

(F)

Result Table

Page 25 of 75

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdic
11B	LCH	-0.126	-48.890	-30.13	PASS
11B	11B HCH		-49.359	-29.92	PASS
11G	LCH	-4.150	-48.886	-34.15	PASS
11G	нсн	-4.515	-48.850	-34.52	PASS

Page 26 of 75

	(the second sec		Conter Freq 2.4 Conter Freq 2.4	no General SA 19 oc por 19 oc por PROF East - Tri PROF East - Tri Active	SENSE UNT A 100 SENSE UNT BALOD Type: EM G: Free Run Avg Hold: 1001 tten: 20 dB	MTO (04531 MINO 02.200 5 TRACE D 00 DET PPPPP MKr4 2.494 50 GHz -49.850 dBm	Auto Tune	
Ì	11G/HCH	(it)	102 202 202 202 202 202 202 202	z #VBW 300 2 #VBW 300 2 463 25 GHz 4 2 463 26 GHz 4 2 483 50 GHz 48.1	V kHz Sweet 9 kHz Sweet 9 kHz Sweet 90 kHz Sweet <	Stop 2,50000 GHz P 4.800 ms (1001 Pts) NOTH FUNCTION VALUE	Start Freq 2.45000000 GHz 2.50000000 GHz 2.50000000 GHz 5.000000 MHz to Man Freq Offset 0 Hz	Ì
	(S)		6 8 10 11 • ("	87ATUB	0	

Appendix D): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. f the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict	
11B	LCH	-0.245	<limit< td=""><td>PASS</td></limit<>	PASS	
11B	МСН	0.405	<limit< td=""><td>PASS</td></limit<>	PASS	
11B	НСН	0.108	<limit< td=""><td>PASS</td></limit<>	PASS	
11G	LCH	-4.221	<limit< td=""><td>PASS</td></limit<>	PASS	
11G	МСН	-3.541	<limit< td=""><td>PASS</td></limit<>	PASS	
11G	нсн	-4.561	<limit< td=""><td>PASS</td></limit<>	PASS	

Page 30 of 75

Page 31 of 75

Page 32 of 75

Page 33 of 75

Page 34 of 75

Page 35 of 75

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss was compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

Page 37 of 75

Result Table

		1
Channel	Power Spectral Density [dBm]	Verdict
LCH	-14.397	PASS
МСН	-13.869	PASS
НСН	-13.977	PASS
LCH	-17.686	PASS
MCH	-17.979	PASS
НСН	-18.006	PASS
	Channel LCH MCH HCH LCH MCH HCH	Channel Power Spectral Density [dBm] LCH -14.397 MCH -13.869 HCH -13.977 LCH -17.686 MCH -17.979 HCH -18.006

Page 38 of 75

Test Graph

Page 39 of 75

Report No. :EED32M00268701

CTI华测检测

11G/LCH

11G/MCH

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 3.5 dBi.

Page 41 of 75

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz	G							
	1) The mains terminal disturbance voltage test was conducted in a shielded room.									
(A)	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu$ H + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.									
	 The tabletop EUT was pla reference plane. And for fl horizontal ground reference 	ced upon a non-me oor-standing arrange plane,	tallic table 0.8m abc ement, the EUT was	ve the ground placed on the						
	4) The test was performed with shall be 0.4 m from the reference plane was bonded was placed 0.8 m from the reference plane for LISNs distance was between the of the EUT and associated	4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units								
	5) In order to find the maximur the interface cables must measurement.	n emission, the relati be changed accord	ve positions of equip ing to ANSI C63.10	ment and all of on conducted						
Limit:										
(C)		Limit (dBµV)							
		Quasi-peak	Average							
	0.15-0.5	66 to 56*	56 to 46*							
(P)	0.5-5	56	46							
61)	5-30	60	50	G						
	* The limit decreases linearly w to 0.50 MHz. NOTE : The lower limit is applie	vith the logarithm of the cable at the transition	he frequency in the ra	ange 0.15 MHz						

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

8

9

10

11

12

0.5325

0.7350

0.7350

2.2244

2.5710

20.24

35.55

18.44

18.34

36.12

9.99

9.87

9.87

9.79

9.79

30.23

45.42

28.31

28.13

45.91

46.00

56.00

46.00

46.00

56.00

-15.77

-10.58

-17.69

-17.87

-10.09

AVG QP

AVG

AVG

QP

Report No. :EED32M00268701

Page 42 of 75

Page 43 of 75

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Page 44 of 75

Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setu	p:	Frequency	Detector	RBW	VBW	Remark	
		30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	x
1			Peak	1MHz	3MHz	Peak	13
$(c_{1}^{(n)})$	(2)	Above IGHZ	Peak	1MHz	10Hz	Average	
Test Procedur	e: Be	low 1GHz test proce	edure as below:	C.			V
	Те	st method Refer as K	DB 558074 D01				
	a. b. c. d. e. f.	The EUT was place at a 3 meter semi-ar determine the positi The EUT was set 3 was mounted on the The antenna height determine the maxin polarizations of the For each suspected the antenna was tur was turned from 0 d The test-receiver sy Bandwidth with Max Place a marker at th frequency to show of bands. Save the spe for lowest and higher	d on the top of a re nechoic camber. T on of the highest r meters away from e top of a variable- is varied from one mum value of the f antenna are set to emission, the EU ned to heights from legrees to 360 deg stem was set to P cimum Hold Mode. ne end of the restri compliance. Also m ectrum analyzer pl est channel	otating table he table wa adiation. the interfer height ante meter to for ield strengtl make the r T was arran 1 meter to grees to find eak Detect cted band on heasure any ot. Repeat	e 0.8 meter is rotated 3 ence-recenna tower. our meters n. Both home aged to its 4 meters the maxim Function a closest to the emission for each point	rs above the 360 degrees iving antenna above the gr rizontal and v ent. worst case a and the rotat num reading. nd Specified he transmit s in the restri ower and mo	ground to a, which ound to vertical nd then able cted dulation
(C) (C)	Ab g. h. i. j.	Different between a to fully Anechoic Ch 18GHz the distance Test the EUT in the The radiation measu Transmitting mode, Repeat above proce	edure as below: bove is the test site amber change for is 1 meter and tak lowest channel, t urements are perfo and found the X a edures until all freq	e, change fi m table 0.8 ble is 1.5 m the Highest prmed in X, xis position juencies me	rom Semi- meter to 1 eter). channel Y, Z axis p ing which i easured wa	Anechoic Cr .5 meter(Ab positioning fo t is worse ca as complete.	namber ove r se.
Limit:		Frequency	Limit (dBu)	//m @3m)	Re	mark	
		30MHz-88MHz	<u> </u>	0	Quasi-n	eak Value	
		88MHz-216MHz	43	5	Quasi-p	eak Value	
$(\mathbf{C}^{\mathbf{v}})$	(d e	216MHz-960MHz	46.	46.0 Ouasi-peak Value			
	Y	960MHz-1GHz	54.	0	Quasi-p	eak Value	
			54.	0	Averac	ae Value	
10		Above 1GHz	74	0	Peak	Value	
(c.)		(2)	(6))			
	<i>[</i>		(V)	1		N /	

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.21	52.71	74.00	21.29	Pass	Horizontal
2	2412.0463	32.28	13.36	-43.13	94.41	96.92	74.00	-22.92	Pass	Horizontal
6)	6	S)		(\mathcal{S})		6)		(\mathcal{C}^{\prime})

(1)

Page 46 of 75

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	50.04	52.54	74.00	21.46	Pass	Vertical
2	2410.7509	32.28	13.35	-43.12	83.86	86.37	74.00	-12.37	Pass	Vertical

Page 47 of 75

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	39.12	41.62	54.00	12.38	Pass	Horizontal
2	2412.1902	32.28	13.36	-43.12	88.96	91.48	54.00	-37.48	Pass	Horizontal

