41	Horizontal
3	4954.5000	60.49	54.14	-6.35	74.00	19.86	200	304	Horizontal
4	7432.5000	48.49	50.10	1.61	74.00	23.90	200	358	Horizontal
5	9907.5000	41.56	49.93	8.37	74.00	24.07	200	20	Horizontal
6	12114.0000	36.73	50.37	13.64	74.00	23.63	200	262	Horizontal

AV Fina	al Data List								
NO.	Freq. [MHz]	Factor [dB]	AV Reading [dBµV/m]	AV Value [dBµV/m]	AV Limit [dBµV/m]	AV Margin [dB]	Height [cm]	Angle	Polarity
1	4954.6435	-6.35	53.98	47.63	54.00	6.37	200	259.6	Horizontal

Suspect	ted Data List								
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	
NO.	[MHz]	$[dB\mu V/m]$	[dBµV/m]	[dB]	$[dB\mu V/m]$	[dB]	[cm]	[ ]	Polarity
1	1906.0000	48.51	45.07	-3.44	74.00	28.93	100	151	Vertical
2	2629.6000	52.93	50.19	-2.74	74.00	23.81	100	124	Vertical
3	4954.5000	58.29	51.56	-6.73	74.00	22.44	200	33	Vertical
4	7431.0000	49.61	51.41	1.80	74.00	22.59	200	263	Vertical
5	10563.0000	39.09	49.19	10.10	74.00	24.81	200	74	Vertical
6	13122.0000	36.32	50.40	14.08	74.00	23.60	100	211	Vertical

#### Remark:

1 Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.

2 Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.

3 Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode.

4 Spectrum setting:

a. Peak Setting 1GHz–26.5GHz, RBW = 1MHz, VBW = 1MHz, Sweep time = auto.

b. AV Setting 1GHz–26.5GHz, Set RBW=1MHz, if the EUT is configured to transmit with duty cycle  $\geq$ 98% , set VBW $\leq$ RBW/100 (i.e.,10kHz) but not less than 10 Hz. if the EUT duty cycle is <98% , set VBW $\geq$ 1/T, Where T is defined in section 2.8.

#### Page 49 of 58

#### 18GHz to 26.5GHz

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Environment: 25.3°C/59%RH Test Engineer: Wen wenwen Date: 2024-06-08 Test Voltage:AC 120V/60Hz

#### Lowest Frequency (2403.58MHz)

NO.	Freq. [MHz]	Reading [dBµV/m]	Level in 1m [dBµV/m]	Level in 3m [dBµV/m]	Factor [dB]	Limit in 1m [dBµV/m]	Limit in 3m [dBµV/m]	Margin in 1m [dB]	Margin in 3m [dB]	Height [cm]	Angle	Polarity
1	19025.1000	63.77	46.82	37.28	-16.95	83.54	74	36.72	36.72	100	307	Horizontal
2	19938.0000	62.15	45.61	36.07	-16.54	83.54	74	37.93	37.93	150	140	Horizontal
3	20934.6250	61.01	44.85	35.31	-16.16	83.54	74	38.69	38.69	100	206	Horizontal
4	22160.7500	63.02	47.38	37.84	-15.64	83.54	74	36.16	36.16	150	78	Horizontal
5	23139.1000	63.05	48.18	38.64	-14.87	83.54	74	35.36	35.36	100	307	Horizontal
6	24610.8750	63.54	49.41	39.87	-14.13	83.54	74	34.13	34.13	100	275	Horizontal

NO.	Freq. [MHz]	Reading [dBµV/m]	Level in 1m [dBµV/m]	Level in 3m [dBµV/m]	Factor [dB]	Limit in 1m [dBµV/m]	Limit in 3m [dBµV/m]	Margin in 1m [dB]	Margin in 3m [dB]	Height [cm]	Angle [ ]	Polarity
1	18914.1750	63.09	45.99	36.45	-17.10	83.54	74	37.55	37.55	100	309	Vertical
2	19763.7500	62.34	45.43	35.89	-16.91	83.54	74	38.11	38.11	100	115	Vertical
3	22612.9500	63.90	48.74	39.20	-15.16	83.54	74	34.80	34.80	150	146	Vertical
4	24049.4500	64.45	49.89	40.35	-14.56	83.54	74	33.65	33.65	100	21	Vertical
5	24989.5500	63.71	49.78	40.24	-13.93	83.54	74	33.76	33.76	100	53	Vertical
6	25907.5500	64.48	50.13	40.59	-14.35	83.54	74	33.41	33.41	150	177	Vertical

Page 50 of 58

# Middle Frequency (2440.45MHz)

NO.	Freq. [MHz]	Reading [dBµV/m]	Level in 1m [dBµV/m]	Level in 3m [dBµV/m]	Factor [dB]	Limit in 1m [dBµV/m]	Limit in 3m [dBµV/m]	Margin in 1m [dB]	Margin in 3m [dB]	Height [cm]	Angle	Polarity
1	18940.9500	63.15	46.12	36.58	-17.03	83.54	74	37.42	37.42	100	19	Horizontal
2	19843.6500	62.82	46.19	36.65	-16.63	83.54	74	37.35	37.35	150	19	Horizontal
3	21073.6000	61.68	45.69	36.15	-15.99	83.54	74	37.85	37.85	100	180	Horizontal
4	22077.0250	63.20	47.52	37.98	-15.68	83.54	74	36.02	36.02	150	19	Horizontal
5	23660.1500	64.32	49.58	40.04	-14.74	83.54	74	33.96	33.96	100	242	Horizontal
6	26373.3500	64.09	50.10	40.56	-13.99	83.54	74	33.44	33.44	100	342	Horizontal

Freq. [MHz]	Reading [dBµV/m]	Level in 1m [dBµV/m]	Level in 3m [dBµV/m]	Factor [dB]	Limit in 1m [dBµV/m]	Limit in 3m [dBµV/m]	Margin in 1m [dB]	Margin in 3m [dB]	Height [cm]	Angle [ ]	Polarity
18955.4000	62.75	45.67	36.13	-17.08	83.54	74	37.87	37.87	100	89	Vertical
19499.8250	63.07	46.00	36.46	-17.07	83.54	74	37.54	37.54	100	345	Vertical
22032.4000	62.96	47.14	37.6	-15.82	83.54	74	36.40	36.40	150	220	Vertical
23259.8000	63.49	48.70	39.16	-14.79	83.54	74	34.84	34.84	100	314	Vertical
24239.8500	64.30	50.00	40.46	-14.30	83.54	74	33.54	33.54	100	314	Vertical
25380.5500	64.02	49.91	40.37	-14.11	83.54	74	33.63	33.63	150	89	Vertical
	Freq. [MHz] 18955.4000 19499.8250 22032.4000 23259.8000 24239.8500 25380.5500	Freq. [MHz]Reading [dBμV/m]18955.400062.7519499.825063.0722032.400062.9623259.800063.4924239.850064.3025380.550064.02	Freq. [MHz]Reading [dBμV/m]Level in lm [dBμV/m]18955.400062.7545.6719499.825063.0746.0022032.400062.9647.1423259.800063.4948.7024239.850064.3050.0025380.550064.0249.91	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$



Highest	Frequency (24	77.31MHz)

									1 100			
NO.	Freq. [MHz]	Reading [dBµV/m]	Level in 1m [dBµV/m]	Level in 3m [dBµV/m]	Factor [dB]	Limit in 1m [dBµV/m]	Limit in 3m [dBµV/m]	Margin in 1m [dB]	Margin in 3m [dB]	Height [cm]	Angle [ ]	Polarity
1	19048.0500	62.32	45.38	35.84	-16.94	83.54	74	38.16	38.16	100	116	Horizontal
2	19671.9500	63.50	46.73	37.19	-16.77	83.54	74	36.81	36.81	150	19	Horizontal
3	20382.1250	61.58	45.01	35.47	-16.57	83.54	74	38.53	38.53	100	178	Horizontal
4	22067.2500	62.95	47.26	37.72	-15.69	83.54	74	36.28	36.28	150	178	Horizontal
5	24162.5000	63.52	49.26	39.72	-14.26	83.54	74	34.28	34.28	100	147	Horizontal
6	26008.2750	64.43	50.00	40.46	-14.43	83.54	74	33.54	33.54	100	342	Horizontal
	1 Rov	/						1 8	× /			

NO.	Freq. [MHz]	Reading [dBµV/m]	Level in 1m [dBµV/m]	Level in 3m [dBµV/m]	Factor [dB]	Limit in 1m [dBµV/m]	Limit in 3m [dBµV/m]	Margin in 1m [dB]	Margin in 3m [dB]	Height [cm]	Angle [ ]	Polarity
1	18929.9000	63.16	46.07	36.53	-16.94	83.54	74	38.16	38.16	100	116	Vertical
2	19835.1500	62.39	45.52	35.98	-16.77	83.54	74	36.81	36.81	150	19	Vertical
3	21442.5000	61.93	46.04	36.50	-16.57	83.54	74	38.53	38.53	100	178	Vertical
4	22750.6500	63.77	48.59	39.05	-15.69	83.54	74	36.28	36.28	150	178	Vertical
5	23844.6000	64.05	49.45	39.91	-14.26	83.54	74	34.28	34.28	100	147	Vertical
6	25838.2750	65.62	51.34	41.80	-14.43	83.54	74	33.54	33.54	100	342	Vertical

#### 15. RESTRICTED BANDS OF OPERATION

#### 15.1 LIMITS

Section 15.247(d) In addition, Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
$^{1}0.495$ - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	
13.36 - 13.41			
			C C C C C C C C C C C C C C C C C C C

Frequency (MHz)	Quasi-peak(µV/m)	Measurement distance(m)	Quasi-peak(dBµV/m)@distance 3m
0.009-0.490	2400/F(kHz)	300	128.5~93.8
0.490-1.705	24000/F(kHz)	30	73.8~63
1.705-30.0	30	30	69.5
30 ~ 88	100	3	40
88~216	150	3	43.5
216 ~ 960	200	3	46
Above 960	500	3	54

#### **15.2 TEST PROCEDURES**

- 1) The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2) The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4) Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
  - a) PEAK: RBW=1MHz / VBW=1MHz / Sweep=AUTO.
  - b) AVERAGE: RBW=1MHz / VBW=1/T / Sweep=AUTO. Where T is defined in section 2.8.
- 5) Repeat the procedures until all the PEAK and AVERAGE versus polarization are measured.



#### Page 54 of 58

#### **15.4 TEST RESULTS**

Note: The test is according to the typical placement method of the product.

Environment: 22.0°C/60%RH/101.0kPa Tested By: Wen wenwen Voltage:AC 120V/60Hz Date: 2024-06-07

Polarity: Horizontal





Polarity: Vertical



				$\sim$ /						
No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Remark
	MHz	dBµV/m	dBµV/m	dB	dBuV/m	dB	cm	05		
1	2310.0000	58.34	53.38	-4.96	74.00	20.62	200	249	Horizontal	/
2	2388.8625	71.75	65.92	-5.83	74.00	8.08	100	46	Horizontal	/
3	2390.0000	69.08	63.25	-5.83	74.00	10.75	200	27	Horizontal	/
4	2403.1750	110.98	105.12	-5.86	- 36		200	53	Horizontal	No limit
1	2310.0000	58.27	52.61	-5.66	74.00	21.39	100	310	Vertical	
2	2389.3750	70.96	65.55	-5.41	74.00	8.45	200	228	Vertical	1
3	2390.0000	66.89	61.48	-5.41	74.00	12.52	100	232	Vertical	/
4	2403.1625	109.46	104.11	-5.35			200	188	Vertical	No limit





20 -10 -10 2.41G 2.4G 2.33G 2.36G 2.37G 2.39G 2.38G 2.320 2.34G 2.35 Frequency[Hz]

No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Remark
/	MHZ	abµv/m	αBµv/m	dВ	aBuv/m	aв	cm	_		
1	2310.0000	48.97	44.01	-4.96	54.00	9.99	200	262	Horizontal	/
2	2387.4625	51.01	45.19	-5.82	54.00	8.81	200	54	Horizontal	12
3	2390.0000	49.84	44.01	-5.83	54.00	9.99	200	67	Horizontal	////////_//////////
4	2403.6250	109.40	103.54	-5.86			200	67	Horizontal	No limit
1	2310.0000	48.26	42.60	-5.66	54.00	11.40	200	18	Vertical	/
2	2377.9375	50.64	45.18	-5.46	54.00	8.82	100	129	Vertical	/
3	2390.0000	49.10	43.69	-5.41	54.00	10.31	100	300	Vertical	/
4	2403.5750	108.49	103.14	-5.35	/	8/	200	162	Vertical	No limit

2.473G

2.476G

2.479G

2.482G

2.485G

Frequency[Hz]

2.4880

![](_page_55_Picture_1.jpeg)

![](_page_55_Figure_2.jpeg)

2.491G

2.494G

2.497G

No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Remark
$(\mathbf{S})$	MHz	$dB\mu V/m$	$dB\mu V/m$	dB	dBuV/m	dB	cm	0		
1	2476.8100	105.06	99.83	-5.23		<u> </u>	100	70	Horizontal	No limit
2	2483.5000	70.88	65.78	-5.10	74.00	8.22	200	92	Horizontal	1 a
3	2484.0475	74.96	69.87	-5.09	74.00	4.13	200	27	Horizontal	<u> </u>
4	2500.0000	60.15	55.36	-4.79	74.00	18.64	100	20	Horizontal	
1	2476.8288	106.69	101.63	-5.06			100	118	Vertical	No limit
2	2483.5000	70.94	65.91	-5.03	74.00	8.09	200	72	Vertical	/
3	2483.6275	75.92	70.89	-5.03	74.00	3.11	100	118	Vertical	/
4	2500.0000	59.71	54.72	-4.99	74.00	19.28	200	320	Vertical	/

![](_page_56_Picture_1.jpeg)

![](_page_56_Figure_2.jpeg)

No.	Frequency	Reading	Level	Factor	Limit	Margin	Height	Angle	Pole	Remark
	MHz	dBµV/m	dBµV/m	dB	dBuV/m	dB	cm	0		
1	2477.4438	104.21	98.99	-5.22			100	217	Horizontal	No limit
2	2483.5000	50.35	45.25	-5.10	54.00	8.75	100	75	Horizontal	
3	2483.8338	52.20	47.11	-5.09	54.00	6.89	100	152	Horizontal	/
4	2500.0000	50.52	45.73	-4.79	54.00	8.27	100	138	Horizontal	/
1	2477.2788	104.02	98.96	-5.06	//	<u>s</u> )	200	125	Vertical	No limit
2	2483.5000	50.10	45.07	-5.03	54.00	8.93	200	319	Vertical	/
3	2483.5488	51.95	46.92	-5.03	54.00	7.08	200	97	Vertical	/
4	2500.0000	49.93	44.94	-4.99	54.00	9.06	200	19	Vertical	
	-									1

Remark:

1) Max field strength in 3m distance. No any other emission which falls in restricted bands can be detected and be reported.

#### Page 58 of 58

#### APPENDIX A. PHOTOGRAPH OF THE TEST CONNECTION DIAGRAM

Please refer to the attached document E202405222827-test setup photo.

#### APPENDIX B. PHOTOGRAPH OF THE EUT

Please refer to the attached document E202405222827-EUT photo.

----- End of Report ------