Test Report Serial Number: 45461740 R1.0 Test Report Date: 9 June 2022 Project Number: 1585 # **SAR Test Report - New Application** Applicant: **Garmin International Inc.** 1200 East 151 St. Olathe, KS, 66062 **USA** | _ | \sim | ın. | |---|--------|-------| | _ | | 11). | | | | | IPH-04450 Product Model Number / HVIN A04450 | Maximum <u>reported</u> SAR | | | | | | | | | | |-----------------------------|------|------|--|--|--|--|--|--|--| | Body (1g): | 0.34 | | | | | | | | | | Simultaneous (1g): | 0.34 | | | | | | | | | | General Pop. Limit: | 1.60 | W/kg | | | | | | | | | Extremity (10g): | 0.08 | | | | | | | | | | General Pop. Limit: | 4.00 | | | | | | | | | IC Registration Number Product Name / PMN A04450 In Accordance With: ## FCC 47 CFR §2.1093 Radiofrequency Radiation Exposure Evaluation: Portable Devices Approved By: Ben Hewson, President Celltech Labs Inc. 21-364 Lougheed Rd. Kelowna, BC, V1X 7R8 Test Lab Certificate: 2470.01 IC Registration 3874A This report shall not be reproduced in any form without the expressed written consent of Celltech Labs Inc. # **Table of Contents** | 1.0 REVISION HISTORY | 4 | |--|----------------| | 2.0 CLIENT AND DEVICE INFORMATION | 5 | | 3.0 SCOPE OF EVALUATION | 7 | | 4.0 NORMATIVE REFERENCES | 8 | | 5.0 STATEMENT OF COMPLIANCE | 9 | | 6.0 SAR MEASUREMENT SYSTEM | 10 | | 7.0 RF CONDUCTED POWER MEASUREMENT | 11 | | TABLE 7.1 CONDUCTED POWER MEASUREMENTS, WIFI | 12 | | 8.0 NUMBER OF TEST CHANNELS (Nc) | 14 | | TABLE 8.1 NUMBER OF TEST CHANNELS TABLE 8.2 ANTENNA DISTANCES TABLE 8.3 BODY SAR TEST EXCLUSION WORKCHART TABLE 8.4 EXTREMITY SAR TEST EXCLUSION WORKCHART | 15
16 | | 9.0 ACCESSORIES EVALUATED | 18 | | Table 9.1 Manufacturer's Accessory List | 18 | | 10.0 SAR MEASUREMENT SUMMARY | 19 | | Table 10.1: Measured Results – BODY | | | 11.0 SCALING OF MAXIMUM MEASURE SAR | 21 | | TABLE 11.1 SAR SCALING 1G TABLE 11.1 SAR SCALING 1G (CONT.) TABLE 11.2 SAR SCALING 10G TABLE 11.2 SAR SCALING 10G (CONT.) 11.3 SIMULTANEOUS TRANSMISSION SAR ANALYSIS | 22
23
24 | | 12.0 SAR EXPOSURE LIMITS | 27 | | TABLE 12.1 EXPOSURE LIMITS | | | 13.1 DAY LOG 13.2 DUT SETUP AND CONFIGURATION 13.3 DUT POSITIONING 13.4 GENERAL PROCEDURES AND REPORT 13.5 FLUID DIELECTRIC AND SYSTEMS PERFORMANCE CHECK 13.6 SCAN RESOLUTION 100MHz TO 2GHz 13.7 SCAN RESOLUTION 2GHz TO 3GHz 13.8 SCAN RESOLUTION 5GHz TO 6GHz | | | 14.0 MEASUREMENT UNCERTAINTIES | 33 | | Table 14.1 Measurement Uncertainty | | 45461740 R1.0 9 June 2022 | 15.0 FLUID DIELECTRIC PARAMETERS | 35 | |--|----------| | TABLE 15.1 FLUID DIELECTRIC PARAMETERS 5250MHz HEAD TSL | 37 | | 16.0 SYSTEM VERIFICATION TEST RESULTS | 41 | | TABLE 16.1 SYSTEM VERIFICATION RESULTS 5250MHz HEAD TSL TABLE 16.2 SYSTEM VERIFICATION RESULTS 5750MHz HEAD TSL TABLE 16.3 SYSTEM VERIFICATION RESULTS 2450MHz HEAD TSL | 42 | | 17.0 SYSTEM VALIDATION SUMMARY | 44 | | Table 17.1 System Validation Summary | 44 | | 18.0 MEASUREMENT SYSTEM SPECIFICATIONS | 45 | | Table 18.1 Measurement System Specifications | 45 | | 19.0 TEST EQUIPMENT LIST | 47 | | Table 19.1 Equipment List and Calibration | 47 | | 20.0 FLUID COMPOSITION | 48 | | TABLE 20.1 FLUID COMPOSITION 2450MHz HEAD TSL | | | END OF REPORT | 48 | | APPENDIX A – SYSTEM VERIFICATION PLOTS | 49 | | APPENDIX B – MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR | 55 | | APPENDIX C - SETUP PHOTOS | 61 | | FIGURE C.1 – SETUP PHOTO, BACK TOUCH - FAR FIGURE C.2 – SETUP PHOTO, BACK TOUCH - CLOSE FIGURE C.3 – SETUP PHOTO, LEFT EDGE - FAR FIGURE C.4 – SETUP PHOTO, LEFT EDGE - CLOSE FIGURE C.7 – SETUP PHOTO, TOP EDGE - FAR | 62
63 | | FIGURE C.8 – SETUP PHOTO, TOP EDGE - CLOSE | | | APPENDIX D – DUT PHOTOS | 67 | | FIGURE D.1 – DUT PHOTO, FRONT
FIGURE D.2 – DUT PHOTO, BACK
FIGURE D.3 – DUT PHOTO, LEFT | 68 | | APPENDIX E – PROBE CALIBRATION | 70 | | APPENDIX F – DIPOLE CALIBRATION | 71 | | APPENDIX G - PHANTOM | 72 | 45461740 R1.0 9 June 2022 # **1.0 REVISION HISTORY** | Revision History | | | | | | | | | | | |---------------------|------|---------------------|------------------------|------------------------------|---------------------------------------|--|--------------------------|--|--|--| | Samples Tested By: | | Ben Hewson | Date(s) of Evaluation: | | Date(s) of Evaluation: 22 March - 3 A | | 22 March - 3 April, 2022 | | | | | Report Prepared By: | | Art Voss | Rej | Report Reviewed By: Art Voss | | | | | | | | Report | Doca | ription of Revision | Revised | Revised | Revision Date | | | | | | | Revision | | inpulon of Revision | Section | Ву | Revision Date | | | | | | | 0.1 | | Draft | n/a | Art Voss | 8 June 2022 | | | | | | | 1.0 | | Initial Release | n/a | Art Voss | 9 June 2022 | | | | | | # 2.0 CLIENT AND DEVICE INFORMATION | Client Information | | | | | | | | | | |------------------------------|---|--|--|--|--|--|--|--|--| | Applicant Name | Sarmin International Inc. | | | | | | | | | | | 1200 East 151 St | | | | | | | | | | Applicant Address | Olathe, KS, 66062 | | | | | | | | | | | USA | | | | | | | | | | | DUT Information | | | | | | | | | | Device Identifier(s): | FCC ID: IPH-04450 | | | | | | | | | | Device identifier(3). | ISED ID: | | | | | | | | | | Device Model(s) / HVIN: | A04450 | | | | | | | | | | Device Marketing Name / PMN: | A04450 | | | | | | | | | | Test Sample Serial No.: | Conducted: 3401137001 OTA: 3401137013 / 3401136969 | | | | | | | | | | Device Type: | Low Power Digital Device Transmitter | | | | | | | | | | FCC Equipment Class: | Digital Transmission System (DTS), Part 15 Spread Spectrum Transmitter (DSS), Unlicensed National Information Infrastructure TX (NII) | | | | | | | | | | | WiFi (DTS): 2412-2462MHz | | | | | | | | | | Transmit Frequency Range: | BT/BLE (DSS, DTS, DSS): 2402-2480MHz | | | | | | | | | | | U-NII-1: 5180 - 5240, U-NII-3: 5745-5825 | | | | | | | | | 45461740 R1.0 9 June 2022 | Client Information | | | | | | | | |---------------------------------------|-------------------------------------|--|--|--|--|--|--| | | BT BR (DXX): 1.91dBm | | | | | | | | | BT 2EDR (DSS): 3dBm | | | | | | | | | BT 3EDR (DSS): 0dBm | | | | | | | | | BT LE (DTS): 0dBm | | | | | | | | | 802.11b (DTS): 15.3dBm | | | | | | | | | 802.11g (DTS): 14.6dBm | | | | | | | | | 802.11n (DTS): 13.2dBm | | | | | | | | Manuf. Max. Rated Output Power: | U-NII-1/802.11a (NII): 12.04dBm | | | | | | | | | U-NII-1/802.11n (NII): 11.14Bm | | | | | | | | | U-NII-1/802.11n40 (NII): 3.0dBm | | | | | | | | | U-NII-1/802.11ac80 (NII): 0dBm | | | | | | | | | U-NII-3/802.11a (NII): 12.78dBm | | | | | | | | | U-NII-3/802.11n (NII): 12.55dBm | | | | | | | | | U-NII-3/802.11n40 (NII): 12.78dBm | | | | | | | | | U-NII-3/802.11ac80 (NII): 12.55dBm | | | | | | | | Antenna Type and Gain:* | 2450MHz: 2dBi PIFA, 5GHz: 7dBi PIFA | | | | | | | | | WiFi: DSSS, OFDM, CCK, MCS0-7 | | | | | | | | | BT BR: GFSK | | | | | | | | Modulation: | BT 2EDR: Pi/4-DQPSK | | | | | | | | | Bt 3EDR: 8DPSK | | | | | | | | | BLE: GMSK | | | | | | | | DUT Power Source: | 4.35 VDC Internal Li-lon Battery | | | | | | | | DUT Dimensions [LxWxH] | L x W x H: 245mm x 154mm x 21mm | | | | | | | | Deviation(s) from standard/procedure: | None | | | | | | | | Modification of DUT: | None | | | | | | | ^{*} Information on antenna gain provided by applicant. 45461740 R1.0 9 June 2022 ## 3.0 SCOPE OF EVALUATION This Certification Report was prepared on behalf of: Garmin International Inc. The A04450 is a Low Power Digital Transmitter that may be mounted or handheld, with a Wi-Fi transceiver that is capable of operating in the 2.4GHz WiFi/BT and 5GHz U-NII frequency bands. The device is capable of operating simultaneously on the BT and U-NII bands. The device is intended for General Population Use. The product operates from an internal proprietary Li-ion rechargeable battery which can be connected to a compliant USB interface port, AC or DC adapter for charging. Test samples provided by the manufacturer were capable of transmitting at select frequencies and modulations preset by the manufacturer. An additional antenna modification was prepared for one sample allowing the ability to connect test equipment for antenna port conducted power analysis. #### Application: This is an application for a new device certification. #### Scope: The scope of this evaluation limited to the evaluation of SAR for intended and non-intended applications. It will include evaluation of the 2.4 GHz WiFi/BT and U-NII transmitters for all required RF exposure configurations including Extremity and Body Configuration as the device may be operational while in hand or on person (lap). The Test Plan developed for this evaluation is based on the required test channels and configurations which produced the highest worst case SAR and where applicable, SAR test reduction and/or SAR test exclusion may be utilized. The DUT was evaluated for SAR at the maximum tune up tolerance and conducted output power level, preset by the manufacturer and in accordance with the procedures described in IEC/IEEE 62209-1528, FCC KDB 447498 and FCC KDB 248227. ## **4.0 NORMATIVE REFERENCES** | | Normative References* | |----------------------------|---| | ANSI / ISO 17025:2005 | General Requirements for competence of testing and calibration laboratories | | FCC CFR Title 47 Part 2 | Code of Federal Regulations | |
Title 47: | Telecommunication | | Part 2.1093: | Radiofrequency Radiation Exposure Evaluation: Portable Devices | | IEEE International Committ | ee on Electromagnetic Safety | | IEEE 1528-2013: | IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) | | | in the Human Head from Wireless Communications Devices: Measurement Techniques | | IEC International Standard | | | IEC 62209-2 2010 | Human exposure to radio frequency fields from hand-held and body-mounted wireless communication | | | devices - Part 2 | | IEC International Standard | /IEEE International Committee on Electromagnetic Safety | | IEC/IEEE 62209-1528 | Measurement procudeure for the assessment of sepcific absorption rate of human expoure to radio | | | frequency fields from hand-held and body-mounted wireless communication devices - | | | Part 1528; Human models, insturmentation, and procedures (Frequency range of 4 MHz to 10 GHz) | | FCC KDB | | | KDB 865664 D01v01r04 | SAR Measurement Requirements for 100MHz to 6GHz | | FCC KDB | | | KDB 447498 D01v06 | Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies | | FCC KDB | | | KDB 248227 D01v02r02 | SAR Guidance for IEEE 802.11 (WiFi) Transmitters | | * When the issue number | or issue date is omitted, the latest version is assumed. | 45461740 R1.0 9 June 2022 ## **5.0 STATEMENT OF COMPLIANCE** This measurement report demonstrates that samples of the product model(s) were evaluated for Specific Absorption Rate (SAR) on the date(s) shown, in accordance with the Measurement Procedures cited and were found to comply with the Standard(s) Applied based on the Exposure Limits of the Use Group indicated for which the product is intended to be used. | Applicant: | Model / HVIN: | | |----------------------------|--|------------------------| | Garmin International Inc. | A04450 | | | Standard(s) Applied: | Measurement Procedure(s): | | | FCC 47 CFR §2.1093 | FCC KDB 865664, FCC KDB 447498, FC6 | C KDB 248227 | | | IEC/IEEE Standard 62209-1528, IEC 6220 |)9-2 | | Reason For Issue: | Use Group: | Limits Applied: | | x New Certification | x General Population / Uncontrolled | x 1.6W/kg - 1g Volume | | Class I Permissive Change | | 8.0W/kg - 1g Volume | | Class II Permissive Change | Occupational / Controlled | x 4.0W/kg - 10g Volume | | Reason for Change: | | Date(s) Evaluated: | | | | February 28, 2022 | The results of this investigation are based solely on the test sample(s) provided by the applicant which was not adjusted, modified or altered in any manner whatsoever except as required to carry out specific tests or measurements. A description of the device, operating configuration, detailed summary of the test results, methodologies and procedures used during this evaluation, the equipment used and the various provisions of the rules are included in this test report. I attest that the data reported herein is true and accurate within the tolerance of the Measurement Instrument Uncertainty; that all tests and measurements were performed in accordance with accepted practices or procedures; and that all tests and measurements were performed by me or by trained personnel under my direct supervision. The results of this investigation are based solely on the test sample(s) provided by the client which were not adjusted, modified or altered in any manner whatsoever, except as required to carry out specific tests or measurements. This test report has been completed in accordance with ISO/IEC 17025. Art Voss, P.Eng. Technical Manager Celltech Labs Inc. 8 June 2022 Date ## **6.0 SAR MEASUREMENT SYSTEM** ## **SAR Measurement System** Celltech Labs Inc. SAR measurement facility employs a Dosimetric Assessment System (DASY™) manufactured by Schmid & Partner Engineering AG (SPEAG™) of Zurich, Switzerland. The DASY6 measurement system is comprised of the measurement server, a robot controller, a computer, a near-field probe, a probe alignment sensor, an Elliptical Planar Phantom (ELI) phantom and a specific anthropomorphic mannequin (SAM) phantom for Head and/or Body SAR evaluations. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF). A cell controller system contains the power supply, robot controller and a teach pendant (Joystick) to control the robot's servo motors. The Staubli robot is connected to the cell controller to allow software manipulation of the robot. A data acquisition electronic (DAE) circuit performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. is connected to the Electro-optical coupler (EOC). The EOC performs the conversion from the optical form the DAE to digital electronic signal and transfers data to the DASY6 measurement server. The DAE4 utilizes a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gainswitching multiplexer, a fast 16-bit AD-converter, a command decoder and a control logic unit. Transmission to the DASY6 measurement server is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe-mounting device includes two different sensor systems for frontal and sidewise probe contacts. The sensor systems are also used for mechanical surface detection and probe collision detection. The robot utilizes a controller with built in VME-bus computer. **DASY 6 SAR System** **DASY 6 Measurement Controller** # 7.0 RF CONDUCTED POWER MEASUREMENT ## Table 7.1 Conducted Power Measurements, WiFi | | | | | Co | nducted Powe | er Measur | ements |-----------|----------|-----------|---------|-----------|--------------|--------------|----------|-------|-------|-------|----------|-------|--------|-------|-------|-------|-------|-------|-----|---|---|--|--|--|--|--|--|--|--|--|--|-------| | | | | | | | Bit | Measured | Rated | Rated | | SAR Test | Duty | Crest | Band | Mode | Bandwidth | Channel | Frequency | Modulation | Rate | Power | Power | Power | Delta | Channel | Cycle | Factor | (MHz) | | (MHz) | | (Mbps) | (dBm) | (dBm) | (W) | (dB) | (Y/-) | (%) | (1/DC) | 6 | 2437 | CCK | 1 | 14.97 | 15.30 | 0.034 | -0.33 | - | - | - | 6 | 2437 | CCK | 2 | 14.99 | 15.30 | 0.034 | -0.31 | - | - | - | 6 | 2437 | | 5.5 | 15.30 | 15.30 | 0.034 | 0.00 | Υ | 83.7 | 1.2 | 6 | 2437 | | 11 | 15.07 | 15.30 | 0.034 | -0.23 | - | - | - | 1 | 2412 | | | 15.01 | 15.30 | 0.034 | -0.29 | - | - | - | 2 | 2417 | ļ | | 14.90 | 15.30 | 0.034 | -0.40 | - | - | - | 3 | 2422 | | | 15.09 | 15.30 | 0.034 | -0.21 | - | - | - | 802.11b | 20 | 4 | 2427 | | | 14.92 | 15.30 | 0.034 | -0.38 | - | - | - | 5 | 2432 | | | 14.99 | 15.30 | 0.034 | -0.31 | - | - | - | 6 | 2437 | DSSS | 5.5 | 15.30 | 15.30 | 0.034 | 0.00 | - | - | - | 7 | 2442 | | | 15.21 | 15.30 | 0.034 | -0.09 | - | - | - | 8 | 2447 | | | 15.14 | 15.30 | 0.034 | -0.16 | - | - | - | 9 | 2452 | | | | | | | | | | | 15.19 | 15.30 | 0.034 | -0.11 | - | - | - | | | | | | | | | | | | | | | | 10 | 2457 | | | | | | | | | 15.15 | 15.30 | 0.034 | -0.15 | - | - | - | | | | | | | | | | | | | | | WLAN 2.4G | | | 11 | 2462 | | | | | | | | | | | | | Į , | | í l | | | | | | | | | | | | | 15.21 | | | | | 12 | 2467 | | | 15.14 | 15.30 | 0.034 | -0.16 | - | - | - | 13 | 2472 | | | 15.24 | 15.30 | 0.034 | -0.06 | - | - | - | 6 | 14.60 | 14.60 | 0.029 | 0.00 | - | - | - | i T | 9 | 14.57 | 14.60 | 0.029 | -0.03 | - | - | - | 12 | 14.46 | 14.60 | 0.029 | -0.14 | - | - | - | 802.11g | 20 | 6 | 2437 | OFDM | 18 | 14.48 | 14.60 | 0.029 | -0.12 | - | - | - | 002.11g | 20 | ľ | 2437 | OI DIVI | 24 | 12.51 | 14.60 | 0.029 | -2.09 | - | - | - | 36 | 12.80 | 14.60 | 0.029 | -1.80 | - | ı | - | 48 | 11.53 | 14.60 | 0.029 | -3.07 | - | - | - | 54 | 11.58 | 14.60 | 0.029 | -3.02 | - | - | - | MCS0 | | 13.20 | 13.20 | 0.021 | 0.00 | - | - | = | 802.11n | 20 | 6 | 2437 | MCS1 | . <u>-</u> | 13.66 | 13.20 | 0.021 | 0.46 | - | - | - | 002.1111 | 20 | ٥ | 2431 | MCS4 | - | 11.65 | 13.20 | 0.021 | -1.55 | - | - | - | MCS7 | | 10.81 | 13.20 | 0.021 | -2.39 | - | - | - | 45461740 R1.0 9 June 2022 ## Table 7.2 Conducted Power Measurements, BT, BLE | | Conducted Power Measurements | | | | | | | | | | | | | | |------|------------------------------|-----------|---------|-----------|------------|--------|----------|-------|-------|-------|----------|-------|--------|---| | | | | | | | Bit | Measured | Rated | Rated | | SAR
Test | Duty | Crest | | | Band | Mode | Bandwidth | Channel | Frequency | Modulation | Rate | Power | Power | Power | Delta | Channel | Cycle | Factor | | | | | (MHz) | | (MHz) | | (Mbps) | (dBm) | (dBm) | (W) | (dB) | (Y/-) | (%) | (1/DC) | | | | | | 2 | 2402 | | | 1.91 | 1.91 | 0.002 | 0.00 | Υ | 60.7 | 1.64 | | | | BR | 1 | 41 | 2441 | GFSK | GFSK | - | 1.13 | 1.91 | 0.002 | -0.78 | - | - | • | | | | | 80 | 2480 | | | 0.01 | 1.91 | 0.002 | -1.90 | ı | - | ı | | | | 2EDR | 1 | 2 | 2402 | Pi/4-DQPSK | | -1.78 | 3.00 | 0.002 | -4.78 | - | - | • | | | | | | 41 | 2441 | | · | -1.21 | 3.00 | 0.002 | -4.21 | ı | - | ı | | | ВТ | | | 80 | 2480 | | | -2.08 | 3.00 | 0.002 | -5.08 | ı | - | ı | | | ы | | | 2 | 2402 | | | -1.31 | 0.00 | 0.001 | -1.31 | - | - | • | | | | 3EDR | 1 | 41 | 2441 | 8DPSK | - | -1.11 | 0.00 | 0.001 | -1.11 | ı | - | ı | | | | | | 80 | 2480 | | | -2.06 | 0.00 | 0.001 | -2.06 | ı | - | ı | | | | | 1 | 37 | 2402 | | | 0.51 | 0.00 | 0.001 | 0.51 | - | - | • | | | | LE | | 17 | 2440 | GFSK | - | 0.85 | 0.00 | 0.001 | 0.85 | - | - | - | | | | | | 39 | 2480 | | | 0.10 | 0.00 | 0.001 | 0.10 | - | - | - | | Celltech Testing and Engineering Services Lab ## Table 7.3 Conducted Power Measurements, U-NII | | | | | Co | nducted Powe | er Measur | ements | | | | | | | |-----------|------------|-----------|------------|--------------|--------------|-----------|----------------|----------------|-------|----------------|----------|-------|--------------| | | | | | | | Bit | Measured | Rated | Rated | | SAR Test | Duty | Crest | | Band | Mode | Bandwidth | Channel | Frequency | Modulation | Rate | Power | Power | Power | Delta | Channel | Cycle | Factor | | | | (MHz) | | (MHz) | | (Mbps) | (dBm) | (dBm) | (W) | (dB) | (Y/-) | (%) | (1/DC) | | | | | | | | 6 | 11.29 | 12.04 | 0.016 | -0.75 | - | - | - | | | | | 36 | 5180 | | 9 | 11.84 | 12.04 | 0.016 | -0.20 | - | · | - | | | | | 30 | 3100 | | 24 | 11.71 | 12.04 | 0.016 | -0.33 | - | - | - | | | 802.11a | 20 | | | OFDM | 54 | 12.04 | 12.04 | 0.016 | 0.00 | Υ | 66.2 | 1.51 | | LI NIII 1 | | | 40 | 5200 | | | 11.97 | 12.04 | 0.016 | -0.07 | - | - | | | | | | 44 | 5220 | | 54 | 11.84 | 12.04 | 0.016 | -0.2 | - | - | - | | | | | 48 | 5240 | | | 11.38 | 12.04 | 0.016 | -0.66 | - | - | - | | U-NII-1 | | | | | MCS0 | , | 10.45 | 11.14 | 0.013 | -0.69 | - | - | - | | · · · · · | | | 36 | 5180 | MCS3 | | 10.42 | 11.14 | 0.013 | -0.72 | - | - | | | | 802.11n | 20 | | | MCS7 | _ | 11.04 | 11.14 | 0.013 | -0.10 | | - | - | | | 002.1111 | | 40 | 5200 | 14007 | | 11.14 | 11.14 | 0.013 | 0.00 | Υ | 50.5 | 1.98 | | | | | 44 | 5220 | MCS7 | | 11.01 | 11.14 | 0.013 | -0.13 | - | - | - | | | 802.11n40 | 40 | 48 | 5240 | 90 MCS7 | | 11.01 | 11.14 | 0.013 | -0.13 | - | - | | | | | | 38 | 5190 | | - | 11.65 | 3.00 | 0.002 | 8.65 | - | - | - | | | 222 11 22 | | 46 | 5230 | 1400- | | 11.68 | 3.00 | 0.002 | 8.68 | Υ | 43 | 2.32 | | | 802.11ac80 | 80 | 42 | 5210 | MCS7 | - | 11.65 | 0.00 | 0.001 | 11.65 | Υ | 38.6 | 2.6 | | | | 20 | 149 | | | 6 | 12.40 | 12.78 | 0.019 | -0.38 | - | - | - | | | | | | | | 9 | 12.46 | 12.78 | 0.019 | -0.32 | - | - | - | | | | | | | | 24 | 12.34 | 12.78 | 0.019 | -0.44 | -
Y | - | 4 54 | | | 802.11a | | 450 | | OFDM | 54 | 12.76 | 12.78 | 0.019 | -0.02 | - | 66.2 | 1.51 | | | | | 153 | 5765 | 1 | | 12.47 | 12.78 | 0.019 | -0.31 | - | - | - | | | | | 157
161 | 5785
5805 | | 54 | 12.47
12.55 | 12.78
12.78 | 0.019 | -0.31
-0.23 | - | - | - | | | | | 165 | 5825 | ł | | 12.55 | 12.78 | 0.019 | -0.23
-0.1 | - | - | - | | | | | 100 | 3023 | MCS0 | | | | | | - | | - | | U-NII-3 | | | 149 | 5745 | | , | 11.76 | 12.55 | 0.018 | -0.79 | - | - | | | | | | 149 | 5/45 | MCS3 | , | 12.24 | 12.55 | 0.018 | -0.31 | - | - | | | | 802.11n | 20 | 450 | 5705 | MCS7 | , | 12.50 | 12.55 | 0.018 | -0.05 | - | - | - | | | 002.1111 | 20 | 153 | 5765 | | | 12.23 | 12.55 | 0.018 | -0.32 | - | | - 4.00 | | | | | 157 | 5785 | MCS7 | | 12.53 | 12.55 | 0.018 | -0.02 | - | 50.5 | 1.98 | | | | | 161 | 5805 | | | 12.44 | 12.55 | 0.018 | -0.11 | - | - | - | | | | | 165 | 5825 | | | 12.47 | 12.55 | 0.018 | -0.08 | - | - | - | | | 802.11n40 | 40 | 151 | 5755 | MCS7 | - | 12.06 | 12.78 | 0.019 | -0.72 | Υ | 43 | 2.32 | | | 000 11 55 | | 159 | 5795 | 11007 | | 9.80 | 12.78 | 0.019 | -2.98 | - | - | | | | 802.11ac80 | 80 | 155 | 5775 | MCS7 | - | 11.92 | 12.55 | 0.018 | -0.63 | Υ | 38.6 | 2.6 | Note: The rated power on the 802.11n-40 and 802.11ac-80 channels in the U-NII-1 band were reduced to meet Restricted Band requirements after the above conducted measurements were assessed. The rated power and tolerance are stated for typical transmission modes and data rates. Some modes and data rates may produce lower than rated conducted power levels. Power measurements taken across the various channels, modes and data rates did not produce levels in excess of the Rated Power plus Tolerance. SAR was evaluated using the power level setting specified by the manufacture to be the max output power and produce the most conservative SAR. SAR was evaluated at the <u>maximum average</u> tune up tolerance. See section 2.0 Client and Device Information for details. The <u>reported</u> SAR was not scaled down. 45461740 R1.0 9 June 2022 ## 8.0 NUMBER OF TEST CHANNELS (Nc) #### **Table 8.1 Number of Test Channels** The intended use of the device is to be mounted on a vehicle' dashboard; however, the device could transmit while held in hand or on person. As such the device was evaluated for both Body and Extremity use. #### Wi-FI SAR Evaluation: SAR was evaluated in DSSS mode at the maximum duty cycle. The power level setting selected was specified by the manufacturer to be the max output power and produce the most conservative SAR. As per FCC KDB 248227, the required 802.11 test channels are Ch1, Ch 6 and Ch 11; The highest conducted output power was found on Channel 6. As a result, this channel was selected for initial SAR evaluation. SAR test reduction methodology was applied to reduce the total number of required test channels from the SAR test evaluation. When applicable, SAR test reduction methods may be utilized. 802.11b DSSS SAR test reduction is determined according to the following: - a) When the <u>reported</u> SAR of the highest measured maximum output power channel is ≤ to 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration. - b) When the <u>reported</u> SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest output power channel. When any <u>reported</u> SAR is > 1.2 W/Kg, SAR is required for the third channel. ## 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements - a) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration. - b) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. The initial test configuration for 2.4 GHz and 5 GHz OFDM transmission modes is determined by the 802.11 configuration with the highest maximum output power specified for production units, including tune-up tolerance, in each standalone and aggregated frequency band. An initial test position was established for Both UNII1 and UNII 3 bands. When the reported SAR of the initial test configuration is > 0.8 W/kg, SAR measurement is required for subsequent next highest measured output power channel(s) in the initial test configuration until reported SAR is ≤ 1.2 W/kg or all required channels are tested. NOTE: The Bluetooth transmitter is capable of simultaneous transmission with the 5GHz WiFi Transmitter. The Bluetooth SAR was evaluated for simultaneous SAR. As per KDB 447498 D04V01, where appropriate SAR test exclusion based on antenna test separation distances may be applied. $$P_{\rm th} \ ({\rm mW}) = ERP_{\rm 20 \ cm} \ ({\rm mW}) = \begin{cases} 2040 f & 0.3 \ {\rm GHz} \le f < 1.5 \ {\rm GHz} \\ \\ 3060 & 1.5 \ {\rm GHz} \le f \le 6 \ {\rm GHz} \end{cases} \eqno({\rm B.}\ 1)$$ $$P_{\text{th}} \text{ (mW)} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^x & d \le 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \le 40 \text{ cm} \end{cases}$$ (B. 2) where $$x = -\log_{10}\left(\frac{60}{ERP_{20}\operatorname{cm}\sqrt{f}}\right)$$ ### **Table 8.2 Antenna Distances** # Topographic View Back Side | Antenna | Top Edge
(mm) | Left Edge
(mm) | Bottom Edge
(mm) | Right Edge
(mm) | Depth (mm) | |---------|------------------|-------------------|---------------------|--------------------|------------| | WLAN/BT | 11.0 | 165.0 | 95.0 | 20.0 | 8.0 | | 5GHz | 14.0 | 160.0 | 90.0 | 25.0 | 8.0 | | | | | | | | **Table 8.3 Body SAR test Exclusion Workchart** | SAR Test Exclusion Analysis Antenna Separation to DUT Surfaces | | | | | | | | | | |--|-------------------------------|---------------|----------------|---------|----------------------|--|--|--|--| | PODV | Configuration (1g) | Band | | | | | | | | | BODI | Configuration (19) | BT/BLE
ANT | 2.4GHz
WiFi | U-NII-1 | 5GHz WLAN
U-NII-3 | | | | | | | Frequency (MHz) | 2480 | 2462 | 5240 | 5825 | | | | | | Exposure | Pow er (mW) | 2.00 | 34.00 | 19.00 | 19.00 | | | | | | | Antenna Gain (dBi) | 2.00 | 2.00 | 7.00 | 7.00 | | | | | | Position | Antenna Gain (dBd) | -0.15 | -0.15 | 4.85 | 4.85 | | | | | | Position | Total ERP (mW) | 1.93 | 32.85 | 58.04 | 58.04 | | | | | | | Separation Distance (mm) | 7.00 | 7.00 | 7.00 | 7.00 | | | | | | Back Side | Exclusion Threshold (Pth)(mW) | 5.16 | 5.19 | 2.99 | 2.77 | | | | | | | Testing Required | No | Yes | Yes | Yes | | | | | [~] Pth(mW) = ERP $_{20cm}$ (mW) = 2040f for 0.3GHz \leq f < 1.5GHz [~] Pth(mW) = ERP $_{20cm}$ (mW) = 3060 for 1.5GHz \leq f \leq 6GHz [~] Pth(mW) = ERP_{20cm}(mW) * (d / 20cm)^X w here x = -log10(60 / ERP_{20cm} \sqrt{f}) for d \leq 20cm [~] Pth(mW) = ERP_{20cm}(mW)) for $20cm < d \le 40cm$ [~]
Total ERP = Pow er + Gain(dBd) $[\]sim$ Gain(dBd) = Gain(dBi) - 2.15 45461740 R1.0 9 June 2022 ## **Table 8.4 Extremity SAR test Exclusion Workchart** | | SAR Test Ex | clusion A | nalysis | | | |-------------|-------------------------------|---------------|----------------|----------------------|----------------------| | | Antenna Separa | tion to DU | T Surfaces | | | | | | | | Band | | | EXTREMIT | Y Configuration (10g) | BT/BLE
ANT | 2.4GHz
WiFi | 5GHz WLAN
U-NII-1 | 5GHz WLAN
U-NII-3 | | | Frequency (MHz) | 2480 | 2462 | 5240 | 5825 | | Exposure | Pow er (mW) | 2.00 | 34.00 | 19.00 | 19.00 | | | Antenna Gain (dBi) | 2.00 | 2.00 | 7.00 | 7.00 | | Position | Antenna Gain (dBd) | -0.15 | -0.15 | 4.85 | 4.85 | | | Total ERP (mW) | 1.93 | 32.85 | 58.04 | 58.04 | | | Separation Distance (mm) | 11.00 | 11.00 | 14.00 | 14.00 | | Top Edge | Exclusion Threshold (Pth)(mW) | 30.50 | 30.64 | 31.35 | 29.49 | | | Testing Required | No | Yes | Yes | Yes | | | Separation Distance (mm) | 95.00 | 95.00 | 90.00 | 90.00 | | Bottom Edge | Exclusion Threshold (Pth)(mW) | 1852.80 | 1854.98 | 1468.15 | 1441.45 | | | Testing Required | No | No | No | No | | | Separation Distance (mm) | 165.00 | 165.00 | 160.00 | 160.00 | | Right Edge | Exclusion Threshold (Pth)(mW) | 5303.02 | 5304.63 | 4823.09 | 4798.42 | | | Testing Required | No | No | No | No | | | Separation Distance (mm) | 20.00 | 20.00 | 25.00 | 25.00 | | Left Edge | Exclusion Threshold (Pth)(mW) | 95.25 | 95.60 | 103.93 | 99.08 | | | Testing Required | No | No | No | No | $[\]sim Pth(mW) = ERP_{\rm 20cm}(mW) = 2040f$ for 0.3GHz $_{\leq}\,f < 1.5GHz$ [~] Pth(mW) = ERP $_{20cm}$ (mW) = 3060 for 1.5GHz \leq f \leq 6GHz [~] Pth(mW) = ERP_{20cm}(mW) * (d / 20cm)^X w here x = -log10(60 / ERP_{20cm} vf) for d \leq 20cm ~ Pth(mW) = ERP_{20cm}(mW)) for 20cm < d \leq 40cm [~] $Pth(mW) = ERP_{20cm}(mW) X 2.5$ for 10g Extremity [~] Total ERP = Pow er + Gain(dBd) [~] Gain(dBd) = Gain(dBi) - 2.15 45461740 R1.0 9 June 2022 ## 9.0 ACCESSORIES EVALUATED # **Table 9.1 Manufacturer's Accessory List** There are no manufacturer's accessories available when used in a portable application. Test Report Issue Date: 9 June 2022 45461740 R1.0 ## **10.0 SAR MEASUREMENT SUMMARY** Table 10.1: Measured Results - BODY | | | | | M | leasured | l 1g SAI | Results - | BODY C | onfigura | tion | | | | | | |-------------|----------------------|-----------|------------|---------------|-----------|------------|-----------|-------------|-----------|----------|-------------|---------|----------|---------|--------| | | | Test | | | DUT | | | Accessories | | | DUT Spacing | | Measured | SAR | | | Date | Plot | Frequency | | Configuration | | | Antenna | Battery | Body | Audio | DUT | Antenna | SAR | Drift | | | | ID | (MHz) | Pos | Mode | BW | Mod | BR | ID | ID | ID | ID | (mm) | (mm) | (W/kg) | (dB) | | 22 Mar 2022 | B1 | 2437 | Back Touch | 802.11b | 20MHz | DSSS | 5.5mbps | n/a | n/a | n/a | n/a | 0 | 0 | 0.071 | -0.460 | | 2 Apr 2022 | B10 | 5180 | Back Touch | 802.11a | 20MHz | OFDM | 54mbps | n/a | n/a | n/a | n/a | 0 | 0 | 0.223 | 0.290 | | 2 Apr 2022 | B14 | 5200 | Back Touch | 802.11n | 20MHz | MCS-7 | - | n/a | n/a | n/a | n/a | 0 | 0 | 0.182 | 0.780 | | 3 Apr 2022 | B20 | 5230 | Back Touch | 802.11n | 40MHz | MCS-7 | - | n/a | n/a | n/a | n/a | 0 | 0 | 0.165 | 0.190 | | 3 Apr 2022 | B21 | 5210 | Back Touch | 802.11ac | 80MHz | MCS-7 | - | n/a | n/a | n/a | n/a | 0 | 0 | 0.116 | 0.880 | | 30 Mar 2022 | B33 | 5785 | w/c - Back | 802.11n | 20MHz | OFDM | 54mbps | n/a | n/a | n/a | n/a | 0 | 0 | 0.130 | -0.140 | | 30 Mar 2022 | B37 | 5755 | w/c - Back | 802.11n | 40MHz | MCS-7 | - | n/a | n/a | n/a | n/a | 0 | 0 | 0.084 | 1.390 | | | Applicable SAR Limit | | | | | | Use G | roup | | | Limit | | | | | | FCC | CFR 2.1 | 093 | | Health Ca | ınada Saf | ety Code 6 | 6 | | General P | opulatio | on/User l | Jnaware | 9 | 1.6 W/k | g | Test Report Issue Date: 9 June 2022 45461740 R1.0 # Table 10.2: Measured Results – Extremity | | | | | Meas | ured 10 | g SAR F | Results - EX | (TREMIT | Y Config | juratio | n | | | | | |-------------|----------------------|-----------|------------|---------------|-----------|------------|--------------|-------------|-----------|----------|-------------|---------|----------|--------|-------| | | | Test | | | DUT | | | Accessories | | | DUT Spacing | | Measured | SAR | | | Date | Plot | Frequency | | Configuration | | | Antenna | Battery | Body | Audio | DUT | Antenna | SAR | Drift | | | | ID | (MHz) | Pos | Mode | BW | Mod | BR | ID | ID | ID | ID | (mm) | (mm) | (W/kg) | (dB) | | 22 Mar 2022 | E2 | 2437 | Left Edge | 802.11b | 20MHz | DSSS | 5.5mbps | n/a | n/a | n/a | n/a | 0 | 0 | 0.016 | 0.430 | | 22 Mar 2022 | E4 | 2437 | Top Edge | 802.11b | 20MHz | DSSS | 5.5mbps | n/a | n/a | n/a | n/a | 0 | 0 | 0.071 | 0.840 | | 22 Mar 2022 | E5 | 2402 | Top Edge | BT | - | GFSK | - | n/a | n/a | n/a | n/a | 0 | 0 | 0.000 | 4.920 | | 2 Apr 2022 | E11 | 5180 | Left Edge | 802.11a | 20MHz | OFDM | 54mbps | n/a | n/a | n/a | n/a | 0 | 0 | 0.000 | 4.720 | | 2 Apr 2022 | E12 | 5180 | Top Edge | 802.11a | 20MHz | OFDM | 54mbps | n/a | n/a | n/a | n/a | 0 | 0 | 0.048 | 2.660 | | 29 Mar 2022 | E31 | 5745 | Left Edge | 802.11a | 20MHz | OFDM | 54mbps | n/a | n/a | n/a | n/a | 0 | 0 | 0.007 | 0.790 | | 30 Mar 2022 | E36 | 5745 | Top Edge-R | 802.11a | 20MHz | OFDM | 54mbps | n/a | n/a | n/a | n/a | 0 | 0 | 0.037 | 1.990 | | | Applicable SAR Limit | | | | Use Group | | | | | Limit | | | | | | | FCC | CFR 2.1 | 093 | | Health Ca | anada Saf | ety Code (| 6 | | General P | opulatio | on/User l | Jnaware | 9 | 4 W/kg | | ## 11.0 SCALING OF MAXIMUM MEASURE SAR ## Table 11.1 SAR Scaling 1g | Scaling of Ma | aximum Mea | asur | ed SAR (1g) | | |-----------------------------------|---------------|------|---------------|--------| | Measured Parameters | | (| Configuration | า | | Measured Parameters | Body | | | | | Plot ID | B10 | | | | | Maximum Measured SAR _M | 0.223 | | | | | Frequency | 5180 | | | | | Drift Power Drift | 0.290 | (1) | | | | Conducted Power | 12.040 | | | | | Transmit Duty Cycle | 66.200 | | | | | Fluid | Deviation fro | m Ta | arget | | | Δe Permitivity | -6.91% | | -3.34% | -3.34% | | Δσ Conductivity | 1.94% | | 7.26% | 7.26% | Note(1): Power Drift is Positive, Drift Adjustment not Required. | Flu | id Sensitivity Calculation | (1g) | | IEC 62209- | -2 Annex F | | | |---|---------------------------------|--------------|------|------------|------------|----|--| | | Delta SAR = 0 | Ce * Δe + Cσ | * Δα | J | (F.1) | | | | | $Ce = (-0.0007854*f^3) + (0.0)$ | (F.2) | | | | | | | $C\sigma = (0.009804*f^3) - (0.08661*f^2) + (0.02981*f) + 0.7829$ | | | | | | | | | f | Frequency (GHz) | 5.18 | | | | | | | | Ce | -0.256 | | | | | | | | Сσ | -0.053 | | | | | | | | Ce * ∆e | 0.018 | | | | | | | | Cσ * Δσ | -0.001 | | | | | | | | ΔSAR | 0.017 | (3) | | |](| | Note(3): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529 | Manufacturer's Tuneup Tolerance | | | | | | | |---------------------------------|-----------|--|--|-------|--|--| | Measured Conducted Power | 12.040 | | | (dBm) | | | | Rated Conducted Power | 12.040 | | | (dBm) | | | | ΔΡ | 0.000 (4) | | | (dB) | | | Note(4): SAR was Evaluated at the Maximum Tuneup Tolerance. SAR Adjustment is not Required. | | Crest Factor | | | |--------------------------|--------------|--|-----| | Transmit Duty Cycle (DC) | 66.200 | | (%) | | CF (1/DC) | 1.511 | | | Note(4): SAR was Evaluated at the Maximum Tuneup Tolerance. SAR Adjustment is not Required. 45461740 R1.0 9 June 2022 # Table 11.1 SAR Scaling 1g (Cont.) | | Scaling of Ma | aximum Measu | red SAR (1g) | | |------------------|--------------------------------|------------------|---------------|-------| | Moas | ured Parameters | | Configuration | | | IVICAS | uleu Falailleteis | Body | | | | | Plot ID | B10 | | | | Maximu | ım Measured SAR _M | 0.223 | | (W/kg | | | Frequency | 5180 | | (MHz) | | Drift | Power Drift | 0.290 (1) | | (dB) | | Coi | nducted Power | 12.040 | | (dBm) | | DC Tra | nsmit Duty Cycle | 66.200 | | (%) | | | SAR Adjus | stment for Fluid | Sensitivity | | | SAR ₁ | = SAR _M X [ΔSAR] | 0.223 | | (W/kg | | | SAR Adjust | tment for Tuneu | p Tolerance | | | SAR | $R_2 = SAR_1 + [\Delta P]$ | 0.223 | | (W/kg | | | SAR | Adjustment for | Drift | | | SAR | 3 = SAR ₂ + [Drift] | 0.223 | | (W/kg | | | SAR Adj | ustment for Cre | st Factor | | | SAF | $R_4 = SAR_3 \times [CF]$ | 0.337 | | (W/kg | | | 1 | reported 1g SAF | ? | | | | SAR₄ | 0.34 | | (W/kg | Table 11.2 SAR Scaling 10g | | Scaling of Ma | ıximum Meası | red SAR (10g) | | | | | |-----------------------------|---------------------------------|--------------|---------------|-----------|------|--|--| | R/ | leasured Parameters | | Configuration | | | | | | IV | leasured Parameters | Extremity | Extremity | Extremity | | | | | | Plot ID | E4 | E5 | E12 | | | | | Max | kimum Measured SAR _M | 0.071 | 0.000 | 0.048 | (W/k | | | | | Frequency | 2437 | 2402 | 5180 | (MHz | | | | Drif | t Power Drift | 0.840 (1) | 4.920 (1) | 2.660 (1) | (dB) | | | | | Conducted Power | 15.300 | 1.910 | 12.040 | (dBn | | | | DC | Transmit Duty Cycle | 83.700 | 60.7 | 66.2 | (%) | | | | Fluid Deviation from Target | | | | | | | | | Δе | Permitivity | -6.77% | -6.54% | -6.91% | | | | | Δσ | Conductivity | 2.41% | 2.73% | 1.94% | | | | Note(1): Power Drift is Positive, Drift Adjustment not Required. | Flui | d Sensitivity Calculation (| (10g) | IEC 62209-2 Annex F | | | | | | |--|---------------------------------------|------------------|---------------------|-----------|----|--|--|--| | | Delta SAR = 0 | Ce * Δe + Cσ * Δ | σ | (F.1) | | | | | | | $Ce = (0.003456*f^3) - (0.03456*f^3)$ | 75*f) - 0.186 | (F.4) | | | | |
 | $C\sigma = (0.004479 * f^3) - (0.01586 * f^2) - (0.1972 * f) + 0.7717$ (F.5) | | | | | | | | | | f | Frequency (GHz) | 2.437 | 2.402 | 5.18 | | | | | | | Ce | -0.159 | -0.157 | -0.256 | | | | | | | Сσ | 0.262 | 0.269 | -0.053 | | | | | | | Ce * ∆e | 0.011 | 0.010 | 0.018 | | | | | | | Cσ * Δσ | 0.006 | 0.007 | -0.001 | | | | | | | ΔSAR | 0.017 (3) | 0.018 (3) | 0.017 (3) | (' | | | | Note(3): Delta SAR is Positive, SAR Adjustment for Fluid Sensitivity is not Required, in accordance with ISED Notice 2012-DRS0529 | Manufacturer's Tuneup Tolerance | | | | | | | | |---------------------------------|-----------|-----------|-----------|-------|--|--|--| | Measured Conducted Power | 15.300 | 1.910 | 12.040 | (dBm) | | | | | Rated Conducted Power | 15.300 | 1.910 | 12.040 | (dBm) | | | | | ΔΡ | 0.000 (4) | 0.000 (4) | 0.000 (4) | (dB) | | | | Note(4): SAR was Evaluated at the Maximum Tuneup Tolerance. SAR Adjustment is not Required. | Crest Factor | | | | | |--------------------------|--------|------|------|-----| | Transmit Duty Cycle (DC) | 83.700 | 60.7 | 66.2 | (%) | | CF (1/DC) | 1.195 | 1.65 | 1.51 |] | Note(4): SAR was Evaluated at the Maximum Tuneup Tolerance. SAR Adjustment is not Required. 45461740 R1.0 9 June 2022 # Table 11.2 SAR Scaling 10g (Cont.) | Scaling of Maximum Measured SAR (10g) | | | | | | | | | |--|------------------|-------------|-----------|--------|--|--|--|--| | Measured Parameters | Configuration | | | | | | | | | Measured Parameters | Extremity | Extremity | Extremity |] | | | | | | Plot ID | E4 | E5 | E12 | | | | | | | Maximum Measured SAR _M | 0.071 | 0.000 | 0.048 | (W/kg) | | | | | | Frequency | 2437 | 2402 | 5180 | (MHz) | | | | | | Drift Power Drift | 0.840 (1) | 4.920 (1) | 2.660 (1) | (dB) | | | | | | Conducted Power | 15.300 | 1.910 | 12.040 | (dBm) | | | | | | Transmit Duty Cycle | 83.700 | 60.7 | 66.2 | (%) | | | | | | SAR Adjus | stment for Fluid | Sensitivity | |] | | | | | | $SAR_1 = SAR_M X [\Delta SAR]$ | 0.071 | 0.000 | 0.048 | (W/kg) | | | | | | SAR Adjus | tment for Tuneu | p Tolerance | |] | | | | | | $SAR_2 = SAR_1 + [\Delta P]$ | 0.071 | 0.000 | 0.048 | (W/kg) | | | | | | SAR | Adjustment for | · Drift | | 1 | | | | | | $SAR_3 = SAR_2 + [Drift]$ | 0.071 | 0.000 | 0.048 | (W/kg) | | | | | | SAR Adjustment for Crest Factor | | | | | | | | | | SAR ₄ = SAR ₃ x [CF] | 0.084 | 0.000 | 0.072 | (W/kg) | | | | | | reported 10g SAR | | | | | | | | | | SAR₄ | 0.08 | 0.00 | 0.07 | (W/kg) | | | | | 45461740 R1.0 9 June 2022 #### **NOTES to Table** Scaling of the Maximum Measured SAR is based on the highest Face, Body and/or Head SAR measured of ALL test channels, configurations and accessories used during THIS evaluation. The Measured Fluid Deviation parameters apply only to deviation of the tissue equivalent fluids used at the frequencies which produced the highest measured SAR. The Measured Conducted Power applies to the Conducted Power measured at the frequencies producing the highest Face, Body and/or Head SAR. The Measured Drift is the SAR drift associated with that specific SAR measurement. The Reported SAR is the accumulation of all SAR Adjustments from the applicable Steps 1 through 4. The Plot ID is for indentification of the SAR Measurement Plots in the Annexes of this report. NOTE: Some of the scaling factors in Steps 1 through 4may not apply and are identified by grayed fields. #### Step 1 Per IEC/IEEE 62209-1528, FCC KDB 865664, ISED RSS-102 and ISED Notice 2012-DRS0529. Scaling required only when Measured Fluid Deviation is greater than 5%. If the Measured Fluid Deviation is greater than 5%, Table 10.1 will be shown and will indicate the SAR scaling factor in percent (%). SAR is MULTIPLIED by this scaling factor only when the scaling factor is positive (+). #### Step 2 Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102. Scaling required only when the difference (Delta) between the Measured Conducted Power and the Manufacturer's Rated Conducted Power is (-) Negative. The absolute value of Delta is ADDED to the SAR. #### Step 3 Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102. Scaling required only when Measured Drift is (-) Negative. The absolute value of Measured Drift is added to Reported. #### Step 4 Per IEC/IEEE 62209-1528, FCC KDB 865664 and ISED RSS-102. When the transmit Duty Cyle (DC) is less than 100%, the <u>reported</u> SAR must be scaled to 100% by the Crest Factor (CF). CF = 1/DC where DC is in decimal. #### Step 5 The Reported SAR is the Maximum Final Adjusted SAR from the applicable Steps 1 through 4and are reported on Page 1 of this report. 45461740 R1.0 9 June 2022 ## 11.3 Simultaneous Transmission SAR Analysis Only the Bluetooth and U-NII transmitters are capable of simultaneous transmission. Since the Body configuration resulted in the highest measured SAR, only the Body configuration SAR will be considered. From Table 11.1 and Table 11.2 above, the *reported* Standalone SAR are as follows: Bluetooth (SAR_{BT}): 0.00W/kg WiFi (SAR_{WiFiI}): 0.34W/kg Simultaneous SAR (SAR_{TOT}) = SAR_{BT} + SAR_{WiFi} = 0.00 + 0.34 = 0.34W/kg ## 12.0 SAR EXPOSURE LIMITS ## **Table 12.1 Exposure Limits** | SAR RF EXPOSURE LIMITS | | | | | | |--|-------------------------------|---------------------------|------------------------------------|--|--| | FCC 47 CFR§2.1093 | Health Canada Safety Code 6 | General Population / | Occupational / | | | | 10041 CHQ2.1093 | Treatti Carlada Safety Code o | Uncontrolled Exposure (4) | Controlled Exposure ⁽⁵⁾ | | | | Spatial Average ⁽¹⁾ | | 0.08 W/kg | 0.4 W/kg | | | | (averaged over the whole body) | | 0.00 W/kg | 0.4 W/kg | | | | Sp | Spatial Peak ⁽²⁾ | | 8.0 W/kg | | | | (Head and Trunk averaged over any 1 g of tissue) | | 1.6 W/kg | 0.0 W/kg | | | | Spatial Peak ⁽³⁾ | | 4.0 W/kg | 20.0 W/kg | | | | (Hands/Wrists/Fee | t/Ankles averaged over 10 g) | 4.0 W/kg | 20.0 W/kg | | | - (1) The Spatial Average value of the SAR averaged over the whole body. - (2) The Spatial Peak value of the SAR averaged over any 1 gram of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time. - (3) The Spatial Peak value of the SAR averaged over any 10 grams of tissue, defined as a tissue volume in the shape of a cube and over the appropriate averaging time. - (4) Uncontrolled environments are defined as locations where there is potential exposure to individuals who have no knowledge or control of their potential exposure. - (5) Controlled environments are defined as locations where there is potential exposure to individuals who have knowledge of their potential exposure and can exercise control over their exposure. # 13.0 DETAILS OF SAR EVALUATION ## 13.1 Day Log | DAY LOG | | | | | | | | | |--------------|-------------------|-----------------------|-----------------------------|---------------------------------|------------------|-----|------|-------------| | Date | Ambient Temp (°C) | Fluid
Temp
(°C) | Relative
Humidity
(%) | Barometric
Pressure
(kPa) | Fluid Dielectric | SPC | Test | Task | | Mar 21 2022 | 26.7 | 24.8 | 20% | 102.5 | Х | Х | | 2450H | | Mar 22 2022 | 25.6 | 24.2 | 21% | 102.6 | | | Х | 2450H | | Mar 28 2022 | 23.0 | 20.7 | 31% | 100.6 | Х | Х | X | 5250H/5750H | | Mar 29 2022 | 22.6 | 20.3 | 27% | 101.7 | | | Χ | 5750H | | Mar 30 2022 | 21.5 | 20.7 | 27% | 101.4 | | | X | 5750H | | April 2 2022 | 21.4 | 20.0 | 25% | 101.0 | | | Χ | 5250H | | April 3 2022 | 21.8 | 20.6 | 22% | 101.2 | | | Х | 5250H | 45461740 R1.0 9 June 2022 ## 13.2 DUT Setup and Configuration ## **DUT Setup and Configuration** #### Overview The A04450 was evaluated for Body and Extremity SAR at the maximum conducted output power level, preset by the manufacturer, with a fully charged battery in unmodulated continuous transmit operation (Maximum duty cycle), as provided by the manufacturer with a unit set up and pre-installed with Compliance Test Mode. ## 13.3 DUT Positioning #### **DUT Positioning** #### Positioning The DUT Positioner was securely fastened to the Phantom Platform to ensure consistent positioning of the DUT for each test evaluation. #### **FACE Configuration** This device is not capable of voice communication and was not tested in the FACE configuration. #### **BODY Configuration** There are no Body-Worn and Audio Accessories for this device and was not evaluated for BODY configuration. #### **HEAD Configuration** This device is not intended to be held to the ear and was not tested in the HEAD configuration. #### **EXTREMITY** #### Configuration The DUT, was securely clamped into the device holder with the surface of the DUT normally in contact with the body (hand) in direct contact with the bottom of the phantom, or 0mm separation from the DUT to the phantom resembling that for which it was intended to be used. 45461740 R1.0 9 June 2022 ## 13.4 General Procedures and Report #### **General Procedures and Reporting** #### **General Procedures** The fluid dielectric parameters of the Active Tissue Simulating Liquid (TSL) were measured as described in this Section, recorded and entered into the DASY Measurement Server. Active meaning the TSL used during the SAR evaluation of the DUT. The temperature of the Active TSL was measured and recorded prior to performing a System Performance Check (SPC). An SPC was performed with the Active TSL prior to the start of the test series. The temperature of the Active TSL was measured throughout the day and the Active TSL temperature was maintained to $\pm 0.5^{\circ}$ C. The Active TSL temperature was maintained to within $\pm 2.0^{\circ}$ C throughout the test series. The liquid parameters shall be measured within 24 hours before the start of a test series and if it takes longer than 48 hours, the liquid parameters shall also be measured at the end of the test series. An Area Scan exceeding the length and width of the DUT projection was
performed and the locations of all maximas within 2dB of the Peak SAR recorded. A Zoom Scan centered over the Peak SAR location(s) was performed and the 1g and 10g SAR values recorded. The resolutions of the Area Scan and Zoom Scan are described in the Scan Resolution table(s) in this Section. A Power Reference Measurement was taken at the phantom reference point immediately prior to the Area Scan. A Power Drift measurement was taken at the phantom reference point immediately following the Zoom Scan to determine the power drift. A Z-Scan from the Maximum Distance to Phantom Surface to the fluid surface was performed following the power drift measurement. #### Reporting The 1g SAR, 10g SAR and power drift measurements are recorded in the SAR Measurement Summary tables in the SAR Measurement Summary Section of this report. The SAR values shown in the SAR column are the SAR values reported by the SAR Measurement Server with the DUT operating at maximum transmit duty cycle. These tables also include other information such as transmit channel and frequency, modulation, accessories tested and DUT-phantom separation distance. In the Scaling of Maximum Measured SAR Section of this report, the highest measured SAR in the BODY configuration, within the entire scope of this assessment, are, when applicable, scaled for Fluid Sensitivity, Manufacturer's Tune-Up Tolerance, Simultaneous Transmission and Drift. With the exception of Duty Cycle correction/compensation, SAR values are ONLY scaled up, not down. The final results of this scaling is the reported SAR which appears on the Cover Page of this report. 45461740 R1.0 9 June 2022 ## 13.5 Fluid Dielectric and Systems Performance Check #### Fluid Dielectric and Systems Performance Check #### Fluid Dielectric Measurement Procedure The fluid dielectric parameters of the Tissue Simulating Liquid (TSL) are measured using the Open-Ended Coax Method connected to an Agilent 8753ET Network Analyzer connected to a measurement server running Aprel Dielectric Property Measurement System. A frequency range of ± 100MHz for frequencies > 300MHz and ± 50MHz for frequencies ≤ 300MHz with frequency step size of 10MHz is used. The center frequency is centered around the SAR measurement probe's calibration point for that TSL frequency range. A calibration of the setup is performed using a short-open-deionized water (at 23°C in a 300ml beaker) method. A sample of the TSL is placed in a 300ml beaker and the open-ended coax is submerged approximately 8mm below the fluid surface in the approximate center of the beaker. A check of the setup is made to ensure no air is trapped under the open-ended coax. The sample of TSL is measured and compared to the FCC KDB 865664 targets for HEAD or BODY for the entire fluid measurement range. Fluid adjustment are made if the dielectric parameters are > 5% in range that the DUT is to be tested. If the adjustments fail to bring the parameters to ≤ 5% but are < 10%, the SAR Fluid Sensitivity as per IEC 62201-1 and FCC KDB 865664 are applied to the highest measured SAR. A TSL with dielectric parameters > 10% in the DUT test frequency range are not used. ## Systems Performance Check The fluid dielectric parameters of the Active TSL are entered into the DASY Measurement Server at each of the 10MHz step size intervals. Active meaning the TSL used during the SAR evaluation of the DUT. The DASY Measurement System will automatically interpolate the dielectric parameters for DUT test frequencies that fall between the 10MHz step intervals. A Systems Performance Check (SPC) is performed in accordance with IEEE 1528 "System Check" and FCC KDB 865664 "System Verification". A validation source, dipole or Confined Loop Antenna (CLA), is placed under the geometric center of the phantom and separated from the phantom in accordance to the validation source's Calibration Certificate data. A CW signal set to the frequency of the validate source's and SAR measurement probe's calibration frequency with a forward power set to the validation source's Calibration Certificate data power setting is applied to the validation source. An Area Scan is centered over the projection of the validation source's feed point and an Area Scan is taken. A Zoom Scan centered over the Peak SAR measurement of the Area Scan and the 1g and 10g SAR is measured. The measured 1g and 10g SAR is compared to the 1g and 10g SAR measurements from the validation source's Calibration Certificate. When required, the measured SAR is normalized to 1.0W and compared to the normalized SAR indicated on the validation source's Calibration Certificate. The SPC is considered valid when the measured and normalized SAR is 10% of the measured and normalize SAR of the validation source's Calibration Certificate. The fluid dielectric parameters of the Active TSL and SPC are repeated when the Active TSL has been in use for greater than 84 hours or if the Active TSL temperature has exceed \pm 1°C of the initial fluid analysis. #### 13.6 Scan Resolution 100MHz to 2GHz | Scan Resolution 100MHz to 2GHz | | | | | |---|------------|--|--|--| | Maximum distance from the closest measurement point to phantom surface: | 4 ± 1 mm | | | | | (Geometric Center of Probe Center) | 4 1 111111 | | | | | Maximum probe angle normal to phantom surface. | 5° ± 1° | | | | | (Flat Section ELI Phantom) | 5 11 | | | | | Area Scan Spatial Resolution ΔX, ΔY | 15 mm | | | | | Zoom Scan Spatial Resolution ΔX , ΔY | 7.5 mm | | | | | Zoom Scan Spatial Resolution ∆Z | 5 mm | | | | | (Uniform Grid) | 5 111111 | | | | | Zoom Scan Volume X, Y, Z | 30 mm | | | | | Phantom | ELI | | | | | Fluid Depth | 150 ± 5 mm | | | | An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima. A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR #### 13.7 Scan Resolution 2GHz to 3GHz | 45461740 R1.0 | |---------------| | 9 June 2022 | | Scan Resolution 2GHz to 3GHz | | | | | |---|--------------|--|--|--| | Maximum distance from the closest measurement point to phantom surface: | 4 ± 1 mm | | | | | (Geometric Center of Probe Center) | 4 1 1 111111 | | | | | Maximum probe angle normal to phantom surface. | 5° ± 1° | | | | | (Flat Section ELI Phantom) | 5° ± 1° | | | | | Area Scan Spatial Resolution ΔX, ΔΥ | 12 mm | | | | | Zoom Scan Spatial Resolution ΔX, ΔΥ | 5 mm | | | | | Zoom Scan Spatial Resolution ∆Z | 5 mm | | | | | (Uniform Grid) | 5 111111 | | | | | Zoom Scan Volume X, Y, Z | 30 mm | | | | | Phantom | ELI | | | | | Fluid Depth | 150 ± 5 mm | | | | An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima. A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR ## 13.8 Scan Resolution 5GHz to 6GHz | Scan Resolution 5GHz to 6GHz | | | | | |---|------------|--|--|--| | Maximum distance from the closest measurement point to phantom surface: | 4 ± 1 mm | | | | | (Geometric Center of Probe Center) | | | | | | Maximum probe angle normal to phantom surface. | 5° ± 1° | | | | | (Flat Section ELI Phantom) | 0 1 1 | | | | | Area Scan Spatial Resolution ΔX , ΔY | 10 mm | | | | | Zoom Scan Spatial Resolution ΔX , ΔY | 4 mm | | | | | Zoom Scan Spatial Resolution ∆Z | 2 mm | | | | | (Uniform Grid) | 2 111111 | | | | | Zoom Scan Volume X, Y, Z | 22 mm | | | | | Phantom | ELI | | | | | Fluid Depth | 100 ± 5 mm | | | | An Area Scan with an area extending beyond the device was used to locate the candidate maximas within 2dB of the global maxima. A Zoom Scan centered over the peak SAR location(s) determined by the Area Scan was used to determine the 1-gram and 10-gram peak spatial-average SAR # **14.0 MEASUREMENT UNCERTAINTIES** ## **Table 14.1 Measurement Uncertainty** | UNCERTAINTY BUDG | | | | | | | Stand | Stand | Vi | |---|--------------|-------|------|-----|------|-------|-------|--------------------|------------------| | Source of Uncertainty | IEEE
1528 | Toler | Prob | Div | Ci | Ci | Unct | Unct | or | | | Section | ±% | Dist | | | | ±% | ±% | V_{eff} | | Measurement System | | | | | (1g) | (10g) | (1g) | (10g) | | | EX3DV4 Probe Calibration** (k=1) | E.2.1 | 6.7 | Ν | 1 | 1 | 1 | 6.7 | 6.7 | 8 | | Axial Isotropy** (k=1) | E.2.2 | 0.6 | R | √3 | 0.7 | 0.7 | 0.2 | 0.2 | 8 | | Hemispherical Isotropy** (k=1) | E.2.2 | 3.2 | R | √3 | 0.7 | 0.7 | 1.3 | 1.3 | 8 | | Boundary Effect* | E.2.3 | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | 8 | | Linearity** (k=1) | E.2.4 | 0.5 | R | √3 | 1 | 1 | 0.3 | 0.3 | 8 | | System Detection Limits* | E.2.4 | 1.0 | R | √3 | 1 | 1 | 0.6 | 0.6 | 8 | | Modulation Response** (k=1) | E.2.5 | 8.3 | R | √3 | 1 | 1 | 4.8 | 4.8 | 8 | | Readout Electronics* | E.2.6 | 0.3 | N | 1 | 1 | 1 | 0.3 | 0.3 | ∞ | | Response Time* | E.2.7 | 0.8 | R | √3 | 1 | 1 | 0.5 | 0.5 | ∞ | | Integration Time* | E.2.8 | 2.6 | R | √3 | 1 | 1 | 1.5 | 1.5 | 8 | | RF Ambient Conditions - Noise | E.6.1 | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | 10 | | RF Ambient Conditions - Reflection | E.6.1 | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | 10 | | Probe Positioner Mechanical Tolerance* | E.6.2 | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | 8 | | Probe Positioning wrt Phantom Shell* | E.6.3 | 0.4 | R | √3 | 1 | 1 | 0.2 | 0.2 | 8 | | Post-processing* | E.5 | 2.0 | R | √3 | 1 | 1 | 1.2 | 1.2 | ∞ | | Test Sample Related | | | | | | | | | | | Test Sample Positioning | E.4.2 | 2.2 | N | 1 | 1 | 1 | 2.2 | 2.2 | 5 | | Device Holder Uncertainty* | E.4.1 | 3.6 | N | 1 | 1 | 1 | 3.6 | 3.6 | ∞ | | SAR Drift
Measurement ⁽²⁾ | E.2.9 | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | 8 | | SAR Power Scaling ⁽³⁾ | E.6.5 | 0.0 | R | √3 | 1 | 1 | 0.0 | 0.0 | 8 | | Phantom and Tissue Parameters | | | | | | | | | | | Phantom Uncertainty* | E.3.1 | 6.1 | R | √3 | 1 | 1 | 3.5 | 3.5 | ∞ | | SAR Correction Uncertainty | E.3.2 | 1.6 | N | 1 | 1 | 0.84 | 1.6 | 1.3 | ∞ | | Liquid Conductivity (measurement) | E.3.3 | 5.0 | Ν | 1 | 0.78 | 0.71 | 3.9 | 3.6 | 10 | | Liquid Permittivity (measurement) | E.3.3 | 5.0 | N | 1 | 0.23 | 0.26 | 1.2 | 1.3 | 10 | | Liquid Conductivity (Temperature) | E.3.2 | 0.4 | R | √3 | 0.78 | 0.71 | 0.2 | 0.2 | 10 | | Liquid Permittivity Temperature) | E.3.2 | 0.2 | R | √3 | 0.23 | 0.26 | 0.0 | 0.0 | 10 | | Effective Degrees of Freedom ⁽ | 1) | | | | | | | V _{eff} = | 114 | | Combined Standard Uncertainty | | | RSS | | | | 11.1 | 11.0 | | | Expanded Uncertainty (95% Confiden | ce Interval) | | k=2 | | | | 22.2 | 21.9 | | ⁽¹⁾ The Effective Degrees of Freedom is > 30 Therefore a coverage factor of k=2 represents an approximate confidence level of 95%. ⁽²⁾ The SAR Value is compensated for Drift ⁽³⁾ SAR Power Scaling not Required ^{*} Provided by SPEAG for DASY4 Celltech 45461740 R1.0 9 June 2022 ## **Table 14.2 Calculation of Degrees of Freedom** | Calculation of the Degrees and Effective Degrees of Freedom | | | | | | | |---|--------------------|--------------------------------|--|--|--|--| | | | uc ⁴ | | | | | | | v _{eff} = | m | | | | | | $v_i = n - 1$ | | $\sum \frac{c_i^A u_i^A}{v_i}$ | | | | | | | | <i>⊆ v_i i</i> =1 | | | | | | | | | | | | | ## 15.0 FLUID DIELECTRIC PARAMETERS ## Table 15.1 Fluid Dielectric Parameters 5250MHz HEAD TSL ******************** Aprel Laboratory Test Result for UIM Dielectric Parameter Sat 02/Apr/2022 11:04:54 Freq Frequency(GHz) FCC_eH FCC sH FCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test_e Epsilon of UIM Test s Sigma of UIM ***************** | Freq | FCC_e | Н | FCC_sl | H | Test_e Test_s | |------|--------|-------|--------|-------|---------------| | | 5.1500 | 36.04 | 4.60 | 33.59 | 4.61 | | | 5.1600 | 36.03 | 4.61 | 33.54 | 4.67 | | | 5.1700 | 36.02 | 4.62 | 33.19 | 4.64 | | | 5.1800 | 36.01 | 4.63 | 33.52 | 4.72 | | | 5.1900 | 36.00 | 4.64 | 33.50 | 4.74 | | | 5.2000 | 35.99 | 4.65 | 33.41 | 4.78 | | | 5.2100 | 35.97 | 4.67 | 33.34 | 4.70 | | | 5.2200 | 35.96 | 4.68 | 33.57 | 4.79 | | | 5.2300 | 35.95 | 4.69 | 33.52 | 4.75 | | | 5.2400 | 35.94 | 4.70 | 33.54 | 4.74 | | | 5.2500 | 35.93 | 4.71 | 33.58 | 4.84 | | | 5.2600 | 35.92 | 4.72 | 33.35 | 4.87 | | | 5.2700 | 35.91 | 4.73 | 33.43 | 4.80 | | | 5.2800 | 35.89 | 4.74 | 33.46 | 4.84 | | | 5.2900 | 35.88 | 4.75 | 33.33 | 4.84 | | | 5.3000 | 35.87 | 4.76 | 33.61 | 4.91 | | | 5.3100 | 35.86 | 4.77 | 33.82 | 4.94 | | | 5.3200 | 35.85 | 4.78 | 33.55 | 4.89 | | | 5.3300 | 35.84 | 4.79 | 33.44 | 4.88 | | | 5.3400 | 35.83 | 4.80 | 33.33 | 4.92 | | | 5.3500 | 35.81 | 4.81 | 33.00 | 4.91 | | FLUID DIELECTRIC PARAMETERS | | | | | | | | |-----------------------------|---|-------------|---------|------------|----------|---------------------------|------------------------| | Date: 2 Apr 202 | | 22 Fluid To | emp: 20 | Frequency: | 5250MHz | Tissue: | Head | | Freq (MHz) | | Test_e | Test_s | Target_e | Target_s | Deviation
Permittivity | Deviation Conductivity | | 5150.0000 | | 33.5900 | 4.6100 | 36.0400 | 4.60 | -6.80% | 0.22% | | 5160.0000 | | 33.5400 | 4.6700 | 36.0300 | 4.61 | -6.91% | 1.30% | | 5170.0000 | | 33.1900 | 4.6400 | 36.0200 | 4.62 | -7.86% | 0.43% | | 5180.0000 | * | 33.5200 | 4.7200 | 36.0100 | 4.63 | -6.91% | 1.94% | | 5190.0000 | | 33.5000 | 4.7400 | 36.0000 | 4.64 | -6.94% | 2.16% | | 5200.0000 | * | 33.4100 | 4.7800 | 35.9900 | 4.65 | -7.17% | 2.80% | | 5210.0000 | * | 33.3400 | 4.7000 | 35.9700 | 4.67 | -7.31% | 0.64% | | 5220.0000 | | 33.5700 | 4.7900 | 35.9600 | 4.68 | -6.65% | 2.35% | | 5230.0000 | * | 33.5200 | 4.7500 | 35.9500 | 4.69 | -6.76% | 1.28% | | 5240.0000 | | 33.5400 | 4.7400 | 35.9400 | 4.70 | -6.68% | 0.85% | | 5250.0000 | | 33.5800 | 4.8400 | 35.9300 | 4.71 | -6.54% | 2.76% | | 5260.0000 | | 33.3500 | 4.8700 | 35.9200 | 4.72 | -7.15% | 3.18% | | 5270.0000 | | 33.4300 | 4.8000 | 35.9100 | 4.73 | -6.91% | 1.48% | | 5280.0000 | | 33.4600 | 4.8400 | 35.8900 | 4.74 | -6.77% | 2.11% | | 5290.0000 | | 33.3300 | 4.8400 | 35.8800 | 4.75 | -7.11% | 1.89% | | 5300.0000 | | 33.6100 | 4.9100 | 35.8700 | 4.76 | -6.30% | 3.15% | | 5310.0000 | | 33.8200 | 4.9400 | 35.8600 | 4.77 | -5.69% | 3.56% | | 5320.0000 | | 33.5500 | 4.8900 | 35.8500 | 4.78 | -6.42% | 2.30% | | 5330.0000 | | 33.4400 | 4.8800 | 35.8400 | 4.79 | -6.70% | 1.88% | | 5340.0000 | | 33.3300 | 4.9200 | 35.8300 | 4.80 | -6.98% | 2.50% | | 5350.0000 | | 33.0000 | 4.9100 | 35.8100 | 4.81 | -7.85% | 2.08% | ^{*}Channel Frequency Tested #### Table 15.3 Fluid Dielectric Parameters 5750MHz HEAD TSL ***************** Aprel Laboratory Test Result for UIM Dielectric Parameter Mon 28/Mar/2022 11:28:33 Freq Frequency(GHz) FCC_eH FCC_sH FCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test_e Epsilon of UIM Test s Sigma of UIM **************** | Freq | FCC el | 4 | FCC sh | 4 | Test e Test s | |------|--------|-------|--------|-------|---------------| | 1109 | 5.6500 | | _ | 32.53 | | | | 5.6600 | | 5.13 | 32.47 | | | | 5.6700 | 35.45 | 5.14 | 32.43 | 5.27 | | | 5.6800 | 35.44 | 5.15 | 32.59 | 5.35 | | | 5.6900 | 35.43 | 5.16 | 32.32 | 5.30 | | | 5.7000 | 35.41 | 5.17 | 32.43 | 5.40 | | | 5.7100 | 35.40 | 5.18 | 32.25 | 5.37 | | | 5.7200 | 35.39 | 5.19 | 32.40 | 5.46 | | | 5.7300 | 35.38 | 5.20 | 32.58 | 5.41 | | | 5.7400 | 35.37 | | 32.06 | - | | | 5.7500 | | 5.22 | 32.45 | | | | 5.7600 | | 5.23 | 32.26 | | | | 5.7700 | 35.33 | | 32.30 | | | | 5.7800 | 35.32 | | 32.45 | | | | 5.7900 | | 5.26 | 32.43 | | | | 5.8000 | 35.30 | | 32.27 | | | | 5.8100 | 35.29 | | 32.12 | | | | 5.8200 | 35.28 | | 31.89 | | | | 5.8300 | 35.27 | | 32.35 | | | | 5.8400 | 35.25 | | 32.32 | | | | 5.8500 | 35.24 | 5.32 | 31.92 | 5.49 | | FLUID DIELECTRIC PARAMETERS | | | | | | | | | | |-----------------------------|---|---------|--------|----------|----------|---------------------------|---------------------------|--|--| | Date: 28 Ma | | | | | | | | | | | Freq (MHz) | | Test_e | Test_s | Target_e | Target_s | Deviation
Permittivity | Deviation
Conductivity | | | | 5650.0000 | | 32.5300 | 5.3500 | 35.4700 | 5.12 | -8.29% | 4.49% | | | | 5660.0000 | | 32.4700 | 5.3600 | 35.4600 | 5.13 | -8.43% | 4.48% | | | | 5670.0000 | | 32.4300 | 5.2700 | 35.4500 | 5.14 | -8.52% | 2.53% | | | | 5680.0000 | | 32.5900 | 5.3500 | 35.4400 | 5.15 | -8.04% | 3.88% | | | | 5690.0000 | | 32.3200 | 5.3000 | 35.4300 | 5.16 | -8.78% | 2.71% | | | | 5700.0000 | | 32.4300 | 5.4000 | 35.4100 | 5.17 | -8.42% | 4.45% | | | | 5710.0000 | | 32.2500 | 5.3700 | 35.4000 | 5.18 | -8.90% | 3.67% | | | | 5720.0000 | | 32.4000 | 5.4600 | 35.3900 | 5.19 | -8.45% | 5.20% | | | | 5730.0000 | | 32.5800 | 5.4100 | 35.3800 | 5.20 | -7.91% | 4.04% | | | | 5740.0000 | | 32.0600 | 5.4100 | 35.3700 | 5.21 | -9.36% | 3.84% | | | | 5745.0000 | * | 32.2550 | 5.4300 | 35.3650 | 5.22 | -8.79% | 4.12% | | | | 5750.0000 | | 32.4500 | 5.4500 | 35.3600 | 5.22 | -8.23% | 4.41% | | | | 5755.0000 | * | 32.3550 | 5.4450 | 35.3550 | 5.23 | -8.49% | 4.21% | | | | 5760.0000 | | 32.2600 | 5.4400 | 35.3500 | 5.23 | -8.74% | 4.02% | | | | 5770.0000 | | 32.3000 | 5.5000 | 35.3300 | 5.24 | -8.58% | 4.96% | | | | 5775.0000 | * | 32.3750 | 5.4800 | 35.3250 | 5.25 | -8.35% | 4.48% | | | | 5780.0000 | | 32.4500 | 5.4600 | 35.3200 | 5.25 | -8.13% | 4.00% | | | | 5785.0000 | * | 32.4400 | 5.4650 | 35.3150 | 5.26 | -8.14% | 4.00% | | | | 5790.0000 | П | 32.4300 | 5.4700 | 35.3100 | 5.26 | -8.16% | 3.99% | | | | 5800.0000 | П | 32.2700 | 5.4400 | 35.3000 | 5.27 | -8.58% | 3.23% | | | | 5810.0000 | | 32.1200 | 5.4900 | 35.2900 | 5.28 | -8.98% | 3.98% | | | | 5820.0000 | П | 31.8900 | 5.4100 | 35.2800 | 5.29 | -9.61% | 2.27% | | | | 5830.0000 | П | 32.3500 | 5.4400 | 35.2700 | 5.30 | -8.28% | 2.64% | | | | 5840.0000 | П | 32.3200 | 5.5000 | 35.2500 | 5.31 | -8.31% | 3.58% | | | | 5850.0000 | П | 31.9200 | 5.4900 | 35.2400 | 5.32 | -9.42% | 3.20% | | | ^{*}Channel Frequency Tested #### Table 15.4 Fluid Dielectric Parameters 2450MHz HEAD TSL *************** Aprel Laboratory Test Result for UIM Dielectric Parameter Mon 21/Mar/2022 15:20:35 Freq Frequency(GHz) FCC_eH FCC_sH FCC OET 65 Supplement C (June 2001) Limits for Head Epsilon FCC OET 65 Supplement C (June 2001) Limits for Head Sigma Test_e Epsilon of UIM Test s Sigma of UIM **************** | Freq | FCC (| еН | FCC s | Н | Test e Test s | |------|--------|-------|-------|-------|---------------| | • | 2.3500 | 39.38 | | 36.44 | | | | 2.3600 | 39.36 | 1.72 | 36.65 | 1.79 | | | 2.3700 | 39.34 | 1.73 | 36.71 | 1.83 | | | 2.3800 | 39.32 | 1.74 | 36.74 | 1.80 | | | 2.3900 | 39.31 | 1.75 | 36.82 | 1.80 | | | 2.4000 | 39.29 | 1.76 | 36.73 | 1.81 | | | 2.4100 | 39.27 | 1.76 | 36.67 | 1.80 | | | 2.4200 | 39.25 | 1.77 | 36.68 | 1.81 | | | 2.4300 | 39.24 | 1.78 | 36.57 | 1.83 | | | 2.4400 | 39.22 | 1.79 | 36.57 | 1.83 | | | 2.4500 | 39.20 | 1.80 | 36.51 | 1.84 | | | 2.4600 | 39.19 | 1.81 | 36.54 | 1.86 | | | 2.4700 | 39.17 | 1.82 | 36.48 | 1.90 | | | 2.4800 | 39.16 | 1.83 | 36.61 | 1.87 | | | 2.4900 | 39.15 | 1.84 | 36.55 | 1.92 | | | 2.5000 | 39.14 | 1.85 | 36.60 | 1.93 | | | 2.5100 | 39.12 | 1.87 | 36.58 | 1.93 | | | 2.5200 | 39.11 | 1.88 | 36.40 | 1.94 | | | 2.5300 | 39.10 | 1.89 | 36.43 | 1.94 | | | 2.5400 | 39.09 | 1.90 | 36.38 | 1.93 | | | 2.5500 | 39.07 | 1.91 | 36.28 | 1.93 | | | FLUID DIELECTRIC PARAMETERS | | | | | | | | | | | |-------------|-----------------------------|-------------|-----------|------------|----------|---------------------------|---------------------------|--|--|--|--| | Date: 21 Ma | r
20 | 22 Fluid Te | emp: 24.8 | Frequency: | 2450MHz | Tissue: | Head | | | | | | Freq (MHz) | | Test_e | Test_s | Target_e | Target_s | Deviation
Permittivity | Deviation
Conductivity | | | | | | 2350.0000 | | 36.4400 | 1.7800 | 39.3800 | 1.71 | -7.47% | 4.09% | | | | | | 2360.0000 | | 36.6500 | 1.7900 | 39.3600 | 1.72 | -6.89% | 4.07% | | | | | | 2370.0000 | | 36.7100 | 1.8300 | 39.3400 | 1.73 | -6.69% | 5.78% | | | | | | 2380.0000 | | 36.7400 | 1.8000 | 39.3200 | 1.74 | -6.56% | 3.45% | | | | | | 2390.0000 | | 36.8200 | 1.8000 | 39.3100 | 1.75 | -6.33% | 2.86% | | | | | | 2400.0000 | | 36.7300 | 1.8100 | 39.2900 | 1.76 | -6.52% | 2.84% | | | | | | 2402.0000 | * | 36.7180 | 1.8080 | 39.2860 | 1.76 | -6.54% | 2.73% | | | | | | 2410.0000 | | 36.6700 | 1.8000 | 39.2700 | 1.76 | -6.62% | 2.27% | | | | | | 2420.0000 | | 36.6800 | 1.8100 | 39.2500 | 1.77 | -6.55% | 2.26% | | | | | | 2430.0000 | | 36.5700 | 1.8300 | 39.2400 | 1.78 | -6.80% | 2.81% | | | | | | 2437.0000 | * | 36.5700 | 1.8300 | 39.2260 | 1.79 | -6.77% | 2.41% | | | | | | 2440.0000 | | 36.5700 | 1.8300 | 39.2200 | 1.79 | -6.76% | 2.23% | | | | | | 2450.0000 | | 36.5100 | 1.8400 | 39.2000 | 1.80 | -6.86% | 2.22% | | | | | | 2460.0000 | | 36.5400 | 1.8600 | 39.1900 | 1.81 | -6.76% | 2.76% | | | | | | 2470.0000 | | 36.4800 | 1.9000 | 39.1700 | 1.82 | -6.87% | 4.40% | | | | | | 2490.0000 | | 36.5500 | 1.9200 | 39.1500 | 1.84 | -6.64% | 4.35% | | | | | | 2500.0000 | | 36.6000 | 1.9300 | 39.1400 | 1.85 | -6.49% | 4.32% | | | | | | 2510.0000 | | 36.5800 | 1.9300 | 39.1200 | 1.87 | -6.49% | 3.21% | | | | | | 2520.0000 | | 36.4000 | 1.9400 | 39.1100 | 1.88 | -6.93% | 3.19% | | | | | | 2530.0000 | | 36.4300 | 1.9400 | 39.1000 | 1.89 | -6.83% | 2.65% | | | | | | 2540.0000 | | 36.3800 | 1.9300 | 39.0900 | 1.90 | -6.93% | 1.58% | | | | | | 2550.0000 | | 36.2800 | 1.9300 | 39.0700 | 1.91 | -7.14% | 1.05% | | | | | ^{*}Channel Frequency Tested ## 16.0 SYSTEM VERIFICATION TEST RESULTS Table 16.1 System Verification Results 5250MHz HEAD TSL | System Verification Test Results | | | | | | | | | | |----------------------------------|---------------------|-----------------------|----------------------------|--------------------------|---------------------------|--|--|--|--| | D | ate | Frequency | quency Validation Source | | | | | | | | Da | ate | (MHz) | P | /N | S/N | | | | | | April 2 | 2 2022 | 5250 | D5G | HzV2 | 1031 | | | | | | Fluid Type | Fluid
Temp
°C | Ambient
Temp
°C | Ambient
Humidity
(%) | Forward
Power
(mW) | Source
Spacing
(mm) | | | | | | Head | 20.0 | 21 | 25% | 50 | 10 | | | | | | | Fluid Parameters | | | | | | | | | | | Permittivity | | Conductivity | | | | | | | | Measured | Target | Deviation | Measured | Target | Deviation | | | | | | 33.58 | 35.93 | -6.54% | 4.84 | 4.71 | 2.76% | | | | | | | | Measur | ed SAR | | | | | | | | | 1 gram | | | 10 gram | | | | | | | Measured | Target | Deviation | Measured | Target | Deviation | | | | | | 3.93 | 3.97 | -1.09% | 1.19 | 1.15 | 3.88% | | | | | | | Me | asured SAR N | ormalized to 1. | 0W | | | | | | | | 1 gram | | | 10 gram | | | | | | | Normalized | Target | Deviation | Normalized | Target | Deviation | | | | | | 78.60 | 79.47 | -1.09% | 23.80 | 22.91 | 3.88% | | | | | Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224, IEC 62209-1 and IEC 62209-1528. The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer. The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value. The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source. ## Table 16.2 System Verification Results 5750MHz HEAD TSL | System Verification Test Results | | | | | | | | | |----------------------------------|---------------------|-----------------------|----------------------------|--------------------------|---------------------------|--|--|--| | D | ate | Frequency | Validation Source | | | | | | | Da | ate | (MHz) | P | /N | S/N | | | | | Mar 2 | 8 2022 | 5750 | D5G | HzV2 | 1031 | | | | | Fluid Type | Fluid
Temp
°C | Ambient
Temp
°C | Ambient
Humidity
(%) | Forward
Power
(mW) | Source
Spacing
(mm) | | | | | Head | 20.7 | 23 | 31% | 50 | 10 | | | | | | | Fluid Pa | rameters | | | | | | | | Permittivity | | | Conductivity | | | | | | Measured | Target | Deviation | Measured | Target | Deviation | | | | | 32.45 | 35.36 | -8.23% | 5.45 | 5.22 | 4.41% | | | | | | | Measur | ed SAR | | | | | | | | 1 gram | | | 10 gram | | | | | | Measured | Target | Deviation | Measured | Target | Deviation | | | | | 4.05 | 3.78 | 7.23% | 1.16 | 1.10 | 5.41% | | | | | | Me | asured SAR N | ormalized to 1. | 0W | | | | | | | 1 gram | | | 10 gram | | | | | | Normalized | Target | Deviation | Normalized | Target | Deviation | | | | | 81.00 | 75.54 | 7.23% | 23.20 | 22.01 | 5.41% | | | | Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224, IEC 62209-1 and IEC 62209-1528. The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer. The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value. The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source. Celltech Testing and Engineering Services Lab ## Table 16.3 System Verification Results 2450MHz HEAD TSL | System Verification Test Results | | | | | | | | | |----------------------------------|---------------------|-----------------------|----------------------------|--------------------------|---------------------------|--|--|--| | D | ate | Frequency | Validation Source | | | | | | | Da | ate | (MHz) | P | /N | S/N | | | | | Mar 2 | 1 2022 | 2450 | D24 | 50V2 | 825 | | | | | Fluid Type | Fluid
Temp
°C | Ambient
Temp
°C | Ambient
Humidity
(%) | Forward
Power
(mW) | Source
Spacing
(mm) | | | | | Head | 24.8 | 27 | 20% | 250 | 10 | | | | | | Fluid Parameters | | | | | | | | | | Permittivity | | | Conductivity | | | | | | Measured | Target | Deviation | Measured | Target | Deviation | | | | | 36.51 | 39.20 | -6.86% | 1.84 | 1.80 | 2.22% | | | | | | | Measur | ed SAR | | | | | | | | 1 gram | | | 10 gram | | | | | | Measured | Target | Deviation | Measured | Target | Deviation | | | | | 14.00 | 13.18 | 6.22% | 6.46 | 6.01 | 7.58% | | | | | | Me | asured SAR N | ormalized to 1. | 0W | | | | | | | 1 gram | | | 10 gram | | | | | | Normalized | Target | Deviation | Normalized | Target | Deviation | | | | | 56.00 | 52.72 | 6.22% | 25.84 | 24.02 | 7.60% | | | | Prior to the SAR evaluations, system checks were performed on the planar section of the phantom and a SPEAG validation dipole in accordance with the procedures described in IEEE 1528-2013, FCC KDB 846224, IEC 62209-1 and IEC 62209-1528. The dielectric parameters of the simulated tissue mixture were measured prior to the system performance check using a Dielectric Probe Kit and a Network Analyzer. The forward power was applied to the dipole and the system was verified to a tolerance of +10% from the system manufacturer's dipole calibration target SAR value. The forward power applied was same forward power applied by the calibration lab during the calibration of this validation source. Test Report Issue Date: 9 June 2022 45461740 R1.0 # 17.0 SYSTEM VALIDATION SUMMARY # **Table 17.1 System Validation Summary** | | System Validation Summary | | | | | | | | | | | | |-----------|---------------------------|--------|-------|---|------|--------------------|-------------|--------------|-------------|-------------|----------|--| | Frequency | Validation | Probe | Probe | e Validation Source Tissue Dielectrics Validation | | Tissue Dielectrics | | | | lation Resu | ults | | | (MHz) | Date | Model | S/N | Source | S/N | Tissue | Permitivity | Conductivity | Sensitivity | Linearity | Isotropy | | | 2450 | 29-Jun-21 | EX3DV4 | 3600 | D2450V2 | 825 | Head | 38.53 | 1.85 | Pass | Pass | Pass | | | 5250 | 25-May-21 | EX3DV4 | 3600 | D5GHzV2 | 1031 | Head | 33.74 | 4.9 | Pass | Pass | Pass | | | 5750 | 28-May-21 | EX3DV4 | 3600 | D5GHzV2 | 1031 | Head | 34.99 | 5.10 | Pass | Pass | Pass | | # **18.0 MEASUREMENT SYSTEM SPECIFICATIONS** # **Table 18.1 Measurement System Specifications** | Measurement System Specification | | | | | | | |----------------------------------|---|--|--|--|--|--| | Specifications | | | | | | | | Positioner | Stäubli Unimation Corp. Robot Model: TX90XL | | | | | | | Repeatability | +/- 0.035 mm | | | | | | | No. of axis | 6.0 | | | | | | | Data Acquisition Electronic | (DAE) System | | | | | | | Cell Controller | | | | | | | | Processor | Intel(R) Core(TM) i7-7700 | | | | | | | Clock Speed | 3.60 GHz | | | | | | | Operating System | Windows 10 Professional | | | | | | | Data Converter | | | | | | | | Features | Signal Amplifier, multiplexer, A/D converter, and control logic | | | | | | | Coffee | Measurement Software: DASY6, V 6.4.0.12171 / DASY52 V52.10.0.1446 | | | | | | | Software | Postprocessing Software: SEMCAD X, V14.6.10(Deployment Build) | | | | | | | Connecting Lines | Optical downlink for data and status info., Optical uplink for commands and clock | | | | | | | DASY Measurement
Server | | | | | | | | Function | Real-time data evaluation for field measurements and surface detection | | | | | | | Hardware | Intel ULV Celeron CPU 400 MHz; 128 MB chip disk; 128 MB RAM | | | | | | | Connections | COM1, COM2, DAE, Robot, Ethernet, Service Interface | | | | | | | E-Field Probe | | | | | | | | Model | EX3DV4 | | | | | | | Serial No. | 3600 | | | | | | | Construction | Triangular core fiber optic detection system | | | | | | | Frequency | 10 MHz to 6 GHz | | | | | | | Linearity | ±0.2 dB (30 MHz to 3 GHz) | | | | | | | Phantom | | | | | | | | Туре | ELI Elliptical Planar Phantom | | | | | | | Shell Material | Fiberglass | | | | | | | Thickness | 2mm +/2mm | | | | | | | Volume | > 30 Liter | | | | | | | | Measurement System Specification | | | | | | | | |-----------------|---|----------------------|--|--|--|--|--|--| | | Probe Specification | | | | | | | | | | Symmetrical design with triangular core; | | | | | | | | | Construction: | Built-in shielding against static charges | | | | | | | | | | PEEK enclosure material (resistant to organic solvents, glycol) | | | | | | | | | | In air from 10 MHz to 2.5 GHz | | | | | | | | | Calibration: | In head simulating tissue at frequencies of 900 MHz | | | | | | | | | | and 1.8 GHz (accuracy \pm 8%) | | | | | | | | | Frequency: | 10 MHz to > 6 GHz; Linearity: ± 0.2 dB (30 MHz to 3 GHz) | a de | | | | | | | | Directivity: | ± 0.2 dB in head tissue (rotation around probe axis) | | | | | | | | | Directivity. | ± 0.4 dB in head tissue (rotation normal to probe axis) | | | | | | | | | Dynamic Range: | 5 μ W/g to > 100 mW/g; Linearity: \pm 0.2 dB | | | | | | | | | Surface Detect: | ±0.2 mm repeatability in air and clear liquids over diffuse reflecting surfaces | | | | | | | | | | Overall length: 330 mm; Tip length: 16 mm; | | | | | | | | | Dimensions: | Body diameter: 12 mm; Tip diameter: 6.8 mm | | | | | | | | | | Distance from probe tip to dipole centers: 2.7 mm | | | | | | | | | Application: | General dosimetry up to 3 GHz; Compliance tests of mobile phone | EX3DV4 E-Field Probe | | | | | | | | | Phantom Specification | | | | | | | | The ELI V5.0 phantom is an elliptical planar fiberglass shell phantom with a shell thickness of 2.0mm +/- .2mm at the planar area. This phantom conforms to OET Bulletin 65, Supplement C, IEEE 1528-2013, IEC 62209-1 and IEC 62209-2. **ELI Phantom** #### **Device Positioner Specification** The DASY device positioner has two scales for device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear openings). The plane between the ear openings and the mouth tip has a rotation angle of 65°. The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. **Device Positioner** # **19.0 TEST EQUIPMENT LIST** **Table 19.1 Equipment List and Calibration** | Т | Test Equipment List | | | | | | | | | |---|---------------------|-------------|--------------------|--------------------|--|--|--|--|--| | DESCRIPTION | ASSET
NO. | SERIAL NO. | DATE
CALIBRATED | CALIBRATION
DUE | | | | | | | Schmid & Partner DASY 6 System | - | - | - | - | | | | | | | -DASY Measurement Server | 00158 | 1078 | CNR | CNR | | | | | | | -Robot | 00046 | 599396-01 | CNR | CNR | | | | | | | -DAE4 | 00019 | 353 | 22-Apr-21 | 22-Apr-22 | | | | | | | -EX3DV4 E-Field Probe | 00213 | 3600 | 20-Apr-21 | 20-Apr-22 | | | | | | | -CLA 30 Validation Dipole | 00300 | 1005 | 18-Mar-20 | 18-Mar-23 | | | | | | | -CLA150 Validation Dipole | 00251 | 4007 | 18-Mar-20 | 18-Mar-23 | | | | | | | -D450V3 Validation Dipole | 00221 | 1068 | 27-Apr-21 | 27-Apr-24 | | | | | | | -D750V3 Validation Dipole | 00238 | 1061 | 21-Mar-19 | 21-Mar-22 | | | | | | | -D835V2 Validation Dipole | 00217 | 4D075 | 27-Apr-21 | 27-Apr-24 | | | | | | | -D900V2 Validation Dipole | 00020 | 54 | 16-Mar-20 | 16-Mar-23 | | | | | | | ALS-D-01640-S-2 | 00299 | 207-00102 | 15-Dec-20 | 15-Dec-23 | | | | | | | -D1800V2 Validation Dipole | 00222 | 247 | 16-Mar-20 | 16-Mar-23 | | | | | | | -D1900V2 Validation Dipole | 00218 | 5d107 | 16-Mar-20 | 16-Mar-23 | | | | | | | ALS-D-2300-S-2 | 00328 | 218-00201 | 26-Feb-19 | 26-Feb-22 | | | | | | | -D2450V2 Validation Dipole | 00219 | 825 | 24-Apr-21 | 24-Apr-24 | | | | | | | ALS-D-2600-S-2 | 00327 | 225-00926 | 26-Feb-19 | 26-Feb-22 | | | | | | | -D5GHzV2 Validation Dipole | 00126 | 1031 | 27-Apr-21 | 27-Apr-24 | | | | | | | ELI Phantom | 00247 | 1234 | CNR | CNR | | | | | | | SAM Phantom | 00154 | 1033 | CNR | CNR | | | | | | | HP 85070C Dielectric Probe Kit | 00033 | none | CNR | CNR | | | | | | | Gigatronics 8652A Power Meter | 00007 | 1835801 | 26-Mar-19 | 26-Mar-22 | | | | | | | Gigatronics 80701A Power Sensor | 00186 | 1837002 | COU | COU | | | | | | | Gigatronics 80334A Power Sensor | 00237 | 1837001 | 26-Mar-19 | 26-Mar-22 | | | | | | | HP 8753ET Network Analyzer | 00134 | US39170292 | 6-Jan-21 | 6-Jan-24 | | | | | | | Rohde & Schwarz SMR20 Signal Generator | 00006 | 100104 | 11-Aug-20 | 11-Aug-23 | | | | | | | Amplifier Research 10W1000C Power Amplifier | 00041 | 27887 | CNR | CNR | | | | | | | Amplifier Research 5S1G4 Power Amplifier | 00106 | 26235 | CNR | CNR | | | | | | | Narda Directional Coupler 3020A | 00064 | - | CNR | CNR | | | | | | | Kangaroo VWR Humidity/Thermometer | 00334 | 192385455 | 5-Aug-19 | 6-Aug-22 | | | | | | | Digital Multi Meter DMR-1800 | 00250 | TE182 | 23-Jun-20 | 23-Jun-23 | | | | | | | Bipolar Power Supply 6299A | 00086 | 1144A02155 | CNR | CNR | | | | | | | DC-18G 10W 30db Attenuator | 00102 | - | COU | COU | | | | | | | R&S FSP40 Spectrum Analyzer | 00241 | 100500 | 9-Aug-21 | 9-Aug-24 | | | | | | | HP 8566B Spectrum Analyzer | 00051 | 2747A055100 | 29-Jun-20 | 29-Jun-23 | | | | | | | RF Cable-SMA | 00311 | - | CNR | CNR | | | | | | | HP Calibration Kit | 00145 | - | CNR | CNR | | | | | | CNR = Calibration Not Required COU = Calibrate on Use # 20.0 FLUID COMPOSITION ## Table 20.1 Fluid Composition 2450MHz HEAD TSL | Tissue Simula | 2450MHz Body | | | | | | | | |---------------|---|--|--|--|--|--|--|--| | | Component by Percent Weight | | | | | | | | | Water | Water Glycol Salt ⁽¹⁾ HEC ⁽²⁾ Bac | | | | | | | | | 69.98 | 69.98 30.0 0.02 0.0 | | | | | | | | - (1) Non-lodinized - (2) HydroxyEthyl-Cellulose: Sigma-Aldrich P/N 54290-500g - (3) Dow Chemical Dowicil 75 Antimicrobial Perservative ## Table 20.2 Fluid Composition 5250, 5750MHz HEAD TSL The 5GHz Head TSL is a SPEAG proprietary broad band fluid: Type: **HBBL3500-5500V2** Batch number: 131210-2 P/N: SL AAH 502 AC # **END OF REPORT** 45461740 R1.0 9 June 2022 # **APPENDIX A - SYSTEM VERIFICATION PLOTS** DUT: Dipole 2450 MHz D2450V2; Type: D2450V2; Serial: D2450V2 - SN:825 Procedure Name: SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg_ 2 2 Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; $\sigma = 1.84$ S/m; $\epsilon_r = 36.51$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Date/Time: 3/21/2022 3:49:19 PM #### **DASY5** Configuration: Probe: EX3DV4 - SN3600; ConvF(6.45, 6.45, 6.45) @ 2450 MHz; Calibrated: 4/28/2021 - Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn353; Calibrated: 4/22/2021 - Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474) SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg_ 2 2/Area Scan (4x9x1): Measurement grid: dx=12mm, dy=12mm Maximum value of SAR (measured) = 12.7 W/kg SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg_ 2 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 93.24 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 29.9 W/kg SAR(1 g) = 14 W/kg; SAR(10 g) = 6.46 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 48.1% Maximum value of SAR (measured) = 15.9 W/kg SPC/SPC 2450H_Input=250mw, Target=[11.86]13.18][14.50]W/kg_ 2 2/Z Scan (1x1x22): Measurement grid: dx=20mm, dy=20mm, dz=5mm Penetration depth = 6.947 (6.613, 7.103) [mm] Maximum value of SAR (interpolated) = 28.0 W/kg 45461740 R1.0 9 June 2022 DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1031 Procedure Name: SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 3 Communication System: UID 0, CW (0); Frequency: 5250 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5250 MHz; $\sigma = 4.84$ S/m; $\epsilon_r = 33.58$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Date/Time: 4/2/2022 11:50:11 AM #### **DASY5** Configuration: - Probe: EX3DV4 SN3600; ConvF(4.41, 4.41, 4.41) @ 5250 MHz; Calibrated: 4/28/2021 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn353; Calibrated: 4/22/2021 - Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474) #### SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 3/Area Scan (4x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 6.89 W/kg ## SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 3/Zoom Scan (8x8x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 29.66 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 15.3 W/kg SAR(1 g) = 3.93 W/kg; SAR(10 g) = 1.19 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 54.9% Maximum value of SAR (measured) = 7.89 W/kg ## SPC/SPC 5250H Input=47 mw, Target= [3.36[3.74][4.11] Target=79.47W/kg@1000mw 3/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm Penetration
depth = n/a (n/a, 3.302) [mm] Maximum value of SAR (interpolated) = 8.77 W/kg 45461740 R1.0 9 June 2022 DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1031 Procedure Name: SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2 Communication System: UID 0, CW (0); Frequency: 5750 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5750 MHz; σ = 5.45 S/m; ε_r = 32.45; ρ = 1000 kg/m³ Phantom section: Flat Section Date/Time: 3/28/2022 12:41:20 PM #### **DASY5** Configuration: - Probe: EX3DV4 SN3600; ConvF(4.06, 4.06, 4.06) @ 5750 MHz; Calibrated: 4/28/2021 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE4 Sn353; Calibrated: 4/22/2021 - Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474) #### SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2/Area Scan (4x7x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 8.39 W/kg ## SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2/Zoom Scan (7x7x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 26.70 V/m; Power Drift = 0.13 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 4.05 W/kg; SAR(10 g) = 1.16 W/kg Smallest distance from peaks to all points 3 dB below = 7.9 mm Ratio of SAR at M2 to SAR at M1 = 51.1% Maximum value of SAR (measured) = 8.66 W/kg ## SPC/SPC 5750H Input=50mw, Target=[3.40][3.78][4.16], Target=75.54W/kg@1000 mw 2/Z Scan (1x1x22): Measurement grid: dx=20mm, dy=20mm, dz=5mm Penetration depth = 2.884 (3.115, 2.791) [mm] Maximum value of SAR (interpolated) = 10.4 W/kg 45461740 R1.0 ate: 9 June 2022 #### APPENDIX B - MEASUREMENT PLOTS OF MAXIMUM MEASURED SAR #### Plot E4 DUT: A04450/AA4450 - Top/Back; Type: Transmitter; Serial: Sample Prototype Procedure Name: E4 - A04450/AA4450, Top Edge 12mm, 5.5mbps Communication System: UID 0, CW (0); Frequency: 2437 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.83 \text{ S/m}$; $\epsilon_r = 36.57$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Date/Time: 3/22/2022 2:08:28 PM #### **DASY5** Configuration: Probe: EX3DV4 - SN3600; ConvF(6.45, 6.45, 6.45) @ 2437 MHz; Calibrated: 4/28/2021 - Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn353; Calibrated: 4/22/2021 - Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474) 2450H/E4 - A04450/AA4450, Top Edge 12mm, 5.5mbps/Area Scan (19x6x1): Measurement grid: dx=12mm, dy=12mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.168 W/kg **2450H/E4 - A04450/AA4450**, **Top Edge 12mm, 5.5mbps/Zoom Scan (10x9x6)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 4.178 V/m; Power Drift = 0.84 dB Peak SAR (extrapolated) = 0.392 W/kg SAR(1 g) = 0.144 W/kg; SAR(10 g) = 0.071 W/kg Smallest distance from peaks to all points 3 dB below = 5.8 mm Ratio of SAR at M2 to SAR at M1 = 63.1% Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.251 W/kg 2450H/E4 - A04450/AA4450, Top Edge 12mm, 5.5mbps/Z Scan (1x1x19): Measurement grid: dx=20mm, dy=20mm, dz=20mm Info: Interpolated medium parameters used for SAR evaluation. Penetration depth = n/a (n/a, 8.737) [mm] Maximum value of SAR (interpolated) = 0.0998 W/kg 45461740 R1.0 9 June 2022 #### Plot E12 DUT: A04450/AA4450 - Top/Back; Type: Transmitter; Serial: Sample Prototype Procedure Name: E12- A04450/AA4450 , Top Edge 5180MHz OFDM-54 BW 20MHz Communication System: UID 0, CW (0); Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz; $\sigma = 4.72$ S/m; $\epsilon_r = 33.52$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Date/Time: 4/2/2022 1:58:29 PM ## DASY5 Configuration: - Probe: EX3DV4 SN3600; ConvF(4.41, 4.41, 4.41) @ 5180 MHz; Calibrated: 4/28/2021 - Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn353; Calibrated: 4/22/2021 - Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474) # **5250H/E12- A04450/AA4450**, **Top Edge 5180MHz OFDM-54 BW 20MHz/Area Scan (11x7x1):** Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.154 W/kg #### 5250H/E12- A04450/AA4450, Top Edge 5180MHz OFDM-54 BW 20MHz/Zoom Scan (13x10x6)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 2.000 V/m; Power Drift = 2.67 dB Peak SAR (extrapolated) = 0.466 W/kg ## SAR(1 g) = 0.126 W/kg; SAR(10 g) = 0.048 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 52.8% Maximum value of SAR (measured) = 0.298 W/kg # **5250H/E12- A04450/AA4450**, **Top Edge 5180MHz OFDM-54 BW 20MHz/Z Scan (1x1x19):** Measurement grid: dx=20mm, dy=20mm, dz=20mm Penetration depth = n/a (n/a, 6.612) [mm] Maximum value of SAR (interpolated) = 0.0212 W/kg 45461740 R1.0 9 June 2022 ## Plot B10 DUT: A04450/AA4450 - Top/Back; Type: Transmitter; Serial: Sample Prototype Procedure Name: B10-A04450/AA4450, Back Side-R,5180MHz OFDM-54 BW 20 MHz,WIFI Communication System: UID 0, CW (0); Frequency: 5180 MHz; Duty Cycle: 1:1 Medium parameters used: f = 5180 MHz; $\sigma = 4.72$ S/m; $\epsilon_r = 33.52$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Date/Time: 4/2/2022 12:52:05 PM #### **DASY5** Configuration: - Probe: EX3DV4 SN3600; ConvF(4.41, 4.41, 4.41) @ 5180 MHz; Calibrated: 4/28/2021 - Sensor-Surface: 4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection), Sensor-Surface: 4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn353; Calibrated: 4/22/2021 - Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1234 - Measurement SW: DASY52, Version 52.10 (3); SEMCAD X Version 14.6.13 (7474) # **5250H/B10-A04450/AA4450**, Back Side-R,5180MHz OFDM-54 BW 20 MHz,WIFI/Area Scan (8x11x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.294 W/kg #### 5250H/B10-A04450/AA4450, Back Side-R,5180MHz OFDM-54 BW 20 MHz,WIFI/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 5.677 V/m; Power Drift = 0.29 dB Peak SAR (extrapolated) = 0.759 W/kg SAR(1 g) = 0.223 W/kg; SAR(10 g) = 0.090 W/kg Smallest distance from peaks to all points 3 dB below = 13.6 mm Ratio of SAR at M2 to SAR at M1 = 21.6% Maximum value of SAR (measured) = 0.487 W/kg # **5250H/B10-A04450/AA4450, Back Side-R,5180MHz OFDM-54 BW 20 MHz,WIFI/Z Scan (1x1x19):** Measurement grid: dx=20mm, dy=20mm, dz=20mm Penetration depth = n/a (n/a, 13.62) [mm] Maximum value of SAR (interpolated) = 0.0262 W/kg