

Appendix C: System Calibration Certificate

Calibration information for E-field probes

In Collaboration with

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

国际互认 CALIBRATION **CNAS L0570**

Client

JYT(formerly CCIS)

Certificate No: Z21-60407

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN: 7601

Calibration Procedure(s)

FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

December 28, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards		ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2		101919	15-Jun-21(CTTL, No.J21X04466)	Jun-22
Power sensor NRP-Z	91	101547	15-Jun-21(CTTL, No.J21X04466)	Jun-22
Power sensor NRP-Z	91	101548	15-Jun-21(CTTL, No.J21X04466)	Jun-22
Reference 10dBAtten	uator	18N50W-10dB	10-Feb-20(CTTL, No.J20X00525)	Feb-22
Reference 20dBAtten	uator	18N50W-20dB	10-Feb-20(CTTL, No.J20X00526)	Feb-22
Reference Probe EX3	DV4	SN 3617	27-Jan-21(SPEAG, No.EX3-3617_Jan21) Jan-22
DAE4		SN 1555	20-Aug-21(SPEAG, No.DAE4-1555_Aug	21/2) Aug-22
Secondary Standards		ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGenerator MG3	700A	6201052605	16-Jun-21(CTTL, No.J21X04467)	Jun-22
Network Analyzer E507	1C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan -22
RIVERSON STATE	Na	me	Function	Signature
Calibrated by:	Yu	Zongying	SAR Test Engineer	2-16
Reviewed by: Lin Hao		n Hao	SAR Test Engineer	时格
Approved by: Qi		Dianyuan	SAR Project Leader	200
			90/07/07/02/07/07/07/07/07/07/07/07/07/07/07/07/07/	CONTRACTOR OF THE STATE OF THE

Issued: December 30, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60407

Page 1 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z

diode compression point

ConvF DCP CF

crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters

A,B,C,D Polarization Φ

Φ rotation around probe axis

Polarization 0

0 rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)",

July 2016

c) IEC 62209-2. "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

NORMx, y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).

 $NORM(f)x, y, z = NORMx, y, z^*$ frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the

frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.

PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.

Ax, y, z; Bx, y, z; Cx, y, z; VRx, y, z: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor

media. VR is the maximum calibration range expressed in RMS voltage across the diode.

ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50MHz to ±100MHz.

Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.

Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z21-60407

Page 2 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY – Parameters of Probe: EX3DV4 – SN:7601

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2)A	0.71	0.66	0.66	±10.0%
DCP(mV) ^B	109.8	108.5	107.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0	cw	X	0.0	0.0	1.0	0.00	223.3	±2.1%
		Y	0.0	0.0	1.0		213.1	1
		Z	0.0	0.0	1.0	1 77	208.0	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

Certificate No:Z21-60407

Page 3 of 9

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7601

Calibration Parameter Determined in Head Tissue Simulating Media

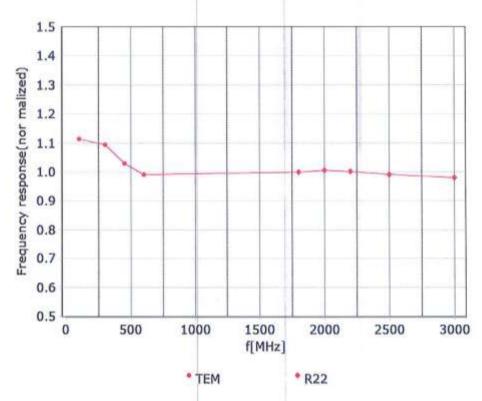
f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ⁶ (mm)	Unct. (k=2)
750	41.9	0.89	10.58	10.58	10.58	0.14	1.33	±12.1%
835	41.5	0.90	10.20	10.20	10.20	0.11	1.60	±12.1%
900	41.5	0.97	10.18	10.18	10.18	0.16	1.34	±12.1%
1750	40.1	1.37	8.62	8.62	8.62	0.25	1.00	±12.1%
1900	40.0	1.40	8.37	8.37	8.37	0.23	1.07	±12.1%
2300	39.5	1.67	7.94	7.94	7.94	0.51	0.73	±12.1%
2450	39.2	1.80	7.74	7.74	7.74	0.37	0.93	±12.1%
2600	39.0	1.96	7.49	7.49	7.49	0.43	0.86	±12.1%
5250	35.9	4.71	5.35	5.35	5.35	0.45	1.35	±13.3%
5600	35.5	5.07	4.96	4.96	4.96	0.50	1.30	±13.3%
5750	35.4	5.22	5.04	5.04	5.04	0.50	1.32	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No:Z21-60407


Page 4 of 9

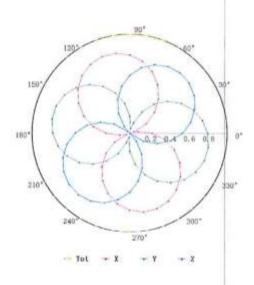
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

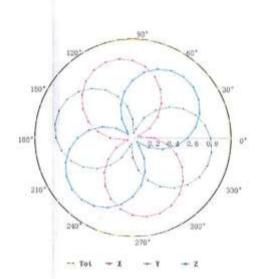
Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

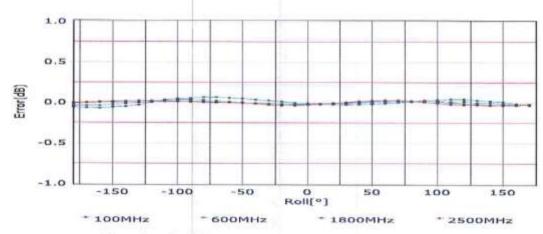
Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z21-60407

Page 5 of 9




Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2512 Fax; +86-10-62304633-2504 Http://www.chinattl.cn

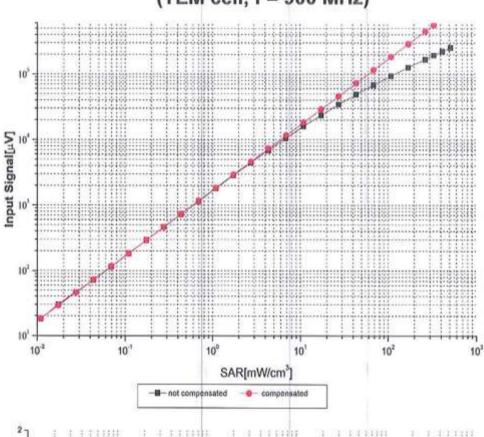

Receiving Pattern (Φ), θ=0°

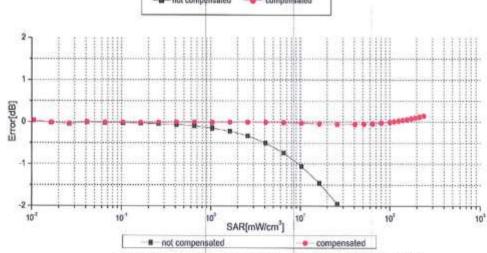
f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Certificate No:Z21-60407


Page 6 of 9



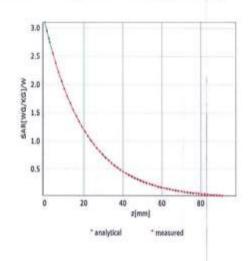
Add: No.52 Flua Yuaniser Road, Haidian District, Betjing, 100191, Chi Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

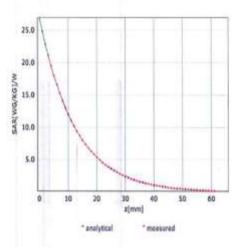
Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

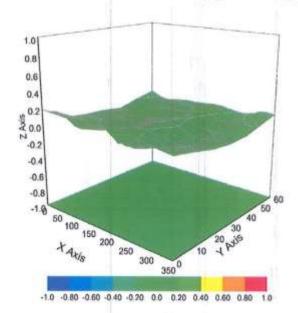
Certificate No:Z21-60407

Page 7 of 9



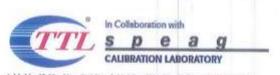

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Conversion Factor Assessment


f=750 MHz,WGLS R9(H_convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid



Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z21-60407

Page 8 of 9

Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com

Add: No.52 HuaYuanBei Road, Haidinn District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cu

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7601

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	59.4
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z21-60407

Page 9 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cm

Client

Auden

Certificate No: Z21-60263

CALIBRATION CERTIFICATE

Object EX3DV4 - SN: 3826

Calibration Procedure(s) FF-Z11-004-02

Calibration Procedures for Dosimetric E-field Probes

Calibration date: July 28, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
101919	15-Jun-21(CTTL, No.J21X04466)	Jun-22
101547	15-Jun-21(CTTL, No.J21X04466)	Jun-22
101548	15-Jun-21(CTTL, No.J21X04466)	Jun-22
18N50W-10dB	10-Feb-20(CTTL, No.J20X00525)	Feb-22
18N50W-20dB	10-Feb-20(CTTL, No.J20X00526)	Feb-22
SN 3617	27-Jan-21(SPEAG, No.EX3-3617_Jan21)	Jan-22
SN 1556	15-Jan-21(SPEAG, No.DAE4-1556_Jan21) Jan-22
ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
6201052605	16-Jun-21(CTTL, No.J21X04467)	Jun-22
MY46110673	21-Jan-21(CTTL, No.J20X00515)	Jan-22
lame	Function	Signature
Yu Zongying	SAR Test Engineer	全面
Lin Hao	SAR Test Engineer	林物
Qi Dianyuan	SAR Project Leader	182
	101919 101547 101548 1 18N50W-10dB 18N50W-20dB SN 3617 SN 1556 ID # A 6201052605 MY46110673 Name Yu Zongying Lin Hao	101919 15-Jun-21(CTTL, No.J21X04466) 101547 15-Jun-21(CTTL, No.J21X04466) 101548 15-Jun-21(CTTL, No.J21X04466) 18N50W-10dB 10-Feb-20(CTTL, No.J20X00525) 18N50W-20dB 10-Feb-20(CTTL, No.J20X00526) SN 3617 27-Jan-21(SPEAG, No.EX3-3617_Jan21) SN 1556 15-Jan-21(SPEAG, No.DAE4-1556_Jan21) ID # Cal Date(Calibrated by, Certificate No.) SA 6201052605 16-Jun-21(CTTL, No.J21X04467) MY46110673 21-Jan-21(CTTL, No.J20X00515) Name Function Yu Zongying SAR Test Engineer Lin Hao SAR Test Engineer

Certificate No: Z21-60263

Page 1 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

TSL tissue simulating liquid NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx, y, z ConvF DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters A.B.C.D

Polarization Φ Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

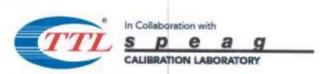
Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)",

c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010

d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"


Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics.
- Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ±50MHz to ±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No:Z21-60263

Page 2 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3826

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
$Norm(\mu V/(V/m)^2)^A$	0.48	0.41	0.35	±10.0%
DCP(mV) ^B	99.4	99.4	101.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Unc ^E (k=2)
0 CW	cw	X	0.0	0.0	1.0	0.00	168.0	±2.0%
		Y	0.0	0.0	1.0		152.4	
		Z	0.0	0.0	1.0		137.5	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

^B Numerical linearization parameter: uncertainty not required.

Certificate No:Z21-60263

Page 3 of 9

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4).

^E Uncertainly is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Add: No.52 HuaYuunBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinuttl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3826

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unct. (k=2)
750	41.9	0.89	9.43	9.43	9.43	0.40	0.78	±12.1%
835	41.5	0.90	9.15	9.15	9.15	0.16	1.30	±12.1%
900	41.5	0.97	9.12	9.12	9.12	0.16	1.35	±12.1%
1750	40.1	1.37	7.92	7.92	7.92	0.25	0.97	±12.1%
1900	40.0	1.40	7.75	7.75	7.75	0.22	1.15	±12.1%
2000	40.0	1.40	7.82	7.82	7.82	0.22	1.11	±12.1%
2300	39.5	1.67	7.44	7.44	7.44	0.46	0.78	±12.1%
2450	39.2	1.80	7.22	7.22	7.22	0.43	0.84	±12.1%
2600	39.0	1.96	6.93	6.93	6.93	0.47	0.81	±12.1%
3300	38.2	2.71	6.75	6.75	6.75	0.40	0.98	±13.3%
3500	37.9	2.91	6.61	6.61	6.61	0.44	0.94	±13.3%
3700	37.7	3.12	6.31	6.31	6.31	0.43	1.02	±13.3%
3900	37.5	3.32	6.21	6.21	6.21	0.35	1.35	±13.3%
4100	37.2	3.53	6.30	6.30	6.30	0.35	1.25	±13.3%
4200	37.1	3.63	6.15	6.15	6.15	0.35	1.35	±13.3%
4400	36.9	3.84	6.06	6.06	6.06	0.35	1.35	±13.3%
4600	36.7	4.04	5.92	5.92	5.92	0.40	1.30	±13.3%
4800	36.4	4.25	5.88	5.88	5.88	0.40	1.32	±13.3%
4950	36.3	4.40	5.66	5.66	5.66	0.40	1.35	±13.3%
5250	35.9	4.71	5.06	5.06	5.06	0.45	1.35	±13.3%
5600	35.5	5.07	4.68	4.68	4.68	0.45	1.40	±13.3%
5750	35.4	5.22	4.74	4.74	4.74	0.45	1.50	±13.3%

^c Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

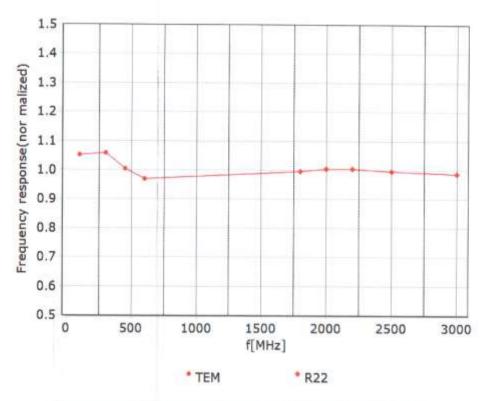
Certificate No:Z21-60263

Page 4 of 9

Project No.: JYTSZR2207058

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street,

Bao'an District, Shenzhen, Guangdong, People's Republic of China.


F At frequency below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

⁶ Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.4% (k=2)

Certificate No:Z21-60263

Page 5 of 9

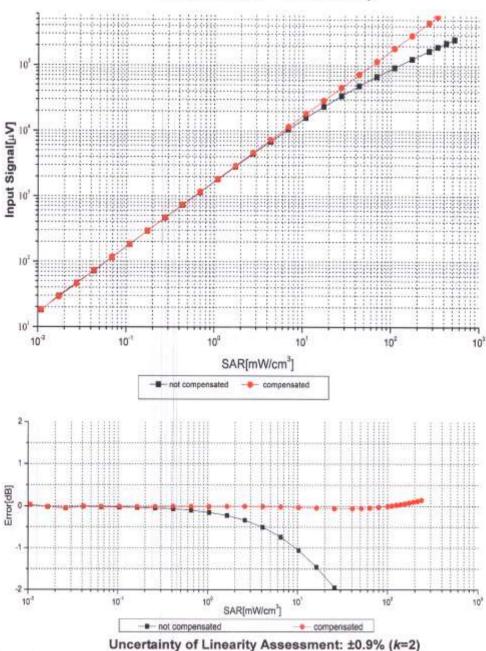
Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2)

Certificate No:Z21-60263

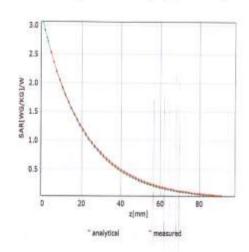

Page 6 of 9

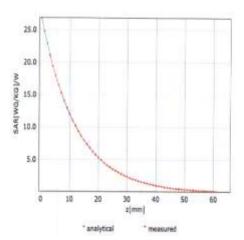
Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Certificate No:Z21-60263

Page 7 of 9


Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com


Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn

Conversion Factor Assessment

f=750 MHz,WGLS R9(H convF)

f=1750 MHz,WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±3.2% (k=2)

Certificate No:Z21-60263

Page 8 of 9

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3826

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	52.2
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	9mm
Tip Diameter	2.5mm
Probe Tip to Sensor X Calibration Point	1mm
Probe Tip to Sensor Y Calibration Point	1mm
Probe Tip to Sensor Z Calibration Point	1mm
Recommended Measurement Distance from Surface	1.4mm

Certificate No:Z21-60263

Page 9 of 9

Calibration information for Dipole

CCIS Certificate No: Z20-60195 Client

CALIBRATION CERTIFICATE

E-mail: ettl@chinattl.com

Object D750V3 - SN: 1118

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date: May 28, 2020

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	04-Sep-19 (CTTL, No.J19X07825)	Sep-20
Power sensor NRP6A	104291	04-Sep-19 (CTTL, No.J19X07825)	Sep-20
Reference Probe EX3DV4	SN 7514	27-Sep-19(CTTL-SPEAG,No.Z19-60306)	Sep-20
DAE4	SN 1555	22-Aug-19(CTTL-SPEAG,No.Z19-60295)	Aug-20
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	25-Feb-20 (CTTL, No.J20X00516)	Feb-21
NetworkAnalyzer E5071C	MY46110673	10-Feb-20 (CTTL, No.J20X00515)	Feb-21

4 %
沙
林光
va

Issued: May 30, 2020

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z20-60195

Page 1 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Glossary:

TSL ConvF

N/A

tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z20-60195

Page 2 of 8

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.1 ± 6 %	0.87 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.07 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.37 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.53 W/kg ± 18.7 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.0 ± 6 %	0.94 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C		****

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.12 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.61 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ² (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	1.40 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.67 W/kg ±18.7 % (k=2)

Certificate No: Z20-60195

Page 3 of 8

Project No.: JYTSZR2207058

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4Ω- 4.05jΩ	
Return Loss	- 24.8dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.0Ω- 6.05jΩ	
Return Loss	- 24.2dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	0.900 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

Certificate No: Z20-60195

Page 4 of 8

Date: 05.27.2020

Add: No.51 Xueyuun Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1118

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.872$ S/m; $\epsilon_r = 41.1$; $\rho = 1000$ kg/m³

Phantom section: Right Section

DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(9.7, 9.7, 9.7) @ 750 MHz; Calibrated: 2019-09-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 2019-08-22
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 53.61 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.21 W/kg

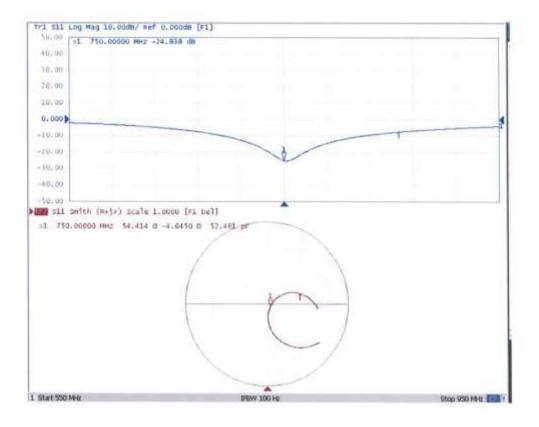
SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.37 W/kg

Smallest distance from peaks to all points 3 dB below: Larger than measurement grid

Ratio of SAR at M2 to SAR at M1 = 64.7%

Maximum value of SAR (measured) = 2.80 W/kg

0 dB = 2.80 W/kg = 4.47 dBW/kg


Page 5 of 8

Add: No.51 Xueyuan Rond, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Impedance Measurement Plot for Head TSL

Page 6 of 8

Date: 05.28.2020

Add: No.51 Xueyuan Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

DASY5 Validation Report for Body TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1118

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 750 MHz; $\sigma = 0.938$ S/m; $\epsilon_r = 55.02$; $\rho = 1000$ kg/m³

Phantom section: Center Section

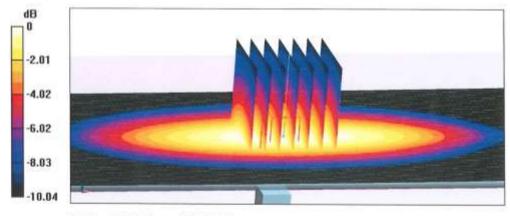
DASY5 Configuration:

- Probe: EX3DV4 SN7514; ConvF(9.87, 9.87, 9.87) @ 750 MHz; Calibrated: 2019-09-27
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1555; Calibrated: 2019-08-22
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 53.55 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 3.31 W/kg

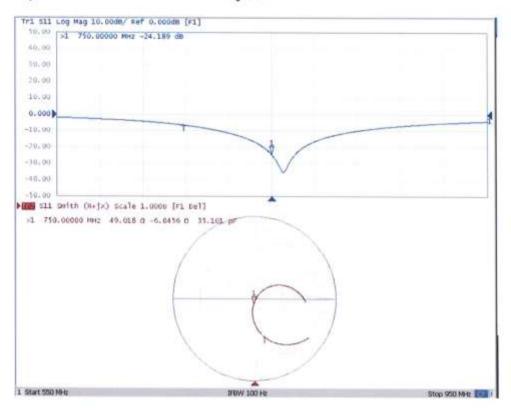
SAR(1 g) = 2.12 W/kg; SAR(10 g) = 1.4 W/kg

Smallest distance from peaks to all points 3 dB below = 19.2 mm

Ratio of SAR at M2 to SAR at M1 = 64.7%

Maximum value of SAR (measured) = 2.87 W/kg

0 dB = 2.87 W/kg = 4.58 dBW/kg


Page 7 of 8

Add: No.51 Xueyuan Road, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Body TSL

Page 8 of 8

Report No.: JYTSZ-R14-2200178

Dipole Impedance and Return Loss calibration Report

D750V2 - SN: 1118 Object:

Calibration Date: May 30, 2022

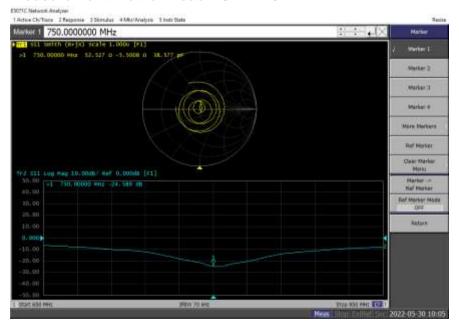
IEEE Std 1528:2013, IEC 62209-1:2006, FCC KDB 865664 Calibration reference:

D01

Janet Wei (Janet Wei, SAR project engineer)

Winner Thorag Tark in the Calibrated By:

Reviewed By:


(Winner Zhang, Technical manager)

Environment of Test Site

Temperature:	21 ~ 23°C
Humidity:	50~60% RH
Atmospheric Pressure:	1011 mbar

Test Data

Measurement Plot for Head TSL In 2022

Comparison with Original report

Items	Calibrated By CTTL	Calibrated By JYT In 2022	Deviation	Limit
Impendence for Head TSL	54.4Ω –4.05jΩ	52.53Ω -5.50jΩ	-1.87Ω –1.45jΩ	±5Ω
Return Loss for Head TSL	-24.80	-24.59	-0.85%	±20%(No less than 20 dB)

Result

Compliance

JianYan Testing Group Shenzhen Co., Ltd.

Project No.: JYTSZR2207058

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street,

Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com

http://www.eniet.ac.en

Certificate No: Z22-60210 JYT Client

CALIBRATION CERTIFICATE

Object

D835V2 - SN: 4d154

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 8, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	SN 7464	26-Jan-22(SPEAG,No.EX3-7464_Jan22)	Jan-23
DAE4	SN 1556	12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Jan-23
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-22 (CTTL, No.J22X00409)	Jan-23
Network Analyzer E5071C	MY46110673	14-Jan-22 (CTTL, No.J22X00406)	Jan-23

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	2%
Reviewed by:	Lin Hao	SAR Test Engineer	献粉

Approved by: Qi Dianyuan SAR Project Leader

Issued: June 13, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60210

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.en

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60210

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: ettl@chinattl.com http://www.eaiet.ac.en

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.88 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		****

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.36 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.60 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	1.53 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.20 W/kg ± 18.7 % (k=2)

Add: No.52 HuaYuanBei Rond, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail: cttl@chinattl.com http://www.eaict.nc.en

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	48.9Ω- 3.78jΩ	
Return Loss	- 28.0dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.310 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

		-
Manufactured by	SPEAG	

Certificate No: Z22-60210

Page 4 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

or Head TSL Date: 2022-06-08

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d154

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: f = 835 MHz; $\sigma = 0.882$ S/m; $\epsilon_r = 41.9$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard; DASY5 (IEEE/IEC/ANSI C63.19-2007)

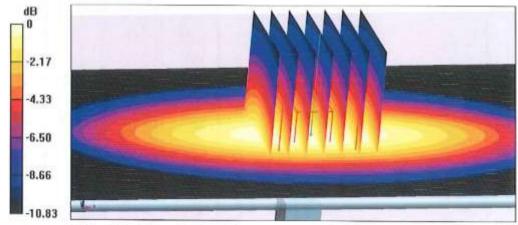
DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(9.96, 9.96, 9.96) @ 835 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 59.20 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.36 W/kg; SAR(10 g) = 1.53 W/kg

Smallest distance from peaks to all points 3 dB below = 18 mm

Ratio of SAR at M2 to SAR at M1 = 65.7%

Maximum value of SAR (measured) = 3.17 W/kg

0 dB = 3.17 W/kg = 5.01 dBW/kg

Certificate No: Z22-60210

Page 5 of 6



Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.en

Impedance Measurement Plot for Head TSL

Certificate No: Z22-60210

Page 6 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kallbrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

JYT (Auden)

Certificate No: D1750V2-1177_Feb21

CALIBRATION CERTIFICATE

Object

D1750V2 - SN:1177

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

February 10, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (St). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 7349	28-Dec-20 (No. EX3-7349_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Jeffrey Katzman	Laboratory Technician	J. 4
Approved by:	Katja Pokovic	Technical Manager	de as
			lasued: February 11, 2021

Certificate No: D1750V2-1177_Feb21

Page 1 of 6

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Project No.: JYTSZR2207058

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- . Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1177_Feb21

Page 2 of 6

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1,37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.4 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	orana .	****

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.00 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.73 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.0 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1177_Feb21

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	49.5 Ω - 1.2 jΩ	
Return Loss	- 37.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.218 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Production of the Control of the Con	Sometime
Manufactured by	SPEAG

Certificate No: D1750V2-1177_Feb21

Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 10.02.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1177

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.34 \text{ S/m}$; $\varepsilon_r = 39.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.67, 8.67, 8.67) @ 1750 MHz; Calibrated: 28.12.2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.11.2020

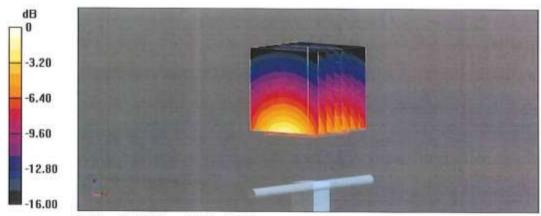
Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 106.3 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 9 W/kg; SAR(10 g) = 4.73 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 54.2%

Maximum value of SAR (measured) = 13.9 W/kg


0 dB = 13.9 W/kg = 11.43 dBW/kg

Certificate No: D1750V2-1177_Feb21

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D1750V2-1177_Feb21

Page 6 of 6

Report No.: JYTSZ-R14-2200178

Dipole Impedance and Return Loss calibration Report

D1750V2 - SN: 1177 Object:

Calibration Date: February 10, 2022

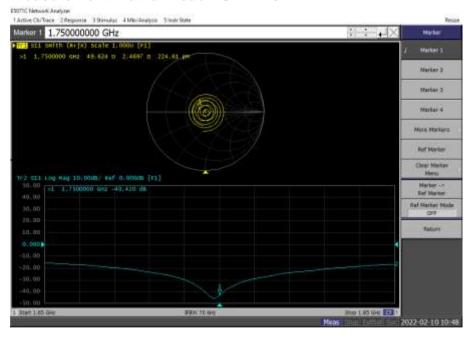
IEEE Std 1528:2013, IEC 62209-1:2006, FCC KDB 865664 Calibration reference:

D01

Janet Wei (Janet Wei, SAR project engineer)

Winner Thomas Tarkers ! Calibrated By:

Reviewed By:


(Winner Zhang, Technical manager)

Environment of Test Site

Temperature:	21 ~ 23°C
Humidity:	50~60% RH
Atmospheric Pressure:	1011 mbar

Test Data

Measurement Plot for Head TSL In 2022

Comparison with Original report

Items	Calibrated By CTTL	Calibrated By JYT In 2022	Deviation	Limit
Impendence for Head TSL	49.50Ω –1.20jΩ	49.62Ω +2.47jΩ	0.12Ω –3.67jΩ	±5Ω
Return Loss for Head TSL	-37.50	-40.42	7.79%	±20%(No less than 20 dB)

Result

Compliance

JianYan Testing Group Shenzhen Co., Ltd.

Project No.: JYTSZR2207058

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street,

Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com

Z22-60211

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: ettl@chinattl.com http://www.eaict.ac.cn

Client JYT Certificate No:

CALIBRATION CERTIFICATE

Object

D1900V2 - SN: 5d175

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 7, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	SN 7464	26-Jan-22(SPEAG,No.EX3-7464_Jan22)	Jan-23
DAE4	SN 1556	12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Jan-23
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-22 (CTTL, No.J22X00409)	Jan-23
Network Analyzer E5071C	MY46110673	14-Jan-22 (CTTL, No.J22X00406)	Jan-23

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	100
Reviewed by:	Lin Hao	SAR Test Engineer	献光
Approved by:	Qi Dianyuan	SAR Project Leader	20

Issued: June 13, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: Z22-60211

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.cnict.ac.cn

t.-maii: ctti@chinatti.com

Glossary:

TSL ConvF

N/A

tissue simulating liquid

sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60211

Page 2 of 6

Add: No.52 HuaYuunBei Road, Haidian District, Betjing, 100191, China Tel: +86-10-62304633-2117 E-mail: ettl@chinattl.com http://www.caiet.ac.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.9 ± 6 %	1.39 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.93 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	39.9 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.8 W/kg ± 18.7 % (k=2)

Certificate No: Z22-60211

Page 3 of 6

Add: No.52 HuaYuanBei Road, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caiet.ac.en

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.7Ω+ 5.90jΩ	
Return Loss	- 24.4dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.110 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured by	SPEAG

Certificate No: Z22-60211

Page 4 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.cn

DASY5 Validation Report for Head TSL

Date: 2022-06-07

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d175 Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1900 MHz; $\sigma = 1.385$ S/m; $\epsilon_r = 39.85$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

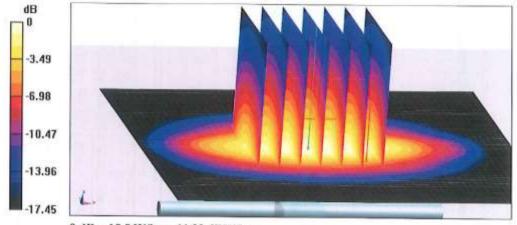
DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.18, 8.18, 8.18) @ 1900 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 101.8 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 9.93 W/kg; SAR(10 g) = 5.18 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

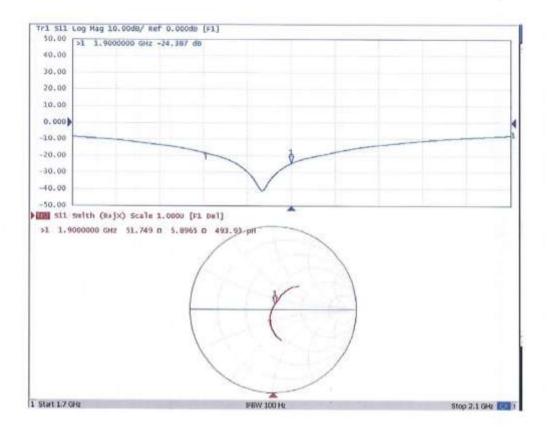
Ratio of SAR at M2 to SAR at M1 = 54.3%

Maximum value of SAR (measured) = 15.5 W/kg

0 dB = 15.5 W/kg = 11.90 dBW/kg

Certificate No: Z22-60211

Page 5 of 6



Add: No.52 HunYunnBei Road, Haidinn District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.cnict.ac.en

Impedance Measurement Plot for Head TSL

Certificate No: Z22-60211

Page 6 of 6

Add: No.52 HunYuanBei Road, Haidinn District, Beijing, 100191 Tel: +86-10-62304633-2117

E-mail: cttl@chinuttl.com http://www.caiet.ac.en

Client

JYT

Certificate No:

Z22-60212

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 910

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

June 6, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	SN 7464	26-Jan-22(SPEAG,No.EX3-7464_Jan22)	Jan-23
DAE4	SN 1556	12-Jan-22(CTTL-SPEAG,No.Z22-60007)	Jan-23
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	13-Jan-22 (CTTL, No. J22X00409)	Jan-23
Network Analyzer E5071C	MY46110673	14-Jan-22 (CTTL, No.J22X00406)	Jan-23

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	42
Reviewed by:	Lin Hao	SAR Test Engineer	邮光
Approved by:	Qi Dianyuan	SAR Project Leader	Sin

Issued: June 13, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60212

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: ettl@chinattl.com http://www.caiet.ac.en

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- · SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z22-60212

Page 2 of 6

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com

Project No.: JYTSZR2207058

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China

Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com

http://www.eniet.ne.en

Measurement Conditions

DASY Version	DASY52	52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1,81 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C		****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	53.4 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.8 W/kg ± 18.7 % (k=2)

Certificate No: Z22-60212

Page 3 of 6

Add: No.52 Hua Yuan Bei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117

E-mail; citl@chinattl.com

http://www.eniet.ne.en

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.2Ω+ 2.79jΩ	
Return Loss	- 27.7dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.086 ns
	15070.2-747

After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured by	SPEAG

Certificate No: Z22-60212

Page 4 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: ettl@chinattl.com http://www.caict.ac.en

DASY5 Validation Report for Head TSL

Date: 2022-06-06

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 910

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.806$ S/m; $\epsilon_r = 40.03$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

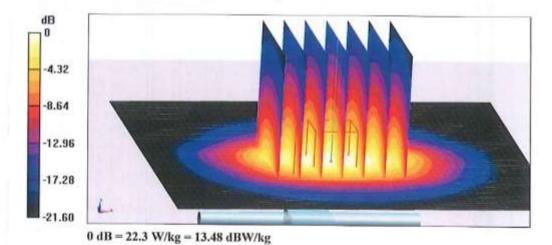
DASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(7.77, 7.77, 7.77) @ 2450 MHz; Calibrated: 2022-01-26
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2022-01-12
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 97.85 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 27.3 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.19 W/kg

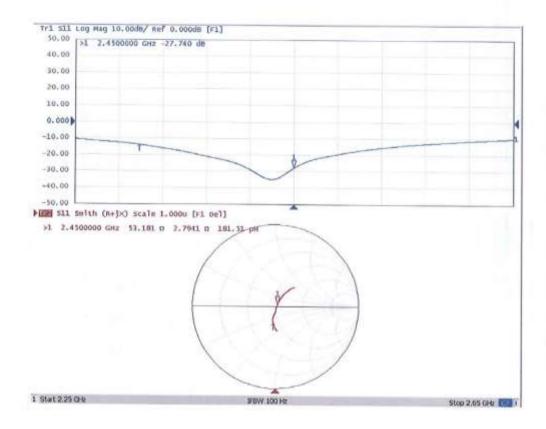
Smallest distance from peaks to all points 3 dB below = 8.5 mm

Ratio of SAR at M2 to SAR at M1 = 49.3%

Maximum value of SAR (measured) = 22.3 W/kg

Certificate No: Z22-60212

Page 5 of 6



Add: No.52 HuaYunnBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cttl@chinattl.com http://www.caict.ac.en

Impedance Measurement Plot for Head TSL

Certificate No: Z22-60212

Page 6 of 6

In Collaboration with

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

Client

JYT

Certificate No:

Z21-60440

CALIBRATION CERTIFICATE

Object

D2600V2 - SN: 1114

Calibration Procedure(s)

FF-Z11-003-01

Calibration Procedures for dipole validation kits

Calibration date:

October 28, 2021

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%,

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	106277	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Power sensor NRP8S	104291	24-Sep-21 (CTTL, No.J21X08326)	Sep-22
Reference Probe EX3DV4	SN 7517	03-Feb-21(CTTL-SPEAG,No.Z21-60001)	Feb-22
DAE4	SN 1556	15-Jan-21(SPEAG,No.DAE4-1556_Jan21)	Jan-22
Secondary Standards	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Signal Generator E4438C	MY49071430	01-Feb-21 (CTTL, No.J21X00593)	Jan-22
Network Analyzer E5071C	MY46110673	14-Jan-21 (CTTL, No.J21X00232)	Jan-22
	I		

	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	let.
Reviewed by:	Lin Hao	SAR Test Engineer	州省
Approved by:	Qi Dianyuan	SAR Project Leader	2a

Issued: October 31, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z21-60440

Page 1 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en

Glossary:

TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

Certificate No: Z21-60440

Page 2 of 6

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Triple Flat Phantom 5.1C	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2600 MHz ± 1 MHz	
ALL DANKEY DESCRIPTION		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.0	1.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.8 ± 6 %	1.94 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.7 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	55.3 W/kg ± 18.8 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	6.05 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.3 W/kg ± 18.7 % (k=2)

Certificate No: Z21-60440

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.en

Appendix (Additional assessments outside the scope of CNAS L0570)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.1Ω- 7.05jΩ	
Return Loss	- 23.1dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.060 ns	
----------------------------------	----------	--

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
100000000000000000000000000000000000000	or end	

Certificate No: Z21-60440

Page 4 of 6

Date: 10,28,2021

Add: No.52 HuaYuanBei Road, Huidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

DASY5 Validation Report for Head TSL

Test Laboratory: CTTL, Beijing, China

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1114

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2600 MHz; $\sigma = 1.944$ S/m; $\epsilon_r = 39.81$; $\rho = 1000$ kg/m³

Phantom section: Right Section

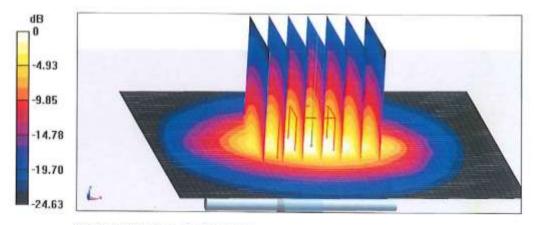
DASY5 Configuration:

- Probe: EX3DV4 SN7517; ConvF(7.1, 7.1, 7.1) @ 2600 MHz; Calibrated:
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1556; Calibrated: 2021-01-15
- Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 106.6 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 30.2 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.05 W/kg

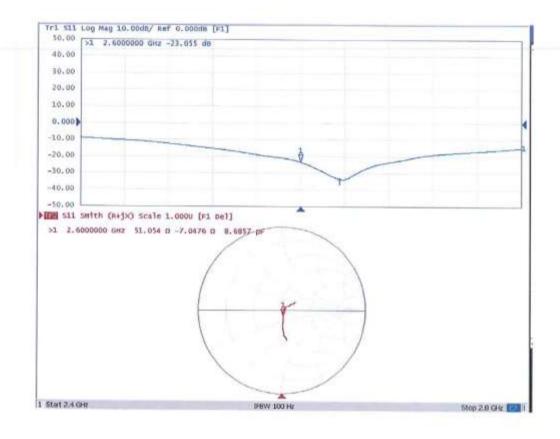
Smallest distance from peaks to all points 3 dB below = 8.9 mm

Ratio of SAR at M2 to SAR at M1 = 45%

Maximum value of SAR (measured) = 24.0 W/kg

0 dB = 24.0 W/kg = 13.80 dBW/kg

Certificate No: Z21-60440


Page 5 of 6

Add: No.52 HuaYumBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn

Impedance Measurement Plot for Head TSL.

Certificate No: Z21-60440

Page 6 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

JYT (Auden)

Certificate No: D3500V2-1118_Feb21

CALIBRATION CERTIFICATE

Object

D3500V2 - SN:1118

Calibration procedure(s)

QA CAL-22.v6

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date:

February 04, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 3503	30-Dec-20 (No. EX3-3503_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	1-G2
Approved by:	Katja Pokovic	Technical Manager	RAL

Certificate No: D3500V2-1118_Feb21

Page 1 of 6

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Issued: February 8, 2021

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- iEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3500V2-1118_Feb21

Page 2 of 6

Project No.: JYTSZR2207058

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3500 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.9	2.91 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) "C	37.4 ± 6 %	2.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.56 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	65.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.45 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.6 Ω - 4.7 jΩ	
Return Loss	- 25.6 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1,139 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

The state of the s	OPANOS PARENT
Manufactured by	SPEAG

Certificate No: D3500V2-1118_Feb21

Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 04.02.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1118

Communication System: UID 0 - CW; Frequency: 3500 MHz

Medium parameters used: f = 3500 MHz; $\sigma = 2.88 \text{ S/m}$; $\varepsilon_r = 37.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3503; ConvF(7.91, 7.91, 7.91) @ 3500 MHz; Calibrated: 30.12.2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 02.11.2020

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3500MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.58 V/m; Power Drift = 0.05 dB

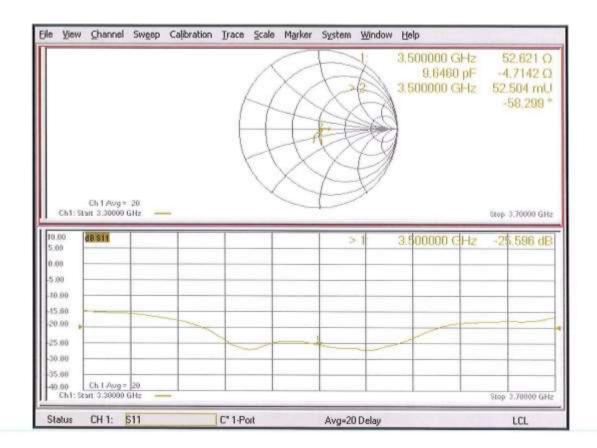
Peak SAR (extrapolated) = 17.8 W/kg

SAR(1 g) = 6.56 W/kg; SAR(10 g) = 2.45 W/kg

Smallest distance from peaks to all points 3 dB below = 8.4 mm

Ratio of SAR at M2 to SAR at M1 = 75.1%

Maximum value of SAR (measured) = 12.5 W/kg



Certificate No: D3500V2-1118_Feb21

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D3500V2-1118_Feb21

Page 6 of 6

Report No.: JYTSZ-R14-2200178

Dipole Impedance and Return Loss calibration Report

D3500V2 - SN: 1118 Object:

Calibration Date: February 04, 2022

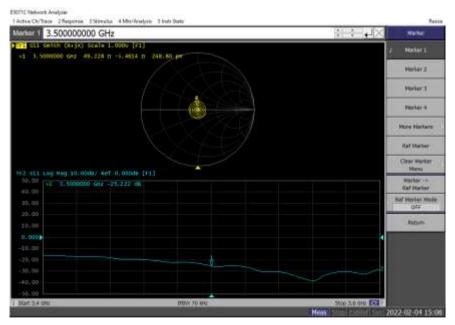
IEEE Std 1528:2013, IEC 62209-1:2006, FCC KDB 865664 Calibration reference:

D01

Janet Wei (Janet Wei, SAR project engineer)

Winner Thomas Tarker ! Calibrated By:

Reviewed By:


(Winner Zhang, Technical manager)

Environment of Test Site

Temperature:	18 ~ 25°C
Humidity:	50~60% RH
Atmospheric Pressure:	1011 mbar

Test Data

Measurement Plot for Head TSL In 2022

Comparison with Original report

Items	Calibrated By CTTL	Calibrated By JYT In 2022	Deviation	Limit
Impendence for Head TSL	52.60Ω-4.70jΩ	49.23Ω-5.46jΩ	-3.37Ω-0.76jΩ	±5Ω
Return Loss for Head TSL	-25.60dB	-25.22dB	-1.48%	±20%(No less than 20 dB)

Result

Compliance

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

JYT (Auden)

Certificate No: D3700V2-1089_Feb21

CALIBRATION CERTIFICATE

Object

D3700V2 - SN:1089

Calibration procedure(s)

QA CAL-22.v6

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date:

February 04, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 3503	30-Dec-20 (No. EX3-3503_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Jeton Kastrati	Laboratory Technician	-10-
Approved by:	Kalja Pokovic	Technical Manager	Beac_

Certificate No: D3700V2-1089_Feb21

Page 1 of 6

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- · Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3700V2-1089_Feb21

Page 2 of 6

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V52.10.4
Advanced Extrapolation	
Modular Flat Phantom	
10 mm	with Spacer
dx, dy = 4 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
3700 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy = 4 mm, dz = 1.4 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.7	3.12 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	37.1 ± 6 %	3.04 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.60 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	66.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.39 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.8 W/kg ± 19.5 % (k=2)

Certificate No: D3700V2-1089_Feb21

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$44.6 \Omega + 1.0 J\Omega$	
Return Loss	- 24.7 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.130 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D3700V2-1089_Feb21

Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 04.02.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1089

Communication System: UID 0 - CW; Frequency: 3700 MHz

Medium parameters used: f = 3700 MHz; $\sigma = 3.04 \text{ S/m}$; $\epsilon_r = 37.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 30.12.2020

- · Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 71.35 V/m; Power Drift = -0.03 dB

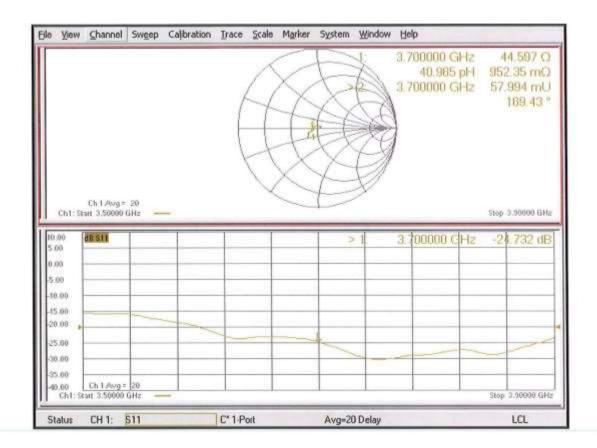

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 6.6 W/kg; SAR(10 g) = 2.39 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 73.1%

Maximum value of SAR (measured) = 12.9 W/kg


0 dB = 12.9 W/kg = 11.11 dBW/kg

Certificate No: D3700V2-1089_Feb21

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D3700V2-1089_Feb21

Page 6 of 6

Report No.: JYTSZ-R14-2200178

Dipole Impedance and Return Loss calibration Report

Object: D3700V2 - SN: 1089

Calibration Date: February 04, 2022

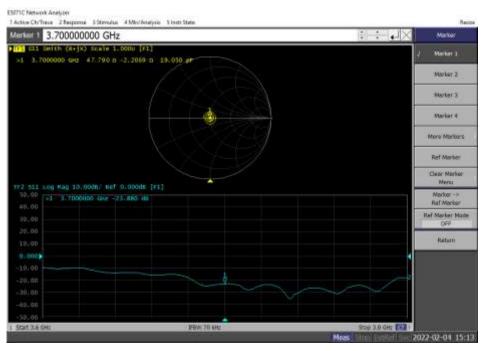
IEEE Std 1528:2013, IEC 62209-1:2006, FCC KDB 865664 Calibration reference:

D01

Janet Wei (Janet Wei, SAR project engineer)

Winner Thona Taskeisel Calibrated By:

Reviewed By:


(Winner Zhang, Technical manager)

Environment of Test Site

Temperature:	18 ~ 25°C
Humidity:	50~60% RH
Atmospheric Pressure:	1011 mbar

Test Data

Measurement Plot for Head TSL In 2022

Comparison with Original report

Items	Calibrated By CTTL	Calibrated By JYT In 2022	Deviation	Limit
Impendence for Head TSL	44.60Ω-1.00jΩ	47.79Ω-2.21jΩ	-3.37Ω-0.76jΩ	±5Ω
Return Loss for Head TSL	-24.70dB	-23.88dB	-3.32%	±20%(No less than 20 dB)

Result

Compliance

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

JYT (Auden)

Certificate No: D3900V2-1064 Feb21

CALIBRATION CERTIFICATE

Object D3900V2 - SN:1064

Calibration procedure(s) QA CAL-22.v6

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: February 09, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03106)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 3503	30-Dec-20 (No. EX3-3503_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature
Calibrated by:	Lelf Klysner	Laboratory Technician	Seftler
Approved by:	Katja Pokovic	Technical Manager	0001

Certificate No: D3900V2-1064_Feb21

Page 1 of 6

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Project No.: JYTSZR2207058

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- . Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D3900V2-1064 Feb21

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)
Frequency	3900 MHz ± 1 MHz	

Head TSL parameters at 3900 MHz

The following parameters and calculations were applied.

1441	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	37.5	3.32 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.9 ± 6 %	3.20 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	****

SAR result with Head TSL at 3900 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	6.97 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	69.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.43 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.2 W/kg ± 19.5 % (k=2)

Certificate No: D3900V2-1064_Feb21

Page 3 of 6

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 3900 MHz

Impedance, transformed to feed point	45.7 Ω - 4.1 jΩ	
Return Loss	- 24.1 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.103 ns	
	11100110	_

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D3900V2-1064_Feb21

Page 4 of 6

DASY5 Validation Report for Head TSL

Date: 09.02.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1064

Communication System: UID 0 - CW; Frequency: 3900 MHz

Medium parameters used: f = 3900 MHz; $\sigma = 3.2 \text{ S/m}$; $\varepsilon_f = 36.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

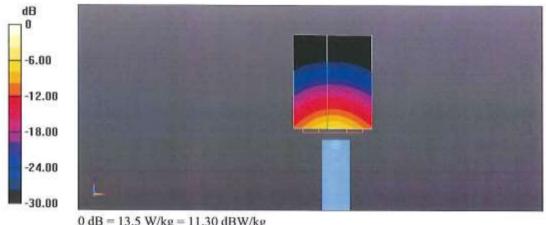
DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan,

dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 74.95 V/m; Power Drift = -0.07 dB

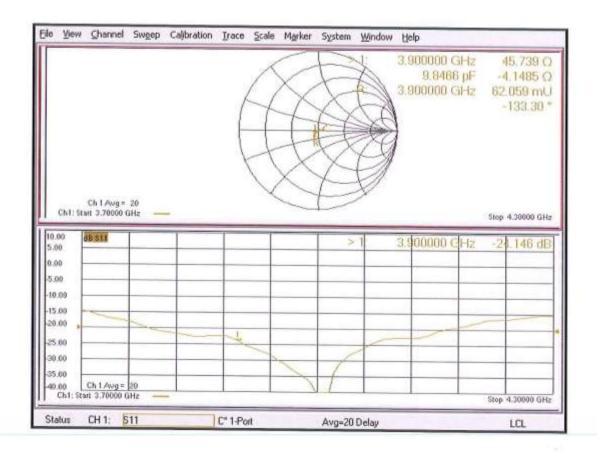

Peak SAR (extrapolated) = 19.8 W/kg

SAR(1 g) = 6.97 W/kg; SAR(10 g) = 2.43 W/kg

Smallest distance from peaks to all points 3 dB below = 7.9 mm

Ratio of SAR at M2 to SAR at M1 = 74.5%

Maximum value of SAR (measured) = 13.5 W/kg


0 dB = 13.5 W/kg = 11.30 dBW/kg

Certificate No: D3900V2-1064_Feb21

Page 5 of 6

Impedance Measurement Plot for Head TSL

Certificate No: D3900V2-1064_Feb21

Page 6 of 6

Report No.: JYTSZ-R14-2200178

Dipole Impedance and Return Loss calibration Report

Object: D3900V2 - SN: 1064

Calibration Date: February 04, 2022

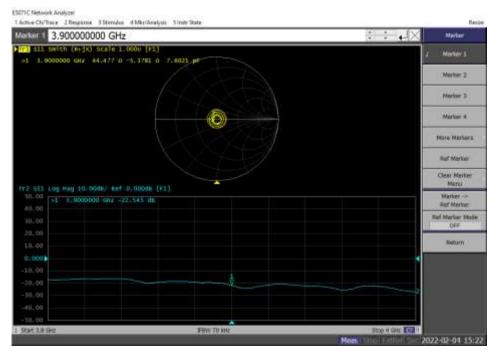
IEEE Std 1528:2013, IEC 62209-1:2006, FCC KDB 865664 Calibration reference:

D01

Janet Wei (Janet Wei, SAR project engineer)

Winner Thomas Tasksins I Calibrated By:

Reviewed By:


(Winner Zhang, Technical manager)

Environment of Test Site

Temperature:	18 ~ 25°C
Humidity:	50~60% RH
Atmospheric Pressure:	1011 mbar

Test Data

Measurement Plot for Head TSL In 2022

Comparison with Original report

Items	Calibrated By CTTL	Calibrated By JYT In 2022	Deviation	Limit
Impendence for Head TSL	45.70Ω-4.10jΩ	44.48Ω-5.38jΩ	-1.22Ω-1.28jΩ	±5Ω
Return Loss for Head TSL	-24.10dB	-22.55dB	-6.43%	±20%(No less than 20 dB)

Result

Compliance

JianYan Testing Group Shenzhen Co., Ltd.

Project No.: JYTSZR2207058

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street,

Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client J

JYT (Auden)

Certificate No: D5GHzV2-1320 Feb21

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN:1320

Calibration procedure(s)

QA CAL-22.v6

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date:

February 05, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	01-Apr-20 (No. 217-03100/03101)	Apr-21
Power sensor NRP-Z91	SN: 103244	01-Apr-20 (No. 217-03100)	Apr-21
Power sensor NRP-Z91	SN: 103245	01-Apr-20 (No. 217-03101)	Apr-21
Reference 20 dB Attenuator	SN: BH9394 (20k)	31-Mar-20 (No. 217-03105)	Apr-21
Type-N mismatch combination	SN: 310982 / 06327	31-Mar-20 (No. 217-03104)	Apr-21
Reference Probe EX3DV4	SN: 3503	30-Dec-20 (No. EX3-3503_Dec20)	Dec-21
DAE4	SN: 601	02-Nov-20 (No. DAE4-601_Nov20)	Nov-21
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-20)	In house check: Oct-22
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-20)	In house check: Oct-22
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-20)	In house check: Oct-21
	Name	Function	Signature /
Calibrated by:	Claudio Leubler	Laboratory Technician	(12)
Approved by:	Katja Pokovic	Technical Manager	PORI

Certificate No: D5GHzV2-1320_Feb21

Page 1 of 9

Issued: February 5, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossarv:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point, No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1320_Feb21

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 10.0 mm, dz = 10.0 mm	Graded Ratio = 1.4 (Z direction)
Frequency	5200 MHz ± 1 MHz 5300 MHz ± 1 MHz 5500 MHz ± 1 MHz 5600 MHz ± 1 MHz 5800 MHz ± 1 MHz	

Head TSL parameters at 5200 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	36.0	4.66 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.8 ± 6 %	4.49 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	****

SAR result with Head TSL at 5200 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	79.1 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2:28 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.6 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1320_Feb21

Head TSL parameters at 5300 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.6 ± 6 %	4.59 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		****

SAR result with Head TSL at 5300 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.15 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.2 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5500 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.6	4.96 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.3 ± 6 %	4.78 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 5500 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.67 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	85.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.4 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1320_Feb21

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	34.2 ± 6 %	4.88 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	(Section)

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	83.2 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.40 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.7 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5800 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.3	5.27 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	33.9 ± 6 %	5.09 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	

SAR result with Head TSL at 5800 MHz

SAR averaged over 1 cm3 (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.17 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.9 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.9 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1320_Feb21

Page 5 of 9

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5200 MHz

Impedance, transformed to feed point	50.1 Ω - 3.9 jΩ	
Return Loss	- 28.1 dB	

Antenna Parameters with Head TSL at 5300 MHz

Impedance, transformed to feed point	50,6 Ω + 3.1 Ω	
Return Loss	- 30.0 dB	

Antenna Parameters with Head TSL at 5500 MHz

Impedance, transformed to feed point	47.5 Ω + 1.2 jΩ	
Return Loss	- 30.7 dB	

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	53.5 Ω + 2.1 jΩ	
Return Loss	- 28.2 dB	

Antenna Parameters with Head TSL at 5800 MHz

Impedance, transformed to feed point	$50.5 \Omega + 7.6 j\Omega$	
Return Loss	- 22.4 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
manufactored by	SPEAG

Certificate No: D5GHzV2-1320_Feb21

Page 6 of 9

DASY5 Validation Report for Head TSL

Date: 05.02.2021

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1320

Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500

MHz, Frequency: 5600 MHz, Frequency: 5800 MHz

Medium parameters used: f = 5200 MHz; $\sigma = 4.49 \text{ S/m}$; $\varepsilon_r = 34.8$; $\rho = 1000 \text{ kg/m}^3$

Medium parameters used: f = 5300 MHz; $\sigma = 4.59$ S/m; $\varepsilon_r = 34.6$; $\rho = 1000$ kg/m³

Medium parameters used: f = 5500 MHz; $\sigma = 4.78$ S/m; $\varepsilon_r = 34.3$; $\rho = 1000$ kg/m³

Medium parameters used: f = 5600 MHz; $\sigma = 4.88$ S/m; $\varepsilon_r = 34.2$; $\rho = 1000$ kg/m³

Medium parameters used: f = 5800 MHz; $\sigma = 5.09 \text{ S/m}$; $\varepsilon_r = 33.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.49, 5.49, 5.49) @ 5300 MHz, ConvF(5.25, 5.25, 5.25) @ 5500 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 30.12.2020
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 02.11.2020
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 76.70 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 27.7 W/kg

SAR(1 g) = 7.98 W/kg; SAR(10 g) = 2.28 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 70.8%

Maximum value of SAR (measured) = 17.9 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 76.91 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 28.3 W/kg

SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.34 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 70.8%

Maximum value of SAR (measured) = 18.3 W/kg

Certificate No: D5GHzV2-1320_Feb21 Page 7 of 9

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 76.98 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 32.6 W/kg

SAR(1 g) = 8.67 W/kg; SAR(10 g) = 2.47 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 68.1%

Maximum value of SAR (measured) = 20.1 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 77.18 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 30.7 W/kg

SAR(1 g) = 8.40 W/kg; SAR(10 g) = 2.40 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

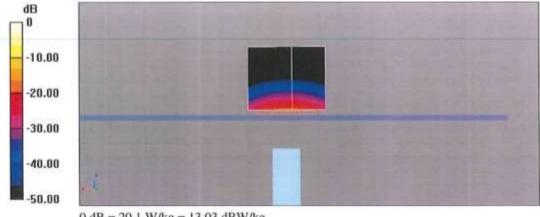
Ratio of SAR at M2 to SAR at M1 = 68.9%

Maximum value of SAR (measured) = 19.2 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 75.07 V/m; Power Drift = -0.06 dB

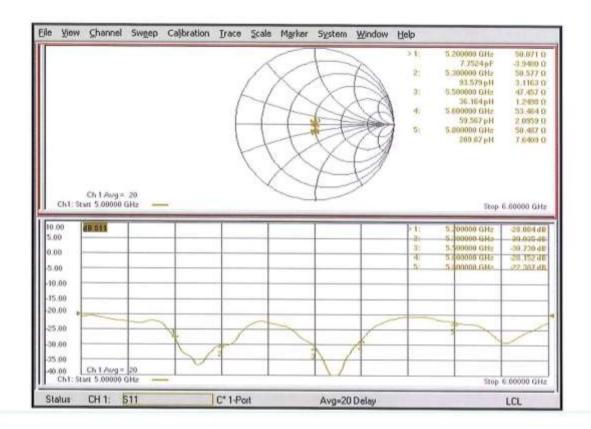

Peak SAR (extrapolated) = 31.6 W/kg

SAR(1 g) = 8.17 W/kg; SAR(10 g) = 2.32 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 67.3%

Maximum value of SAR (measured) = 19.0 W/kg


0 dB = 20.1 W/kg = 13.03 dBW/kg

Certificate No: D5GHzV2-1320_Feb21

Page 8 of 9

Impedance Measurement Plot for Head TSL

Certificate No: D5GHzV2-1320_Feb21

Page 9 of 9

Report No.: JYTSZ-R14-2200178

Dipole Impedance and Return Loss calibration Report

Object: D5GHzV2 - SN: 1320

Calibration Date: February 05, 2022

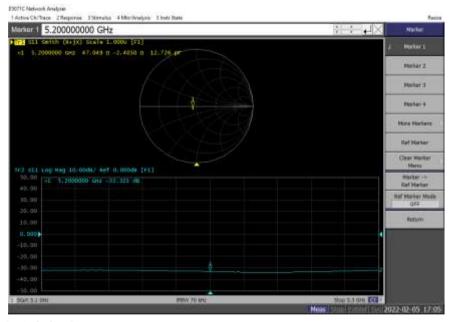
IEEE Std 1528:2013, IEC 62209-1:2006, FCC KDB 865664 Calibration reference:

D01

Janet Wei (Janet Wei, SAR project engineer)

Winner Thomas Tasksins I Calibrated By:

Reviewed By:


(Winner Zhang, Technical manager)

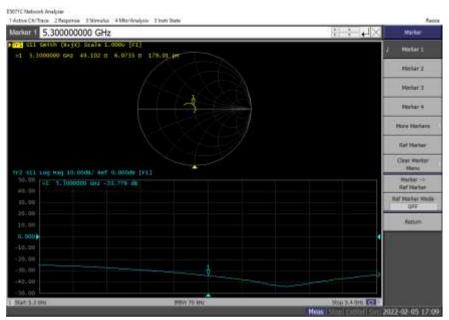
Environment of Test Site

Temperature:	18 ~ 25°C
Humidity:	50~60% RH
Atmospheric Pressure:	1011 mbar

Test Data

Measurement Plot for Head TSL In 2022

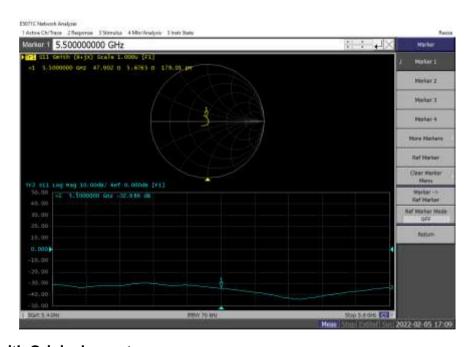
Comparison with Original report


Items	Calibrated By CTTL	Calibrated By JYT In 2022	Deviation	Limit
Impendence for Head TSL	50.10Ω-3.90jΩ	47.05Ω-2.41jΩ	-3.05Ω+1.49jΩ	±5Ω
Return Loss for Head TSL	-28.10dB	-32.32dB	15.02%	±20%(No less than 20 dB)

Result

Compliance

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366, E-mail: info-JYTee@lets.com

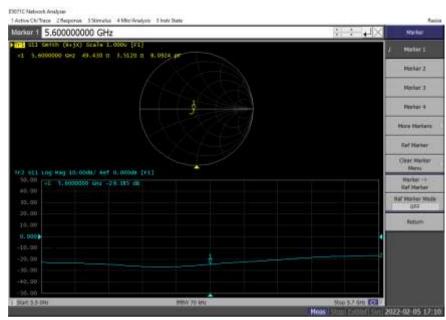


Comparison with Original report

Items	Calibrated By MVG	Calibrated By JYT In 2022	Deviation	Limit
Impendence for Head TSL	50.60+3.10jΩ	49.10Ω+6.07jΩ	-1.5Ω+2.97jΩ	±5Ω
Return Loss for Head TSL	-30.00dB	-33.78dB	12.60%	±20%(No less than 20 dB)

Result

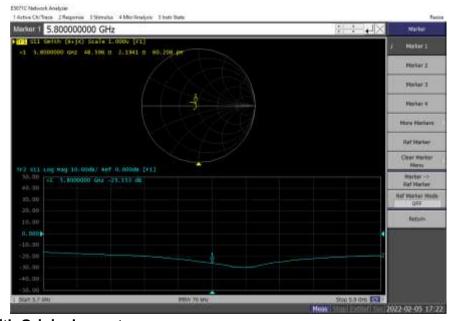
Compliance


Comparison with Original report

Items	Calibrated By MVG	Calibrated By JYT In 2022	Deviation	Limit
Impendence for Head TSL	47.50+1.20jΩ	47.90Ω+5.68jΩ	0.40Ω-4.48jΩ	±5Ω
Return Loss for Head TSL	-30.70dB	-32.69dB	6.48%	±20%(No less than 20 dB)

Result

Compliance



Comparison with Original report

	· .			
Items	Calibrated By MVG	Calibrated By JYT In 2022	Deviation	Limit
Impendence for Head TSL	53.50+2.10jΩ	49.43Ω+3.51jΩ	-4.07Ω+1.41jΩ	±5Ω
Return Loss for Head TSL	-28.20dB	-26.39dB	-6.42%	±20%(No less than 20 dB)

Result

Compliance

Comparison with Original report

Items	Calibrated By MVG	Calibrated By JYT In 2022	Deviation	Limit
Impendence for Head TSL	50.50+7.60jΩ	48.60Ω+2.19jΩ	0.33Ω-2.42jΩ	±5Ω
Return Loss for Head TSL	-22.40dB	-25.35dB	13.17%	±20%(No less than 20 dB)

Result

Compliance

Calibration information for DAE

Add: No.52 HunYuanBei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn Tel: +86-10-62304633-2512 E-mail; ettl@chinattl.com

Client :

Certificate No: Z22-60209

CALIBRATION CERTIFICATE

Object

DAE4 - SN: 1373

Calibration Procedure(s)

FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date:

June 06, 2022

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards

ID#

Cal Date(Calibrated by, Certificate No.)

Scheduled Calibration

Process Calibrator 753

1971018

15-Jun-21 (CTTL, No.J21X04465)

Jun-22

Calibrated by:

Name

Function

Yu Zongying

SAR Test Engineer

Reviewed by:

Lin Hao

SAR Test Engineer

Approved by:

Qi Dianyuan

SAR Project Leader

Issued: June 09, 2022

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z22-60209

Page 1 of 3

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z22-60209

Page 2 of 3

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.com

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1μV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time; 3 sec

Calibration Factors	х	Y	Z
High Range	403.940 ± 0.15% (k=2)	403.903 ± 0.15% (k=2)	404.196 ± 0.15% (k=2)
Low Range	3.98687 ± 0.7% (k=2)	4.00795 ± 0.7% (k=2)	4.01128 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	347° ± 1 °
---	------------

Certificate No: Z22-60209

Page 3 of 3

-----End of Report-----