

TEST REPORT

		-			
FCC ID:	2A4JA-B033-2M				
Test Report No::	TCT220217E006		(0)		
Date of issue::	Feb. 24, 2022				
Testing laboratory:	SHENZHEN TONGCE TESTING	S LAB			
Testing location/ address:	TCT Testing Industrial Park Fuqi Street, Bao'an District Shenzhen Republic of China				
Applicant's name::	Zhongrun Huasheng Trading Co.	., Ltd.			
Address::	Room 10H, Jiahua Pavilion, Gue South Road, Renmin Qiao Comn District, Shenzhen, 518001 China	nunity, Guiyuan Street			
Manufacturer's name:	Shenzhen DZH Industrial Co., Lt	d			
Address:	3th Floor, YiTuo Mike Industrial A building, Bu Yong Industrial D zone, Shajing, Shenzhen, China				
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.249 ANSI C63.10:2013				
Test item description:	Wireless Keyboard				
Trade Mark:	N/A				
Model/Type reference:	B033-2M				
Rating(s)::	Rechargeable Li-ion Battery DC	3.7V			
Date of receipt of test item:	Feb. 17, 2022				
Date (s) of performance of test:	Feb. 17, 2022 ~ Feb. 24, 2022				
Tested by (+signature):	Rleo LIU	Reo War ONGCE			
Check by (+signature):	Beryl ZHAO	Boy TCT			
Approved by (+signature):	Tomsin	Toms of			
Company displayment					

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

1.	General Pro							
	1.1. EUT desc	ription		(6)		(80)		3
	1.2. Model(s)							
	1.3. Operation	n Frequenc	y					4
2.	Test Result	Summary	y					5
3.	General Info	ormation.						6
	3.1. Test Envi							
	3.2. Descripti	on of Supp	ort Units					6
4.	Facilities ar	nd Accred	litations					7
	4.1. Facilities		(0)		<u>(C)</u>		((C))	7
	4.2. Location							7
	4.3. Measurer	nent Uncer	tainty					7
5.	Test Result	s and Mea	asureme	nt Data .		(0)		8
	5.1. Antenna	Requireme	nt					8
	5.2. Conducte	ed Emissio	n					9
	5.3. Radiated	Emission I	Measurem	ent				13
	5.4. 20dB Occ	cupied Ban	dwidth					25
Аp	pendix A: Ph	notograph	s of Tes	t Setup				
Аp	pendix B: Ph	notograph	s of EU1					
-								

1. General Product Information

Report No.: TCT220217E006

1.1. EUT description

Test item description:	Wireless Keyboard			
Model/Type reference:	B033-2M			
Sample Number:	TCT220217E005-0101			
Operation Frequency:	2402MHz ~ 2479MHz		(0)	
Number of Channel:	16			
Modulation Technology:	GFSK	(c)		
Antenna Type:	PCB Antenna			
Antenna Gain:	0.55dBi			
Rating(s):	Rechargeable Li-ion Battery DC 3	3.7V		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.3. Operation Frequency

Report No	1012202172000	

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	4	2421MHz	8	2446MHz	12	2468MHz
(1)1	2408MHz	5	2423MHz	9	2451MHz	13	2474MHz
2	2417MHz	6	2428MHz	10	2456MHz	14	2478MHz
3	2419MHz	7	2437MHz	11	2460MHz	15	2479MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see helow:

	The Lowes	et channel e channel	Frequency 2402MHz 2437MHz		
	The Highes	st channel	2479MHz		

2. Test Result Summary

Report No.:	TCT220217E006

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Field Strength of Fundamental	§15.249 (a)	PASS
Spurious Emissions	§15.249 (a) (d)/ §15.209	PASS
Band Edge	§15.249 (d)/ §15.205	PASS
20dB Occupied Bandwidth	§15.215 (c)	PASS

Note:

- 1. Pass: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test Environment and Mode

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	25.0 °C	24 °C			
Humidity:	55 % RH	45 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			
Test Mode:					
Engineering mode: Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery					

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	JD-050200	2012010907576735	/	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 6 of 28

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2.Location

SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fugiao 5th Industrial Zone, Fuhai Street, Bao'an

District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT220217E006

5. Test Results and Measurement Data

5.1. Antenna Requirement

Standard requirement:

FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

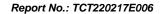
E.U.T Antenna:

The EUT antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 0.55dBi.

Page 8 of 28

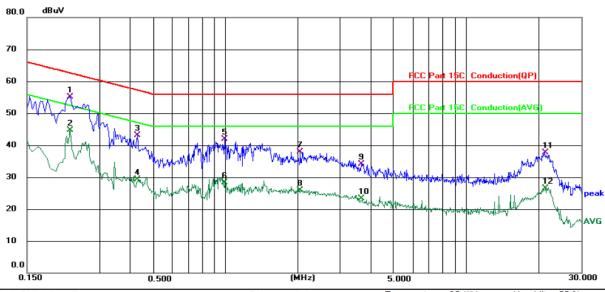
5.2. Conducted Emission

5.2.1. Test Specification


Test Requirement:	FCC Part15 C Section	15.207	60			
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30	RBW=9 kHz, VBW=30 kHz, Sweep time=auto				
	Frequency range	Limit (dBuV)			
	(MHz)	Quasi-peak	Average			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Reference Plane					
Test Setup: Test Mode:	AUX Equipment Test table/Insulation pla Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m Charging + Transmittin	EMI Receiver	lter — AC power			
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Result:			1			
Test Result:	PASS					

5.2.2. Test Instruments

Cond	Conducted Emission Shielding Room Test Site (843)											
Equipment	Manufacturer	Model	Serial Number	Calibration Due								
EMI Test Receiver	Test Receiver R&S		100898	Jul. 07, 2022								
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Mar. 11, 2022								
Line-5	TCT	CE-05	N/A	Jul. 07, 2022								
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A								



5.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 25 (°C)

umidity: 55 %

Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.2260	45.75	9.36	55.11	62.60	-7.49	QP	
2		0.2260	35.41	9.36	44.77	52.60	-7.83	AVG	
3		0.4300	33.84	9.22	43.06	57.25	-14.19	QP	
4		0.4300	20.01	9.22	29.23	47.25	-18.02	AVG	
5		0.9939	32.65	9.32	41.97	56.00	-14.03	QP	
6		0.9939	18.90	9.32	28.22	46.00	-17.78	AVG	
7		2.0539	28.55	9.44	37.99	56.00	-18.01	QP	
8		2.0539	16.42	9.44	25.86	46.00	-20.14	AVG	
9		3.6619	24.59	9.54	34.13	56.00	-21.87	QP	
10		3.6619	13.72	9.54	23.26	46.00	-22.74	AVG	
11		21.1818	27.85	9.79	37.64	60.00	-22.36	QP	
12		21.1818	16.68	9.79	26.47	50.00	-23.53	AVG	

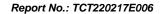
Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

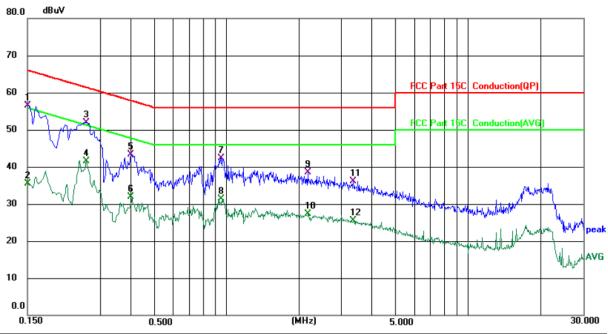
Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)


 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak


AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room Phase: N Temperature: 25 (°C) Humidity: 55 %

Limit: FCC Part 15C Conduction(QP)

Power: DC 5 V(Adapter Input AC 120 V/60 Hz)

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	46.99	9.61	56.60	66.00	-9.40	QP	
2		0.1500	25.80	9.61	35.41	56.00	-20.59	AVG	
3		0.2620	42.56	9.34	51.90	61.37	-9.47	QP	
4		0.2620	32.18	9.34	41.52	51.37	-9.85	AVG	
5		0.4020	34.00	9.25	43.25	57.81	-14.56	QP	
6		0.4020	22.58	9.25	31.83	47.81	-15.98	AVG	
7		0.9460	32.97	9.29	42.26	56.00	-13.74	QP	
8		0.9460	22.06	9.29	31.35	46.00	-14.65	AVG	
9		2.1780	29.09	9.39	38.48	56.00	-17.52	QP	
10		2.1780	17.94	9.39	27.33	46.00	-18.67	AVG	
11		3.3620	26.77	9.43	36.20	56.00	-19.80	QP	
12		3.3620	16.14	9.43	25.57	46.00	-20.43	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

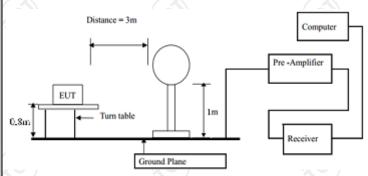
Limit (dBµV) = Limit stated in standard

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

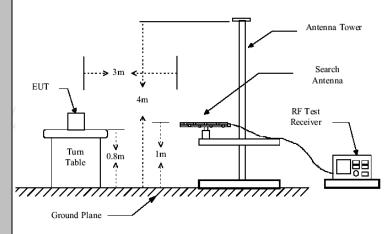
Q.P. =Quasi-Peak AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

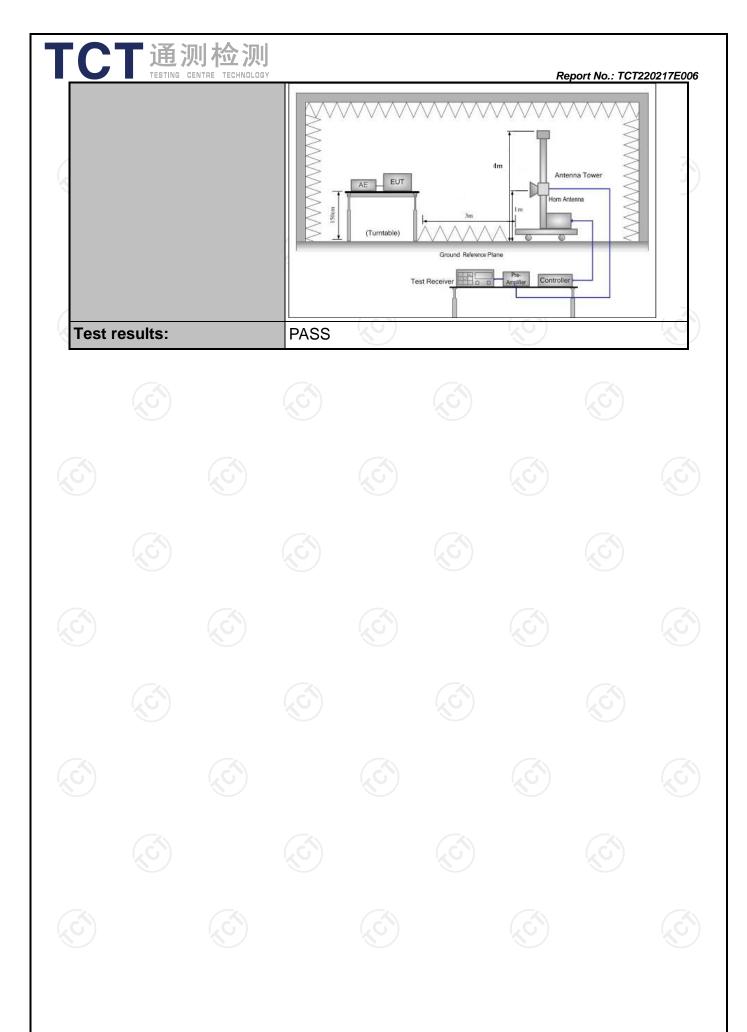
5.3. Radiated Emission Measurement


5.3.1. Test Specification

Test Requirement:	FCC Part15	C Section	า 15.209	(C_{i})	KQ	
Test Method:	ANSI C63.1					
Frequency Range:	9 kHz to 25					
. , ,	, (, ') 	<u> </u>	(6))		(c)	
Measurement Distance:	3 m					
Antenna Polarization:	Horizontal 8	& Vertical				
	Frequency	Detector	RBW	VBW	Remark	
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak Value	
Receiver Setup:	150kHz- 30MHz	Quasi-peak	9kHz	30kHz	Quasi-peak Value	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak Value	
	Above 1GHz	Peak	1MHz	3MHz	Peak Value	
		Peak	1MHz	10Hz	Average Value	
Limit(Field strength of the	Freque	ency	Limit (dBu\	V/m @3m)	Remark	
•		-K\	94.		Average Value	
fundamental signal):	2400MHz-24	483.5MHZ	114	.00	Peak Value	
	- Francisco		//rs @ 2rss \	Damark		
	0.009-0		Limit (dBu)		Remark	
	0.009-0		2400/F 24000/	` '	Quasi-peak Value Quasi-peak Value	
	1.705		3		Quasi-peak Value	
	30MHz-8		40		Quasi-peak Value	
Limit(Spurious Emissions):	88MHz-2		43		Quasi-peak Value	
	216MHz-9	1	46		Quasi-peak Value	
	960MHz	-1GHz	54	.0	Quasi-peak Value	
	Above 2	1047	54	.0	Average Value	
			74		Peak Value	
Limit (band edge) :	bands, excelleast 50 dB general rac whichever is	ept for har below the diated em s the lesse	monics, so level of the lission lirer attenua	shall be a the funda nits in t tion.	cified frequency attenuated by at imental or to the Section 15.209,	
Test Procedure:	meters a below 1 GHz. determing 2. The Elinterfere on the to 3. The antermeters a value of vertical personal pe	above the IGHz, 1.5 The table the position of a varence the grown above the field of the Idea of Idea of the Idea of I	ground a im above was ro ition of the set 3 r ving anter iable-heig t is varied ground to d strengt ns of the	at a 3 m the the greated 3 the highest the	eter chamber in round in above 60 degrees to radiation. away from the ch was mounted na tower. The meter to four ne the maximum horizontal and are set to make	


- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

For radiated emissions below 30MHz


30MHz to 1GHz

Test setup:

Above 1GHz

(The diagram below shows the test setup that is utilized to make the measurements for emission from 1GHz to the tenth harmonic of the highest fundamental frequency or to 40GHz emissions, whichever is lower.)

5.3.2. Test Instruments

	Radiated Em	nission Test Site	e (966)		
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022	
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022	
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Mar. 11, 2022	
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Apr. 08, 2022	
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022	
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022	
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022	
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022	
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023	
Antenna Mast	Keleto	RE-AM	N/A	N/A	
Coaxial cable	SKET	RC_DC18G-N	N/A	Apr. 08, 2022	
Coaxial cable	SKET	RC-DC18G-N	N/A_	Apr. 08, 2022	
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022	
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A	

5.3.3. Test Data

Field Strength of Fundamental

Frequency (MHz)	Emission PK (dBuV/m)	Horizontal /Vertical	Limits PK (dBuV/m)	Margin (dB)
2402	72.49	Н	114	-41.51
2402	63.87	V	114	-50.13
2437	72.98	Н	114	-41.02
2437	64.78	V	114	-49.22
2479	72.17	H	114	-41.83
2479	64.08	V	114	-49.92

Frequency (MHz)	Emission AV (dBuV/m)	Horizontal /Vertical	Limits AV (dBuV/m)	Margin (dB)
2402	66.92	Н	94	-27.08
2402	58.27	V	94	-35.73
2437	67.23	Н	94	-26.77
2437	59.19	V	94	-34.81
2479	68.17	Н	94	-25.83
2479	59.38	V	94	-34.62

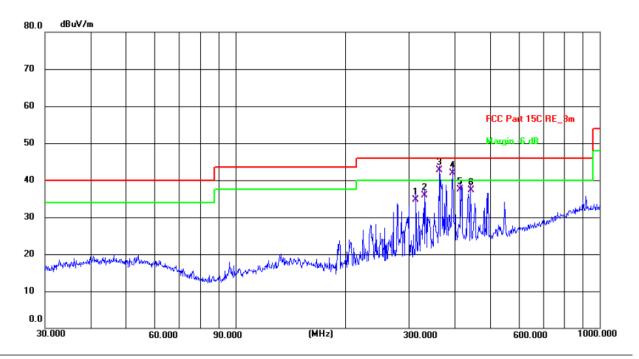
Spurious Emissions

Frequency Range (9 kHz-30MHz)

Frequency (MHz)	Level@3m (dBµV/m)	Limit@3m (dBµV/m)
(C)-	(6)	
· · · · · · · · · · · · · · · · · · ·		

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

- 2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.
- 3. For fundamental frequency, RBW >20dB BW, VBW>=RBW, PK detector is for PK value, RMS detector is for AV value.

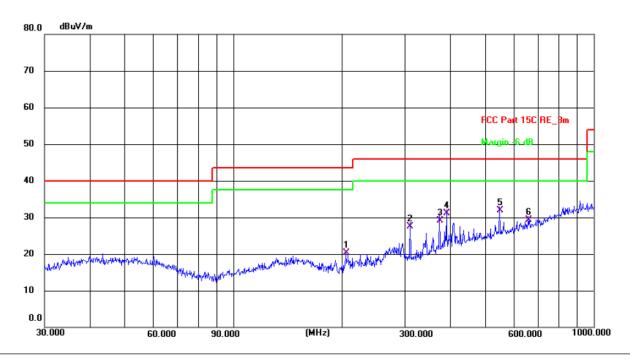

Page 17 of 28

Frequency Range (30MHz-1GHz)

Report No.: TCT220217E006

Horizontal:

Site #2 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 24(C) Humidity: 45 %


Limit: FCC Part 15C RE_3m Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	313.2760	20.49	14.21	34.70	46.00	-11.30	QP	Р	
2	331.3546	21.06	14.84	35.90	46.00	-10.10	QP	Р	
3 *	362.9844	26.84	15.96	42.80	46.00	-3.20	QP	Р	
4!	394.8545	24.82	17.08	41.90	46.00	-4.10	QP	Р	
5	414.7223	20.03	17.57	37.60	46.00	-8.40	QP	Р	
6	441.7426	19.15	18.15	37.30	46.00	-8.70	QP	Р	

Site #2 3m Anechoic Chamber Polarization: Vertical Temperature: 24(C) Humidity: 45 %

Limit: FCC Part 15C RE_3m Power: DC 3.7 V

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	205.6751	9.69	10.60	20.29	43.50	-23.21	QP	Р	
2	309.9977	13.51	14.09	27.60	46.00	-18.40	QP	Р	
3	373.3112	12.88	16.32	29.20	46.00	-16.80	QP	Р	
4	390.7226	14.27	16.93	31.20	46.00	-14.80	QP	Р	
5 *	549.0195	11.60	20.30	31.90	46.00	-14.10	QP	Р	
6	658.8362	7.21	22.19	29.40	46.00	-16.60	QP	Р	

Note: Measurements were conducted in all channels (high, middle, low), and the worst case (Highest channel) was

Above 1GHz

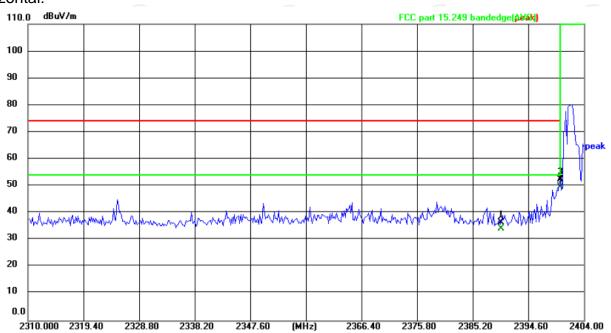
				Above	1GHZ				
				Low channe	el: 2402MH	lz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	reading reading				Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	50.21		-3.94	46.27		74	54	-7.73
7206	Н	44.97		0.52	45.49		74	54	-8.51
)							
4804	V	51.28		-3.94	47.34		74	54	-6.66
7206	V	44.56	- -	0.52	45.08	· C -}-	74	54	-8.92
				/	3			2	

				N	liddle chann	el: 2437M	Hz			
	Frequency	Ant Dol	Peak	AV	Correction	Emissio	n Level	Peak limit	Λ\/ limit	Margin
<	(MHz)	H/V	reading	reading	Factor	Peak	AV		(dBµV/m)	(dB)
	(1711 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(αυμ ۷/111)	(αΒμ ۷/111)	(GD)
	4874	Ι	50.69		-3.98	46.71		74	54	-7.29
	7311	Ι	43.81		0.57	44.38		74	54	-9.62
		-				/	- 12			
ſ		(0)		No.		4			(60)	
ſ	4874	V	50.18		-3.98	46.20		74	54	-7.80
	7311	V	43.72		0.57	44.29		74	54	-9.71
						7. 				

High channel: 2479MHz									
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4958	Н	51.39	- (.c.	-3.98	47.41	.c ^- -	74	54	-6.59
7437	Н	46.27		0.57	46.84	<u></u>	74	54	-7.16
4958	V	49.46		-3.98	45.48		74	54	-8.52
7437	V	44.71		0.57	45.28		74	54	-8.72
					/				

Note:

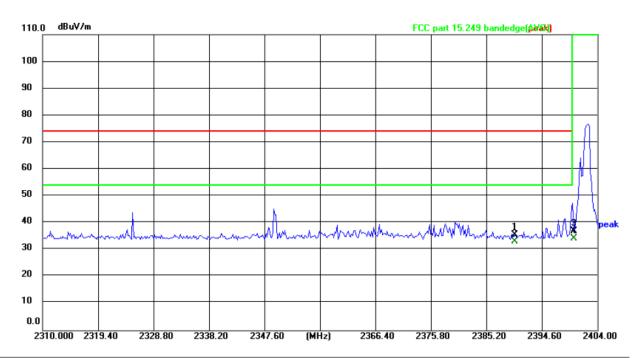
- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.
- 6. All the restriction bands are compliance with the limit of 15.209.


Report No.: TCT220217E006

Band Edge Requirement

Lowest channel 2402:

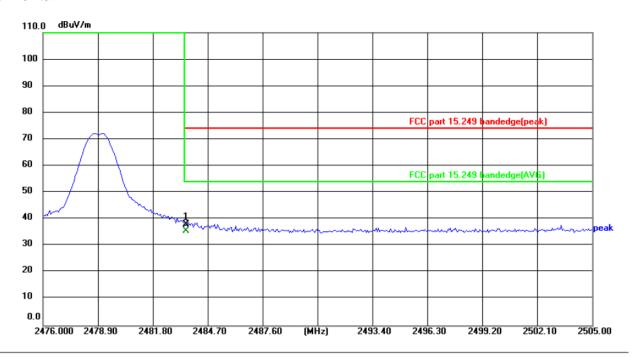
Horizontal:


Site Polarization: Horizontal Temperature: 24(°C)
Limit: FCC part 15.249 bandedge(peak) Power: DC 3.7V Humidity: 52 %

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2390.000	51.30	-14.99	36.31	74.00	-37.69	peak	Р	
2	2390.000	49.25	-14.99	34.26	54.00	-19.74	AVG	Р	
3	2400.000	67.35	-14.95	52.40	74.00	-21.60	peak	Р	
4 *	2400.000	64.53	-14.95	49.58	54.00	-4.42	AVG	Р	

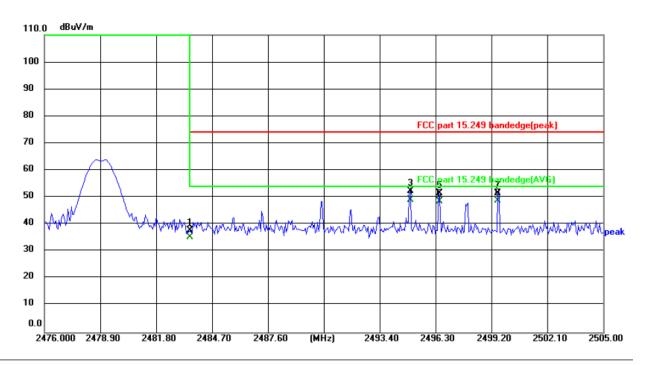
Vertical:

Site Polarization: Vertical Temperature: 24($^{\circ}$) Limit: FCC part 15.249 bandedge(peak) Power: DC 3.7V Humidity: 52 %


Frequency Reading Factor Level Limit Margin No. Detector P/F Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2390.000 50.63 -14.99 35.64 74.00 -38.36 Р 1 peak 2 2390.000 48.15 -14.99 33.16 54.00 -20.84 AVG Р 3 2400.000 51.81 -14.95 36.86 74.00 -37.14 Р peak 4 2400.000 49.23 -14.95 34.28 54.00 -19.72 AVG Р

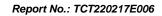
Highest channel 2479:

Horizontal:


Site Polarization: Horizontal Temperature: 24($^{\circ}$ C) Limit: FCC part 15.249 bandedge(peak) Power: DC 3.7 $^{\vee}$ Humidity: 52 $^{\circ}$

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2483.500	52.73	-14.58	38.15	74.00	-35.85	peak	Р	
2 *	2483.500	50.07	-14.58	35.49	54.00	-18.51	AVG	Р	

Vertical:



Site Polarization: Vertical Temperature: $24(^{\circ}\text{C})$ Limit: FCC part 15.249 bandedge(peak) Power: DC 3.7V Humidity: 52%

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2483.500	52.47	-14.58	37.89	74.00	-36.11	peak	Р	
2	2483.500	49.82	-14.58	35.24	54.00	-18.76	AVG	Р	
3	2494.946	66.98	-14.53	52.45	74.00	-21.55	peak	Р	
4 *	2494.946	63.69	-14.53	49.16	54.00	-4.84	AVG	Р	
5	2496.457	66.07	-14.52	51.55	74.00	-22.45	peak	Р	
6	2496.457	63.14	-14.52	48.62	54.00	-5.38	AVG	Р	
7	2499.537	65.96	-14.51	51.45	74.00	-22.55	peak	Р	
8	2499.537	63.25	-14.51	48.74	54.00	-5.26	AVG	Р	

Note: Measurements were conducted in all channels (high, middle, low), and the worst case (Highest channel) was submitted only.

5.4. 20dB Occupied Bandwidth

5.4.1. Test Specification

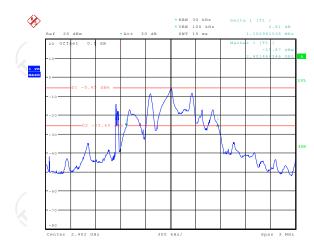
Test Requirement:	FCC Part15 C Section 15.215(c)
Test Method:	ANSI C63.10: 2013
Limit:	N/A
	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel; RBW≥1% of the 20 dB bandwidth; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test results:	PASS

5.4.2. Test Instruments

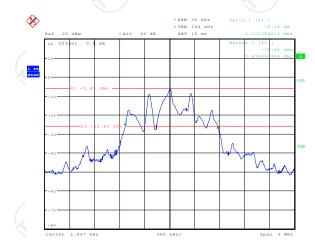
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	R&S	FSU	200054	Jul. 18, 2022

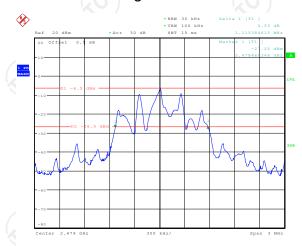
5.4.3. Test data

Report	No.:	TCT220217E006
, topoit		I O I LLUL I I LUUU


Test Channel	20dB Occupy Bandwidth (kHz)	Limit	Conclusion
Lowest	1100.96	(3)	PASS
Middle	1115.38		PASS
Highest	1115.38		PASS

Test plots as follows:

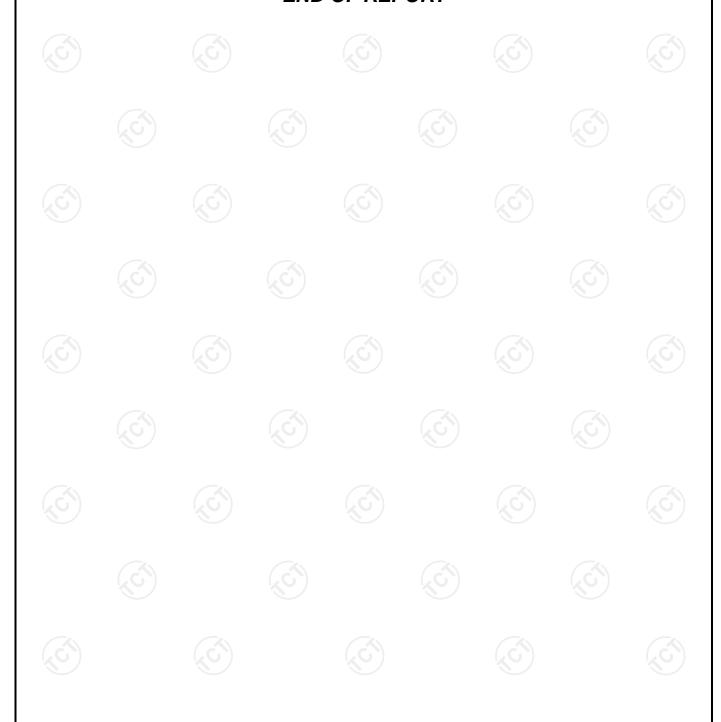



Lowest channel

Date: 22.FEB.2022 08;33:37 Middle channel

Highest channel

Date: 22.FEB.2022 08:35:37


Appendix A: Photographs of Test Setup

Refer to the test report No. TCT220217E005

Appendix B: Photographs of EUT

Refer to the test report No. TCT220217E005

*****END OF REPORT****

