RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART E INDUSTRY CANADA RSS-247 Test Standard FCC Part 15.407+ RSS-247 issue 2 and RSS-GEN issue 5 Brand name ICON/iFit Product name Tablet Model No. MP7-ARGON2X-C Komil Tani Test Result Pass Statements of Determination of compliance is based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards. The test results of this report relate only to the tested sample (EUT) identified in this report. The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc.(Wugu Laboratory) Approved by: Conformity Kevin Tsai **Deputy Manager** Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。 This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com.tw/Terms-and-Conditions and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com.tw/Terms-and-Conditions. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Page: 2 / 26 Report No.: T210730W05-RP4 Rev.: 00 # **Revision History** | Rev. | Issue
Date | Revisions | Effect Page | Revised By | |------|-----------------|---------------|-------------|--------------| | 00 | October 5, 2021 | Initial Issue | ALL | Allison Chen | Report No.: T210730W05-RP4 Page: 3 / 26 Rev.: 00 # **Table of contents** | 1. GENERAL INFORMATION | 4 | |---|-----| | 1.1 EUT INFORMATION | 4 | | 1.2 EUT CHANNEL INFORMATION | 5 | | 1.3 ANTENNA INFORMATION | 6 | | 1.4 MEASUREMENT UNCERTAINTY | 6 | | 1.5 FACILITIES AND TEST LOCATION | 7 | | 1.6 INSTRUMENT CALIBRATION | 7 | | 1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT | 8 | | 1.8 TEST METHODOLOGY AND APPLIED STANDARDS | 8 | | 2. TEST SUMMARY | 9 | | 3. DESCRIPTION OF TEST MODES | 10 | | 3.1 THE EUT CHANNEL NUMBER OF OPERATING CONDITION | 10 | | 3.2 THE WORST MODE OF MEASUREMENT | 11 | | 4. TEST RESULT | 12 | | 4.1 RADIATION SPURIOUS EMISSION | 12 | | 4.2 OUTPUT POWER MEASUREMENT | 21 | | 4.3 TEST DATA RE-USE SUMMARY | 25 | | APPENDIX-A TEST PHOTO | A-1 | | APPENDIX 1 - PHOTOGRAPHS OF FUT | | Page: 4 / 26 Report No.: T210730W05-RP4 Rev.: 00 # 1. GENERAL INFORMATION # 1.1 EUT INFORMATION | FCC Applicant | Compal Electronics Inc
No.581 & 581-1, Ruiguang Rd., Neihu District, Taipei city, 11492
Taiwan | | | | |-------------------|--|--|--|--| | IC Applicant | COMPAL ELECTRONICS INC. No. 581 & 581-1, Ruiguang Rd,, Neihu District Taipei R.O.C. 114 Taiwan | | | | | Manufacturer | Compal Electronics Inc
No.581 & 581-1, Ruiguang Rd., Neihu District, Taipei city, 11492
Taiwan | | | | | Equipment | Tablet | | | | | Model No. | MP7-ARGON2X-C | | | | | Model Discrepancy | N/A | | | | | Trade Name | ICON/iFit | | | | | Received Date | July 30, 2021 | | | | | Date of Test | September 17 ~ 22, 2021 | | | | | Power Operation | EUT Power from Power Supply. (DC12V) | | | | | HW Version | LA-L511P | | | | | SW Version | Android 9 | | | | | EUT Serial # | Conducted Emission: PP41D304791
Radiated Emission: PP41D304792 | | | | #### Remark: - 1. For more details, refer to the User's manual of the EUT. - 2. Disclaimer: Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received. Page: 5 / 26 Report No.: T210730W05-RP4 Rev.: 00 # **1.2 EUT CHANNEL INFORMATION** | | UNII-1 | | |-----------------|--|-----------------| | | IEEE 802.11a | 5180 ~ 5240 MHz | | | IEEE 802.11n HT 20 MHz | 5180 ~ 5240 MHz | | | IEEE 802.11n HT 40 MHz | 5190 ~ 5230 MHz | | | UNII-2a | | | | IEEE 802.11a | 5260 ~ 5320 MHz | | | IEEE 802.11n HT 20 MHz | 5260 ~ 5320 MHz | | | IEEE 802.11n HT 40 MHz | 5270 ~ 5310 MHz | | Frequency Range | UNII-2c | | | | IEEE 802.11a | 5500 ~ 5700 MHz | | | IEEE 802.11n HT 20 MHz | 5500 ~ 5720 MHz | | | IEEE 802.11n HT 40 MHz | 5510 ~ 5710 MHz | | | UNII-3 | | | | IEEE 802.11a | 5745 ~ 5825 MHz | | | IEEE 802.11n HT 20 MHz | 5745 ~ 5825 MHz | | | IEEE 802.11n HT 40 MHz | 5755 ~ 5795 MHz | | | | | | Modulation Type | 1. IEEE 802.11a mode: OFDM
2. IEEE 802.11n HT 20 MHz mo
3. IEEE 802.11n HT 40 MHz mo | | ### Remark: Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 for test channels | Number of frequencies to be tested | | | | | | |--|--|--|--|--|--| | Frequency range in which device operates | Location in frequency range of operation | | | | | | ☐ 1 MHz or less | 1 | Middle | | | | | ☐ 1 MHz to 10 MHz | 2 | 1 near top and 1 near bottom | | | | | | 3 | 1 near top, 1 near middle, and 1 near bottom | | | | Page: 6 / 26 Report No.: T210730W05-RP4 Rev.: 00 ### 1.3 ANTENNA INFORMATION | Antenna Type | ⊠ PIFA □ PCB □ Dipole □ Coils | | | |-------------------|-------------------------------|--------------------------------|--| | Antenna Gain | Band 1 Band 2a Band 2c Band 3 | Gain (dBi) 5.09 5.09 3.12 2.74 | | | Antenna Connector | IPEX | | | #### Remark: ### 1.4 MEASUREMENT UNCERTAINTY | PARAMETER | UNCERTAINTY | |--|-------------| | AC Powerline Conducted Emission | +/- 1.2575 | | Emission bandwidth, 20dB bandwidth | +/- 0.0014 | | RF output power, conducted | +/- 1.14 | | Power density, conducted | +/- 1.40 | | 3M Semi Anechoic Chamber / 30M~1G (Horizontally) | +/- 3.91 | | 3M Semi Anechoic Chamber / 30M~1G (Vertically) | +/- 4.57 | | 3M Semi Anechoic Chamber / 1G~6G | +/- 5.20 | | 3M Semi Anechoic Chamber / 6G~18G | +/- 5.18 | | 3M Semi Anechoic Chamber / 18G~40G | +/- 3.68 | #### Remark: ^{1.} The antenna(s) of the EUT are permanently attached and there are no provisions for connection to an external antenna. So the EUT complies with the requirements of §15.203. ^{1.} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2 ^{2.} ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. Page: 7 / 26 Report No.: T210730W05-RP4 Rev.: 00 ### 1.5 FACILITIES AND TEST LOCATION All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan. (R.O.C.) | Test site | Test Engineer | Remark | | |--------------------|---------------|--------|---| | AC Conduction Room | N/A | | pplicable, because EUT doesn't nect to AC Main Source direct. | | Radiation | Ray Li | | - | | RF Conducted | Lance Chen | | - | **Remark:** The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22. # **1.6 INSTRUMENT CALIBRATION** | 3M 966 Chamber Test Site | | | | | | | | |--|-------------------|-----------------------|-----------------|------------|------------|--|--| | Equipment | Manufacturer | Model | S/N | Cal Date | Cal Due | | | | Bilog Antenna | Sunol
Sciences | JB3 | A030105 | 07/19/2021 | 07/18/2022 | | | | Coaxial Cable | HUBER
SUHNER | SUCOFLEX 104PEA | 20995 | 02/24/2021 | 02/23/2022 | | | | Coaxial Cable | EMCI | EMC105 | 190914+327109/4 | 09/17/2021 | 09/16/2022 | | | | Digital
Thermo-Hygro
Meter | WISEWIND | 1206 | D07 | 01/06/2021 | 01/05/2022 | | | | double Ridged
Guide Horn
Antenna | ETC | MCTD 1209 | DRH13M02003 | 09/30/2020 | 09/29/2021 | | | | High Pass Filters | MICRO
TRONICS | HPM13195 | 003 | 02/08/2021 | 02/07/2022 | | | | Horn Antenna | ETS
LINDGREN | 3116 | 00026370 | 12/11/2020 | 12/10/2021 | | | | K Type Cable | Huber+Suhner | SUCOFLEX 102 | 29406/2 | 12/09/2020 | 12/08/2021 | | | | K Type Cable | Huber+Suhner | SUCOFLEX 102 | 22470/2 | 12/09/2020 | 12/08/2021 | | | | Pre-Amplifier | EMEC | EM330 | 060609 | 02/24/2021 | 02/23/2022 | | | | Pre-Amplifier | HP | 8449B | 3008A00965 | 02/25/2021 | 02/24/2022 | | | | Pre-Amplifier | MITEQ | AMF-6F-18004000-37-8P | 985646 | 08/31/2021 | 08/30/2022 | | | | Signal Analyzer | R&S | FSV 40 | 101073 | 09/15/2021 | 09/14/2022 | | | | Antenna Tower | CCS | CC-A-1F | N/A | N.C.R | N.C.R | | | | Controller | CCS | CC-C-1F | N/A | N.C.R | N.C.R | | | | Turn Table | CCS | CC-T-1F | N/A | N.C.R | N.C.R | | | | Software | | e3 6.11-2 | 0180419c | | _ | | | Remark: Each piece of equipment is scheduled for calibration once a year. Page: 8 / 26 Report No.: T210730W05-RP4 Rev.: 00 | | RF Conducted Test Site | | | | | | | |------------------------|------------------------|---------------|----------------|------------|------------|--|--| | Equipment | Manufacturer | Model | S/N | Cal Date | Cal Due | | | | Coaxial Cable | Woken | WC12 | CC003 | 06/28/2021 | 06/27/2022 | | | | Coaxial Cable | Woken | WC12 | CC001 | 06/28/2021 | 06/27/2022 | | | | Power Meter | Anritsu | ML2487A | 6K00003260 | 05/24/2021 | 05/23/2022 | | | | Power Seneor | Anritsu | MA2490A | 032910 | 05/24/2021 | 05/23/2022 | | | | EXA Signal
Analyzer | KEYSIGHT | N9010B | MY55460167 | 09/07/2020 | 09/06/2021 | | | | Software | | Radio Test So | ftware Ver. 21 | | | | | Remark: Each piece of equipment is scheduled for calibration once a year. ### 1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT | | EUT Accessories Equipment | | | | | | | |-----|---------------------------|-------|-------|------------|--------|--|--| | No. | Equipment | Brand | Model | Series No. | FCC ID | | | | | N/A | | | | | | | | | Support Equipment | | | | | | | | |---------------------|-------------------|--------------|--------------|--------|-----|--|--|--| | No. Equipment Brand | | Model | Series No. | FCC ID | | | | | | 1 | Adapter | WEIHAI POWER | HAS060123-EA | N/A | N/A | | | | ### 1.8 TEST METHODOLOGY AND APPLIED STANDARDS The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.407, KDB 789033 D02, KDB 905462 D02, RSS-247 Issue 2 and RSS-GEN Issue 5. Page: 9 / 26 Report No.: T210730W05-RP4 Rev.: 00 # 2. TEST SUMMARY | FCC
Standard
Sec. | IC
Standard Sec. | Chapter | Test Item | Result | |-------------------------|--|---------|-----------------------------|--------| | 15.203 | RSS-Gen (6.8) | 1.3 | Antenna Requirement | Pass | | 15.407(b) | RSS-247(6.2.1.2)
RSS-247(6.2.2.2)
RSS-247(6.2.3.2)
RSS-247(6.2.4.2) | 4.1 | Radiation Spurious Emission | Pass | | 15.407(a) | RSS-247(6.2.1.1)
RSS-247(6.2.2.1)
RSS-247(6.2.3.1)
RSS-247(6.2.4.1) | 4.2 | Output Power Measurement | Pass | Page: 10 / 26 Report No.: T210730W05-RP4 Rev.: 00 # 3. DESCRIPTION OF TEST MODES ### 3.1 THE EUT CHANNEL NUMBER OF OPERATING CONDITION 1. IEEE 802.11a mode: 6Mbps Operation mode 2. IEEE 802.11n HT 20 MHz mode: MCS0 3. IEEE 802.11n HT 40 MHz mode: MCS0 Frequency Range Mode (MHz) IEEE 802.11a 5180, 5220, 5240 U-NII-1 IEEE 802.11n HT 20 MHz 5180, 5220, 5240 IEEE 802.11n HT 40 MHz 5190, 5230 IEEE 802.11a 5260, 5280, 5320 U-NII-2a IEEE 802.11n HT 20 MHz 5260, 5280, 5320 Operating Frequency IEEE 802.11n HT 40 MHz 5270, 5310 IEEE 802.11a 5500, 5580, 5720 U-NII-2c IEEE 802.11n HT 20 MHz 5500, 5580, 5720 IEEE 802.11n HT 40 MHz 5510, 5550, 5710 IEEE 802.11a 5745, 5785, 5825 U-NII-3 IEEE 802.11n HT 20 MHz 5745, 5785, 5825 IEEE 802.11n HT 40 MHz 5755, 5795 #### Remark: 2. For Canada the EUT Frequency Range 5600~5650MHz will be disabled. ^{1.} EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report. Page: 11 / 26 Report No.: T210730W05-RP4 Rev.: 00 # 3.2 THE WORST MODE OF MEASUREMENT | Radiated Emission Measurement Below 1G | | | | | |---|---|--|--|--| | Test Condition Radiated Emission Below 1G | | | | | | Power supply Mode | Mode 1: EUT power by Power Supply (1st) Mode 2: EUT power by Power Supply (2nd) | | | | | Worst Mode | | | | | #### Remark: - 1. The worst mode was record in this test report. - 2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, for radiated measurement. The worst case(Y-Plane) were recorded in this report Page: 12 / 26 Report No.: T210730W05-RP4 Rev.: 00 # 4. TEST RESULT # **4.1 RADIATION SPURIOUS EMISSION** ### 4.1.1 Test Limit According to §15.407, §15.209 and §15.205, According to RSS-247 section 6.2.1.2 and section 6.2.4.2 ### **Below 30 MHz** | Frequency | Field Strength
(microvolts/m) | Magnetic
H-Field
(microamperes/m) | Measurement
Distance
(metres) | |---------------|----------------------------------|---|-------------------------------------| | 9-490 kHz | 2,400/F (F in kHz) | 2,400/F (F in kHz) | 300 | | 490-1,705 kHz | 24,000/F (F in kHz) | 24,000/F (F in kHz) | 30 | | 1.705-30 MHz | 30 | N/A | 30 | ### **Above 30 MHz** | Frequency | Field Strength
microvolts/m at 3 metres (watts, e.i.r.p.) | | | | |-----------|--|--------------|--|--| | (MHz) | Transmitters | Receivers | | | | 30-88 | 100 (3 nW) | 100 (3 nW) | | | | 88-216 | 150 (6.8 nW) | 150 (6.8 nW) | | | | 216-960 | 200 (12 nW) | 200 (12 nW) | | | | Above 960 | 500 (75 nW) | 500 (75 nW) | | | # RSS-Gen Table 3 and Table 5 – General Field Strength Limits for Transmitters and Receivers at Frequencies Above 30 MHz (Note) | Frequency | Field Strength
microvolts/m at 3 metres (watts, e.i.r.p.) | | | | |-----------|--|--------------|--|--| | (MHz) | Transmitters | Receivers | | | | 30-88 | 100 (3 nW) | 100 (3 nW) | | | | 88-216 | 150 (6.8 nW) | 150 (6.8 nW) | | | | 216-960 | 200 (12 nW) | 200 (12 nW) | | | | Above 960 | 500 (75 nW) | 500 (75 nW) | | | **Note:** Measurements for compliance with the limits in table 3 may be performed at distances other than 3 metres, in accordance with Section 6.6. Report No.: T210730W05-RP4 Rev.: 00 Page: 13 / 26 # RSS-Gen Table 6: General Field Strength Limits for Transmitters at Frequencies Below 30 MHz (Transmit) | Frequency | Magnetic field strength
(H-Field) (μΑ/m) | Measurement Distance (m) | | |---------------------------|---|--------------------------|--| | 9-490 kHz ^{Note} | 6.37/F (F in kHz) | 300 | | | 490-1,705 kHz | 63.7/F (F in kHz) | 30 | | | 1.705-30 MHz | 0.08 | 30 | | **Note:** The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.. ### **UNII-1:** For transmitters operating in the band 5150-5250 MHz, all emissions outside the band 5150-5350 MHz shall not exceed -27 dBm/MHz e.i.r.p. However, any unwanted emissions that fall into the band 5250-5350 MHz must be 26 dBc, when measured using a resolution bandwidth between 1 and 5% of the occupied bandwidth, above 5.25 GHz. Otherwise, the transmission is considered as intentional and the devices shall implement dynamic frequency selection (DFS) and transmitter power control (TPC) as per the requirements for the band 5250-5350 MHz #### UNII-2a and 2c: For devices with operating frequencies in the band 5250-5350 MHz but having a channel bandwidth that overlaps the band 5150-5250 MHz, the devices' unwanted emission shall not exceed -27 dBm/MHz e.i.r.p. outside the band 5150-5350 MHz and its power shall comply with the spectral power density for operation within the band 5150-5250 MHz. The device shall be labelled "for indoor use only." Emissions outside the band 5470-5725 MHz shall not exceed -27 dBm/MHz e.i.r.p. #### UNII-3: For the band 5725-5850 MHz, emissions at frequencies from the band edges to 10 MHz above or below the band edges shall not exceed -17 dBm/MHz e.i.r.p. For emissions at frequencies more than 10 MHz above or below the band edges, the emissions power shall not exceed -27 dBm/MHz Page: 14 / 26 Report No.: T210730W05-RP4 Rev.: 00 ### 4.1.2 Test Procedure Test method Refer as KDB 789033 D02. - 1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode. - 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna. - 3. Span shall wide enough to full capture the emission measured. The SA from 9kHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit. - 4. No emission found between lowest internal used/generated frequency to 30MHz (9KHz~30MHz) - 5. The SA setting following: - (1) Below 1G: RBW = 100kHz, VBW ≥ 3*RBW, Sweep = Auto, Detector = Peak, Trace = Max hold. - (2) Above 1G: - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold. - (2.2) For Average measurement : RBW = 1MHz, VBW If Duty Cycle ≥ 98%, VBW=10Hz. If Duty Cycle < 98%, VBW=1/T. Report No.: T210730W05-RP4 Page: 15 / 26 Rev.: 00 # 4.1.3 Test Setup # 9kHz ~ 30MHz # 30MHz ~ 1GHz Page: 16 / 26 Report No.: T210730W05-RP4 Rev.: 00 # **Above 1 GHz** Page: 17 / 26 Report No.: T210730W05-RP4 Rev.: 00 ### 4.1.4 Test Result ### **Below 1G Test Data** | Test Mode | Mode 1 | Temp/Hum | 23.9(°ℂ)/ 55%RH | | |-----------|---------------------|---------------|--------------------|--| | Test Item | est Item 30MHz-1GHz | | September 22, 2021 | | | Polarize | Vertical | Test Engineer | Ray Li | | | Detector | Peak | | | | | Freq. | Detector
Mode | Spectrum
Reading Level | Factor | Actual
FS | Limit
@3m | Margin | |--------|------------------|---------------------------|--------|--------------|--------------|--------| | MHz | PK/QP/AV | dΒμV | dB | dΒμV/m | dΒμV/m | dB | | 39.70 | Peak | 40.16 | -9.54 | 30.62 | 40.00 | -9.38 | | 139.61 | Peak | 36.53 | -9.90 | 26.63 | 43.50 | -16.87 | | 381.14 | Peak | 29.77 | -6.68 | 23.09 | 46.00 | -22.91 | | 474.26 | Peak | 29.46 | -3.51 | 25.95 | 46.00 | -20.05 | | 807.94 | Peak | 33.57 | 1.72 | 35.29 | 46.00 | -10.71 | | 951.50 | Peak | 27.16 | 3.71 | 30.87 | 46.00 | -15.13 | Note: 1. No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz) 2. For below 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit. Page: 18 / 26 Report No.: T210730W05-RP4 Rev.: 00 | Test Mode | Mode 1 | Temp/Hum | 23.9(°C)/ 55%RH | |-----------|------------|---------------|--------------------| | Test Item | 30MHz-1GHz | Test Date | September 22, 2021 | | Polarize | Horizontal | Test Engineer | Ray Li | | Detector | Peak | | | | Freq. | Detector
Mode | Spectrum
Reading Level | Factor | Actual
FS | Limit
@3m | Margin | |--------|------------------|---------------------------|--------|--------------|--------------|--------| | MHz | PK/QP/AV | dΒμV | dB | dBµV/m | dBμV/m | dB | | 105.66 | Peak | 32.03 | -11.16 | 20.87 | 43.50 | -22.63 | | 138.64 | Peak | 36.75 | -9.80 | 26.95 | 43.50 | -16.55 | | 381.14 | Peak | 28.42 | -6.68 | 21.74 | 46.00 | -24.26 | | 476.20 | Peak | 33.30 | -3.45 | 29.85 | 46.00 | -16.15 | | 807.94 | Peak | 34.89 | 1.72 | 36.61 | 46.00 | -9.39 | | 951.50 | Peak | 28.22 | 3.71 | 31.93 | 46.00 | -14.07 | Note: 1. No emission found between lowest internal used/generated frequency to 30MHz(9KHz~30MHz) 2. For below 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit. Page: 19 / 26 Report No.: T210730W05-RP4 Rev.: 00 | Test Mode: | Mode: IEEE 802.11a Mid CH | | 23.9(°ℂ)/ 55%RH | |------------|-------------------------------|--------------------|--------------------| | Test Item | / Band 1, 5220MHz
Harmonic | Temp/Hum Test Date | September 22, 2021 | | Polarize | Vertical | Test Engineer | Ray Li | | Detector | Peak | _ | • | | Freq. | Detector
Mode | Spectrum
Reading Level | Factor | Actual
FS | Limit
@3m | Margin | |----------|------------------|---------------------------|--------|--------------|--------------|--------| | MHz | PK/QP/AV | dΒμV | dB | dBμV/m | dΒμV/m | dB | | 10440.00 | Peak | 31.77 | 19.02 | 50.79 | 68.20 | -17.41 | | 15660.00 | Peak | 30.51 | 23.69 | 54.20 | 74.00 | -19.80 | | N/A | ### Remark: - 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency. - 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit Page: 20 / 26 Report No.: T210730W05-RP4 Rev.: 00 | Test Mode: | IEEE 802.11a Mid CH
/ Band 1, 5220MHz | Temp/Hum | 23.9(°C)/ 55%RH | |------------|--|---------------|--------------------| | Test Item | Harmonic | Test Date | September 22, 2021 | | Polarize | Horizontal | Test Engineer | Ray Li | | Detector | Peak | | | | Freq. | Detector | Spectrum | Factor | Actual | Limit | Margin | |----------|------------------|-----------------------|--------|--------------|---------------|--------| | MHz | Mode
PK/QP/AV | Reading Level
dBµV | dB | FS
dBµV/m | @3m
dBµV/m | dB | | 10440.00 | Peak | 31.86 | 19.02 | 50.88 | 68.20 | -17.32 | | 15660.00 | Peak | 31.18 | 23.69 | 54.87 | 74.00 | -19.13 | | N/A | ### Remark: - 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency. - 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit Report No.: T210730W05-RP4 Rev.: 00 Page: 21 / 26 ### 4.2 OUTPUT POWER MEASUREMENT ### 4.2.1 Test Limit According to §15.407 (a)(1), 15.407(a)(2) and 15.407(a)(3), and RSS-247 section 6.2.1.1, section 6.2.2.1, section 6.2.3.1 and section 6.2.4.1 ### FCC: ### UNII-1: For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW(24 dBm), whichever power is less. B is the 99% emission bandwidth in megahertz, provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### UNII-2a and 2c: the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. and The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 Log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. #### UNII-3: For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Page: 22 / 26 Report No.: T210730W05-RP4 Rev.: 00 IC: UNII-1: For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement transmitter power control (TPC) in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW. For other devices, the maximum e.i.r.p. shall not exceed 200 mW or 10 + 10 log10B, dBm, whichever power is less. B is the 99% emission bandwidth in megahertz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band. ### UNII-2a and 2c: For OEM devices installed in vehicles, the maximum e.i.r.p. shall not exceed 30 mW or 1.76 + 10 log10B, dBm, whichever is less. Devices shall implement TPC in order to have the capability to operate at least 3 dB below the maximum permitted e.i.r.p. of 30 mW. Devices, other than devices installed in vehicles, shall comply with the following: The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band: The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W. ### UNII-2c (5470-5600 MHz and 5650-5725 MHz) The maximum conducted output power shall not exceed 250 mW or 11 + 10 log10B, dBm, whichever is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10B, dBm, whichever is less. B is the 99% emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W. #### UNII-3: For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Page: 23 / 26 Report No.: T210730W05-RP4 Rev.: 00 | UNII-1 Limit | ✓ Antenna not exceed 6 dBi : 24dBm✓ Antenna with DG greater than 6 dBi :[Limit = 24 – (DG – 6)] | |---------------|---| | UNII-2a Limit | ✓ Antenna not exceed 6 dBi : 24dBm✓ Antenna with DG greater than 6 dBi : [Limit = 24 – (DG – 6)] | | UNII-2c Limit | ☐ Antenna not exceed 6 dBi : 24dBm
☐ Antenna with DG greater than 6 dBi : [Limit = 24 – (DG – 6)] | | UNII-3 Limit | ☐ Antenna not exceed 6 dBi : 30dBm
☐ Antenna with DG greater than 6 dBi : [Limit = 30 – (DG – 6)] | ### **4.2.2 Test Procedure** Test method Refer as KDB 789033 D02, Section E.3.b for BW 20MHz and 40MHz, E.2.b for BW 80MHz. - 1. The EUT RF output connected to the power meter or spectrum by RF cable. - 2. Setting maximum power transmit of EUT. - 3. The path loss was compensated to the results for each measurement. - 4. Measure and record the result of Average output power. in the test report. # 4.2.3 Test Setup For BW 20MHz and 40MHz For BW 80MHz Page: 24 / 26 Report No.: T210730W05-RP4 Rev.: 00 ### 4.2.4 Test Result **Temperature:** 24.9° C **Test date:** September 17, 2021 Humidity: 58% RH Tested by: Lance Chen ### **Average Power:** | | 302.11a
/5.5G/5.8G | | Average Power
Output(dBm) | Average Power + factor(dBm) | | | |----|-----------------------|-----|------------------------------|-----------------------------|--|--| | СН | Frequency
(MHz) | Set | Data Rate (Mbps) 6 | Data Rate (Mbps) 6 | | | | 36 | 5180 | 17 | 13.95 | 14.04 | | | | 44 | 5220 17 | | 14.06 | 14.15 | | | Report No.: T210730W05-RP4 Page: 25 / 26 Rev.: 00 ### 4.3 TEST DATA RE-USE SUMMARY ### **Introduction Section:** The application re-uses data collected on a similar device. The subject device of this application (Model: MP7-ARGON2X-C, FCC ID: GKR436385, IC: 2533B-436385) is electrically identical to the reference device (Model: MP7-ARGON2-C, FCC ID: GKR425338, IC: 2533B-425338) for the portions of the circuitry corresponding to the data being re-used, as treated by KDB Publication 484596 D01. # **Differences Brief Description:** The WLAN and Bluetooth hardware of this device are identical to the implementation in FCC ID: GKR436385 IC: 2533B-436385 The Product Equality Declaration document includes detailed information about the changes between the devices. The data from that application has been verified through appropriate spot checks to demonstrate compliance for this device as shown in the summary table below. Page: 26 / 26 Report No.: T210730W05-RP4 Rev.: 00 # **Spot Check Verification Result Summary** | Equipment Class | Reference FCC ID / | Folder Test | Report Title/ | |-----------------|--------------------|-----------------|---------------| | | IC No. | | Section | | DSS-NII | GKR425338 / | T210413W01-RP4, | All Section | | | 2533B-425338 | T210413W01-RP5 | (Except for | | | | | Radiation | | | | | Spurious | | | | | Emission | | | | | below 1GHz) | # Summery of the spot check for Unlicensed bands and Licensed bands In order to confirm hardware similarity of the subject device with the reference device, we used same setting power to radiated emission measurement were performed on the subject device for the Band edge and Harmonic, the test result were similar with FCC ID: GKR425338 / IC: 2533B-425338. #### WLAN-5GHz | Report | Test Item | Itom Mode | Measured | GKR425338 /
2533B-425338 | | | GKR436385 /
2533B-436385 | | | Gap (dB) | | |---------------|-----------|------------------------|--------------------|-----------------------------|---------|--------------|-----------------------------|---------|--------------|----------|---------| | Report | rest item | / CH. | Frequency
(MHz) | Peak | Average | Ant.
Pol. | Peak | Average | Ant.
Pol. | Peak | Average | | NII
(WLAN) | Band edge | Band 1
/ A
/ Low | 5150 | 57.02 | 44.52 | ٧ | 54.42 | 44.28 | ٧ | 2.93 | 0.6 | | | Emission | Band 1
/ A | 10440 | 49.01 | N/A | Н | 50.88 | N/A | Н | -1.87 | N/A | | | 1G~40G | / Mid | 15660 | 54.13 | N/A | Н | 54.87 | N/A | Н | -0.74 | N/A | | Report Test | | rt | | Measured | GKR425338 /
2533B-425338 | | Measured GKR436385 / 2533B-436385 | | Gap (dB) | | | |---------------|------|------------------------|------|--------------------|-----------------------------|---------|-----------------------------------|-------|----------|-------|---------| | Кероп | Item | / CH. | Pol. | Frequency
(MHz) | Peak | Average | Frequency
(MHz) | Peak | Average | Peak | Average | | NII
(WLAN) | LF | Band
1 / A /
Mid | Н | 51.34 | 36.47 | - | 807.94 | 36.61 | - | -0.14 | - | ### - End of Test Report -