

TEST Report

Applicant:	Shenzhen xiaoman electronic commerce co., ltd
Address of Applicant:	C318, Building C, Huafeng International Robot Industrial Park, Hangcheng Avenue, Baoan District, Shenzhen.
Manufacturer :	Shenzhen xiaoman electronic commerce co., ltd
Address of Manufacturer : Equipment Under Test (El	C318, Building C, Huafeng International Robot Industrial Park, Hangcheng Avenue, Baoan District, Shenzhen.
Product Name:	Wireless CarPlay Adapter
Model No.:	U5
Series model:	U5+, U5A, U5C, T1, T1A, T1C, T1+, T2, T2A, T2C, T2+
Trade Mark:	ausker
FCC ID:	2BPET-U5
Applicable standards: Date of sample receipt:	FCC CFR Title 47 Part 15 Subpart C Section 15.247 Apr. 15, 2025
Date of Test:	Apr. 15, 2025 ~ Apr. 24, 2025
Date of report issued:	Apr. 24, 2025
Test Result :	PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Apr. 24, 2025	Original

Tested/ Prepared By

Heber He Date:

Apr. 24, 2025

Project Engineer

Bruce Zhu Date:

Apr. 24, 2025

Reviewer

Apr. 24, 2025

Approved By :

Check By:

2. Contents

1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	5
 4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS 5. TEST INSTRUMENTS LIST 	7 7 7 7 7 7 7
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED PEAK OUTPUT POWER 6.3. CHANNEL BANDWIDTH. 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGE 6.5. 1. Conducted Emission Method 6.5.2. Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1. Conducted Emission Method 6.6.2. Radiated Emission Method 6.6.3. Conducted Emission Method	12 13 16 19 22 24 24 29
7. TEST SETUP PHOTO	37
8. EUT CONSTRUCTIONAL DETAILS	37

3. Test Summary

Test Item	Section	Result
Antenna requirement	FCC part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	Pass
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass
6dB Bandwidth	FCC part 15.247 (a)(2)	Pass
Power Spectral Density	FCC part 15.247 (e)	Pass
Band Edge	FCC part 15.247(d)	Pass
Spurious Emission	FCC part 15.205/15.209	Pass

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.12 dB	(1)
Radiated Emission	30~1000MHz	4.37 dB	(1)
Radiated Emission	1~18GHz	5.40 dB	(1)
Radiated Emission	18-40GHz	5.45 dB	(1)
Conducted Disturbance	0.15~30MHz	2.68 dB	(1)
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.			

4. General Information

4.1. General Description of EUT

-	
Product Name:	Wireless CarPlay Adapter
Model No.:	U5
Series model:	U5+, U5A, U5C, T1, T1A, T1C, T1+, T2, T2A, T2C, T2+
Test sample(s) ID:	HTT202504449-1(Engineer sample) HTT202504449-2(Normal sample)
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11 802.11n(HT40):7
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20)/802.11n(HT40): Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB antenna
Antenna gain:	1.50 dBi
Power supply:	DC 5V

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	Frequency (MHz)			
Test channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)		
Lowest channel	2412MHz	2422MHz		
Middle channel	2437MHz	2437MHz		
Highest channel	2462MHz	2452MHz		

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.				
Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. **A2LA-Lab Cert. No.: 6435.01** Shenzhen HTT Technology Co.,Ltd. has been accredited by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:
Shenzhen HTT Technology Co.,Ltd.
1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China
Tel: 0755-23595200
Fax: 0755-23595201
4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode	
Power level setup	Default	
5. Test Instruments list		

Item Test Equipment Manufacturer Model No. Inventory Cal.Date Cal.Due date

Shenzhen HTT Technology Co.,Ltd.

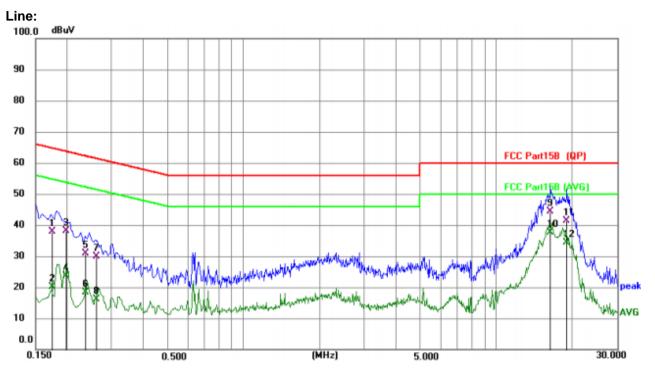
Tel: 0755-23595200 Fax: 0755-23595201

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

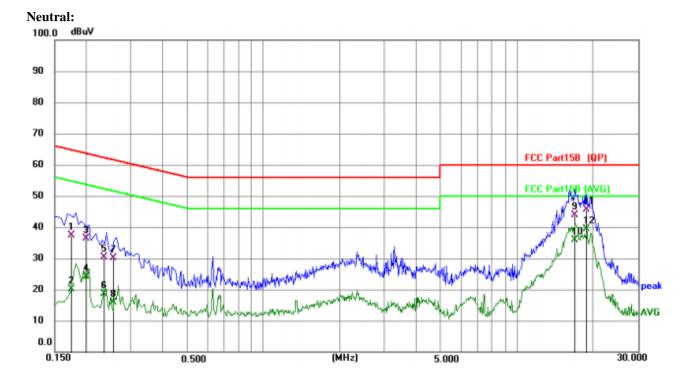
				Report No.: H11202504449F01			
				No.	(mm-dd-yy)	(mm-dd-yy)	
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2024	Aug. 09 2027	
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2024	Aug. 09 2027	
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2024	Apr. 25 2025	
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2024	Apr. 25 2025	
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2024	Apr. 25 2025	
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2024	Apr. 25 2025	
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2024	Apr. 25 2025	
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2024	Apr. 25 2025	
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2024	May. 20 2025	
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2024	May. 19 2025	
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2024	Apr. 25 2025	
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2024	Apr. 25 2025	
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2024	Apr. 25 2025	
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2024	Apr. 25 2025	
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2024	Apr. 25 2025	
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2024	Apr. 25 2025	
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2024	May. 22 2025	
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2024	May. 22 2025	
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2024	Apr. 25 2025	
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2024	Apr. 25 2025	
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2024	Apr. 25 2025	
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2024	Aug. 09 2027	
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2024	Apr. 25 2025	
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2024	Apr. 25 2025	
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2024	Apr. 25 2025	
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2024	Apr. 25 2025	
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2024	Apr. 25 2025	
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2024	Apr. 27 2025	
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A	
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A	
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A	

6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	150KHz to 30MHz								
Class / Severity:	Class B								
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto							
Limit:		Lin	nit (dBuV)						
	Frequency range (MHz)	Quasi-peak	Ave	erage					
	0.15-0.5	66 to 56*		to 46*					
	0.5-5	56		46					
	5-30	60		50					
Test setur	* Decreases with the logarithm								
Test procedure:	Reference Plane Image: List setup: Remark: E.U.T. Image: List setup: Remark: E.U.T. E.U.T. Remark: E.U.T.								
	 50ohm/50uH coupling imperational devices are LISN that provides a 50ohr termination. (Please refer to photographs). Both sides of A.C. line are interference. In order to find positions of equipment and according to ANSI C63.10: 	also connected to n/50uH coupling in o the block diagran checked for maxim d the maximum em I all of the interface	the main pow npedance with n of the test s num conducte nission, the re cables must	ver through a n 50ohm etup and d lative be changed					
Test Instruments:	Refer to section 6.0 for details	6							
Test mode:	Refer to section 5.2 for details								
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar					
rest environment.									
Test voltage:	DC 5V from PC AC 120V, 60H	Hz							

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.



Report No.: HTT202504449F01

Measurement data:

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
	0.1745	27.69	10.18	37.87	64.74	-26.87	QP
	0.1745	9.95	10.18	20.13	54.74	-34.61	AVG
	0.1978	27.88	10.21	38.09	63.70	-25.61	QP
	0.1978	13.34	10.21	23.55	53.70	-30.15	AVG
	0.2376	20.77	10.22	30.99	62.18	-31.19	QP
	0.2376	8.18	10.22	18.40	52.18	-33.78	AVG
	0.2611	19.72	10.23	29.95	61.40	-31.45	QP
	0.2611	5.82	10.23	16.05	51.40	-35.35	AVG
	16.3582	33.29	11.12	44.41	60.00	-15.59	QP
*	16.3582	26.55	11.12	37.67	50.00	-12.33	AVG
	18.9504	30.03	11.23	41.26	60.00	-18.74	QP
	18.9504	23.20	11.23	34.43	50.00	-15.57	AVG
	Mk.	MHz 0.1745 0.1745 0.1978 0.1978 0.2376 0.2376 0.2611 0.2611 16.3582 * 16.3582 18.9504	Mk. Freq. Level MHz 0.1745 27.69 0.1745 9.95 0.1978 27.88 0.1978 27.88 0.1978 13.34 0.2376 20.77 0.2376 8.18 0.2611 19.72 0.2611 5.82 16.3582 33.29 * 16.3582 26.55 18.9504 30.03 30.03 30.03	Mk. Freq. Level Factor MHz dB 0.1745 27.69 10.18 0.1745 9.95 10.18 0.1745 9.95 10.18 0.1745 9.95 10.18 0.1745 9.95 10.18 0.1978 27.88 10.21 0.1978 13.34 10.21 0.2376 8.18 10.22 0.2611 19.72 10.23 0.2611 5.82 10.23 16.3582 33.29 11.12 * 16.3582 26.55 11.12 18.9504 30.03 11.23	Mk. Freq. Level Factor ment MHz dB dBuV 0.1745 27.69 10.18 37.87 0.1745 9.95 10.18 20.13 0.1745 9.95 10.18 20.13 0.1978 27.88 10.21 38.09 0.1978 13.34 10.21 23.55 0.2376 8.18 10.22 30.99 0.2611 19.72 10.23 29.95 0.2611 5.82 10.23 16.05 16.3582 33.29 11.12 44.41 * 16.3582 26.55 11.12 37.67 18.9504 30.03 11.23 41.26	Mk. Freq. Level Factor ment Limit MHz dB dBuV dBuV dBuV dBuV 0.1745 27.69 10.18 37.87 64.74 0.1745 9.95 10.18 37.87 64.74 0.1745 9.95 10.18 20.13 54.74 0.1978 27.88 10.21 38.09 63.70 0.1978 13.34 10.21 23.55 53.70 0.2376 20.77 10.22 30.99 62.18 0.2376 8.18 10.22 18.40 52.18 0.2611 19.72 10.23 29.95 61.40 0.2611 5.82 10.23 16.05 51.40 16.3582 33.29 11.12 44.41 60.00 * 16.3582 26.55 11.12 37.67 50.00 18.9504 30.03 11.23 41.26 60.00	Mk. Freq. Level Factor ment Limit Over MHz dB dBuV dBuV dB dBuV dB 0.1745 27.69 10.18 37.87 64.74 -26.87 0.1745 9.95 10.18 20.13 54.74 -34.61 0.1978 27.88 10.21 38.09 63.70 -25.61 0.1978 13.34 10.21 23.55 53.70 -30.15 0.2376 20.77 10.22 30.99 62.18 -31.19 0.2376 8.18 10.22 18.40 52.18 -33.78 0.2611 19.72 10.23 29.95 61.40 -31.45 0.2611 5.82 10.23 16.05 51.40 -35.35 16.3582 33.29 11.12 44.41 60.00 -15.59 * 16.3582 26.55 11.12 37.67 50.00 -12.33 18.9504 30.03 11.23 4

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1744	27.12	10.18	37.30	64.75	-27.45	QP
2	0.1744	9.98	10.18	20.16	54.75	-34.59	AVG
3	0.2004	26.22	10.21	36.43	63.59	-27.16	QP
4	0.2004	13.88	10.21	24.09	53.59	-29.50	AVG
5	0.2353	20.27	10.22	30.49	62.26	-31.77	QP
6	0.2353	8.34	10.22	18.56	52.26	-33.70	AVG
7	0.2550	19.84	10.22	30.06	61.59	-31.53	QP
8	0.2550	5.66	10.22	15.88	51.59	-35.71	AVG
9	16.9277	32.64	11.21	43.85	60.00	-16.15	QP
10	16.9277	24.75	11.21	35.96	50.00	-14.04	AVG
11	18.7599	34.34	11.27	45.61	60.00	-14.39	QP
12 *	18.7599	28.10	11.27	39.37	50.00	-10.63	AVG

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Los

 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

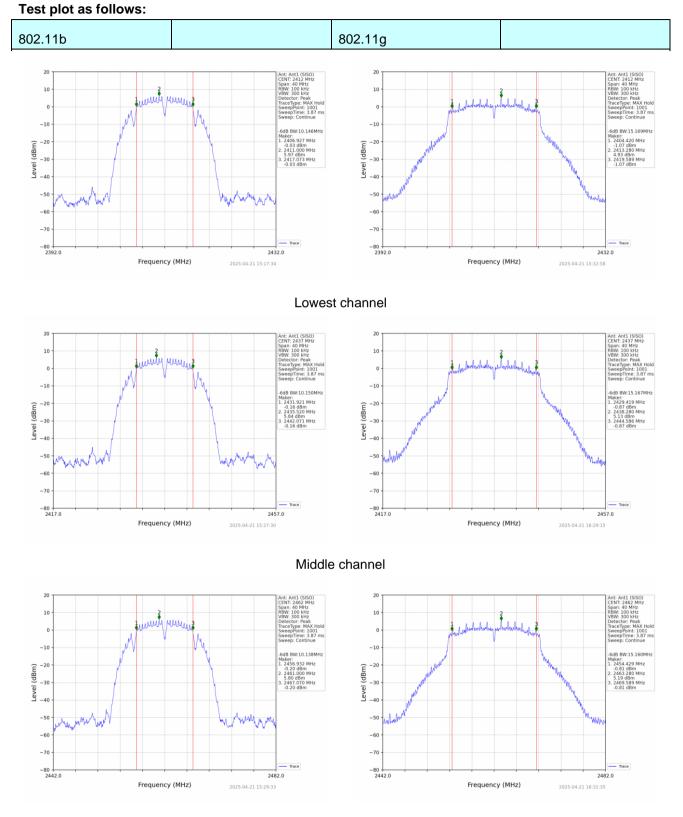
 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China

Test Requirement: FCC Part15 C Section 15.247 (b)(3) KDB558074 D01 15.247 Meas Guidance v05r02 Test Method: Limit: 30dBm Power sensor and Spectrum analyzer Test setup: E.U.T Non-Conducted Table Ground Reference Plane **Test Instruments:** Refer to section 6.0 for details Test mode: Refer to section 5.2 for details Pass Test results: 52% Press.: Test environment: Temp.: 25 °C Humid.: 1012mbar

6.2. Conducted Peak Output Power

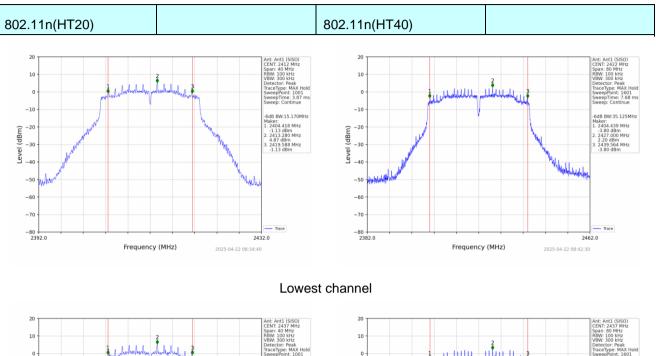
Measurement Data

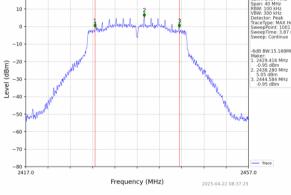
Mode	TX	Frequency	Maximum Peak Conduct	ed Output Power (dBm)	Verdict
Mode	Туре	(MHz)	ANT1	Limit	verdict
		2412	17.75	<=30	Pass
802.11b	SISO	2437	17.73	<=30	Pass
		2462	17.65	<=30	Pass
		2412	22.16	<=30	Pass
802.11g	SISO	2437	22.40	<=30	Pass
-		2462	22.31	<=30	Pass
802.11n		2412	21.75	<=30	Pass
(HT20)	SISO	2437	22.05	<=30	Pass
(1120)		2462	21.91	<=30	Pass
802.11n		2422	22.92	<=30	Pass
	SISO	2437	22.74	<=30	Pass
(HT40)		2452	22.78	<=30	Pass

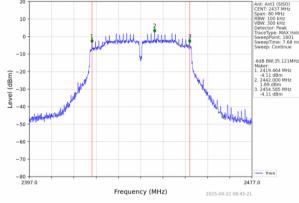

6.3. Channel Bandwidth

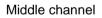
Test Requirement:	FCC Part15	5 C Section 1	5.247 (a)(2)				
Test Method:	KDB558074	4 D01 15.247	' Meas Guida	nce v05r02			
Limit:	>500KHz						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to see	ction 6.0 for c	letails				
Test mode:	Refer to see	ction 5.2 for c	letails				
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

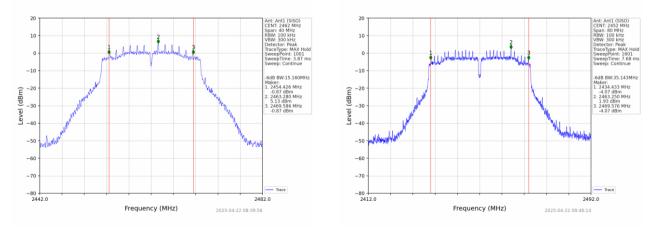
Measurement Data


Mode	TX	Frequency	ANT	6dB Bandw	vidth (MHz)	Verdict
Mode	Туре	(MHz)	ANT	Result	Limit	verdici
		2412	1	10.146	>=0.5	Pass
802.11b	SISO	2437	1	10.150	>=0.5	Pass
		2462	1	10.138	>=0.5	Pass
		2412	1	15.169	>=0.5	Pass
802.11g	SISO	2437	1	15.167	>=0.5	Pass
		2462	1	15.160	>=0.5	Pass
000 11-		2412	1	15.170	>=0.5	Pass
802.11n	SISO	2437	1	15.168	>=0.5	Pass
(HT20)		2462	1	15.160	>=0.5	Pass
902.11		2422	1	35.125	>=0.5	Pass
802.11n	SISO	2437	1	35.121	>=0.5	Pass
(HT40)		2452	1	35.143	>=0.5	Pass






Highest channel



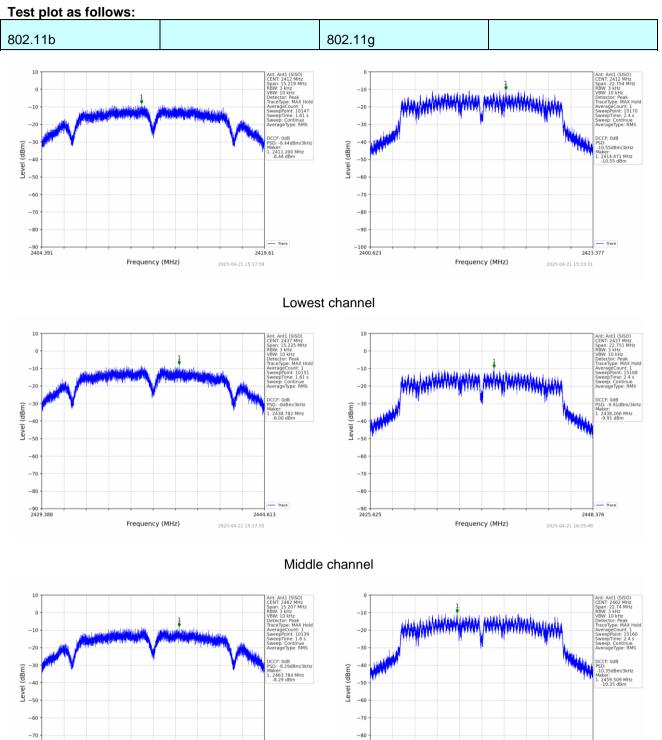
Highest channel

6.4. Power Spectral Density

Test Requirement:	FCC Part1	5 C Section 1	15.247 (e)					
Test Method:	KDB55807	4 D01 15.24	7 Meas Guida	ance v05r02				
Limit:	8dBm/3kH	Z						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to se	ection 6.0 for	details					
Test mode:		ection 5.2 for						
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Measurement Data

Mode	TX	Frequency	Maximum PS	D (dBm/3kHz)	Verdict
Mode	Туре	(MHz)	ANT1	Limit	Verdict
		2412	-8.44	<=8	Pass
802.11b	SISO	2437	-8.00	<=8	Pass
		2462	-8.29	<=8	Pass
		2412	-10.55	<=8	Pass
802.11g	SISO	2437	-9.91	<=8	Pass
		2462	-10.35	<=8	Pass
802.11n		2412	-10.28	<=8	Pass
	SISO	2437	-9.87	<=8	Pass
(HT20)		2462	-9.26	<=8	Pass
802.11n		2422	-12.52	<=8	Pass
	SISO	2437	-13.47	<=8	Pass
(HT40)		2452	-12.71	<=8	Pass


Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle

-80

-90 + 2454.397

Report No.: HTT202504449F01

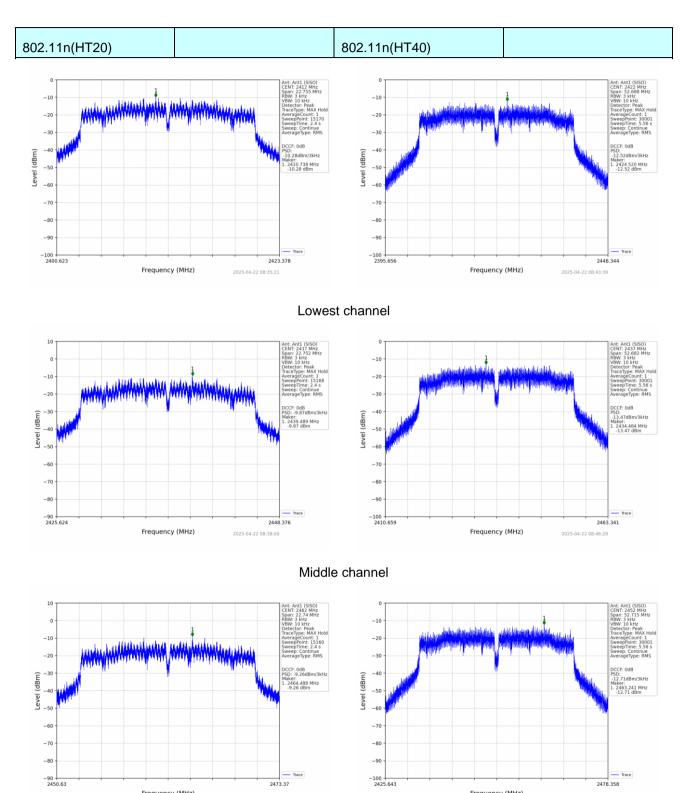
Highest channel

-90 -100 2450.63

2469.604

2025-04-21 15:29:58

Frequency (MHz)


Trace

2473.37

2025-04-21 16:32:14

Frequency (MHz)

Highest channel

Frequency (MHz)

2025-04-22 08:40:26

2025-04-22 08

Frequency (MHz)

6.5. Band Edge

6.5.1. Conducted Emission Method

Test Requirement:	FCC Part1	5 C Section	15.247 (d)					
Test Method:	KDB55807	4 D01 15.24	7 Meas Guid	ance v05r02				
Limit:	spectrum in is produced the 100 kH the desired	ntentional ra d by the inter lz bandwidth d power, ba	diator is ope ntional radiate within the b	rating, the ra or shall be at oand that con	dio frequenc least 20 dB tains the hig	th the spread by power that below that in ghest level of r a radiated		
Test setup:	Spec	measurement.						
Test Instruments:	Refer to se	ction 6.0 for	details					
Test mode:	Refer to se	ction 5.2 for	details					
Test results:	Pass	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

-60

-70

Report No.: HTT202504449F01

Test plot as follows: 802.11b Test mode: 20 20 10 10 0 -10 -10 nit=-14.04 dBn 14.04 dB Maker: L. 2487.500 MHz -50.69 dBm 2. 2483.500 MHz -55.10 dBm laker: - 2399.000 MHz -47.18 dBm - 2400.000 MHz -55.46 dBm (dBm) -20 -20 Level (dBm) -3 -30 Leve -4 -40 -50 M -50 -6 -60 -70 -70 Trace Limit Trace Limit -80 -2310.0 2432.0 2500.0 Frequency (MHz) Frequency (MHz) 2025-04-21 15:18:11 2025-04-21 15:30:09 Highest channel Lowest channel Test mode: 802.11g top BW BW: 10 10 الملله لمللول 1 tokeloha alalaha 1 0 -10 -10 imit=-14.83 dBm nit=-14.83 dBr Maker: 2399.550 MHz -26.65 dBm 2400.000 MHz -27.60 dBm Maker: L. 2483.550 MHz -51.59 dBm 2. 2483.500 MHz -53.49 dBm -20 -20 (dBm) (dBm) -30 -30 -31 -31 -41 Level (_4 -51 -54

-60

-70

-80

Trace

2432.0

2025-04-21 15:33:43

Lowest channel

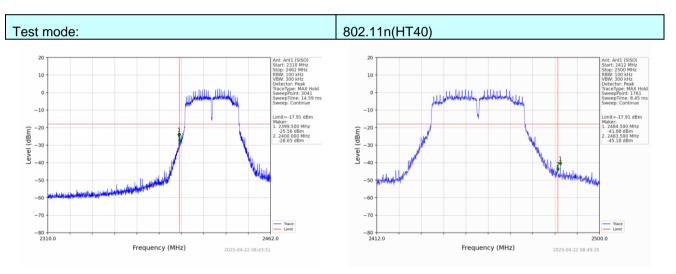
Frequency (MHz)

Highest channel

Frequency (MHz)

Trace Limit

2500.0


2025-04-21 16:32:25

Lowest channel

Highest channel

Lowest channel

Highest channel

6.5.2.	Radiated E	mission Me						
Te	est Requirement:	FCC Part15	C Section 1	5.209 a	and 15.20)5		
Te	est Method:	ANSI C63.1	0: 2013					
Te	est Frequency Range:	All of the re 2500MHz) d			tested, or	nly the wo	orst band's (2310MHz to
Te	est site:	Measureme	nt Distance:	3m				
R	eceiver setup:	Frequenc	y Dete	ctor	RBW	VBW	/ Re	emark
		Above 1GH	Pea	ak	1MHz	3MH:	z Pea	k Value
		Above 101	Pea	ak	1MHz	10Hz	z Avera	ige Value
Li	mit:	Fre	quency	L	_imit (dΒι	uV/m @3m	n) Re	emark
		Aboy	ve 1GHz			4.00		ige Value
		7.00			74	4.00	Pea	k Value
		<pre></pre>						
т	est Procedure:		waa plaaad	1			lo 1 5 motor	ra abaya tha
		 The EUT was placed on the top of a rotating table 1.5 meters above ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst cas and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of a EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak 						
Те	est Instruments:	Refer to sec	tion 6.0 for c	letails				
Те	est mode:	Refer to sec	tion 5.2 for c	letails				
	est results:	Pass						
Te	est environment:	Temp.:	25 °C	Humi	d.: 5	2%	Press.:	1012mbar
					1		1	1

6.5.2. Radiated Emission Method

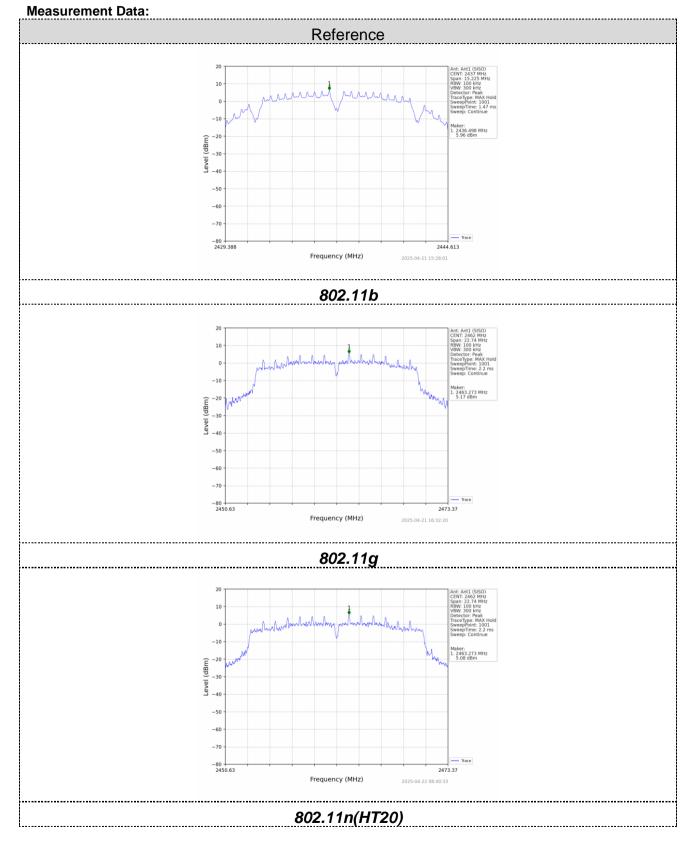
Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

Measurement Data

Remark: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

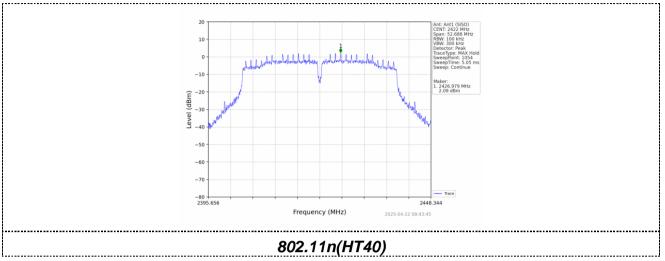
Freque	ncy(MHz)	:	24	12	Pola	arity:		HORIZONT	AL
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	62.45	PK	74	11.55	63.84	27.2	4.31	32.9	-1.39
2390.00	42.98	AV	54	11.02	44.37	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	12	Pola	arity:		VERTICA	L
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.82	PK	74	13.18	62.21	27.2	4.31	32.9	-1.39
2390.00	46.72	AV	54	7.28	48.11	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	62	Polarity: HORIZONTAL			AL	
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	56.80	PK	74	17.20	57.73	27.4	4.47	32.8	-0.93
2483.50	43.84	AV	54	10.16	44.77	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	62	Pola	arity:		VERTICA	L
Frequency (MHz)	Level		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.16	PK	74	18.84	56.09	27.4	4.47	32.8	-0.93
2483.50	43.42	AV	54	10.58	44.35	27.4	4.47	32.8	-0.93

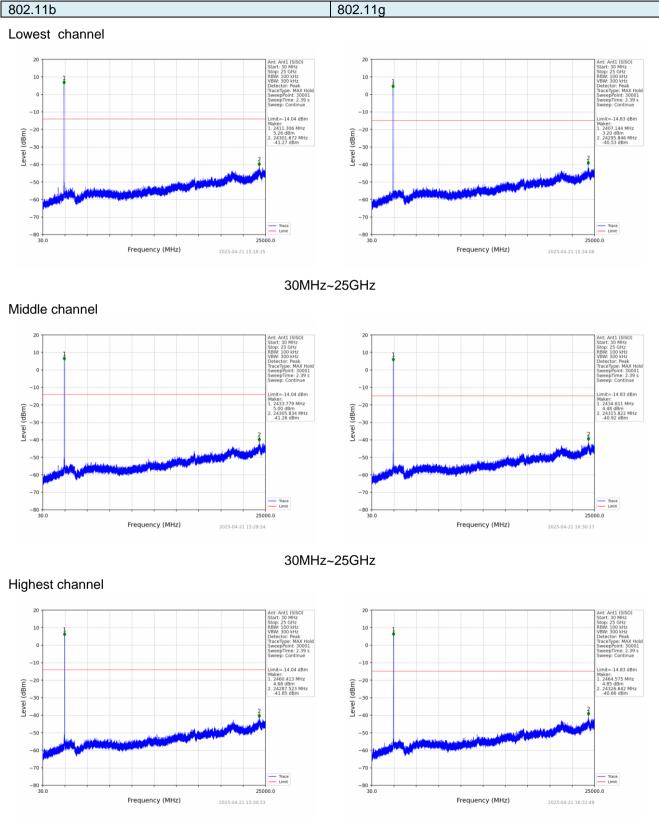


6.6. Spurious Emission

6.6.1. Conducted Emission Method

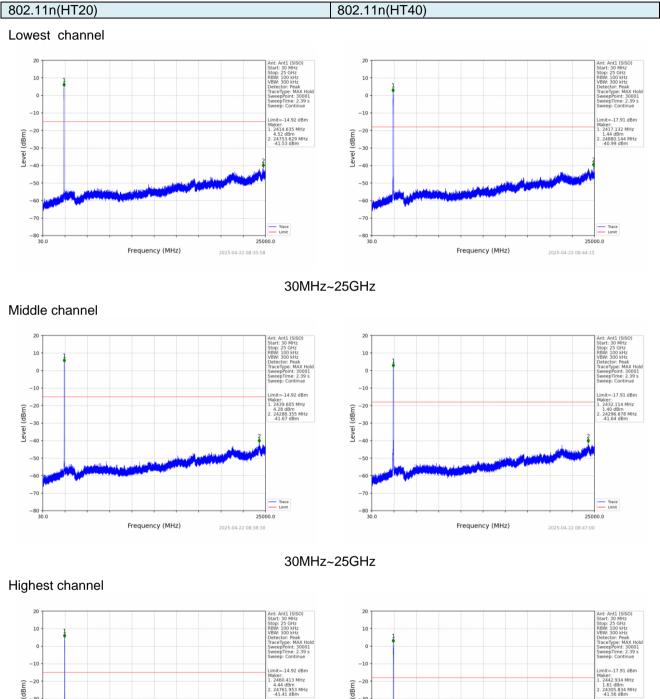
Test Requirement:	FCC Part18	FCC Part15 C Section 15.247 (d)								
Test Method:	KDB558074	4 D01 15.247	7 Meas Guida	ince v05r02						
Limit:	spectrum ir is produced the 100 kH the desired	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Sp	Spectrum Analyzer E.U.T Non-Conducted Table								
Test Instruments:	Refer to se	ction 6.0 for a	details							
Test mode:	Refer to se	ction 5.2 for a	details							
Test results:	Pass									
Test environment:	Temp.:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								




 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200
 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,
 Shenzhen, Guangdong, China

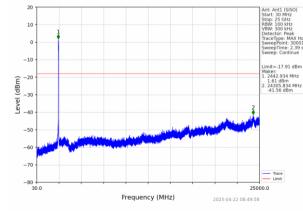
30MHz~25GHz


 Shenzhen HTT Technology Co.,Ltd.
 Tel: 0755-23595200 Fax: 0755-23595201

 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road,Nanchang Community, Xixiang Street, Bao'an District,

 Shenzhen, Guangdong, China

 Page 27 of 37



Level (dBm) -20 -30 -40 -50 -60

Frequency (MHz)

-70

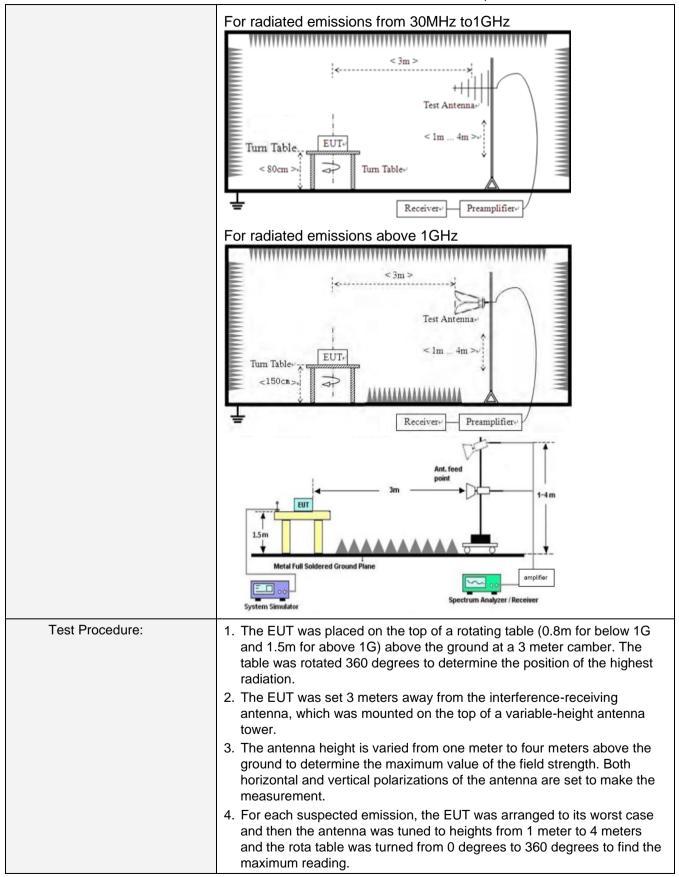
-80 + 30.0

30MHz~25GHz

Trace Limit

25000.0

2025-04-22 08:41:03


Shenzhen HTT Technology Co.,Ltd. Tel: 0755-23595200 Fax: 0755-23595201 1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

6.6.2. Radiated E	mission Method								
Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency		Detector	RB\	N	VBW	'	Value	
	9KHz-150KHz	Qı	lasi-peak	200H	Ηz	600H	z	Quasi-peak	
	150KHz-30MHz	Qı	lasi-peak	9K⊦	lz	30KH	z	Quasi-peak	
	30MHz-1GHz	Qu	uasi-peak	120K	Hz	300K⊦	lz	Quasi-peak	
	Above 1GHz		Peak	1M⊦	lz	3MHz	Z	Peak	
	7,5076 16112		Peak	1M⊦	lz	10Hz	-	Average	
Limit:	Frequency	Limit (u∖	//m)	V	alue	Ν	leasurement Distance		
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m	
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP		30m		
	1.705MHz-30MH	Z	30		QP		30m		
	30MHz-88MHz	100		QP		- 3m			
	88MHz-216MHz	150		QP					
	216MHz-960MH	200			QP				
	960MHz-1GHz	500		QP			•		
	Above 1GHz		500		Average				
			5000		Peak				
Test setup:	For radiated emiss	ions	from 9kH	z to 30	MH	z		_	
	<pre></pre>								

6.6.2. Radiated Emission Method

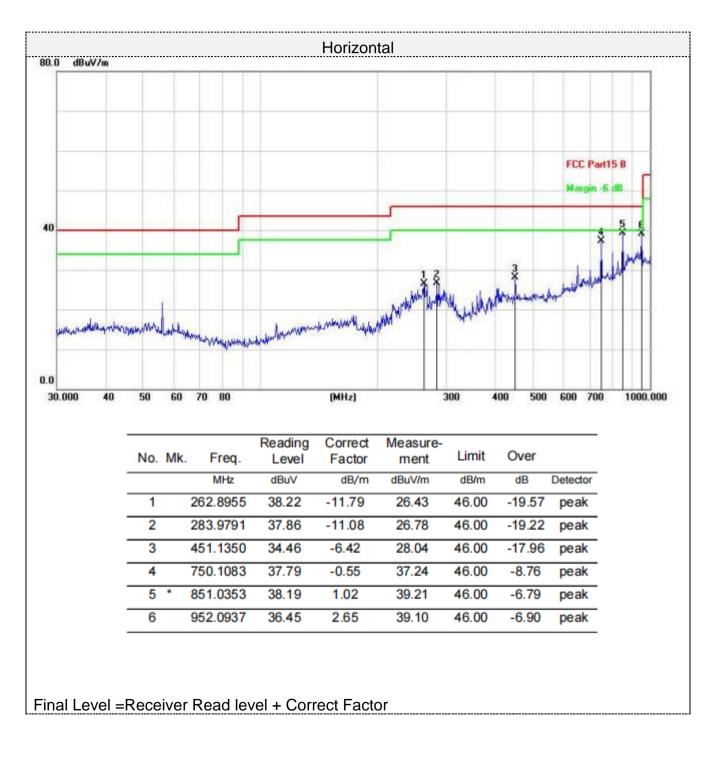
	Report No.: HTT202504449F01								
		5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.								
Test Instruments:	Refer to se	ction 6.0 for	details						
Test mode:	Refer to se	ction 5.2 for	details						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar			
Test voltage:	DC 5V from PC								
Test results:	Pass								

Remarks:

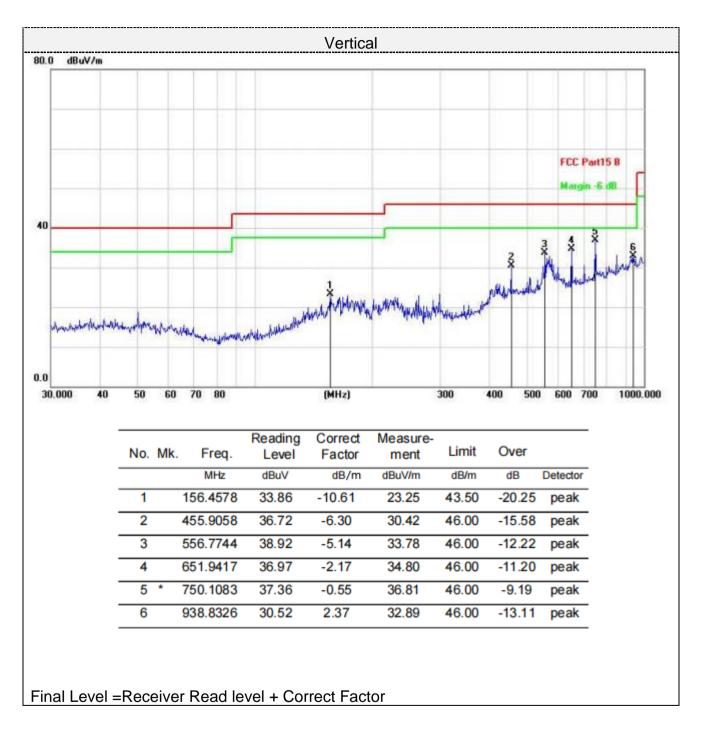
1. Only the worst case Main Antenna test data.

2.Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:


■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.



Below 1GHz

Pre-scan all test modes, found worst case at 802.11b 2437MHz, and so only show the test result of 802.11b 2437MHz

■ Above 1-25GHz

Note: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

	802.11	b:							
Frequ	uency(Mł	Ηz):	2412		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m) (dB)		U	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4824.00	59.68	PK	74	14.32	53.86	31.05	6.52	31.75	5.82
4824.00	43.25	AV	54	10.75	37.43	31.05	6.52	31.75	5.82
7236.00	56.49	PK	74	17.51	43.68	36.08	8.18	31.45	12.81
7236.00	45.95	AV	54	8.05	33.14	36.08	8.18	31.45	12.81

Freq	Frequency(MHz):			2412		rity:	VERTICAL			
Frequency (MHz)	Emis: Lev (dBu\	rel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4824.00	59.68	PK	74	14.32	53.86	31.05	6.52	31.75	5.82	
4824.00	43.55	AV	54	10.45	37.73	31.05	6.52	31.75	5.82	
7236.00	57.58	PK	74	16.42	44.77	36.08	8.18	31.45	12.81	
7236.00	46.11	AV	54	7.89	33.30	36.08	8.18	31.45	12.81	

Freq	uency(MH	z):	2437		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis: Lev (dBu\	rel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4874.00	61.78	PK	74	12.22	55.34	31.25	6.7	31.51	6.44	
4874.00	44.04	AV	54	9.96	37.60	31.25	6.7	31.51	6.44	
7311.00	55.59	PK	74	18.41	42.45	36.25	8.31	31.42	13.14	
7311.00	46.75	AV	54	7.25	33.61	36.25	8.31	31.42	13.14	

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Freq	uency(MH	z):	24	37	Pola	rity:	VERTICAL			
Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4874.00	60.42	PK	74	13.58	53.98	31.25	6.7	31.51	6.44	
4874.00	46.17	AV	54	7.83	39.73	31.25	6.7	31.51	6.44	
7311.00	56.05	PK	74	17.95	42.91	36.25	8.31	31.42	13.14	
7311.00	47.63	AV	54	6.37	34.49	36.25	8.31	31.42	13.14	

Freq	uency(MH	z):	2462		Pola	rity:	HORIZONTAL			
Frequency (MHz)	Emis: Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4924.00	60.30	PK	74	13.70	53.43	31.52	6.8	31.45	6.87	
4924.00	46.25	AV	54	7.75	39.38	31.52	6.8	31.45	6.87	
7386.00	56.05	PK	74	17.95	42.49	36.51	8.4	31.35	13.56	
7386.00	46.41	AV	54	7.59	32.85	36.51	8.4	31.35	13.56	

Frequency(MHz):			2462		Polarity:		VERTICAL		
Frequency (MHz)	Emiss Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	61.77	PK	74	12.23	54.90	31.52	6.8	31.45	6.87
4924.00	45.07	AV	54	8.93	38.20	31.52	6.8	31.45	6.87
7386.00	55.64	PK	74	18.36	42.08	36.51	8.4	31.35	13.56
7386.00	45.95	AV	54	8.05	32.39	36.51	8.4	31.35	13.56

Remark:

(1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

(2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

Tel: 0755-23595200 Fax: 0755-23595201

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 1.50 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the **appendix I** for details.

8. EUT Constructional Details

Reference to the **appendix II** for details.

-----End-----