

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Fax: +86 (0) 755 2671 0594 Report No.: SZEM180400250602

Email: ee.shenzhen@sgs.com Page: 1 of 100

FCC REPORT

Application No: SZEM1804002506RG

Applicant: Hisense International Co., Ltd.

Manufacturer: Hisense Communications Co., Ltd.

Factory: Hisense Communications Co., Ltd.

Product Name: Mobile Phone
Model No.(EUT): Hisense T17

Trade Mark: Hisense FCC ID: 2ADOBT17

Standards: 47 CFR Part 15, Subpart C

Test Method: KDB 558074 D01 DTS Meas Guidance v04

ANSI C63.10 (2013)

Date of Receipt: 2018-03-19

Date of Test: 2018-03-19 to 2018-03-26

Date of Issue: 2018-04-09

Test Result: PASS *

. * In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Derek Yang

Derole yang

Wireless Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400250602

Page: 2 of 100

2 Version

Revision Record					
Version Chapter Date Modifier Remark					
01		2018-04-09		Original	

Authorized for issue by:		
Tested By	Mike Mu	2018-03-36
	(Mike Hu) /Project Engineer	Date
Checked By	John Hong	2018-04-09
	(Jim Huang) /Reviewer	Date

Report No.: SZEM180400250602

Page: 3 of 100

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 2013	PASS
AC Power Line Conducted Emission 47 CFR Part 15, Subpart C Section 15.207		ANSI C63.10 2013	PASS
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(3)	ANSI C63.10 2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(2)	ANSI C63.10 2013	PASS
Power Spectral Density	47 CFR Part 15, Subpart C Section 15.247 (e)	ANSI C63.10 2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 2013	PASS
Radiated Spurious Emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 2013	PASS
restricted bands around fundamental frequency (Radiated Emission) 47 CFR Part 15, Subpart C Section 15.205/15.209		ANSI C63.10 2013	PASS

Report No.: SZEM180400250602

Page: 4 of 100

Model No.: Hisense T17

This test report (Ref. No.: SZEM180400250602) is only valid with the original test report (Ref. No.: SZEM180100087902).

According to the declaration from the applicant, the model in this report and model in original report was identical, with only difference on the supplier of TP/LCD/Camera is as bellowing:

Main Supply

Part Name	Model Name	supplier	Remark
ТР	Y138067F2-D-X	YUYE	
Front-facing Camera	C10910	СХТССМ	
LCD	Y87397	DIGITAL	
Rear Camera	C10911	СХТССМ	

Secondary Supply

Part Name	Model Name	supplier	Remark
TP	CCG10117-5.5	HOLITHECH	
Front-facing Camera	HEPS7543-A	HOLITHECH	
LCD	HTT055H517	HOLITHECH	
Rear Camera	HFBS7545-A	HOLITHECH	

Considering to the difference, pre-scan was performed on the sample in this report to find the items which can be influential to the result in the original test report for fully retest.

Therefore, in this report worse case mode of Field strength of spurious radiation on Model Hisense T17 are retested and shown the data in this report.

Report No.: SZEM180400250602

Page: 5 of 100

4 Contents

			Page
			1
2	VEF	RSION	2
3	TES	ST SUMMARY	3
4	CON	NTENTS	5
5	GEN	NERAL INFORMATION	6
•	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	CLIENT INFORMATION	
6		ST RESULTS AND MEASUREMENT DATA	
	6.1 6.2	ANTENNA REQUIREMENTCONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	6DB OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND-EDGE FOR RF CONDUCTED EMISSIONS	
	6.7	RF CONDUCTED SPURIOUS EMISSIONS	
	6.8	RADIATED SPURIOUS EMISSIONS	
	6.8.		
	6.8.		
	6.9	RESTRICTED BANDS AROUND FUNDAMENTAL FREQUENCY	72
7	DHC	STOCHARUS FUT CONSTRUCTIONAL DETAILS	100

Report No.: SZEM180400250602

Page: 6 of 100

5 General Information

5.1 Client Information

Applicant:	Hisense International Co., Ltd.
Address of Applicant:	Floor 22, Hisense Tower, 17 Donghai Xi Road, Qingdao, 266071, China
Manufacturer:	Hisense Communications Co., Ltd.
Address of Manufacturer:	218 Qianwangang Road, Economic & Technological Development Zone, Qingdao, Shandong Province, P.R. China
Factory:	Hisense Communications Co., Ltd.
Address of Factory:	218 Qianwangang Road, Economic & Technological Development Zone, Qingdao, Shandong Province, P.R. China

5.2 General Description of EUT

Product Name:	Mobile Phone	
Model No.:	Hisense T17	
Trade Mark:	Hisense	
Operation Frequency:	IEEE 802.11b/g/n(HT20): 2412MHz to 2462MHz	
Channel Numbers:	IEEE 802.11b/g, IEEE 802.11n HT20: 11 Channels	
Granici Numbers.	IEEE 802.11n HT40: 7 Channels	
Channel Separation:	5MHz	
	IEEE for 802.11b: DSSS(CCK,DQPSK,DBPSK)	
Type of Modulation:	IEEE for 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)	
	IEEE for 802.11n(HT20) : OFDM (64QAM,16QAM,QPSK,BPSK)	
Sample Type:	Portable Device	
Antenna Type:	PIFA	
Antenna Gain:	-0.3dBi	
Power Supply	DC3.8V (1 x 3.8V Rechargeable battery) 2450mAh	
Power Supply	Battery: Charge by DC 5V	
	Model:TPA-97050100UU	
AC adaptor:	Input: AC100-240V 50/60Hz 0.15A	
	Output:DC5.0V 1A	

Report No.: SZEM180400250602

Page: 7 of 100

Operation F	Operation Frequency each of channel(802.11b/g/n HT20)						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

For 802.11b/g/n (HT20):

Channel	Frequency
The Lowest channel	2412MHz
The Middle channel	2437MHz
The Highest channel	2462MHz

Report No.: SZEM180400250602

Page: 8 of 100

5.3 Test Environment and Mode

Operating Environment:				
Temperature:	25.0 °C			
Humidity:	50 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

5.4 Description of Support Units

The EUT has been tested independent unit.

5.5 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

5.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC -Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

Report No.: SZEM180400250602

Page: 9 of 100

5.7 Deviation from Standards

None.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

5.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Total RF power, conducted	0.75dB
2	RF power density, conducted	2.84dB
3	Spurious emissions, conducted	0.75dB
		4.5dB (30MHz-1GHz)
4	Radiated Spurious emission test	4.8dB (1GHz-25GHz)
5	Conduct emission test	3.12 dB(9KHz- 30MHz)
6	Temperature test	1℃
7	Humidity test	3%
8	DC and low frequency voltages	0.5%

Report No.: SZEM180400250602

Page: 10 of 100

5.11 Equipment List

	Conducted Emission									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)				
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017/5/10	2018/5/10				
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2017/10/9	2018/10/9				
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2017/4/14	2018/4/14				
4	8 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T8- 02	EMC0120	2017/9/28	2018/9/28				
5	4 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T4- 02	EMC0121	2017/9/28	2018/9/28				
6	2 Line ISN	Fischer Custom Communications Inc.	FCC- TLISN-T2- 02	EMC0122	2017/9/28	2018/9/28				
7	EMI Test Receiver	Rohde & Schwarz	ESCI	SEM004-02	2017/4/14	2018/4/14				
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017/10/9	2018/10/9				

	RF connected test										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Duedate (yyyy-mm-dd)					
1	DC Power Supply	ZhaoXin	RXN-305D	SEM011-02	2017/10/9	2018/10/9					
2	Signal Analyzer	Rohde &Schwarz	FSV	W005-02	2018/3/13	2019/3/12					
3	Signal Generator	Rohde &Schwarz	SML03	SEM006-02	2017/4/14	2018/4/14					
4	Power Meter	Rohde &Schwarz	NRVS	SEM014-02	2017/10/9	2018/10/9					
5	Power Sensor	Agilent Technologies	U2021XA	SEM009-01	2017/10/9	2018/10/9					

Report No.: SZEM180400250602

Page: 11 of 100

	RE in Chamber								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)			
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017/5/10	2018/5/10			
2	EMI Test Receiver	Agilent Technologies	N9038A	SEM004-05	2017/10/9	2018/10/9			
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-01	2017/11/1	2020/11/1			
4	Double-ridged horn (1-18GHz)	ETS-LINDGREN	3117	SEM003-11	2015/10/17	2018/10/17			
5	Horn Antenna (18-26GHz)	ETS-LINDGREN	3160	SEM003-12	2017/11/24	2020/11/24			
6	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017/4/14	2018/4/14			
7	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A			
8	DC Power Supply	Zhao Xin	RXN-305D	SEM011-02	2017/10/9	2018/10/9			
9	Loop Antenna	Beijing Daze	ZN30401	SEM003-09	2015/5/13	2018/5/13			

	RE in Chamber									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)				
1	10m Semi-Anechoic Chamber	SAEMC	FSAC1018	SEM001-03	2017/5/10	2018/5/10				
2	EMI Test Receiver (9k-7GHz)	Rohde & Schwarz	ESR	SEM004-03	2017/4/14	2018/4/14				
3	Trilog-Broadband Antenna(30M-1GHz)	Schwarzbeck	VULB9168	SEM003-18	2016/6/29	2019/6/29				
4	Pre-amplifier	Sonoma Instrument Co	310N	SEM005-03	2017/7/6	2018/7/6				
5	.Loop Antenna	ETS-Lindgren	6502	SEM003-08	2015/8/14	2018/8/14				

Report No.: SZEM180400250602

Page: 12 of 100

	RE in Chamber								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. date (yyyy-mm-dd)	Cal.Due date (yyyy-mm-dd)			
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017/5/10	2018/5/10			
2	EXA Spectrum Analyzer	Agilent Technologies Inc	N9010A	SEM004-09	2017/7/19	2018/7/19			
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-02	2017/11/15	2020/11/15			
4	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017/10/9	2018/10/9			
5	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015/6/14	2018/6/14			
6	Horn Antenna (18-26GHz)	ETS-Lindgren	3160	SEM003-12	2017/11/24	2020/11/24			
7	HornAntenna (26GHz-40GHz)	A.H.Systems, inc.	SAS-573	SEM003-13	2017/10/17	2020/10/16			
8	Low Noise Amplifier	Black Diamond Series	BDLNA- 0118- 352810	SEM005-05	2017/10/9	2018/10/9			
9	Band filter	Amindeon	Asi 3314	SEM023-01	N/A	N/A			

Report No.: SZEM180400250602

Page: 13 of 100

6 Test results and Measurement Data

6.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.3dBi.

Report No.: SZEM180400250602

Page: 14 of 100

6.2 Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.2	207					
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	150kHz to 30MHz						
	(1411)	Limit (dBuV)					
	Frequency range (MHz)	Quasi-peak	Average				
Limit:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	n of the frequency.					
Test Procedure:	1) The mains terminal disturb room. 2) The EUT was connected to Impedance Stabilization N impedance. The power cal connected to a second LIS plane in the same way as multiple socket outlet strip single LISN provided the ra 3) The tabletop EUT was place ground reference plane. A placed on the horizontal ground reference plane. A placed on the horizontal ground reference plane. The LISN unit under test and bonded mounted on top of the ground the closest points the EUT and associated experience to find the maximum equipment and all of the in ANSI C63.10: 2013 on corrections.	o AC power source throetwork) which provides bles of all other units of SN 2, which was bonded the LISN 1 for the unit be was used to connect mating of the LISN was need upon a non-metallic and for floor-standing arround reference plane, ith a vertical ground reference plane was bonded to the late and the late and reference plane. The of the LISN 1 and the late and memission, the relativaterface cables must be	bugh a LISN 1 (Line a 50Ω/50μH + 5Ω line the EUT were do not the ground reference of the the ground reference of the the ground reference of the	near ence to a ne was ar ne ne			
Test Setup:	Shielding Room EUT AC Mains LISN1	AE LISN2 AC	Test Receiver				

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

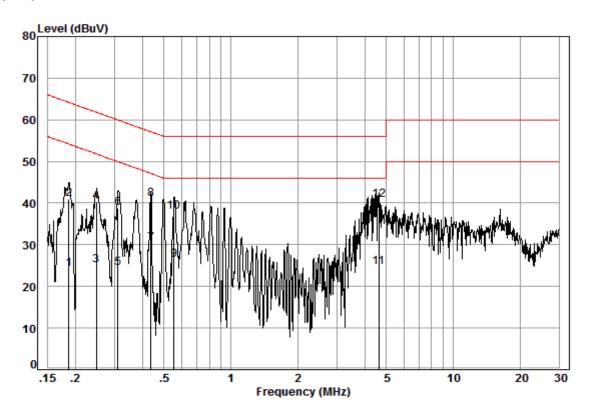
Ground Reference Plane

Report No.: SZEM180400250602

Page: 15 of 100

Exploratory Test Mode:	Transmitting with all kind of modulations, data rates at lowest, middle and highest channel.
	Charge + Transmitting mode.
First Tool Mark	Through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case.
Final Test Mode:	Charge + Transmitting mode.
	Only the worst case is recorded in the report.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass

Report No.: SZEM180400250602


Page: 16 of 100

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

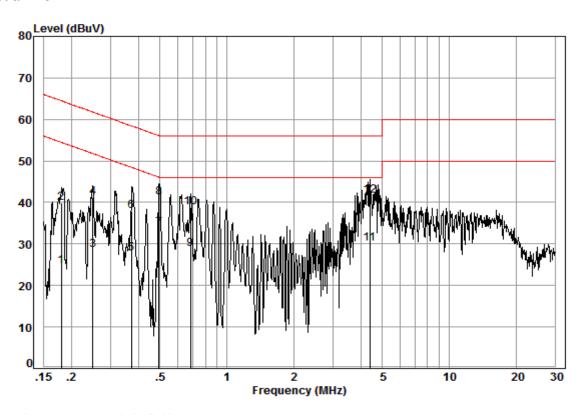
Live Line:

Site : Shielding Room

Condition: Line Job No. : 00879RG

Test mode: c

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.19	0.02	9.51	14.63	24.16	54.20	-30.04	Average
2	0.19	0.02	9.51	31.42	40.95	64.20	-23.25	QP
3	0.25	0.01	9.51	15.57	25.09	51.82	-26.73	Average
4	0.25	0.01	9.51	30.75	40.27	61.82	-21.55	QP
5	0.31	0.01	9.51	14.81	24.33	49.97	-25.64	Average
6	0.31	0.01	9.51	29.31	38.83	59.97	-21.14	QP
7	0.44	0.01	9.49	20.76	30.26	47.11	-16.85	Average
8	0.44	0.01	9.49	31.55	41.05	57.11	-16.06	QP
9	0.56	0.01	9.51	16.86	26.38	46.00	-19.62	Average
10	0.56	0.01	9.51	28.35	37.87	56.00	-18.13	QP
11	4.62	0.01	9.55	15.01	24.57	46.00	-21.43	Average
12	4.62	0.01	9.55	31.20	40.76	56.00	-15.24	QP


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the ilimitation of liability, indemnification and jurisdiction issues defined therein. Any holder of its advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400250602

Page: 17 of 100

Neutral Line:

Site : Shielding Room

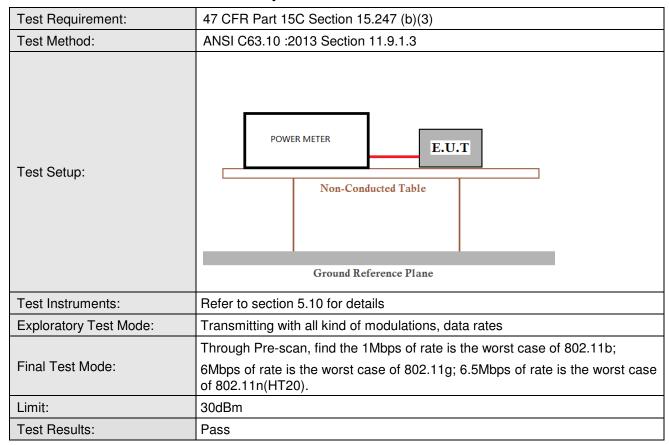
Condition: Neutral Job No. : 00879RG

Test mode: c

	Freq	Cable Loss	LISN Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18	0.02	9.58	14.94	24.54	54.50	-29.96	Average
2	0.18	0.02	9.58	30.33	39.93	64.50	-24.57	QP
3	0.25	0.01	9.58	18.96	28.55	51.78	-23.23	Average
4	0.25	0.01	9.58	31.71	41.30	61.78	-20.48	QP
5	0.37	0.01	9.58	18.06	27.65	48.47	-20.82	Average
6	0.37	0.01	9.58	28.37	37.96	58.47	-20.51	QP
7	0.49	0.01	9.60	24.28	33.89	46.10	-12.21	Average
8	0.49	0.01	9.60	31.59	41.20	56.10	-14.90	QP
9	0.69	0.02	9.62	19.14	28.78	46.00	-17.22	Average
10	0.69	0.02	9.62	29.16	38.80	56.00	-17.20	QP
11	4.41	0.01	9.68	20.48	30.17	46.00	-15.83	Average
12	4.41	0.01	9.68	31.89	41.58	56.00	-14.42	QP

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.


This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction is susues defined therein. Any holder of this document is a divised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document aperties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400250602

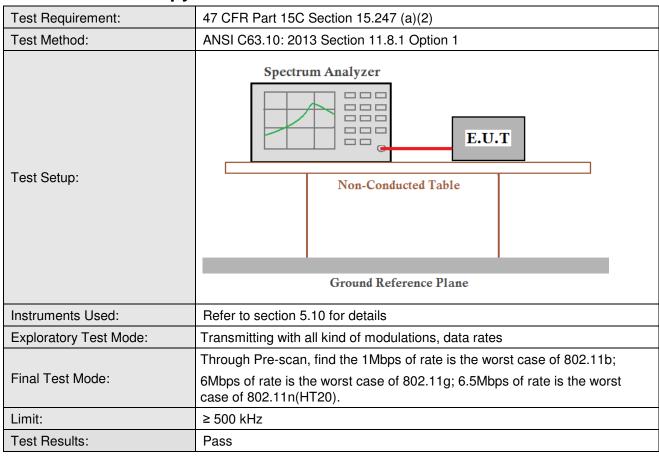
Page: 18 of 100

6.3 Conducted Peak Output Power

Report No.: SZEM180400250602

Page: 19 of 100

Measurement Data


weasurement Data							
802.11b mode							
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	16.24	30.00	Pass				
Middle	16.75	30.00	Pass				
Highest	15.82	30.00	Pass				
	802.11g mo	de					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	16.62	30.00	Pass				
Middle	17.15	30.00	Pass				
Highest	17.21	30.00	Pass				
	802.11n(HT20)	mode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	15.69	30.00	Pass				
Middle	15.88	30.00	Pass				
Highest	16.28	30.00	Pass				

Report No.: SZEM180400250602

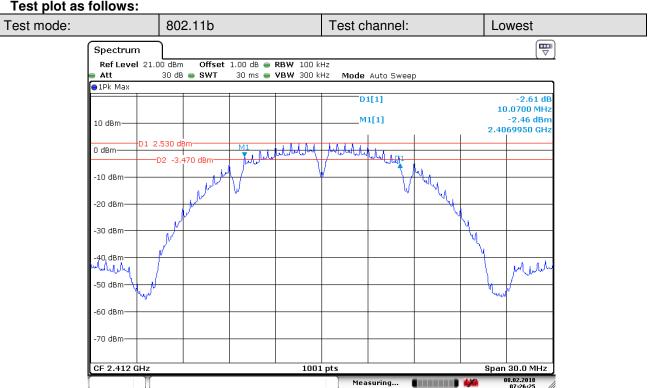
Page: 20 of 100

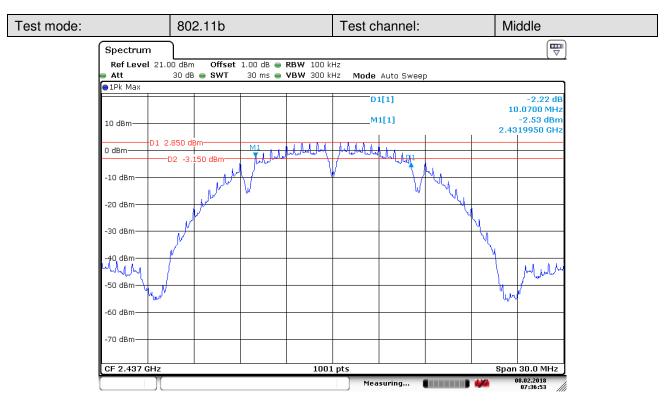
6.4 6dB Occupy Bandwidth

Report No.: SZEM180400250602

Page: 21 of 100

Measurement Data

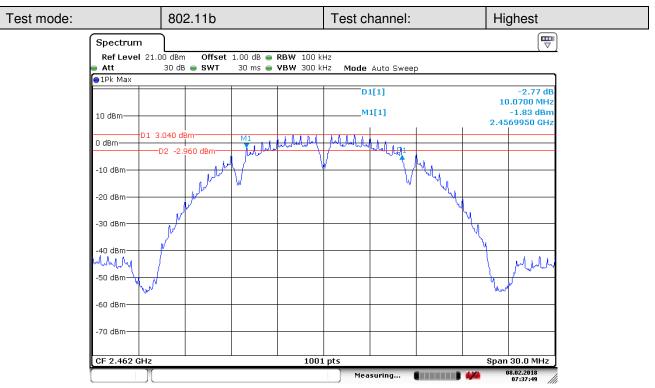

weasurement bata									
	802.11b mode								
Test channel	6dB Occupy Bandwidth (MHz)	6dB Occupy Bandwidth (MHz) Limit (kHz)							
Lowest	10.07	≥500	Pass						
Middle	10.07	≥500	Pass						
Highest	10.07	≥500	Pass						
	802.11g mode								
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result						
Lowest	16.42	≥500	Pass						
Middle	16.39	≥500	Pass						
Highest	16.39	≥500	Pass						
	802.11n(HT20) mode								
Test channel	6dB Occupy Bandwidth (MHz)	Limit (kHz)	Result						
Lowest	17.44	≥500	Pass						
Middle	17.41	≥500	Pass						
Highest	17.41	≥500	Pass						


Report No.: SZEM180400250602

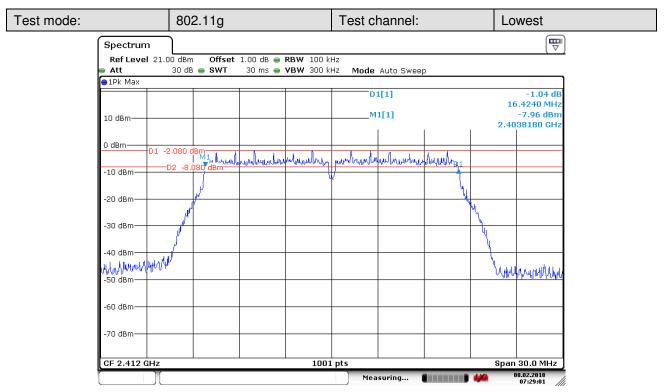
22 of 100 Page:

Test plot as follows:

Date: 8.FEB.2018 07:26:25



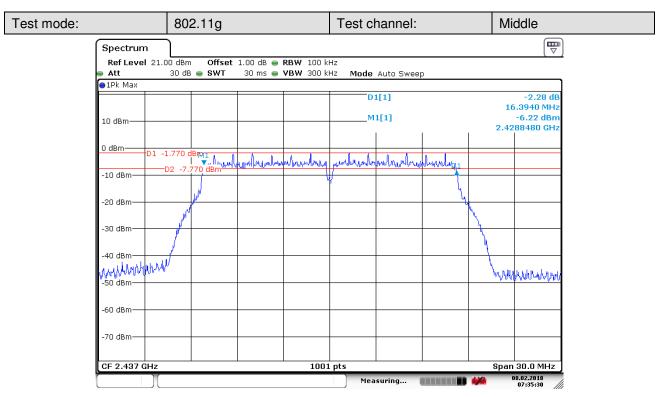
Date: 8.FEB.2018 07:36:53



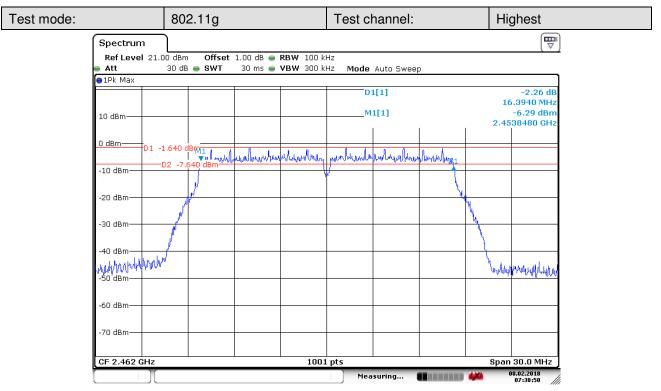
Report No.: SZEM180400250602

Page: 23 of 100

Date: 8.FEB.2018 07:37:50



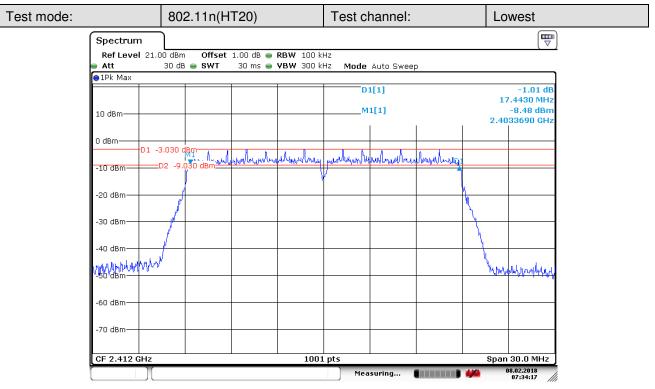
Date: 8.FEB.2018 07:29:01



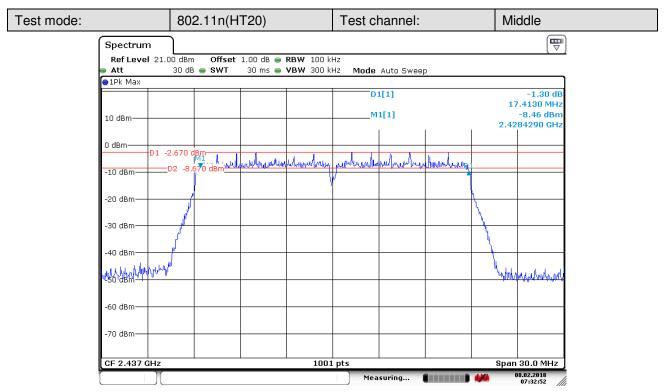
Report No.: SZEM180400250602

Page: 24 of 100

Date: 8.FEB.2018 07:35:30



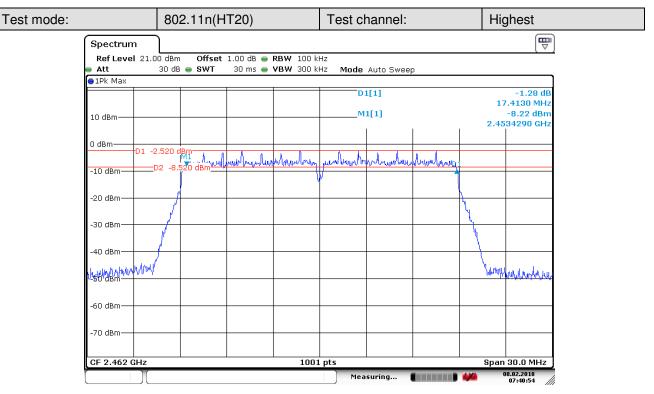
Date: 8.FEB.2018 07:38:50



Report No.: SZEM180400250602

Page: 25 of 100

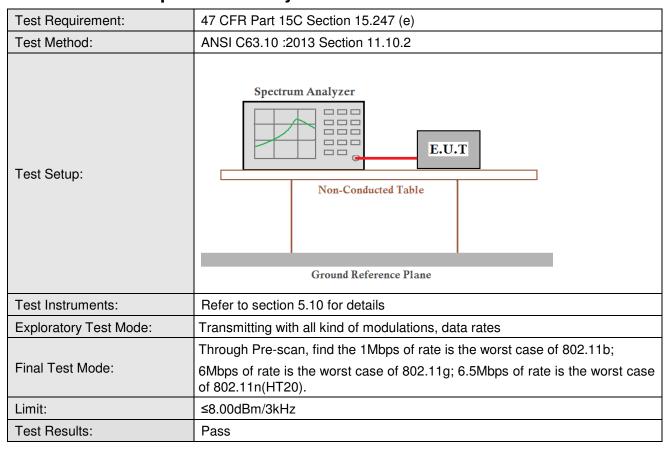
Date: 8.FEB.2018 07:34:17



Date: 8.FEB.2018 07:32:52

Report No.: SZEM180400250602

Page: 26 of 100


Date: 8.FEB.2018 07:40:54

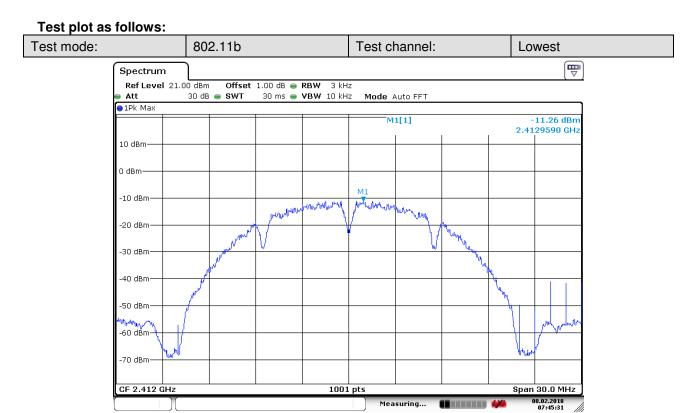
Report No.: SZEM180400250602

Page: 27 of 100

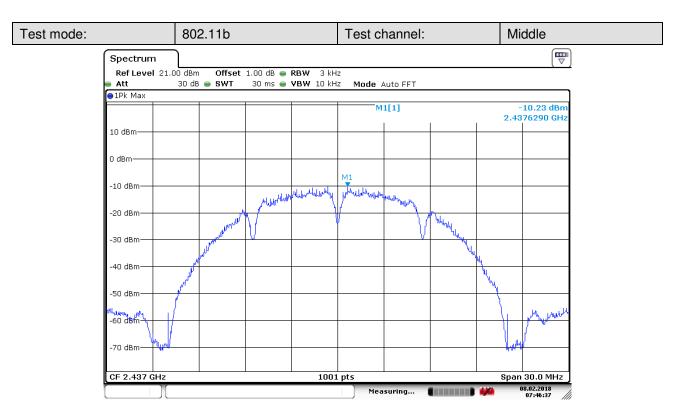
6.5 Power Spectral Density

Report No.: SZEM180400250602

Page: 28 of 100


Measurement Data

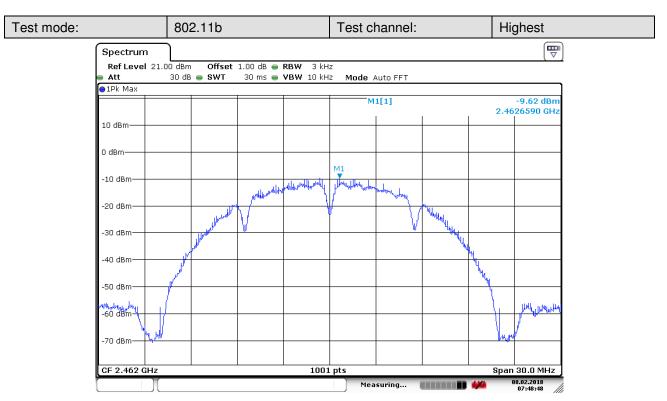
acaromont Bata	asurement Data							
	802.11b mode							
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result					
Lowest	-11.26	≤8.00	Pass					
Middle	-10.23	≤8.00	Pass					
Highest	-9.62	≤8.00	Pass					
	802.11g mode							
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result					
Lowest	-14.00	≤8.00	Pass					
Middle	-13.29	≤8.00	Pass					
Highest	-14.40	≤8.00	Pass					
	802.11n(HT20) mode							
Test channel	Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)	Result					
Lowest	-15.02	≤8.00	Pass					
Middle	-15.12	≤8.00	Pass					
Highest	-14.79	≤8.00	Pass					



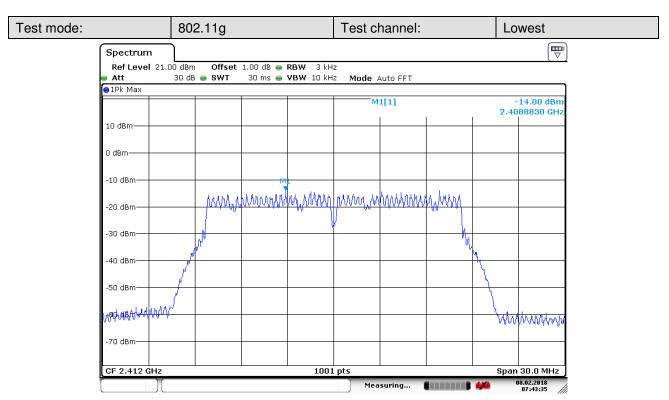
Report No.: SZEM180400250602

Page: 29 of 100

Date: 8.FEB.2018 07:45:31



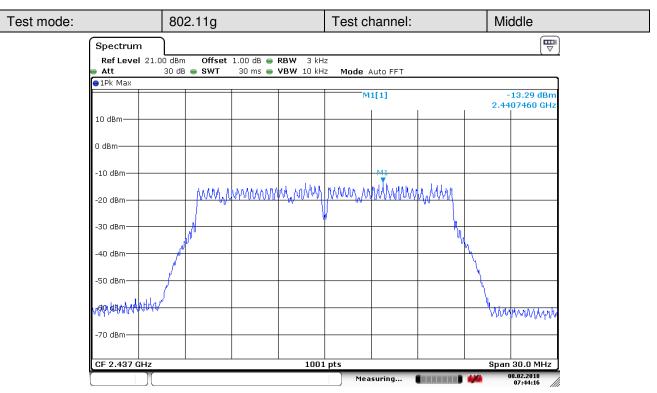
Date: 8.FEB.2018 07:46:37



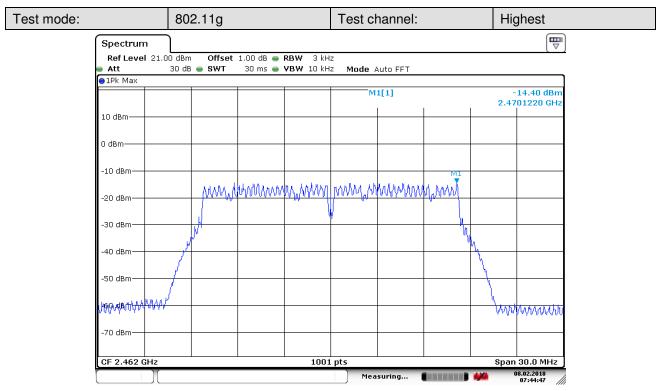
Report No.: SZEM180400250602

Page: 30 of 100

Date: 8.FEB.2018 07:48:48

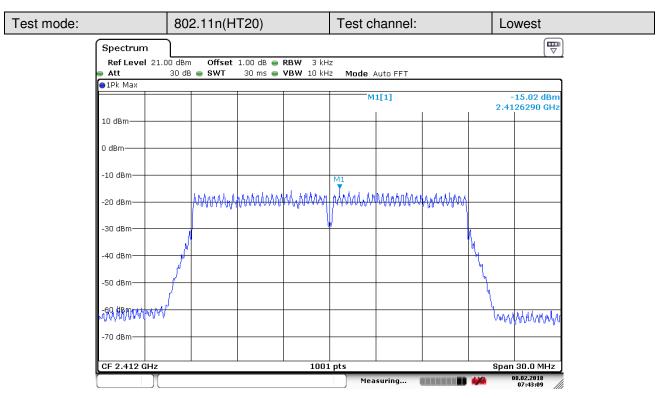


Date: 8.FEB.2018 07:43:35

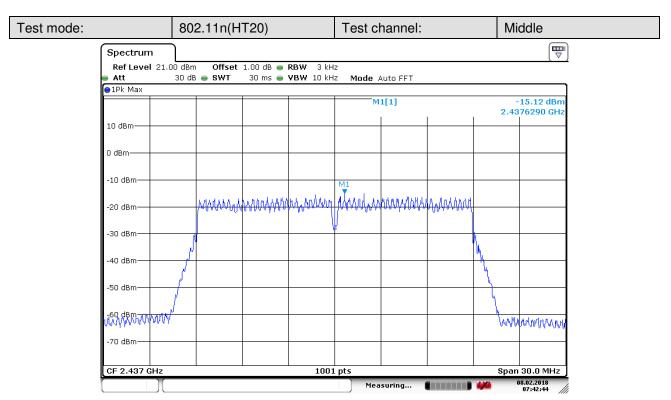


Report No.: SZEM180400250602

Page: 31 of 100



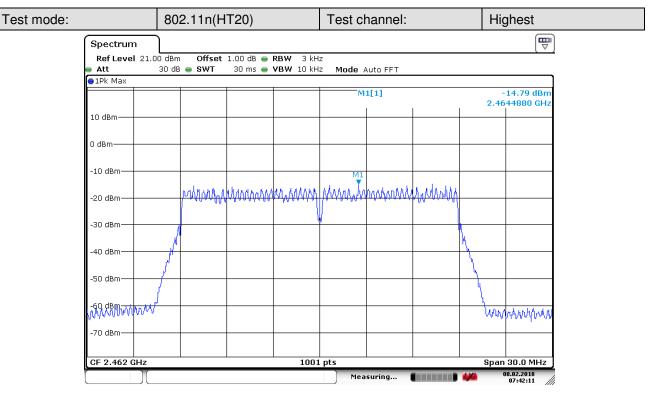
Date: 8.FEB.2018 07:44:47



Report No.: SZEM180400250602

Page: 32 of 100

Date: 8.FEB.2018 07:43:09



Date: 8.FEB.2018 07:42:45

Report No.: SZEM180400250602

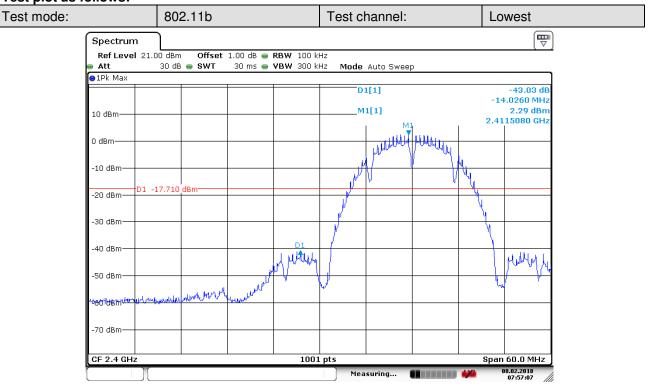
Page: 33 of 100

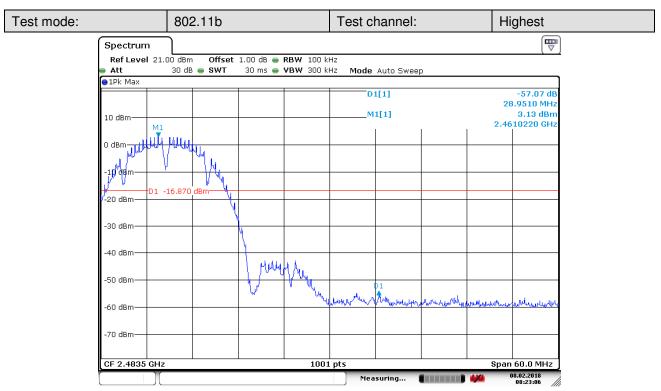
Date: 8.FEB.2018 07:42:11

Report No.: SZEM180400250602

Page: 34 of 100

6.6 Band-edge for RF Conducted Emissions

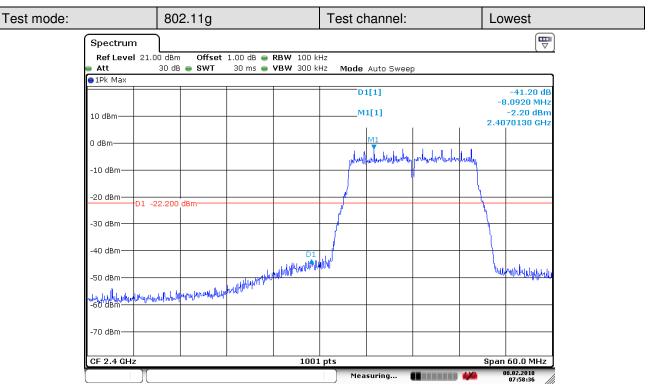

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2013 Section 11.13
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b; 6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20).
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Instruments Used:	Refer to section 5.10 for details
Test Results:	Pass


Report No.: SZEM180400250602

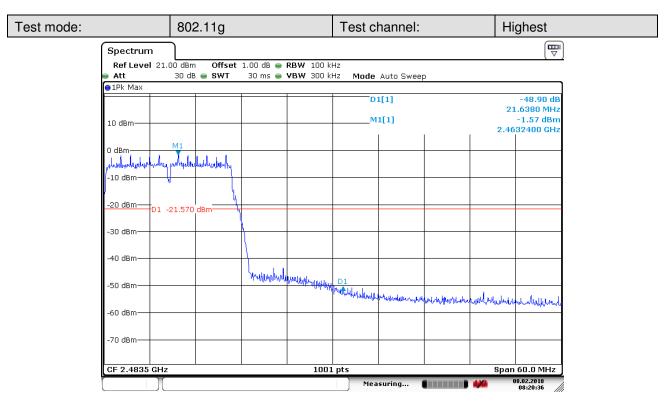
Page: 35 of 100

Test plot as follows:

Date: 8.FEB.2018 07:57:07



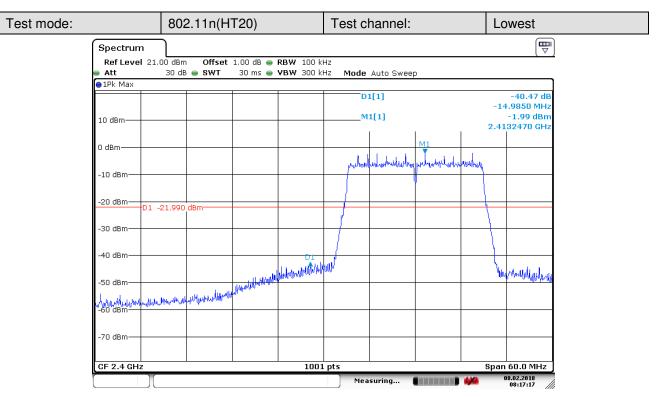
Date: 8.FEB.2018 08:23:06



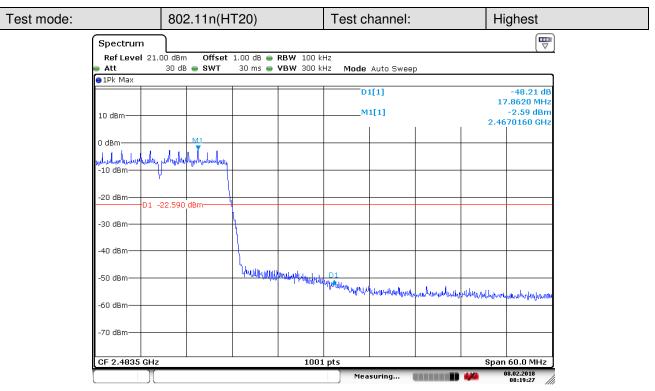
Report No.: SZEM180400250602

Page: 36 of 100

Date: 8.FEB.2018 07:58:36



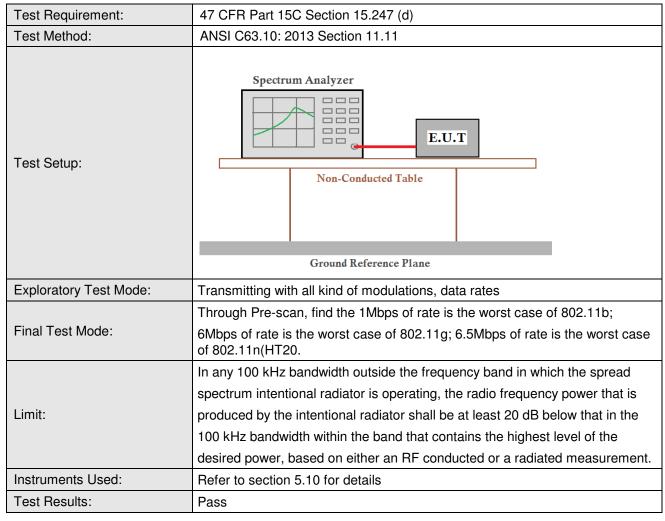
Date: 8.FEB.2018 08:20:37



Report No.: SZEM180400250602

Page: 37 of 100

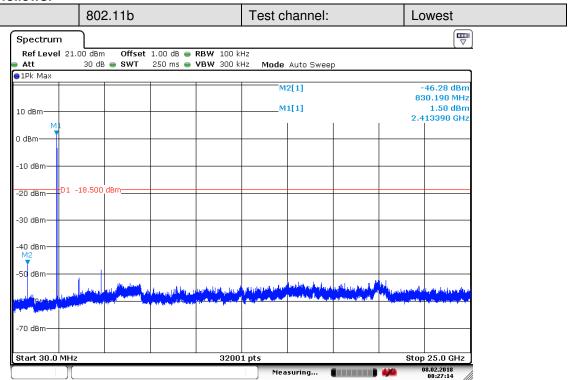
Date: 8.FEB.2018 08:17:17


Date: 8.FEB.2018 08:19:27

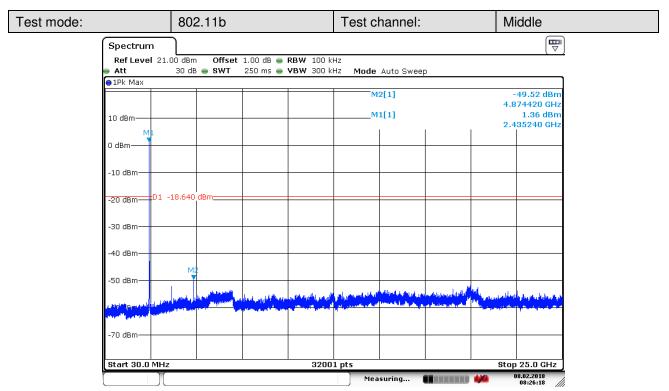
Report No.: SZEM180400250602

Page: 38 of 100

6.7 RF Conducted Spurious Emissions



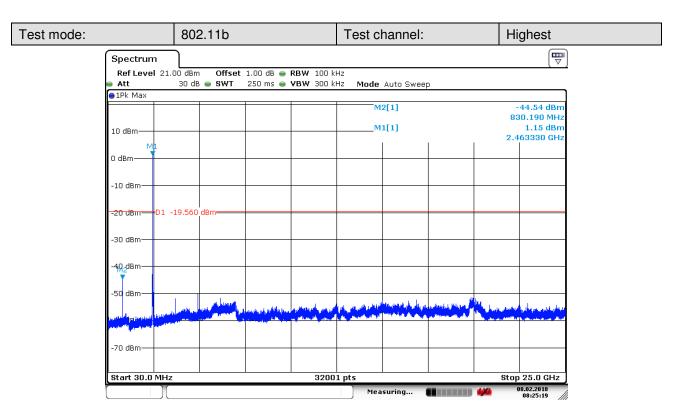
Report No.: SZEM180400250602


Page: 39 of 100

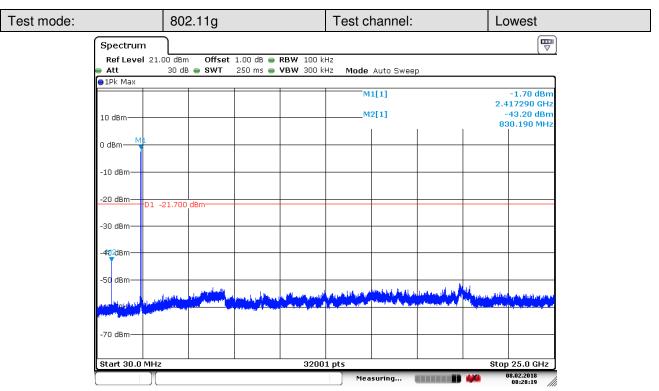
Test plot as follows:

Test mode:

Date: 8.FEB.2018 08:27:14



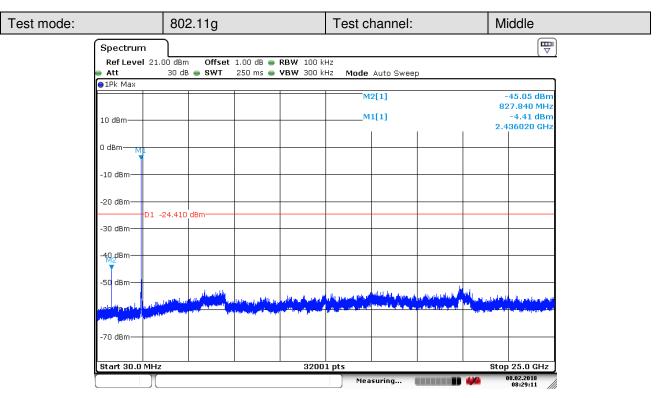
Date: 8.FEB.2018 08:26:18



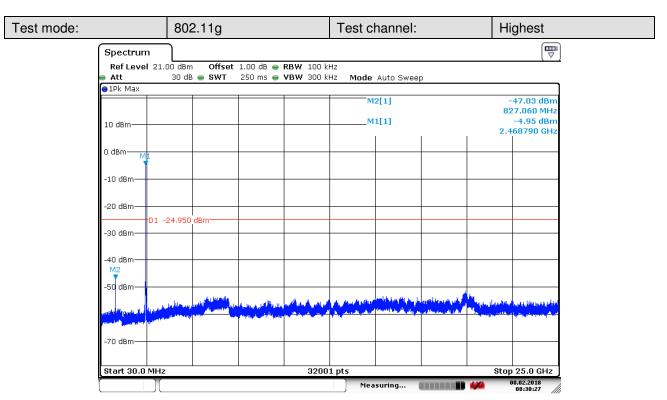
Report No.: SZEM180400250602

Page: 40 of 100

Date: 8.FEB.2018 08:25:19



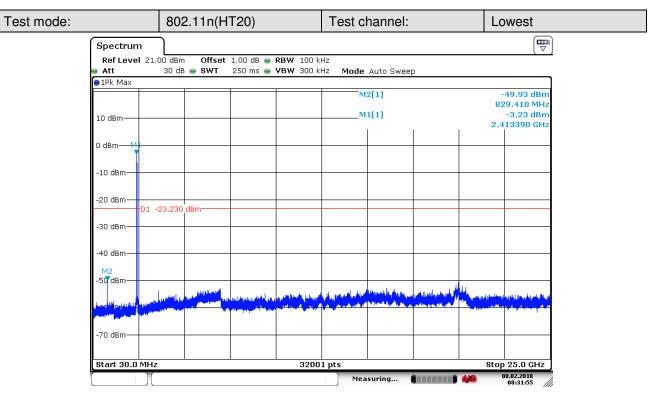
Date: 8.FEB.2018 08:28:19



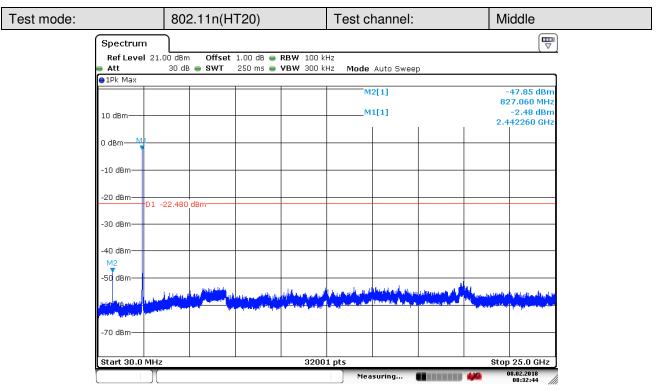
Report No.: SZEM180400250602

Page: 41 of 100

Date: 8.FEB.2018 08:29:11



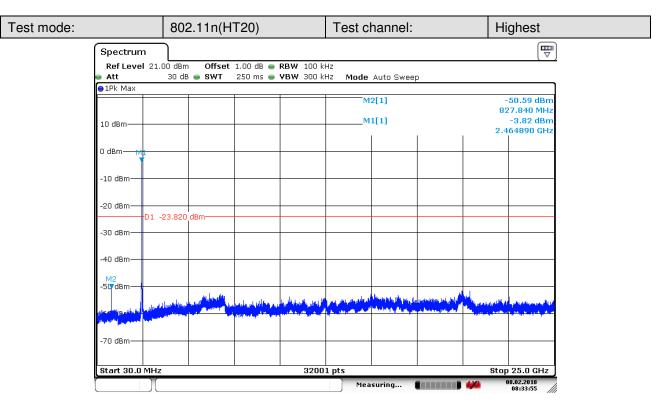
Date: 8.FEB.2018 08:30:27



Report No.: SZEM180400250602

Page: 42 of 100

Date: 8.FEB.2018 08:31:55



Date: 8.FEB.2018 08:32:44

Report No.: SZEM180400250602

Page: 43 of 100

Date: 8.FEB.2018 08:33:56

Remark:

Scan from 9kHz to 25GHz, the disturbance below 30MHz was very low, and the above harmonics were the highest point could be found when testing, the amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: SZEM180400250602

Page: 44 of 100

6.8 Radiated Spurious Emissions


47 CFR Part 15C Section 15.209 and 15.205							
ANSI C63.10 :2013 Sect	ion 11.12						
Measurement Distance:	3m or 10m (Semi-A	Anechoic Cha	amber)				
Frequency	Detector	RBW	VBW	Remark			
0.009MHz-0.090MHz	: Peak	10kHz	30kHz	Peak			
0.009MHz-0.090MHz	. Average	10kHz	30kHz	Average			
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
0.110MHz-0.490MHz	. Peak	10kHz	30kHz	Peak			
0.110MHz-0.490MHz	. Average	10kHz	30kHz	Average			
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
30MHz-1GHz	Quasi-peak	100 kHz	300kHz	Quasi-peak			
Above 1011	Peak	1MHz	3MHz	Peak			
Above 1GHZ	Peak	1MHz	10Hz	Average			
Fraguenav	Field strength	Limit	Domork	Measurement			
Frequency	(microvolt/meter)	(dBuV/m)	Hemark	distance (m)			
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300			
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30			
1.705MHz-30MHz	30	-	ı	30			
30MHz-88MHz	100	40.0	Quasi-peak	3			
88MHz-216MHz	150	43.5	Quasi-peak	3			
216MHz-960MHz	200	46.0	Quasi-peak	3			
960MHz-1GHz	500	54.0	Quasi-peak	3			
Above 1GHz	500	54.0	Average	3			
Note: 15.35(b), Unless of	therwise specified,	the limit on p	eak radio fre	quency			
emissions is 20dB above	the maximum per	mitted avera	ge emission li	mit			
applicable to the equipm	ent under test. This	s peak limit a	pplies to the t	otal peak			
emission level radiated by the device.							
	Frequency 0.009MHz-0.090MHz 0.009MHz-0.110MHz 0.110MHz-0.490MHz 0.490MHz-30MHz 0.490MHz-30MHz 30MHz-1GHz Above 1GHz Frequency 1.705MHz-30MHz 1.705MHz-30MHz 30MHz-16Hz 400MHz-1.705MHz 1.705MHz-30MHz 1.705MHz-30MHz 30MHz-16Hz 1.705MHz-30MHz 30MHz-16Hz 400MHz-16Hz 400MHz-1	Peak Peak	ANSI C63.10 :2013 Section 11.12 Measurement Distance: 3m or 10m (Semi-Anechoic Characterist) Frequency Detector RBW 0.009MHz-0.090MHz Peak 10kHz 0.009MHz-0.090MHz Average 10kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 0.110MHz-0.490MHz Average 10kHz 0.110MHz-0.490MHz Average 10kHz 0.490MHz-30MHz Quasi-peak 10kHz 30MHz-1GHz Quasi-peak 10kHz Peak 1MHz Peak 1MHz Peak 1MHz No9MHz-1GHz 2400/F(kHz) - 1.705MHz-30MHz 2400/F(kHz) - 1.705MHz-30MHz 30 - 30MHz-88MHz 100 40.0 88MHz-216MHz 150 43.5 216MHz-960MHz 200 46.0 960MHz-1GHz 500 54.0 Note: 15.35(b), Unless otherwise specified, the limit on pemissions is 20dB above the maximum permitted average applicable to the equipment under test. This peak limit and permitted average applicable t	NSI C63.10 :2013 Section 11.12			

Report No.: SZEM180400250602

Page: 45 of 100

Test Setup:

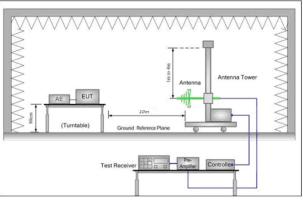


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

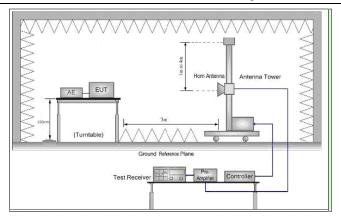


Figure 3. Above 1 GHz

Test Procedure:

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters(for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at https://www.sqs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the ilimitation of liability, indemnification and jurisdiction issues defined therein. Any holder of his document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180400250602

Page: 46 of 100

	limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dE margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.					
	h. Test the EUT in the lowest channel, the middle channel, the Highest channel					
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.					
	j. Repeat above procedures until all frequencies measured was complete.					
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.					
	Charge + Transmitting mode.					
Final Test Mode:	Pretest the EUT at Charge + Transmitting mode.					
	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;					
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case					
	of 802.11n(HT20);					
	For below 1GHz, through Pre-scan, find the 1Mbps of rate of 802.11b at lowest channel is the worst case. Only the worst case is recorded in the report.					
Instruments Used:	Refer to section 5.10 for details					
Test Results:	Pass					

Report No.: SZEM180400250602

Page: 47 of 100

6.8.1 Radiated emission below 1GHz _ Main Supply

The test was performed at a 10m test site. According to below formulate and the test data at 10m test distance,

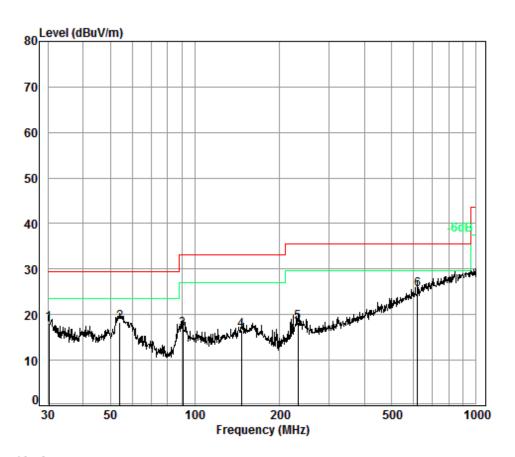
 $L_3 / L_{10} = D_{10} / D_3$

Note:

 L_3 : Level @ 3m distance. Unit: uV/m; L_{10} : Level @ 10m distance. Unit: uV/m;

D₃: 3m distance. Unit: m D₁₀: 10m distance. Unit: m

The level at 3m test distance is below:


Frequency (MHz)	Level @ 10m (dBuV/m)	Level @ 10m (uV/m)	Level @ 3m (uV/m)	Level @ 3m (dBuV/m)	Limit @ 3m (dBuV/m)	Over Limit (dB)	Ant. Polarization
30.32	18.17	8.10	27.00	28.63	40.00	-11.37	V
54.07	18.23	8.16	27.19	28.69	40.00	-11.31	V
90.54	16.68	6.82	22.74	27.14	43.50	-16.36	V
146.37	16.61	6.77	22.56	27.07	43.50	-16.43	V
232.53	18.21	8.14	27.13	28.67	46.00	-17.33	V
618.54	25.43	18.69	62.28	35.89	46.00	-10.11	V
40.56	13.02	4.48	14.92	23.48	40.00	-16.52	Н
56.79	13.50	4.73	15.77	23.96	40.00	-16.04	Н
160.91	15.86	6.21	20.70	26.32	43.50	-17.18	Н
549.02	21.79	12.29	40.96	32.25	46.00	-13.75	Н
647.39	23.93	15.72	52.41	34.39	46.00	-11.61	Н
887.61	26.50	21.13	70.45	36.96	46.00	-9.04	Н

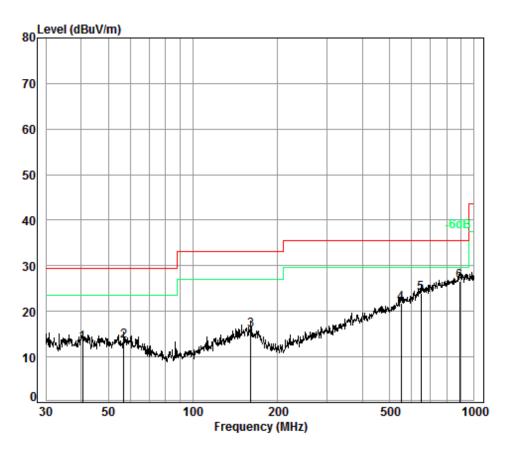
Report No.: SZEM180400250602

Page: 48 of 100

30MHz~1GHz (QP)		
Test mode:	Charge + Transmitting	Vertical

Condition: 10m VERTICAL

Job No. : 00879RG Test Mode: WIFI


		_						
		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
_								
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
4	20.22	6 70	42.40	32.07	34.06	40.47	20 50	44 33
1	30.32	6.70	12.48	32.97	31.96	18.1/	29.50	-11.33
2	54.07	6.98	12.45	32.98	31.78	18.23	29.50	-11.27
3	90.54	7.20	8.73	32.83	33.58	16.68	33.10	-16.42
4	146.37	7.43	13.18	32.75	28.75	16.61	33.10	-16.49
5	232.53	7.76	10.85	32.66	32.26	18.21	35.60	-17.39
6 pp	618.54	8.95	19.09	32.60	29.99	25.43	35.60	-10.17

Report No.: SZEM180400250602

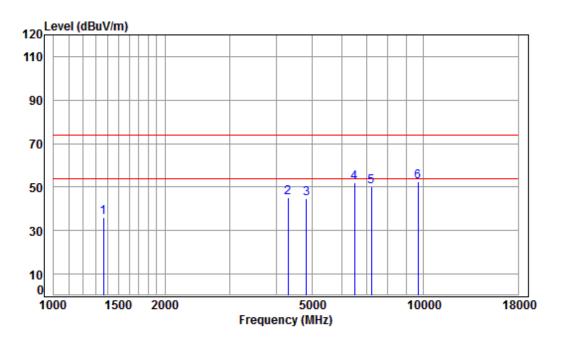
Page: 49 of 100

Test mode: Charge + Transmitting Horizontal

Condition: 10m HORIZONTAL

Job No. : 00879RG Test Mode: WIFI

	Freq	Cable Ant Loss Factor						
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	40.56	6.80	13.27	32.99	25.94	13.02	29.50	-16.48
2	56.79	7.00	12.24	32.96	27.22	13.50	29.50	-16.00
3	160.91	7.50	13.30	32.73	27.79	15.86	33.10	-17.24
4	549.02	8.77	17.71	32.60	27.91	21.79	35.60	-13.81
5	647.39	9.02	19.50	32.60	28.01	23.93	35.60	-11.67
6 pp	887.61	9.50	22.06	32.51	27.45	26.50	35.60	-9.10



Report No.: SZEM180400250602

Page: 50 of 100

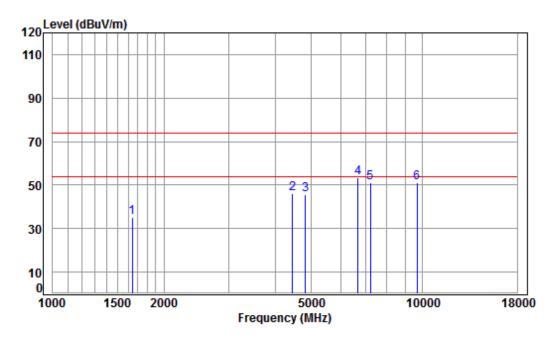
6.8.2 Transmitter emission above 1GHz _ Main Supply

Test mode: 802.11b Test channel: Lowest Remark: Peak Vertical

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2412 TX RSE Note : 2.4G WIFI 11B


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1366.374	5.04	25.25	41.31	46.84	35.82	74.00	-38.18	peak
2	4304.400	7.34	33.60	42.38	46.54	45.10	74.00	-28.90	peak
3	4824.000	7.91	34.19	42.47	45.00	44.63	74.00	-29.37	peak
4	6507.536	11.52	35.12	41.21	46.63	52.06	74.00	-21.94	peak
5	7236.000	10.07	36.40	40.69	44.42	50.20	74.00	-23.80	peak
6 pp	9648.000	10.77	37.53	37.68	41.79	52.41	74.00	-21.59	peak

Report No.: SZEM180400250602

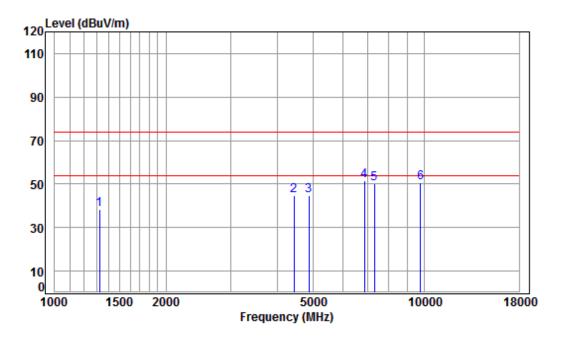
Page: 51 of 100

Test mode: 802.11b	Test channel:	Lowest	Remark:	Peak	Horizontal
--------------------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2412 TX RSE Note : 2.4G WIFI 11B


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1644.019	5.30	26.44	41.50	45.00	35.24	74.00	-38.76	peak
2	4456.315	7.51	33.60	42.41	47.35	46.05	74.00	-27.95	peak
3	4824.000	7.91	34.19	42.47	46.13	45.76	74.00	-28.24	peak
4 p	p 6698.373	10.97	35.67	41.07	47.62	53.19	74.00	-20.81	peak
5	7236.000	10.07	36.40	40.69	45.24	51.02	74.00	-22.98	peak
6	9648.000	10.77	37.53	37.68	40.70	51.32	74.00	-22.68	peak

Report No.: SZEM180400250602

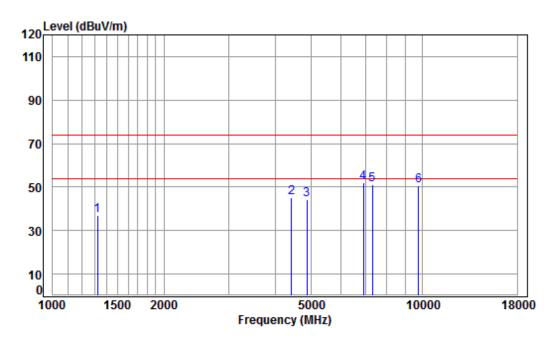
Page: 52 of 100

Test mode:	802.11b	Test channel:	Middle	Remark:	Peak	Vertical
------------	---------	---------------	--------	---------	------	----------

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2437 TX RSE Note : 2.4G WIFI 11B


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1323.614	4.88	25.06	41.28	49.71	38.37	74.00	-35.63	peak
2		4430.628	7.48	33.60	42.41	45.92	44.59	74.00	-29.41	peak
3		4874.000	7.96	34.28	42.48	45.05	44.81	74.00	-29.19	peak
4	pp	6874.906	10.47	36.16	40.94	46.08	51.77	74.00	-22.23	peak
5		7311.000	10.05	36.37	40.64	44.24	50.02	74.00	-23.98	peak
6		9748.000	10.82	37.55	37.54	39.91	50.74	74.00	-23.26	peak

Report No.: SZEM180400250602

Page: 53 of 100

Test mode:	802.11b	Test channel:	Middle	Remark:	Peak	Horizontal

Condition: 3m VERTICAL

Job No : 00879RG Mode : 2437 TX RSE

	Cabla	Ant	Dnoomn	Pood		Limit	Oven	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1323.614	4.88	25.06	41.28	48.30	36.96	74.00	-37.04	peak
4417.841	7.47	33.60	42.40	46.48	45.15	74.00	-28.85	peak
4874.000	7.96	34.28	42.48	44.31	44.07	74.00	-29.93	peak
6914.763	10.36	36.27	40.91	46.16	51.88	74.00	-22.12	peak
7311.000	10.05	36.37	40.64	45.43	51.21	74.00	-22.79	peak
9748 000	10 82	37 55	37 54	39 77	50 60	74 00	-23 40	neak
	MHz 1323.614 4417.841 4874.000 6914.763 7311.000	Freq Loss MHz dB 1323.614 4.88 4417.841 7.47 4874.000 7.96 6914.763 10.36 7311.000 10.05	Freq Loss Factor MHz dB dB/m 1323.614 4.88 25.06 4417.841 7.47 33.60 4874.000 7.96 34.28 6914.763 10.36 36.27 7311.000 10.05 36.37	Freq Loss Factor Factor MHz dB dB/m dB 1323.614 4.88 25.06 41.28 4417.841 7.47 33.60 42.40 4874.000 7.96 34.28 42.48 6914.763 10.36 36.27 40.91 7311.000 10.05 36.37 40.64	Freq Loss Factor Factor Level MHz dB dB/m dB dBuV 1323.614 4.88 25.06 41.28 48.30 4417.841 7.47 33.60 42.40 46.48 4874.000 7.96 34.28 42.48 44.31 6914.763 10.36 36.27 40.91 46.16 7311.000 10.05 36.37 40.64 45.43	Freq Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1323.614 4.88 25.06 41.28 48.30 36.96 4417.841 7.47 33.60 42.40 46.48 45.15 4874.000 7.96 34.28 42.48 44.31 44.07 6914.763 10.36 36.27 40.91 46.16 51.88 7311.000 10.05 36.37 40.64 45.43 51.21	Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1323.614 4.88 25.06 41.28 48.30 36.96 74.00 4417.841 7.47 33.60 42.40 46.48 45.15 74.00 4874.000 7.96 34.28 42.48 44.31 44.07 74.00 6914.763 10.36 36.27 40.91 46.16 51.88 74.00 7311.000 10.05 36.37 40.64 45.43 51.21 74.00	Cable Ant Preamp Freq Loss Factor Factor Read Level Level Limit Limit Over Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dBuV/m dB 1323.614 4.88 25.06 41.28 48.30 36.96 74.00 -37.04 4417.841 7.47 33.60 42.40 46.48 45.15 74.00 -28.85 4874.000 7.96 34.28 42.48 44.31 44.07 74.00 -29.93 6914.763 10.36 36.27 40.91 46.16 51.88 74.00 -22.12 7311.000 10.05 36.37 40.64 45.43 51.21 74.00 -22.79 9748.000 10.82 37.55 37.54 39.77 50.60 74.00 -23.40

Report No.: SZEM180400250602

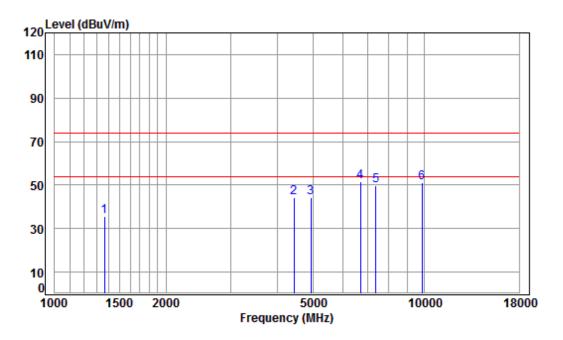
Page: 54 of 100

Test mode:	802.11b	Test channel:	Highest	Remark:	Peak	Vertical	
------------	---------	---------------	---------	---------	------	----------	--

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2462 TX RSE Note : 2.4G WIFI 11B


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1663.137	5.27	26.52	41.51	57.88	48.16	74.00	-25.84	peak
2		4430.628	7.48	33.60	42.41	46.33	45.00	74.00	-29.00	peak
3		4924.000	8.01	34.37	42.49	44.57	44.46	74.00	-29.54	peak
4		6795.879	10.69	35.94	41.00	45.87	51.50	74.00	-22.50	peak
5		7386.000	10.03	36.34	40.59	43.50	49.28	74.00	-24.72	peak
6	pp	9848.000	10.87	37.57	37.41	41.31	52.34	74.00	-21.66	peak

Report No.: SZEM180400250602

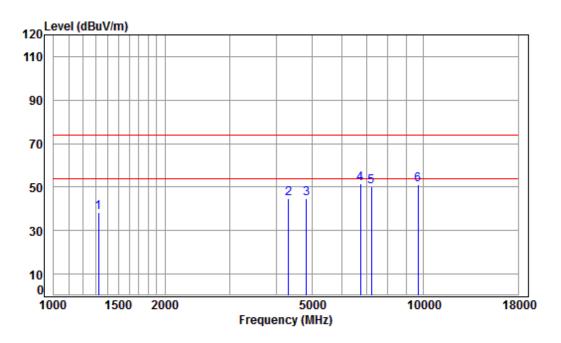
Page: 55 of 100

Test mode:	802.11b	Test channel:	Highest	Remark:	Peak	Horizontal

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2462 TX RSE Note : 2.4G WIFI 11B


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1366.374	5.04	25.25	41.31	46.39	35.37	74.00	-38.63	peak
2	4430.628	7.48	33.60	42.41	45.57	44.24	74.00	-29.76	peak
3	4924.000	8.01	34.37	42.49	44.48	44.37	74.00	-29.63	peak
4 pp	6717.762	10.91	35.72	41.05	46.16	51.74	74.00	-22.26	peak
5	7386.000	10.03	36.34	40.59	44.10	49.88	74.00	-24.12	peak
6	9848.000	10.87	37.57	37.41	39.93	50.96	74.00	-23.04	peak

Report No.: SZEM180400250602

Page: 56 of 100

Test mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Vertical	

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2412 TX RSE Note : 2.4G WIFI 11G


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
		4333 644	4 00	25.06	44 20	40.70	20.44	74.00	35.56	
1		1323.614	4.88	25.06	41.28	49.78	38.44	74.00	-35.56	реак
2		4316.859	7.36	33.60	42.38	45.98	44.56	74.00	-29.44	peak
3		4824.000	7.91	34.19	42.47	45.10	44.73	74.00	-29.27	peak
4	pp	6756.708	10.80	35.83	41.03	46.13	51.73	74.00	-22.27	peak
5		7236.000	10.07	36.40	40.69	44.36	50.14	74.00	-23.86	peak
6		9648.000	10.77	37.53	37.68	40.49	51.11	74.00	-22.89	peak

Report No.: SZEM180400250602

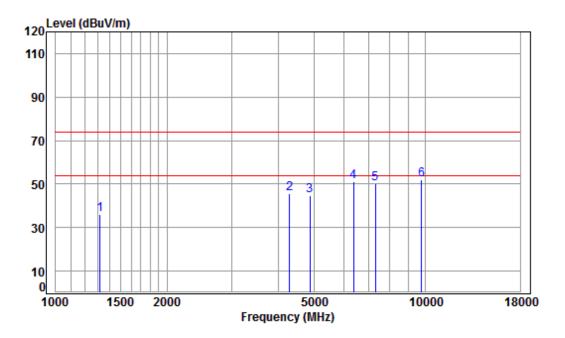
Page: 57 of 100

Test mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	---------	---------------	--------	---------	------	------------

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2412 TX RSE Note : 2.4G WIFI 11G


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1323.614	4.88	25.06	41.28	47.12	35.78	74.00	-38.22	peak
2	4379.699	7.43	33.60	42.40	46.48	45.11	74.00	-28.89	peak
3	4824.000	7.91	34.19	42.47	45.13	44.76	74.00	-29.24	peak
4	6602.265	11.24	35.39	41.14	46.49	51.98	74.00	-22.02	peak
5 6 p	7236.000 p 9648.000								•

Report No.: SZEM180400250602

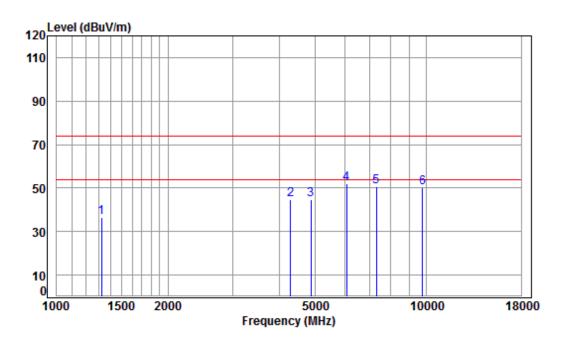
Page: 58 of 100

Test mode:	802.11g	Test channel:	Middle	Remark:	Peak	Vertical
------------	---------	---------------	--------	---------	------	----------

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2437 TX RSE Note : 2.4G WIFI 11G


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1319.794	4.87	25.04	41.28	47.20	35.83	74.00	-38.17	peak
2		4291.977	7.33	33.60	42.38	46.91	45.46	74.00	-28.54	peak
3		4874.000	7.96	34.28	42.48	44.98	44.74	74.00	-29.26	peak
4		6377.195	11.31	35.00	41.31	46.27	51.27	74.00	-22.73	peak
5		7311.000	10.05	36.37	40.64	44.39	50.17	74.00	-23.83	peak
6	pp	9748.000	10.82	37.55	37.54	40.96	51.79	74.00	-22.21	peak

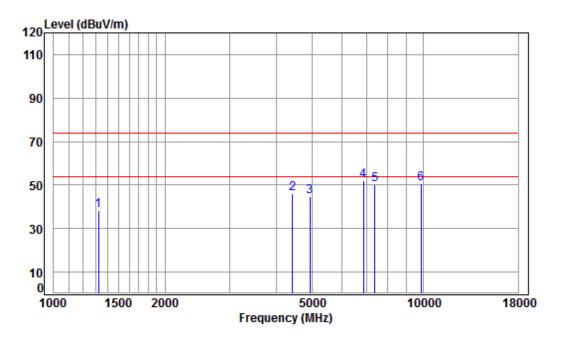
Report No.: SZEM180400250602

Page: 59 of 100

Test mode:	802.11g	Test channel:	Middle	Remark:	Peak	Horizontal

Condition: 3m VERTICAL Job No : 00879RG

Mode : 2437 TX RSE Note : 2.4G WIFI 11G


oce	. 2.4	G MILI	110						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
4	4222 644	4 00	25.06	44 20	40.00	36.60	74.00	27.22	
1	1323.614	4.88	25.06	41.28	48.02	36.68	74.00	-3/.32	реак
2	4291.977	7.33	33.60	42.38	46.27	44.82	74.00	-29.18	peak
3	4874.000	7.96	34.28	42.48	44.96	44.72	74.00	-29.28	peak
4 pp	6071.417	10.71	34.76	41.55	47.89	51.81	74.00	-22.19	peak
5	7311.000	10.05	36.37	40.64	44.65	50.43	74.00	-23.57	peak
6	9748.000	10.82	37.55	37.54	39.56	50.39	74.00	-23.61	peak

Report No.: SZEM180400250602

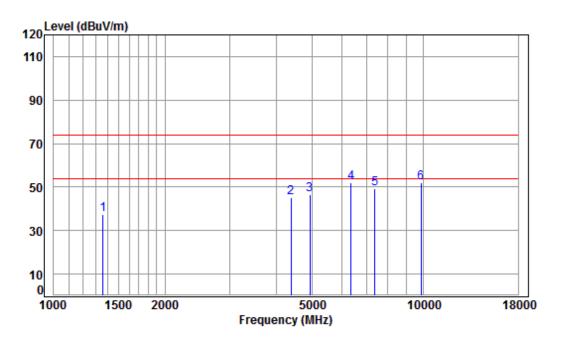
Page: 60 of 100

Test mode:	802.11g	Test channel:	Highest	Remark:	Peak	Vertical	
------------	---------	---------------	---------	---------	------	----------	--

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2462 TX RSE Note : 2.4G WIFI 11G


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1323.614	4.88	25.06	41.28	49.79	38.45	74.00	-35.55	peak
2	4417.841	7.47	33.60	42.40	47.27	45.94	74.00	-28.06	peak
3	4924.000	8.01	34.37	42.49	45.00	44.89	74.00	-29.11	peak
4 pp	6874.906	10.47	36.16	40.94	46.38	52.07	74.00	-21.93	peak
5	7386.000	10.03	36.34	40.59	44.19	49.97	74.00	-24.03	peak
6	9848.000	10.87	37.57	37.41	39.69	50.72	74.00	-23.28	peak

Report No.: SZEM180400250602

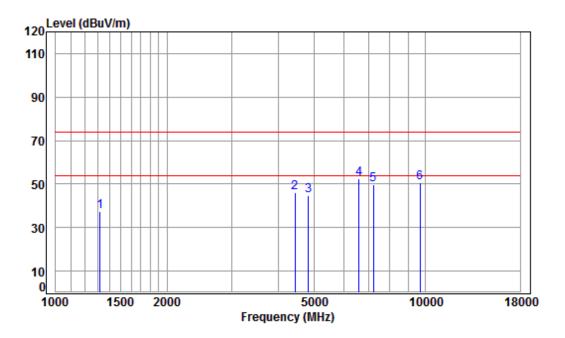
Page: 61 of 100

Test mode:	802.11g	Test channel:	Highest	Remark:	Peak	Horizontal
					. • • • • • • • • • • • • • • • • • • •	

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2462 TX RSE Note : 2.4G WIFI 11G


		Enoa			Preamp Factor					Domanic
		Freq	LUSS	ractor	ractor	rever	rever	Line	LIMIT	Kelliark
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1362.430	5.02	25.23	41.31	48.39	37.33	74.00	-36.67	peak
2		4379.699	7.43	33.60	42.40	46.75	45.38	74.00	-28.62	peak
3		4924.000	8.01	34.37	42.49	46.67	46.56	74.00	-27.44	peak
4		6358.789	11.27	34.99	41.32	46.97	51.91	74.00	-22.09	peak
5		7386.000	10.03	36.34	40.59	43.40	49.18	74.00	-24.82	peak
6	pp	9848.000	10.87	37.57	37.41	40.88	51.91	74.00	-22.09	peak

Report No.: SZEM180400250602

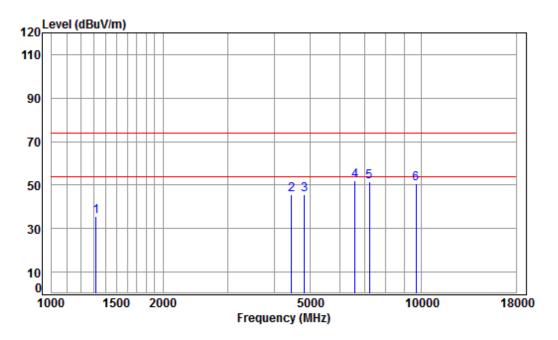
Page: 62 of 100

Test mode: 802.11n(HT20) Test channel: Lowest Remark: Peak Vertical

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2412 TX RSE


OCC	. 2.7	G MILL	IIIV Z	•					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1319.794	4.87	25.04	41.28	48.93	37.56	74.00	-36.44	peak
2	4443.453	7.50	33.60	42.41	47.18	45.87	74.00	-28.13	peak
3	4824.000	7.91	34.19	42.47	45.12	44.75	74.00	-29.25	peak
4 p	p 6602.265	11.24	35.39	41.14	46.79	52.28	74.00	-21.72	peak
5	7236.000	10.07	36.40	40.69	43.94	49.72	74.00	-24.28	peak
6	9648.000	10.77	37.53	37.68	40.16	50.78	74.00	-23.22	peak

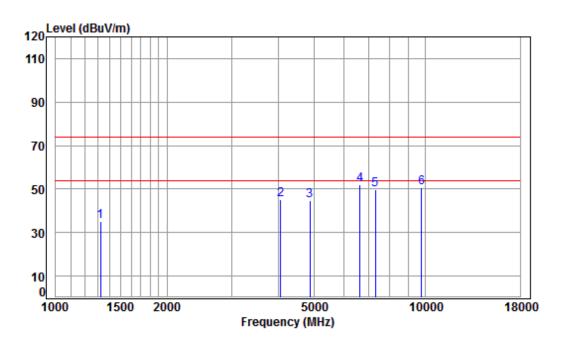
Report No.: SZEM180400250602

63 of 100 Page:

Test mode:	802.11n(HT20)	Test channel:	Lowest	Remark:	Peak	Horizontal
------------	---------------	---------------	--------	---------	------	------------

Condition: 3m VERTICAL

Job No : 00879RG Mode : 2412 TX RSE


	_			Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1319.794	4.87	25.04	41.28	47.06	35.69	74.00	-38.31	peak
2	4456.315	7.51	33.60	42.41	46.93	45.63	74.00	-28.37	peak
3	4824.000	7.91	34.19	42.47	46.22	45.85	74.00	-28.15	peak
4 p	6602.265	11.24	35.39	41.14	46.40	51.89	74.00	-22.11	peak
5	7236.000	10.07	36.40	40.69	45.73	51.51	74.00	-22.49	peak
6	9648.000	10.77	37.53	37.68	40.18	50.80	74.00	-23.20	peak

Report No.: SZEM180400250602

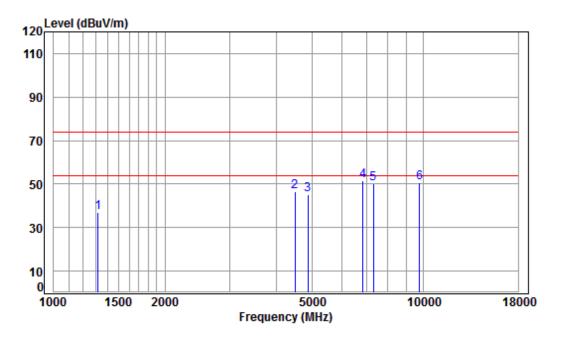
Page: 64 of 100

Test mode: 802.11n(HT20) Test channel: Middle Remark: Peak Vertical

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2437 TX RSE


		1 2144 1111 2111 20									
		Cable	Ant	Preamp	Read		Limit	0ver			
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark		
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB			
1	1323.614	4.88	25.06	41.28	46.61	35.27	74.00	-38.73	peak		
2	4062.629	7.06	33.60	42.34	46.72	45.04	74.00	-28.96	peak		
3	4874.000	7.96	34.28	42.48	44.95	44.71	74.00	-29.29	peak		
4	pp 6640.542	11.13	35.50	41.11	46.43	51.95	74.00	-22.05	peak		
5	7311.000	10.05	36.37	40.64	43.95	49.73	74.00	-24.27	peak		
6	9748.000	10.82	37.55	37.54	39.65	50.48	74.00	-23.52	peak		

Report No.: SZEM180400250602

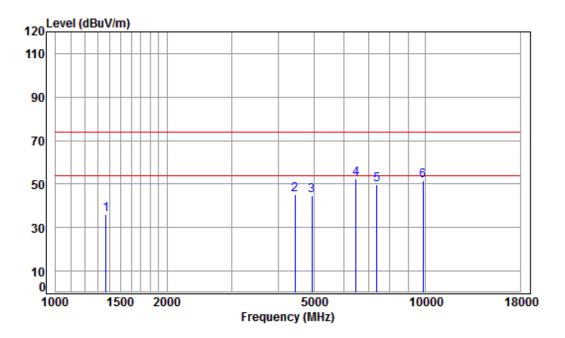
Page: 65 of 100

Test mode:	802.11n(HT20)	Test channel:	Middle	Remark:	Peak	Horizontal
------------	---------------	---------------	--------	---------	------	------------

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2437 TX RSE


occ		. 2.7	G MILL	TIN Z	•						
			Cable	Ant	Preamp	Read		Limit	0ver		
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	_										
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
							26.00	7	40		
1		1319.794	4.8/	25.04	41.28	48.19	36.82	/4.00	-3/.18	peak	
2		4495.125	7.55	33.60	42.42	47.72	46.45	74.00	-27.55	peak	
3		4874.000	7.96	34.28	42.48	45.39	45.15	74.00	-28.85	peak	
4	pp	6855.063	10.53	36.10	40.96	46.08	51.75	74.00	-22.25	peak	
5		7311.000	10.05	36.37	40.64	44.36	50.14	74.00	-23.86	peak	
6		9748.000	10.82	37.55	37.54	39.63	50.46	74.00	-23.54	peak	

Report No.: SZEM180400250602

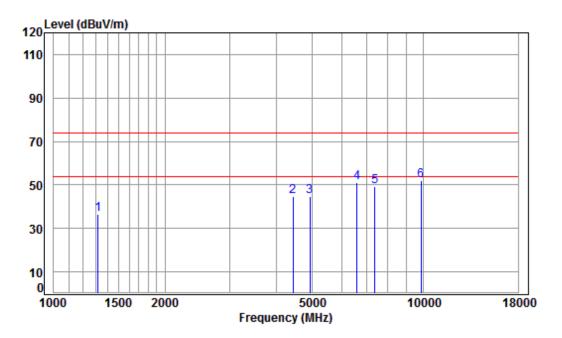
Page: 66 of 100

Test mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Peak	Vertical	
------------	---------------	---------------	---------	---------	------	----------	--

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2462 TX RSE


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1370.328	5.05	25.26	41.32	46.94	35.93	74.00	-38.07	peak
2	4443.453	7.50	33.60	42.41	46.40	45.09	74.00	-28.91	peak
3	4924.000	8.01	34.37	42.49	44.71	44.60	74.00	-29.40	peak
4 pp	6488.754	11.52	35.09	41.22	46.93	52.32	74.00	-21.68	peak
5	7386.000	10.03	36.34	40.59	43.89	49.67	74.00	-24.33	peak
6	9848.000	10.87	37.57	37.41	40.64	51.67	74.00	-22.33	peak

Report No.: SZEM180400250602

Page: 67 of 100

Test mode: 802.11n(HT20) Test channel: Highest Remark: Peak Horizontal

Condition: 3m VERTICAL

Job No : 00879RG

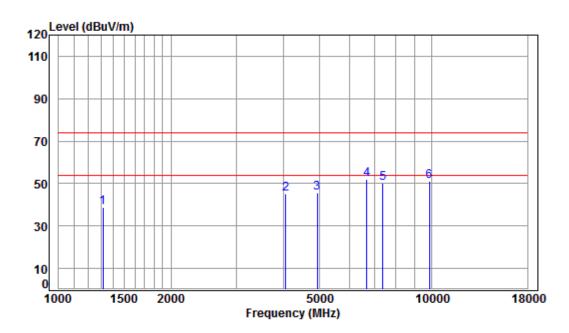
Mode : 2462 TX RSE

				-					
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1319.794	4 87	25 04	41 28	47 84	36 47	74 00	-37 53	neak
2	4430.628								•
3									•
4	6602.265	11.24	35.39	41.14	45.78	51.27	74.00	-22.73	peak
5	7386.000	10.03	36.34	40.59	43.53	49.31	74.00	-24.69	peak
6	pp 9848.000	10.87	37.57	37.41	40.97	52.00	74.00	-22.00	peak

Report No.: SZEM180400250602

Page: 68 of 100

6.8.3 Radiated emission below 1GHz _ Secondary Supply



Report No.: SZEM180400250602

Page: 69 of 100

Transmitter emission above 1GHz _ Secondary Supply

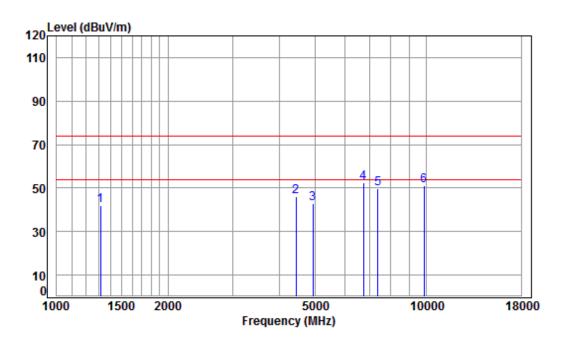
Test mode:	802.11g	Test channel:	Highest	Remark:	Peak	Vertical
Tool Infodo.	002.119	1 Cot onamici.	riigiicat	ricinant.	i car	VCITICAI

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2462 TX SE

Note : 2.4G WiFi 11G


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1315.985	4.86	25.03	41.27	50.21	38.83	74.00	-35.17	peak
2	4062.629	7.06	33.60	42.34	47.04	45.36	74.00	-28.64	peak
3	4924.000	8.01	34.37	42.49	45.53	45.42	74.00	-28.58	peak
4 p	p 6679.040	11.02	35.61	41.08	46.41	51.96	74.00	-22.04	peak
5	7386.000	10.03	36.34	40.59	44.39	50.17	74.00	-23.83	peak
6	9848.000	10.87	37.57	37.41	40.17	51.20	74.00	-22.80	peak

Report No.: SZEM180400250602

Page: 70 of 100

Test mode:	802.11g	Test channel:	Highest	Remark:	Peak	Horizontal
10011110001	00=9	1 001 0114111011	19001		· oait	110112011ta

Condition: 3m HORIZONTAL

Job No : 00879RG Mode : 2462 TX SE Note : 2.4G WiFi 11G

		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1315.985	4.86	25.03	41.27	53.58	42.20	74.00	-31.80	peak
2	4443.453	7.50	33.60	42.41	47.42	46.11	74.00	-27.89	peak
3	4924.000	8.01	34.37	42.49	43.02	42.91	74.00	-31.09	peak
4 pp	6756.708	10.80	35.83	41.03	47.03	52.63	74.00	-21.37	peak
5	7386.000	10.03	36.34	40.59	44.13	49.91	74.00	-24.09	peak
6	9848.000	10.87	37.57	37.41	40.18	51.21	74.00	-22.79	peak

Report No.: SZEM180400250602

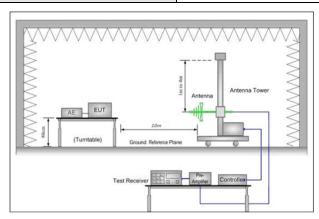
Page: 71 of 100

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report..
- 4) Only the worstest case Radiated Spurious Emissions test data of Secondary supply showed .



Report No.: SZEM180400250602

Page: 72 of 100

6.9 Restricted bands around fundamental frequency

Test Requirement:	47 CFR Part 15C Section	47 CFR Part 15C Section 15.209 and 15.205							
Test Method:	ANSI C63.10: 2013 Section	ANSI C63.10: 2013 Section 11.12							
Test Site:	Measurement Distance: 3r	Measurement Distance: 3m (Semi-Anechoic Chamber)							
	Frequency	Limit (dBuV/m @3m)	Remark						
	30MHz-88MHz	40.0	Quasi-peak Value						
	88MHz-216MHz	43.5	Quasi-peak Value						
Limit:	216MHz-960MHz	46.0	Quasi-peak Value						
	960MHz-1GHz	54.0	Quasi-peak Value						
	Above 1011=	54.0	Average Value						
	Above 1GHz	74.0	Peak Value						
Test Setup:		•							

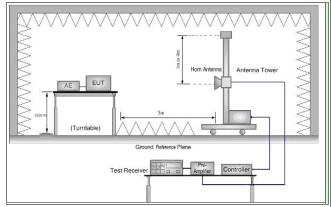
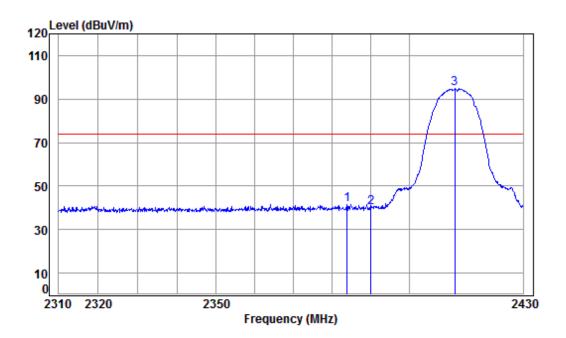


Figure 1. 30MHz to 1GHz

Figure 2. Above 1 GHz

Report No.: SZEM180400250602

Page: 73 of 100


	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.				
	b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.				
	c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.				
	d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.				
Test Procedure:	e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.				
	f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.				
	g. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel				
	h. Test the EUT in the lowest channel, the Highest channel				
	i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode. And found the X axis positioning which it is worse case.				
	j. Repeat above procedures until all frequencies measured was complete.				
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates.				
Exploratory 165t Mode.	Charge + Transmitting mode.				
	Pretest the EUT at Charge +Transmitting mode.				
Final Test Mode:	Through Pre-scan, find the 1Mbps of rate is the worst case of 802.11b;				
	6Mbps of rate is the worst case of 802.11g; 6.5Mbps of rate is the worst case of 802.11n(HT20);. Only the worst case is recorded in the report.				
Instruments Used:	Refer to section 5.10 for details				
Test Results:	Pass				

Report No.: SZEM180400250602

Page: 74 of 100

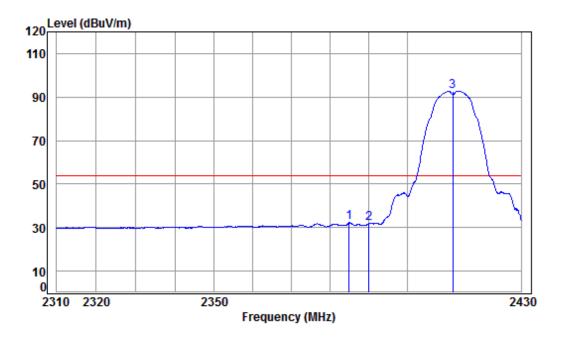
Test plot of Main supply as follows:

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2412 Band edge

: 2.4G WIFI 11B


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-									
		MHZ	ав	dB/m	dВ	dBuV	dBuV/m	dBuV/m	dB	
1		2383.803	5.47	29.06	41.87	49.04	41.70	74.00	-32.30	Peak
2		2390.000	5.47	29.08	41.87	47.60	40.28	74.00	-33.72	Peak
3	pp	2412.000	5.50	29.14	41.88	101.98	94.74	74.00	20.74	Peak

Report No.: SZEM180400250602

Page: 75 of 100

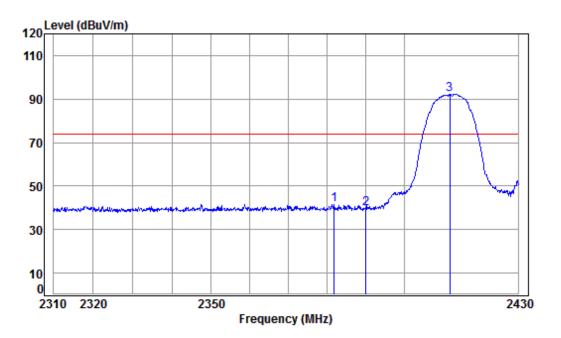
Worse case mode:	802.11b	Test channel:	Lowest	Remark:	Average	Vertical	ı
------------------	---------	---------------	--------	---------	---------	----------	---

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2412 Band edge

: 2.4G WIFI 11B


			_								
		Freq				Read Level				Remark	
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		_
1		2384.890	5.47	29.06	41.87	39.56	32.22	54.00	-21.78	Average	
2		2390.000	5.47	29.08	41.87	39.21	31.89	54.00	-22.11	Average	
3	pp	2412.000	5.50	29.14	41.88	100.07	92.83	54.00	38.83	Average	

Report No.: SZEM180400250602

Page: 76 of 100

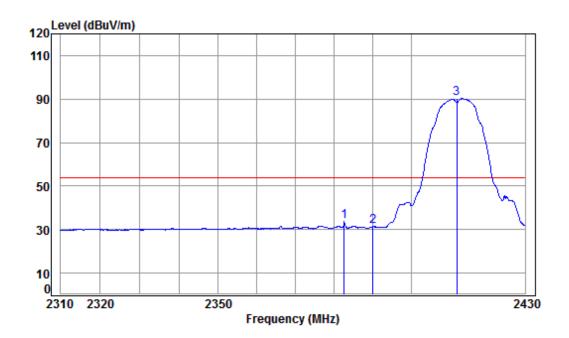
Worse case mode: 802.11b Test channel: Lowest Remark: Peak Horizontal

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2412 Band edge

: 2.4G WIFI 11B


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2381.752	5.46	29.05	41.87	48.98	41.62	74.00	-32.38	peak
2		2390.000	5.47	29.08	41.87	47.24	39.92	74.00	-34.08	peak
3	pp	2412.000	5.50	29.14	41.88	99.53	92.29	74.00	18.29	peak

Report No.: SZEM180400250602

Page: 77 of 100

Worse case mode: 802.11b Test channel: Lowest Remark: Average Ho	Horizontal
--	------------

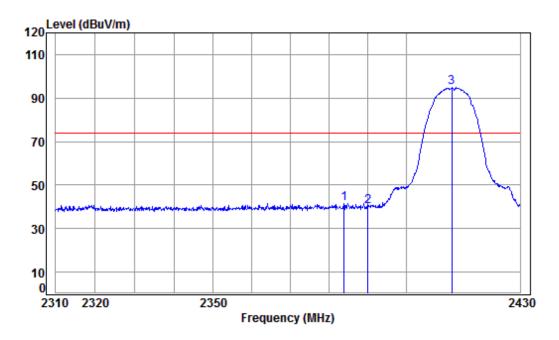
Condition: 3m HORIZONTAL

Job No : 00879RG

1 2

Mode : 2412 Band edge

: 2.4G WIFI 11B


Freq			Preamp Factor					Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2382.596	5.46	29.06	41.87	40.89	33.54	54.00	-20.46	Average
2390.000	5.47	29.08	41.87	38.63	31.31	54.00	-22.69	Average
pp 2412.000	5.50	29.14	41.88	97.39	90.15	54.00	36.15	Average

Report No.: SZEM180400250602

Page: 78 of 100

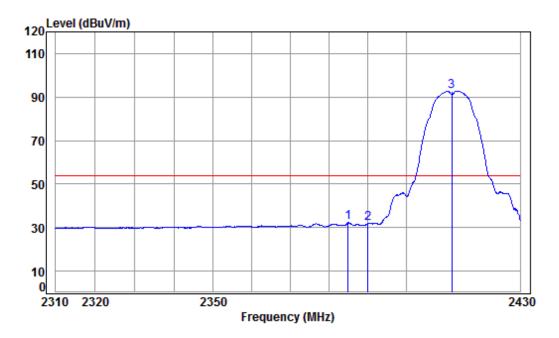
Worse case mode:	802.11b	Test channel:	Highest	Remark:	Peak	Vertical
------------------	---------	---------------	---------	---------	------	----------

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2412 Band edge

: 2.4G WIFI 11B


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2383.803	5.47	29.06	41.87	49.04	41.70	74.00	-32.30	Peak
2		2390.000	5.47	29.08	41.87	47.60	40.28	74.00	-33.72	Peak
3	pp	2412.000	5.50	29.14	41.88	101.98	94.74	74.00	20.74	Peak

Report No.: SZEM180400250602

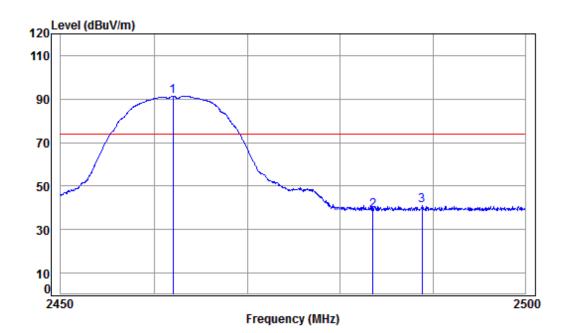
Page: 79 of 100

Worse case mode:	802.11b	Test channel:	Highest	Remark:	Average	Vertical
------------------	---------	---------------	---------	---------	---------	----------

Condition: 3m VERTICAL Job No : 00879RG

Mode : 2412 Band edge

: 2.4G WIFI 11B


	Freq						Limit Line		Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 2 3 pp	2384.890 2390.000 2412.000	5.47	29.08	41.87	39.21	31.89	54.00	-22.11	_

Report No.: SZEM180400250602

Page: 80 of 100

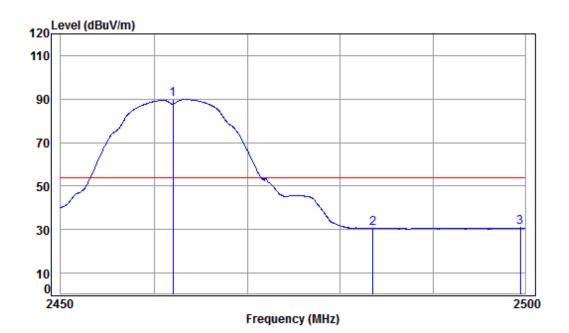
Worse case mode:	802.11b	Test channel:	Highest	Remark:	Peak	Horizontal
------------------	---------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2462 Band edge

: 2.4G WIFI 11B


		_							
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2462.000	5.57	29.29	41.90	98.35	91.31	74.00	17.31	peak
2	2483.500	5.60	29.35	41.91	45.71	38.75	74.00	-35.25	peak
3	2488.813	5.61	29.37	41.91	47.85	40.92	74.00	-33.08	peak

Report No.: SZEM180400250602

Page: 81 of 100

Worse case mode:	802.11b	Test channel:	Highest	Remark:	Average	Horizontal
------------------	---------	---------------	---------	---------	---------	------------

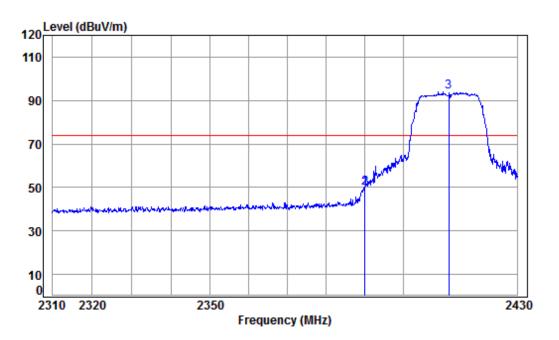
Condition: 3m HORIZONTAL

Job No : 00879RG

1

Mode : 2462 Band edge

: 2.4G WIFI 11B


	Freq			Preamp Factor					Remark
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
pp	2462.000 2483.500								_
	2499.495	5.62	29.40	41.92	37.70	30.80	54.00	-23.20	Average

Report No.: SZEM180400250602

Page: 82 of 100

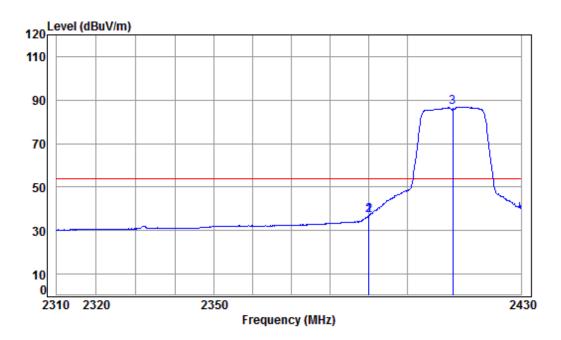
Worse case mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Vertical	l
------------------	---------	---------------	--------	---------	------	----------	---

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2412 Band edge

: 2.4G WIFI 11G


		Freq				Read Level				Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2389.968	5.47	29.08	41.87	57.04	49.72	74.00	-24.28	Peak
2		2390.000	5.47	29.08	41.87	57.04	49.72	74.00	-24.28	Peak
3	pp	2412.000	5.50	29.14	41.88	101.43	94.19	74.00	20.19	Peak

Report No.: SZEM180400250602

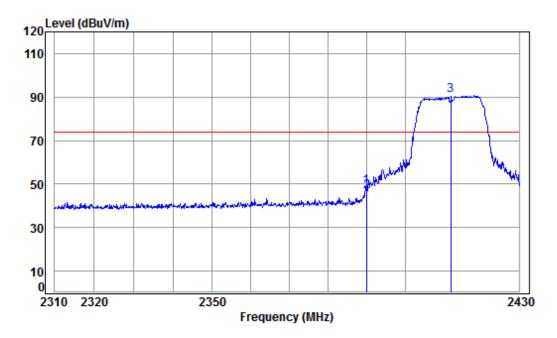
Page: 83 of 100

Worse case mode: 802.11g Test channel: Lowest Remark: Average

Condition: 3m VERTICAL Job No : 00879RG

Mode : 2412 Band edge

: 2.4G WIFI 11G


	Frea		Preamp Factor			Remark	
	MHz	 	dB	 	 		_
1	2389.968					Average	
2 3 pp	2390.000 2412.000					_	

Report No.: SZEM180400250602

Page: 84 of 100

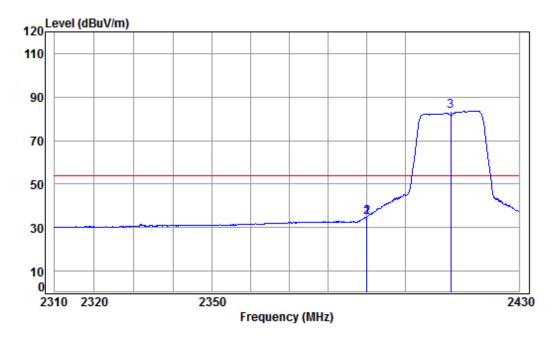
Worse case mode:	802.11g	Test channel:	Lowest	Remark:	Peak	Horizontal
------------------	---------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2412 Band edge

: 2.4G WIFI 11G


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2389.847	5.47	29.08	41.87	56.37	49.05	74.00	-24.95	peak
2		2390.000	5.47	29.08	41.87	54.05	46.73	74.00	-27.27	peak
3	pp	2412.000	5.50	29.14	41.88	97.84	90.60	74.00	16.60	peak

Report No.: SZEM180400250602

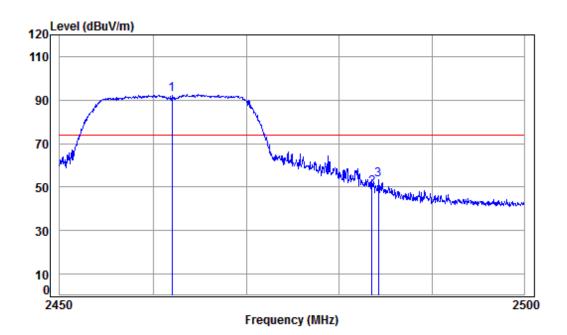
Page: 85 of 100

Worse case mode: 802.11g Test channel: Lowest Remark:

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2412 Band edge


: 2.4G WIFI 11G

				Preamp					
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2389.968	5.47	29.08	41.87	42.06	34.74	54.00	-19.26	Average
	2390.000 2412.000								_

Report No.: SZEM180400250602

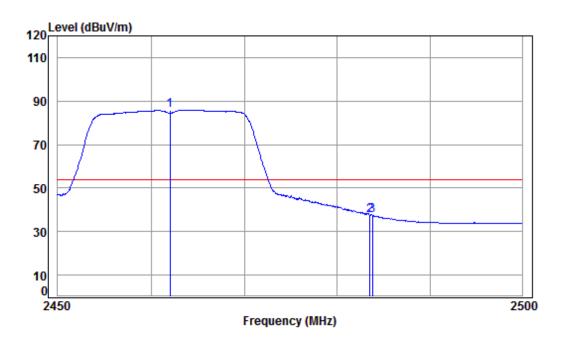
Page: 86 of 100

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2462 Band edge

: 2.4G WIFI 11G


	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss F	actor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp 2462.000	5.57	29.29	41.90	99.51	92.47	74.00	18.47	Peak
2 2483.500	5.60	29.35	41.91	56.54	49.58	74.00	-24.42	Peak
3 2484.191	5.60	29.35	41.91	60.57	53.61	74.00	-20.39	Peak

Report No.: SZEM180400250602

Page: 87 of 100

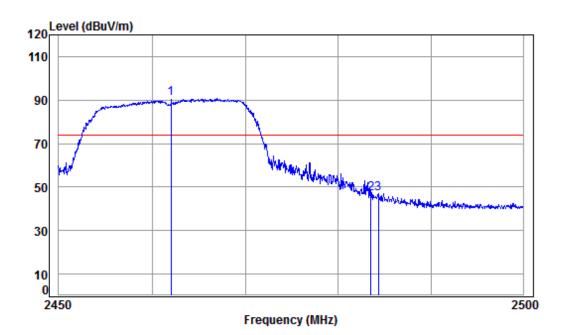
Worse case mode: 802.11g	Test channel:	Highest	Remark:	Average	Vertical
--------------------------	---------------	---------	---------	---------	----------

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2462 Band edge

: 2.4G WIFI 11G


			_								
		_			Preamp					_	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	_										
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	pp	2462.000	5.57	29.29	41.90	92.90	85.86	54.00	31.86	Average	
2		2483.500	5.60	29.35	41.91	44.42	37.46	54.00	-16.54	Average	
3		2483.790	5.60	29.35	41.91	44.57	37.61	54.00	-16.39	Average	

Report No.: SZEM180400250602

Page: 88 of 100

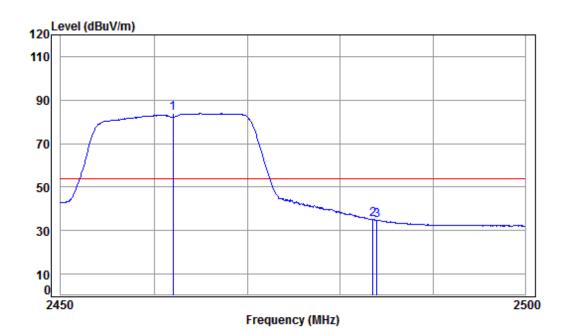
Worse case mode:	802.11g	Test channel:	Highest	Remark:	Peak	Horizontal
------------------	---------	---------------	---------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2462 Band edge

: 2.4G WIFI 11G


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	pp	2462.000	5.57	29.29	41.90	97.68	90.64	74.00	16.64	peak
2		2483.500	5.60	29.35	41.91	53.97	47.01	74.00	-26.99	peak
3		2484.292	5.60	29.35	41.91	54.15	47.19	74.00	-26.81	peak

Report No.: SZEM180400250602

Page: 89 of 100

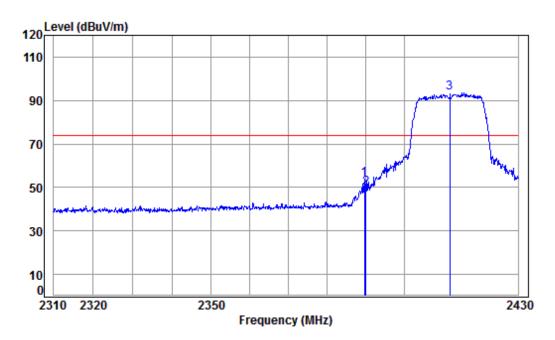
Worse case mode:	802.11g	Test channel:	Highest	Remark:	Average	Horizontal	
------------------	---------	---------------	---------	---------	---------	------------	--

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2462 Band edge

: 2.4G WIFI 11G


	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
2	2462.000 2483.500 2483.940	5.60	29.35	41.91	42.12	35.16	54.00	-18.84	Average

Report No.: SZEM180400250602

Page: 90 of 100

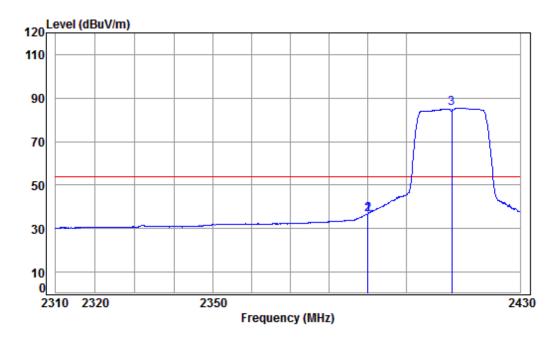
Worse case mode: 802	02.11n(HT20) Test ch	nannel: Lowest	Remark:	Peak	Vertical
----------------------	----------------------	----------------	---------	------	----------

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2412 Band edge

: 2.4G WIFI 11N 20


		Freq				Read Level				Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		2389.605	5.47	29.08	41.87	61.20	53.88	74.00	-20.12	Peak
2		2390.000	5.47	29.08	41.87	57.09	49.77	74.00	-24.23	Peak
3	pp	2412.000	5.50	29.14	41.88	101.00	93.76	74.00	19.76	Peak

Report No.: SZEM180400250602

Page: 91 of 100

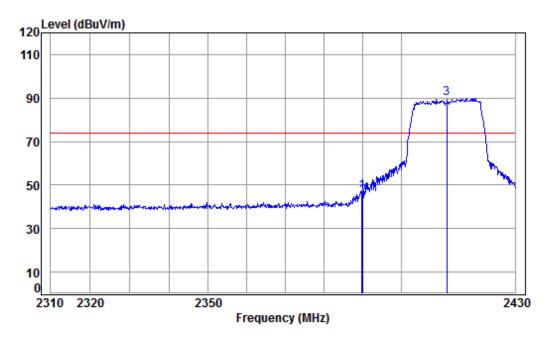
Worse case mode:	802.11n(HT20)	Test channel:	Lowest	Remark:	Average	Vertical	l
------------------	---------------	---------------	--------	---------	---------	----------	---

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2412 Band edge

: 2.4G WIFI 11N 20


		_								
	Freq			Preamp Factor					Remark	
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		_
	2389.968								_	
	2390.000 2412.000								_	

Report No.: SZEM180400250602

Page: 92 of 100

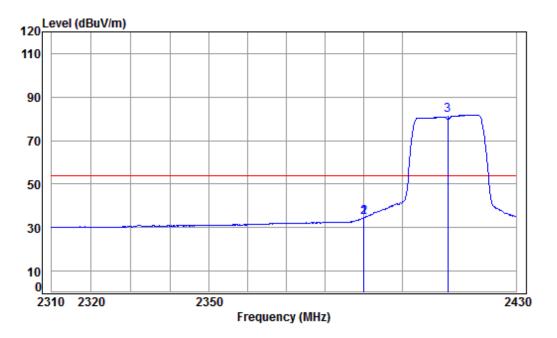
Worse case mode: 802.11n(HT20)	Test channel:	Lowest	Remark:	Peak	Horizontal
--------------------------------	---------------	--------	---------	------	------------

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2412 Band edge

: 2.4G WIFI 11N 20


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2389.726	5.47	29.08	41.87	54.37	47.05	74.00	-26.95	peak
2	2390.000	5.47	29.08	41.87	51.91	44.59	74.00	-29.41	peak
3 рр	2412.000	5.50	29.14	41.88	97.08	89.84	74.00	15.84	peak

Report No.: SZEM180400250602

Page: 93 of 100

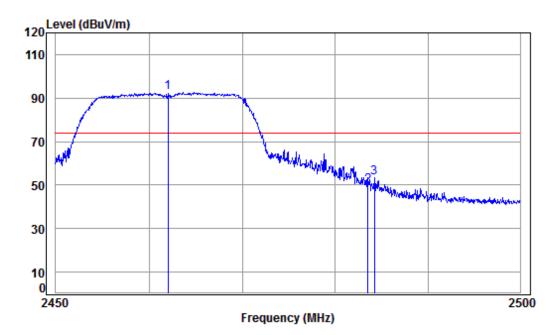
Worse case mode:	802.11n(HT20)	Test channel:	Lowest	Remark:	Average	Horizontal
------------------	---------------	---------------	--------	---------	---------	------------

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2412 Band edge

: 2.4G WIFI 11N 20


		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	2389.968	5.47	29.08	41.87	41.81	34.49	54.00	-19.51	Average
2	2390.000	5.47	29.08	41.87	41.81	34.49	54.00	-19.51	Average
3 рр	2412.000	5.50	29.14	41.88	89.02	81.78	54.00	27.78	Average

Report No.: SZEM180400250602

Page: 94 of 100

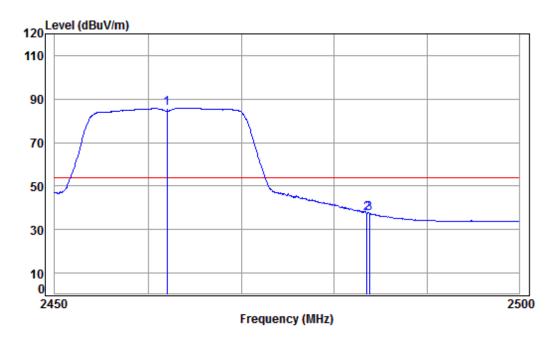
Worse case mode: 802.11n(HT20) Test channel: Highest Remark: Peak Vertical
--

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2462 Band edge

: 2.4G WIFI 11G


Enoa			Preamp					Pomonic
Freq	LOSS	Factor	Factor	rever	rever	Line	LIMIT	Kemark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp 2462.000	5.57	29.29	41.90	99.51	92.47	74.00	18.47	Peak
• • •								
2 2483.500	5.60	29.35	41.91	56.54	49.58	74.00	-24.42	reak
3 2484.191	5.60	29.35	41.91	60.57	53.61	74.00	-20.39	Peak

Report No.: SZEM180400250602

Page: 95 of 100

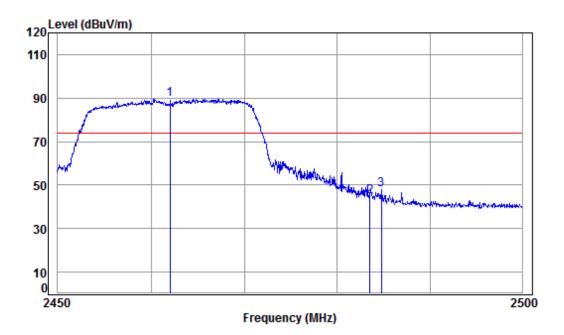
Worse case mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Average	Vertical	ı
------------------	---------------	---------------	---------	---------	---------	----------	---

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2462 Band edge

: 2.4G WIFI 11G


			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	pp	2462.000	5.57	29.29	41.90	92.90	85.86	54.00	31.86	Average
2		2483.500	5.60	29.35	41.91	44.42	37.46	54.00	-16.54	Average
3		2483.790	5.60	29.35	41.91	44.57	37.61	54.00	-16.39	Average

Report No.: SZEM180400250602

Page: 96 of 100

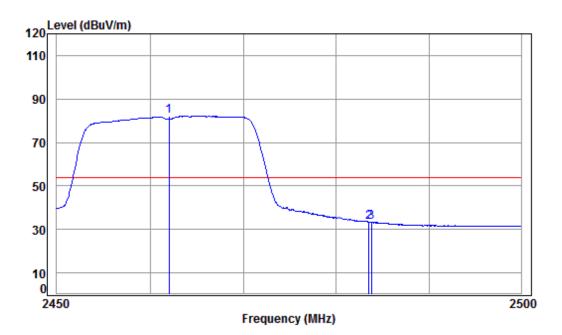
Worse case mode: 802.11n(HT20) Test channel: Highest Remark: Peak Horizo
--

Condition: 3m HORIZONTAL

Job No : 00879RG

Mode : 2462 Band edge

: 2.4G WIFI 11N 20


	Freq			Preamp Factor					Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	pp 2462.000	5.57	29.29	41.90	96.59	89.55	74.00	15.55	peak	
2	2483.500	5.60	29.35	41.91	51.90	44.94	74.00	-29.06	peak	
3	2484.743	5.60	29.36	41.91	54.82	47.87	74.00	-26.13	peak	

Report No.: SZEM180400250602

Page: 97 of 100

Worse case mode:	802.11n(HT20)	Test channel:	Highest	Remark:	Average	Horizontal
------------------	---------------	---------------	---------	---------	---------	------------

Condition: 3m HORIZONTAL

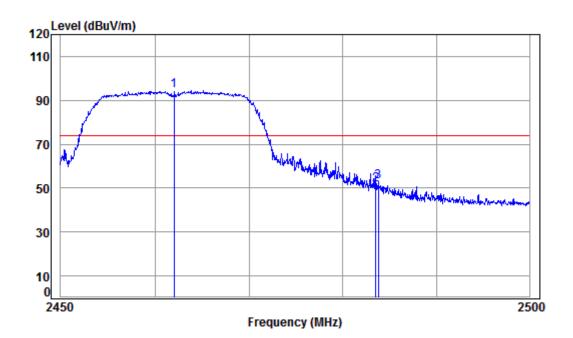
Job No : 00879RG

1

3

Mode : 2462 Band edge

: 2.4G WIFI 11N 20


		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
pp	2462.000	5.57	29.29	41.90	89.15	82.11	54.00	28.11	Average	
	2483.500	5.60	29.35	41.91	40.29	33.33	54.00	-20.67	Average	
	2483.790	5.60	29.35	41.91	40.34	33.38	54.00	-20.62	Average	

Report No.: SZEM180400250602

Page: 98 of 100

Test plot of Secondary supply as follows:

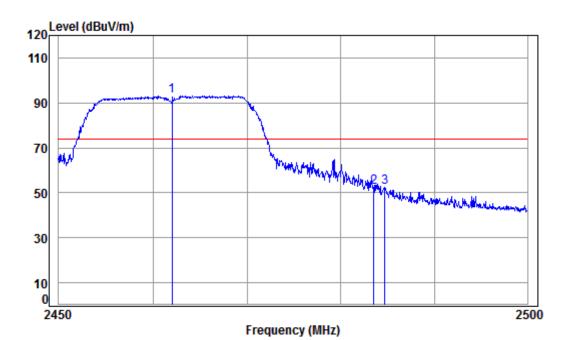
Condition: 3m HORIZONTAL

Job No : 00879RG

1 2 3

Mode : 2462 Band edge

: 2.4G WiFi 11G


		_								
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
pp	2462.000	5.57	29.29	41.90	101.37	94.33	74.00	20.33	peak	
	2483.500	5.60	29.35	41.91	58.65	51.69	74.00	-22.31	peak	
	2483.790	5.60	29.35	41.91	59.90	52.94	74.00	-21.06	Peak	

Report No.: SZEM180400250602

Page: 99 of 100

Worse case mode:	802.11G	Test channel:	Highest	Remark:	Average	Vertical	l
------------------	---------	---------------	---------	---------	---------	----------	---

Condition: 3m VERTICAL

Job No : 00879RG

Mode : 2462 Band edge

: 2.4G WiFi 11G

	. 11.5									
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1 p	p 2462.000	5.57	29.29	41.90	100.27	93.23	74.00	19.23	peak	
2	2483.500	5.60	29.35	41.91	59.24	52.28	74.00	-21.72	peak	
	2484.693								-	

Report No.: SZEM180400250602

Page: 100 of 100

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Only the worstest case Restricted bands around fundamental frequency test data of Secondary supply showed.

7 Photographs - EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM18040025RG.

The End