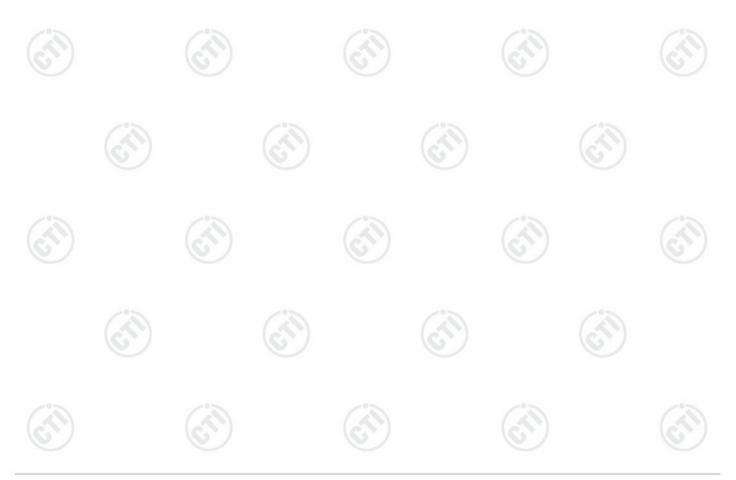

1 Content	
1 CONTENT	2
2 VERSION	
3 TEST SUMMARY	
4 GENERAL INFORMATION	
 4.1 CLIENT INFORMATION	5
5 EQUIPMENT LIST	9
6 TEST RESULTS AND MEASUREMENT DATA	
 6.1 ANTENNA REQUIREMENT 6.2 CONDUCTED EMISSIONS 6.3 MAXIMUM CONDUCTED OUTPUT POWER 6.4 DTS BANDWIDTH 6.5 MAXIMUM POWER SPECTRAL DENSITY	14 17 18 19 20
7 APPENDIX BLUETOOTH LE	
8 PHOTOGRAPHS OF TEST SETUP	
9 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	

2 Version

	Version No.	Date	6	Description	
	00	Apr. 15, 2025		Original	
		200	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12
<u>(``</u>)			d ?)	(\mathcal{S})	6



3 Test Summary

Page 4 of 45

Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207		
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	

4 General Information

4.1 Client Information

Applicant:	eInfochips Inc
Address of Applicant:	181 Metro Drive Suite 170 San Jose California United States 95110
Manufacturer:	eInfochips Inc
Address of Manufacturer:	181 Metro Drive Suite 170 San Jose California United States 95110
Factory:	eInfochips Inc
Address of Factory:	11 A/B, Chandra Colony, Behind Cargo Motors, Office, C.G.Road, Ellisbridge

4.2 General Description of EUT

Product Name:	Service Module 2.0	$\langle \mathcal{O}^{*} \rangle$	(\mathcal{G}^{*})	
Model No.:	Service Module 2.0		\smile	
Trade mark:	TBD			
Product Type:	Mobile Portable	☑ Fixed Location		13
Operation Frequency:	2402MHz~2480MHz	(\mathcal{C})		6
Modulation Type:	GFSK	\sim		\sim
Transfer Rate:	⊠ 1Mbps ⊠ 2Mbps			
Number of Channel:	40	(3)	13	
Antenna Type:	Ceramic Antenna	(\mathcal{A})	(\sim)	
Antenna Gain:	1dBi		U	
Power Supply:	DC 5V			
Test Voltage:	DC 5V	~>		10
Sample Received Date:	Oct. 14, 2024	(25)		(\mathcal{A})
Sample tested Date:	Oct. 14, 2024 to Dec. 29, 2	024		J

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

4.3 Test Configuration

EUT Test Software	e Settings:				
Test Software: Esp32.		exe	5)	(25)	
EUT Power Grade:		Default (Power level is built-in set parameters and cannot be change selected)			
Use test software to transmitting of the I	•	ency, the middle frequer	ncy and the highest f	requency keep	
Test Mode	ode Modulation Rate	Channel	Frequency(MHz)		
Mode a	GFSK	1Mbps	CH0	2402	
Mode b	GFSK	1Mbps	CH19	2440	
Mode c	Mode c GFSK 1Mbps		CH39	2480	
Mode d	ode d GFSK 2Mbps		СН0	2402	
Mode e	Mode e GFSK 2Mbp		CH19	2440	
Mode f	GFSK	2Mbps	CH39	2480	

Page 7 of 45

4.4 Test Environment

	Operating Environmen	Operating Environment:						
60	Radiated Spurious Emissions:							
10	Temperature:	22~25.0 °C		(2)		(2)		
2	Humidity:	50~55 % RH		C		C		
	Atmospheric Pressure:	1010mbar						
	Conducted Emissions:							
	Temperature:	22~25.0 °C						
	Humidity:	50~55 % RH	$\langle \mathcal{O} \rangle$		(\mathcal{O})			
	Atmospheric Pressure:	1010mbar						
	RF Conducted:	·						
1	Temperature:	22~25.0 °C				13		
(\mathbf{r})	Humidity:	50~55 % RH		(2)		$(c^{(n)})$		
9	Atmospheric Pressure:	1010mbar		S		U		

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1)	sup	oort	equi	pment
1/	Sup	JUIL	cyui	princine

Description	Manufacturer	Model No.	Certification	Supplied by
/	/	/	/	/

4.6

4.6 Test Location

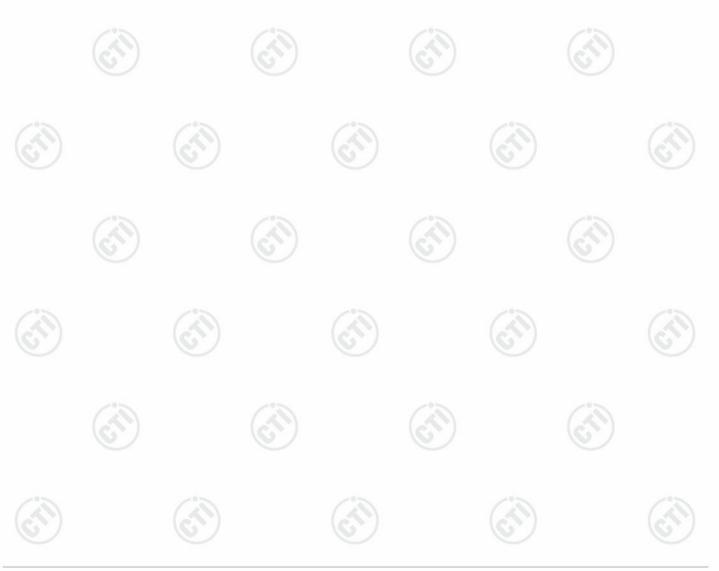
All tests were performed at:

Centre Testing International Group Co., Ltd Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164



4.7

Page 8 of 45

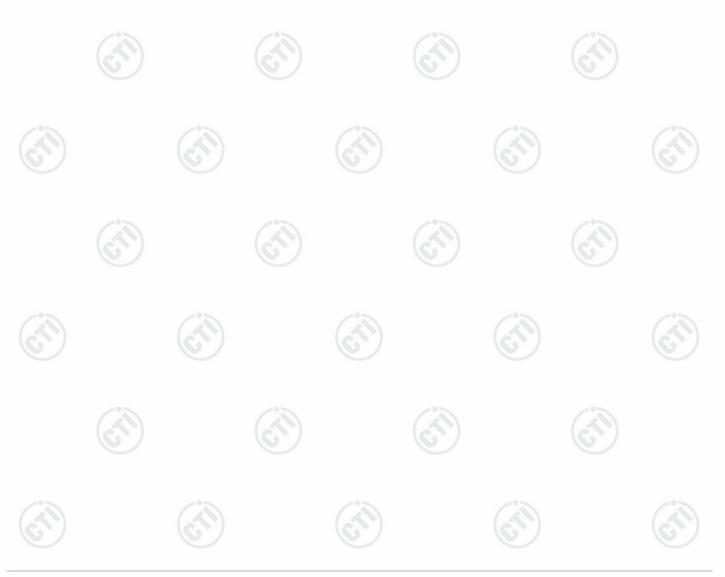
Measurement Uncertainty (95% confidence levels, k=2) No. **Measurement Uncertainty** Item 1 **Radio Frequency** 7.9 x 10⁻⁸ 0.46dB (30MHz-1GHz) 2 RF power, conducted 0.55dB (1GHz-40GHz) 3.3dB (9kHz-30MHz) 4.3dB (30MHz-1GHz) 3 Radiated Spurious emission test 4.5dB (1GHz-18GHz) 3.4dB (18GHz-40GHz) 3.5dB (9kHz to 150kHz) Conduction emission Λ 3.1dB (150kHz to 30MHz) 5 Temperature test 0.64°C 6 3.8% Humidity test 7 0.026% DC power voltages

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

5 Equipment List

Page 9 of 45

	F	RF te	st system	F	F
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy
Communication test set	R&S	CMW500	107929	06-26-2024	06-25-2025
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-02-2024	09-01-2025
Spectrum Analyzer	R&S	FSV40	101200	07-18-2024	07-17-2025
RF control	MWRF-test	MW100-RFCB	MW220620CTI-42	06-25-2024	06-24-2025
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-12-2023 11-30-2024	12-10-2024 11-29-2025
Temperature/ Humidity Indicator	biaozhi	Нм10	1804186	05-29-2024	05-28-2025
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	V2.0.0.0	(A)	@
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025



Page 10 of 45

				1	10
	Conc	ducted disturba	nce Test		1
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025
Temperature/ Humidity Indicator	Defu	TH128	/	04-25-2024	04-24-2025
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025
Barometer	changchun	DYM3	1188	(S)
Test software	Fara	EZ-EMC	EMC-CON 3A1.1		
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025
ISN	TESEQ	ISN T800	30297	12/14/2023 12/05/2024	12/13/2024 12/04/2025

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

	Semi-anechoic			bance rest	
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/14/2023	12/13/2024
				12/05/2024	24 04/15/2025 23 12/13/2024 24 12/04/2025 23 07/01/2026
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/16/2024	04/15/2025
Preamplifier	Agilent	11909A	12-1	03/22/2024	03/21/2025
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre	_	-
Cable line	Fulai(7M)	SF106	5219/6A	05/22/2022	05/21/2025
Cable line	Fulai(6M)	SF106	5220/6A	05/22/2022	05/21/2025
Cable line	Fulai(3M)	SF106	5216/6A	05/22/2022	05/21/2025
Cable line	Fulai(3M)	SF106	5217/6A	05/22/2022	05/21/2025

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 12 of 45

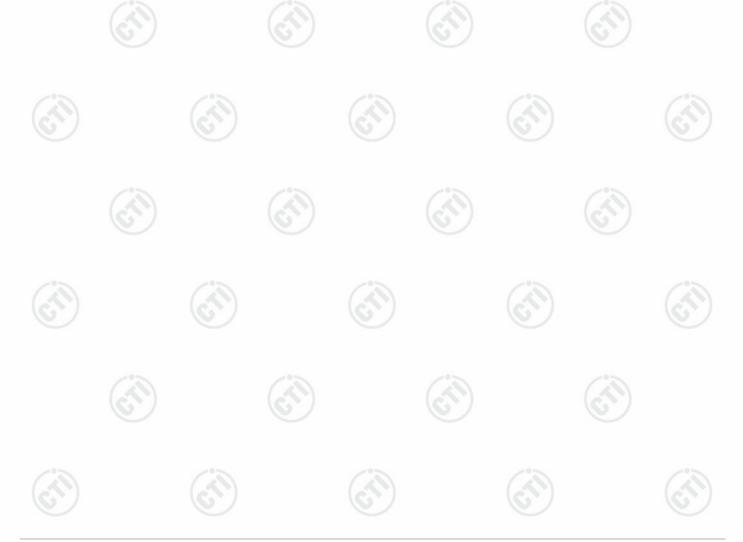
		3M full-anechoid	: Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Fully Anechoic Chamber	TDK FAC-3			01-09-2024	01-08-2027	
Receiver	Receiver Keysight N9038A		MY57290136	01-09-2024	01-08-2025	
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-29-2024	01-28-2025	
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-23-2024	01-22-2025	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025	
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025	
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025	
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025	
Preamplifier	Tonscend	EMC051845SE	980380	12-14-2023 12-05-2024	12-13-2024 12-04-2025	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025	
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0	S)		
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	01-09-2024	01-08-2027	
Cable line	Times	EMC104-NMNM-1000	SN160710	01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	01-09-2024	01-08-2027	
Cable line	Times	HF160-KMKM-3.00M	393493-0001	01-09-2024	01-08-2027	

6 Test results and Measurement Data

6.1 Antenna Requirement

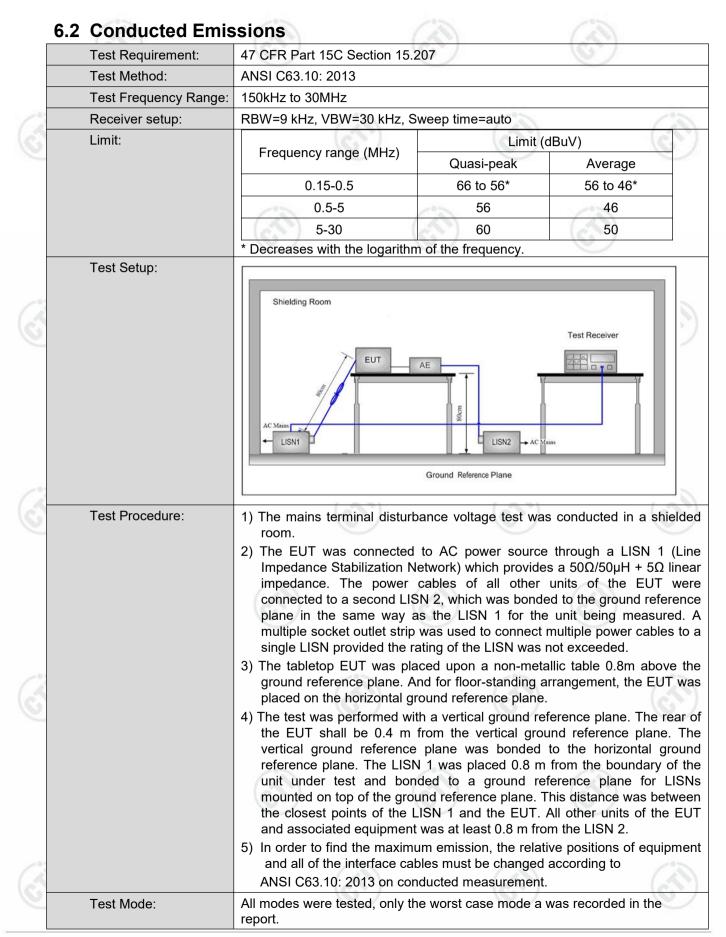
Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

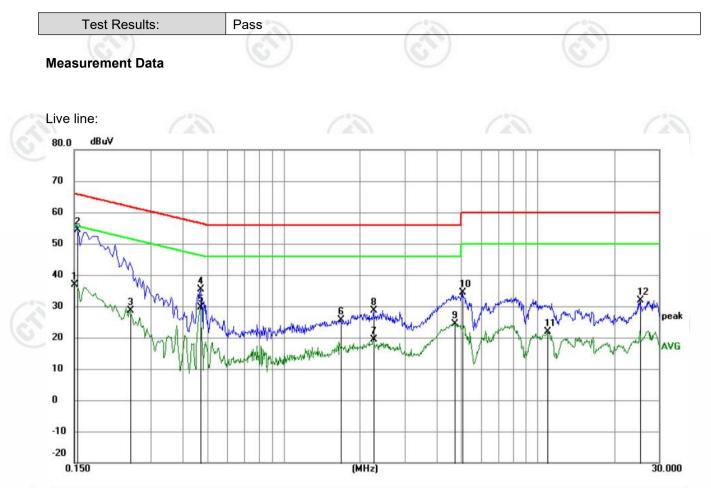
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


EUT Antenna:	Please see Internal photos	
The antenna is Coramic ant	anna. The best case gain of the antenna is 1dRi	

The antenna is Ceramic antenna. The best case gain of the antenna is 1dBi.

Page 14 of 45

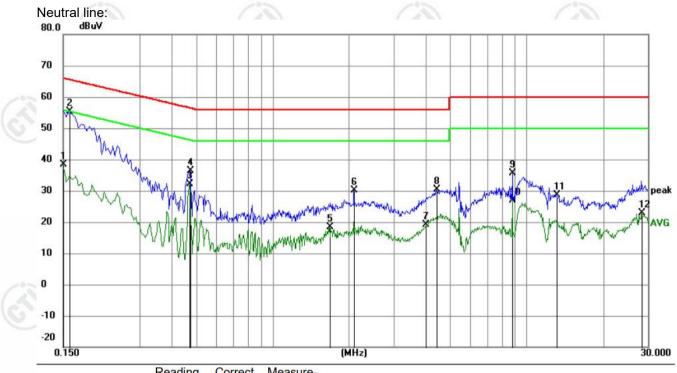


S

Page 15 of 45

Report No. : EED32Q81519601

No	. <mark>Mk</mark> .	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	8	0.1500	27.14	9.84	36.98	56.00	-19.02	AVG	
2	*	0.1548	44.51	9.85	54.36	65.74	-11.38	QP	
3		0.2490	19.01	9.71	28.72	51.79	-23.07	AVG	
4		0.4695	25.61	9.78	35.39	56.52	-21.13	QP	
5		0.4695	19.81	9.78	29.59	46.52	-16.93	AVG	
6		1.6755	15.97	9.75	25.72	56.00	-30.28	QP	
7	(2.2605	9.57	9.76	19.33	46.00	-26.67	AVG	
8		2.2650	18.80	9.76	28.56	56.00	-27.44	QP	
9		4.7175	14.53	9.83	24.36	46.00	-21.64	AVG	
10	1	5.0550	24.56	9.84	34.40	60.00	-25.60	QP	
11	1	10.9365	11.95	9.83	21.78	50.00	-28.22	AVG	
12		25.3050	22.08	9.91	31.99	60.00	-28.01	QP	

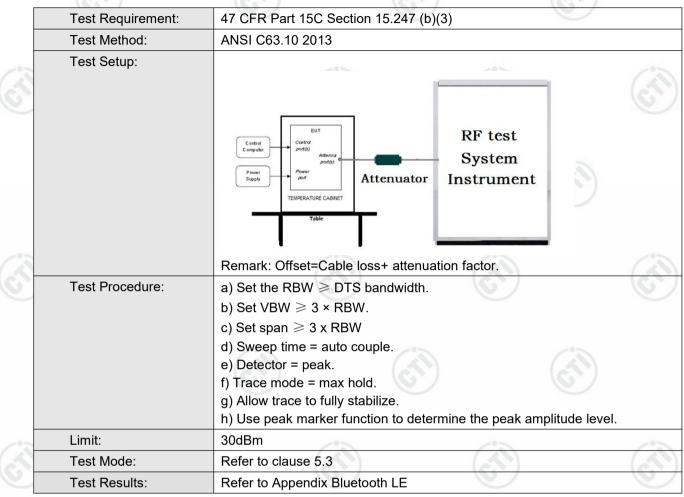

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 45

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1500	28.54	9.84	38.38	56.00	-17.62	AVG	
2	*	0.1590	45.50	9.85	55.35	65.52	-10.17	QP	
3		0.4695	22.45	9.78	32.23	46.52	-14.29	AVG	
4		0.4740	26.64	9.78	36.42	56.44	-20.02	QP	
5		1.6755	8.56	9.75	18.31	46.00	-27.69	AVG	
6		2.0940	20.47	9.75	30.22	56.00	-25.78	QP	
7		4.0200	9.21	9.81	19.02	46.00	-26.98	AVG	
8		4.4115	20.45	9.82	30.27	56.00	-25.73	QP	
9		8.8080	25.69	9.84	35.53	60.00	-24.47	QP	
10		8.8080	17.05	9.84	26.89	50.00	-23.11	AVG	
11		13.0605	18.91	9.84	28.75	60.00	-31.25	QP	
12		28.3110	12.98	9.83	22.81	50.00	-27.19	AVG	
	1 2 3 4 5 6 7 7 8 9 9 10 11	2 * 3 4 5 6 7 8 9 10 11	MHz 1 0.1500 2 * 0.1590 3 0.4695 4 0.4740 5 1.6755 6 2.0940 7 4.0200 8 4.4115 9 8.8080 10 8.8080 11 13.0605	No. Mk. Freq. Level MHz dBuV 1 0.1500 28.54 2 * 0.1590 45.50 3 0.4695 22.45 4 0.4740 26.64 5 1.6755 8.56 6 2.0940 20.47 7 4.0200 9.21 8 4.4115 20.45 9 8.8080 25.69 10 8.8080 17.05 11 13.0605 18.91	No. Mk. Freq. Level Factor MHz dBuV dB 1 0.1500 28.54 9.84 2 * 0.1590 45.50 9.85 3 0.4695 22.45 9.78 4 0.4740 26.64 9.75 5 1.6755 8.56 9.75 6 2.0940 20.47 9.81 7 4.0200 9.21 9.81 8 4.4115 20.45 9.82 9 8.8080 25.69 9.84 10 8.8080 17.05 9.84 11 13.0605 18.91 9.84	No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV 1 0.1500 28.54 9.84 38.38 2 * 0.1590 45.50 9.85 55.35 3 0.4695 22.45 9.78 32.23 4 0.4740 26.64 9.78 36.42 5 1.6755 8.56 9.75 18.31 6 2.0940 20.47 9.75 30.22 7 4.0200 9.21 9.81 19.02 8 4.4115 20.45 9.82 30.27 9 8.8080 25.69 9.84 35.53 10 8.8080 17.05 9.84 26.89 11 13.0605 18.91 9.84 28.75	No. Mk.Freq.LevelFactormentLimitMHzdBuVdBdBuVdBuV10.150028.549.8438.3856.002 *0.159045.509.8555.3565.5230.469522.459.7832.2346.5240.474026.649.7836.4256.4451.67558.569.7518.3146.0062.094020.479.7530.2256.0074.02009.219.8119.0246.0084.411520.459.8435.5360.0098.808025.699.8435.5360.00108.808017.059.8428.7560.00	No. Mk.Freq.LevelFactormentLimitMarginMHzdBuVdBdBuVdBuVdBuVdB10.150028.549.8438.3856.00-17.622 *0.159045.509.8555.3565.52-10.1730.469522.459.7832.2346.52-14.2940.474026.649.7836.4256.44-20.0251.67558.569.7518.3146.00-27.6962.094020.479.7530.2256.00-25.7874.02009.219.8119.0246.00-26.9884.411520.459.8230.2756.00-25.7398.808025.699.8435.5360.00-24.47108.808017.059.8426.8950.00-31.251113.060518.919.8428.7560.00-31.25	No. Mk.Freq.LevelFactormentLimitMarginMHzdBuVdBdBuVdBuVdBDetector10.150028.549.8438.3856.00-17.62AVG2 *0.159045.509.8555.3565.52-10.17QP30.469522.459.7832.2346.52-14.29AVG40.474026.649.7836.4256.44-20.02QP51.67558.569.7518.3146.00-27.69AVG62.094020.479.7530.2256.00-25.78QP74.02009.219.8119.0246.00-26.98AVG84.411520.459.8435.5360.00-24.47QP98.808017.059.8426.8950.00-23.11AVG1113.060518.919.8428.7560.00-31.25QP

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 17 of 45

6.3 Maximum Conducted Output Power

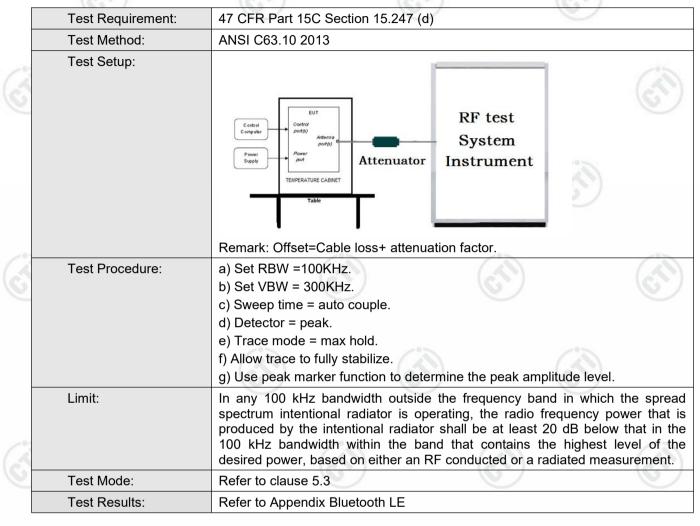
6.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)
Test Method:	ANSI C63.10 2013
Test Setup:	
	C orticit Computer Done(b) Power Supply TeMPERATURE CABNET Table
	Remark: Offset=Cable loss+ attenuation factor.
Test Procedure:	 a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.
Limit:	≥ 500 kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE

Page 19 of 45

6.5 Maximum Power Spectral Density

	Test Requirement:	47 CFR Part 15C Section 15.247 (e)
	Test Method:	ANSI C63.10 2013
3	Test Setup:	
		Control Convolution Convolutio
6	Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. a) Set analyzer center frequency to DTS channel center frequency.
		 b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz ≤ RBW ≤ 100 kHz. d) Set the VBW ≥ [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less
	Limit:	than 3 kHz) and repeat. ≤8.00dBm/3kHz
	Test Mode:	Refer to clause 5.3
	Test Results:	Refer to Appendix Bluetooth LE

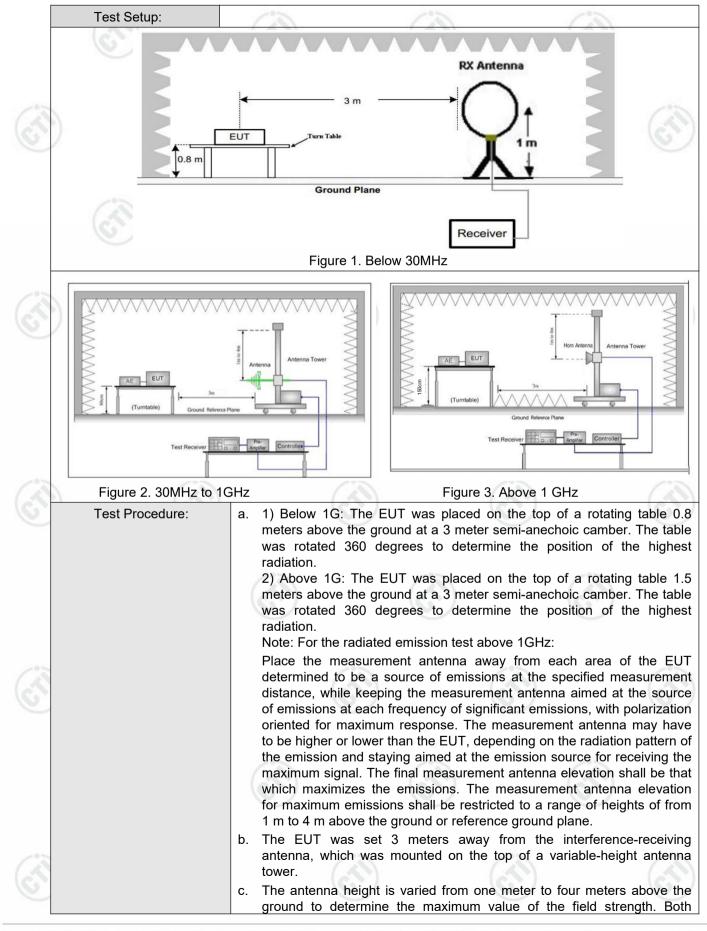


Page 20 of 45

6.6 Band Edge measurements and Conducted Spurious Emission

Page 21 of 45

6.7 Radiated Spurious Emission & Restricted bands

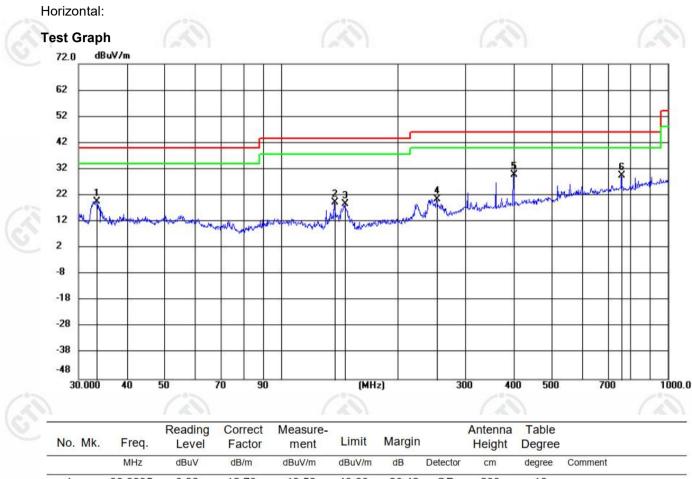

	Test Requirement:	47 CFR Part 15C Secti	on 1	15.209 and 15	.205		C	/		
	Test Method:	ANSI C63.10 2013								
	Test Site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
	Receiver Setup:	Frequency	6	Detector	RBW	1	VBW	Remark		
S.		0.009MHz-0.090MH	z	Peak	10kH	z	30kHz	Peak		
		0.009MHz-0.090MH	z	Average	10kH:	z	30kHz	Average		
		0.090MHz-0.110MH	z	Quasi-peak	10kH	z	30kHz	Quasi-peak		
		0.110MHz-0.490MH	z	Peak	10kH:	z	30kHz	Peak		
		0.110MHz-0.490MH	z	Average	10kH:	z	30kHz	Average		
		0.490MHz -30MHz		Quasi-peak	10kH	z	30kHz	Quasi-peak		
		30MHz-1GHz		Quasi-peak	100 kH	lz 300kHz		Quasi-peak		
1		Above 1GHz		Peak	1MHz		3MHz	Peak		
3				Peak	1MHz	z 10kHz		Average		
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark		Measureme distance (m		
		0.009MHz-0.490MHz	2	400/F(kHz)	-	-73		300		
		0.490MHz-1.705MHz		4000/F(kHz)	-			30		
		1.705MHz-30MHz		30	-	<u> </u>		30		
		30MHz-88MHz		100	40.0	Q	uasi-peak	3		
-0-		88MHz-216MHz		150	43.5	Quasi-peak		3		
~		216MHz-960MHz	2	200	46.0	Q	uasi-peak	3		
2		960MHz-1GHz)	500	54.0	Q	uasi-peak	3		
		Above 1GHz		500	54.0		Average	3		
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20c quip	dB above the pment under t	maximum est. This p	per	mitted ave	rage emissior		

Page 22 of 45

CTI华测检测

Report No. : EED32Q81519601

	Test Results:	Pass
	Test Mode:	Refer to clause 5.3
		 average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz),the middle channel (2440MHz),the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
		f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or
2		 horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.



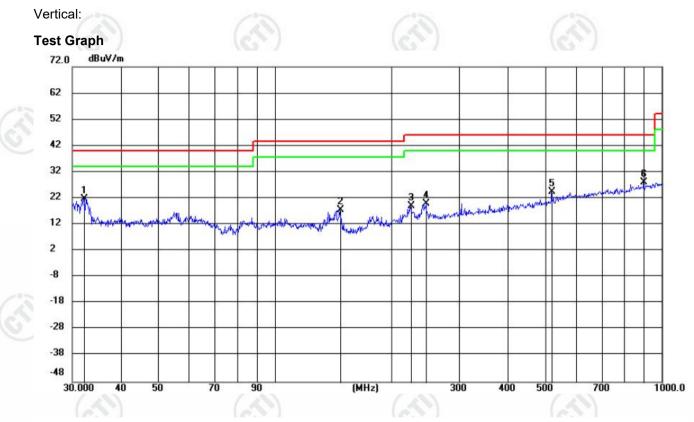
Page 24 of 45

Report No. : EED32Q81519601

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.

MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
33.3395	6.88	12.70	19.58	40.00	-20.42	QP	200	18	
137.4924	9.89	9.33	19.22	43.50	-24.28	QP	100	7	
146.6046	9.53	9.17	18.70	43.50	-24.80	QP	200	143	
252.2838	6.31	14.35	20.66	46.00	-25.34	QP	100	327	
400.0108	11.67	18.04	29.71	46.00	-16.29	QP	100	327	
760.0370	5.69	23.90	29.59	46.00	-16.41	QP	100	360	
	33.3395 137.4924 146.6046 252.2838 400.0108	33.3395 6.88 137.4924 9.89 146.6046 9.53 252.2838 6.31 400.0108 11.67	33.33956.8812.70137.49249.899.33146.60469.539.17252.28386.3114.35400.010811.6718.04	33.33956.8812.7019.58137.49249.899.3319.22146.60469.539.1718.70252.28386.3114.3520.66400.010811.6718.0429.71	33.33956.8812.7019.5840.00137.49249.899.3319.2243.50146.60469.539.1718.7043.50252.28386.3114.3520.6646.00400.010811.6718.0429.7146.00	33.33956.8812.7019.5840.00-20.42137.49249.899.3319.2243.50-24.28146.60469.539.1718.7043.50-24.80252.28386.3114.3520.6646.00-25.34400.010811.6718.0429.7146.00-16.29	33.33956.8812.7019.5840.00-20.42QP137.49249.899.3319.2243.50-24.28QP146.60469.539.1718.7043.50-24.80QP252.28386.3114.3520.6646.00-25.34QP400.010811.6718.0429.7146.00-16.29QP	33.33956.8812.7019.5840.00-20.42QP200137.49249.899.3319.2243.50-24.28QP100146.60469.539.1718.7043.50-24.80QP200252.28386.3114.3520.6646.00-25.34QP100400.010811.6718.0429.7146.00-16.29QP100	33.3395 6.88 12.70 19.58 40.00 -20.42 QP 200 18 137.4924 9.89 9.33 19.22 43.50 -24.28 QP 100 7 146.6046 9.53 9.17 18.70 43.50 -24.80 QP 200 143 252.2838 6.31 14.35 20.66 46.00 -25.34 QP 100 327 400.0108 11.67 18.04 29.71 46.00 -16.29 QP 100 327



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		32.1851	9.36	12.54	21.90	40.00	-18.10	QP	200	162	
2		147.4553	8.30	9.17	17.47	43.50	-26.03	QP	100	237	
3		224.7555	5.76	13.31	19.07	46.00	-26.93	QP	100	279	
4		246.0372	5.71	14.12	19.83	46.00	-26.17	QP	100	132	
5		519.9757	4.04	20.32	24.36	46.00	-21.64	QP	100	48	
6	*	899.3586	2.12	25.91	28.03	46.00	-17.97	QP	100	0	

Radiated Spurious Emission above 1GHz:

During the test, the Radiated Spurious Emission from above 1GHz was performed in all modes, only the worst case BLE 1M was recorded in the report.

<u> </u>	Vode	:		Bluetooth LE G	FSK Transmit	ting	Channel:		2402 MHz	
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1129.613	7.07	38.39	45.46	74.00	28.54	Pass	н	PK
	2	1662.6663	8.70	39.70	48.40	74.00	25.60	Pass	Н	PK
	3	5314.1543	-11.13	3 52.87	41.74	74.00	32.26	Pass	н	PK
	4	6654.2436	-7.24	55.99	48.75	74.00	25.25	Pass	Н	PK
	5	7733.3156	-2.72	46.83	44.11	74.00	29.89	Pass	Н	PK
	6	9296.4198	2.43	44.42	46.85	74.00	27.15	Pass	Н	PK
	7	1171.0171	7.04	36.77	43.81	74.00	30.19	Pass	V	PK
	8	1934.2934	11.91	35.88	47.79	74.00	26.21	Pass	V	PK
1	9	4804.1203	-12.74	52.56	39.82	74.00	34.18	Pass	V	PK
	10	7205.2804	-4.69	48.06	43.37	74.00	30.63	Pass	V	PK
	11	7941.3294	-0.25	45.38	45.13	74.00	28.87	Pass	V	PK
	12	9791.4528	4.37	43.28	47.65	74.00	26.35	Pass	V	PK

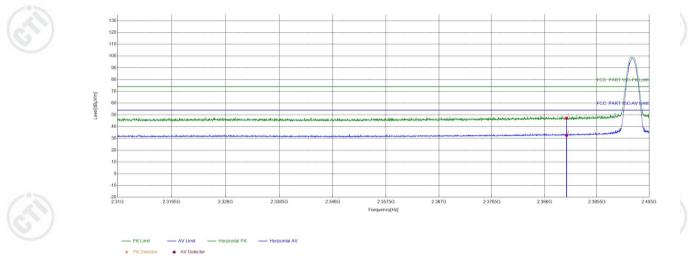
Г	Mode:									
	Mode	:		Bluetooth LE	FSK Transmi	tting	Channel:		2440 MHz	2
2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
2	1	1111.4111	6.49	38.97	45.46	74.00	28.54	Pass	Н	PK
	2	1949.695	12.37	36.61	48.98	74.00	25.02	Pass	Н	PK
	3	3997.0665	-15.72	58.29	42.57	74.00	31.43	Pass	Н	PK
	4	5321.1547	-10.95	52.90	41.95	74.00	32.05	Pass	Н	PK
	5	6663.2442	-6.92	55.44	48.52	74.00	25.48	Pass	Н	PK
	6	7944.3296	-0.17	44.32	44.15	74.00	29.85	Pass	Н	PK
	7	1159.2159	7.43	38.41	45.84	74.00	28.16	Pass	V	PK
	8	1992.6993	9.84	39.09	48.93	74.00	25.07	Pass	V	PK
2	9	4879.1253	-11.98	52.05	40.07	74.00	33.93	Pass	V	PK
	10	7319.288	-3.88	49.38	45.50	74.00	28.50	Pass	V	PK
-	11	9125.4084	1.01	45.62	46.63	74.00	27.37	Pass	V	PK
	12	10761.5174	5.87	43.63	49.50	74.00	24.50	Pass	V	PK

Page 27 of 45

				10						
	Mode	:		Bluetooth LE (GFSK Transmi	tting	Channel:		2480 MHz	2
	NO	Freq. [MHz]	Factor [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1332.4332	7.56	36.54	44.10	74.00	29.90	Pass	н	PK
	2	1997.6998	9.54	44.20	53.74	74.00	20.26	Pass	Н	PK
	3	3985.0657	-15.44	60.30	44.86	74.00	29.14	Pass	Н	PK
	4	5321.1547	-10.95	55.36	44.41	74.00	29.59	Pass	Н	PK
	5	6652.2435	-7.32	57.18	49.86	74.00	24.14	Pass	Н	PK
	6	12820.6547	7.26	42.57	49.83	74.00	24.17	Pass	Н	PK
Ī	7	1275.4275	6.57	36.73	43.30	74.00	30.70	Pass	V	PK
Ī	8	1952.8953	12.21	35.71	47.92	74.00	26.08	Pass	V	PK
	9	3330.022	-16.80	53.38	36.58	74.00	37.42	Pass	V	PK
Ī	10	4960.1307	-15.17	52.96	37.79	74.00	36.21	Pass	V	PK
3	11	7439.296	-3.93	51.00	47.07	74.00	26.93	Pass	V	PK
	12	11238.5492	7.09	43.76	50.85	74.00	23.15	Pass	V	PK

Remark:

- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.


Restricted bands:

Test plot as follows:

Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402MHz	Ì
Tset_Engineer	Aiden.wang	Test_Date	2024\10\19	
Remark	1	(A)	(A)	

Test Graph

		1 Martin Control of Co		and this little		and this beam			and the local	
	Suspecte	d List								
	NO	Freq.	Factor	Reading	Level	Limit	Margin	Result	Polarity	Remark
	NO	[MHz]	[dB]	[dBµV]	[dBµV/m]	[dBµV/m]	[dB]	Result	Folanty	Tternar
-	1	2390	11.29	35.86	47.15	74.00	26.85	PASS	Horizontal	PK
	2	2390	11.29	21.42	32.71	54.00	21.29	PASS	Horizontal	AV

Page 29 of 45

C	0		$(\tilde{\mathcal{A}})$		(A)			(F)	
	Test_Mod	e	E 1M GFSł	<	Test_Freque	ency	2402MHz	2	
	Tset_Engin	eer Aic	len.wang	(I)	Test_Dat	te	2024\10*	19	(I)
	Remark	١							
Test Grapi									
Imv.(Bc)iwa)	130 120 120 100 00 00 00 00 00 00 00 00	950 2.3296		23486	23756 23070 requency(Hz)	atura da seriel danse atura da seriel da seriel da seriel da seriel da seriel da seriel da seriel da seriel da seriel da seriel da seriel da seriel da seriel da seriel da seriel da seriel da seriel da seriel da seriel da serie	2386	CC PARTISCA CC PARTISCA CC PARTISCA CC PARTISCA CC PARTISCA CC PARTISCA CC PARTISCA	x time 2.4050
		- AV Limit Vertic	al PK — Vertical AV						
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	11.29	35.53	46.82	74.00	27.18	PASS	Vertical	PK
2	2390	11.29	21.78	33.07	54.00	20.93	PASS	Vertical	AV

Hotline:400-6788-333

Page 30 of 45

		Test_Mod	e	E 1M GFSP	<	Test_Frequ	ency	2480MHz	2	
)	Tset_Engine	eer Aid	len.wang	(A	Test_Dat	te	2024\10\	19	
		Remark	١							
٦	۲est Grapl									
		130 120 130 140 100 100 100 100 100 100 10		al val internet de la conserva de la	2.4688G	2499G 249120 Frequency[Hz]	2.49343	249563	FCC PART ISCAV	time time 259
<u>0</u>)		57		6)	G	9		67)
	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m	Limit] [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	11.32	36.38	47.70	74.00	26.30	PASS	Horizontal	PK
	2	2483.5	11.32	22.43	33.75	54.00	20.25	PASS	Horizontal	AV

Page 31 of 45

	Test_Mod	e	E 1M GFSł ansmitting	<	Test_Freque	ency	2480MHz	2	
)	Tset_Engin	eer Ai	den.wang	(I)	Test_Dat	e 🖁	2024\10*	19	
	Remark	١							
Test Grapi									
Tweelets		26 2462	10 24646G	24880	2489G 249123 2498G 249123	2.49340		FCC PART 15C-PI	<pre>ctumt //timt</pre>
	PK Limit	- AV Limit Verl	cal PK — Vertical AV						
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	11.32	39.48	50.80	74.00	23.20	PASS	Vertical	PK
2	2483.5	11.32	28.32	39.64	54.00	14.36	PASS	Vertical	AV

Page 32 of 45

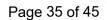
		Test_Mod	e	E 2M GFSP	<	Test_Frequ	ency	2402MHz	2	
		Tset_Engine	eer Aid	den.wang	(de)	Test_Dat	e G	2024\10\	19	
		Remark	١							
-	Test Graph									
		130								
		90 90 80 70								- Limit
	Level(dBµV/m)	60 50 40	langti yan wikel king kitela ayateti ki	an a	A	1	ali na line in mar de la calancia de		FCC-PARTIFIC-AV	- Lahar
		20 10 0								
		-10 _20 2.31G 2.3195	5G 2.329	G 2.3385G	2.348G	2.3575G 2.367G requency[Hz]	2.3765G	2.386G	2.3955G	2.405G
		PK Limit PK Detector	AV Limit — Horiz	ontal PK — Horizontal AV						
େ)	(<u>5)</u>		67		C	2		6)
	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	11.29	35.61	46.90	74.00	27.10	PASS	Horizontal	PK
	2	2390	11.29	21.69	32.98	54.00	21.02	PASS	Horizontal	AV

Page 33 of 45

		Test_Mode	e	E 2M GFSł ansmitting	<	Test_Freque	ency	2402MHz	2	
) I	set_Engine	er Aid	den.wang	(d)	Test_Dat	e 🤇	2024\10\?	19	
		Remark	١							
-	Test Graph									
	1 1 revel(BbJAVIII)			6 2 33850	23486	23575G 23676 equency[H2]	23765G	2386	ECC PART SC.PH ECC PA	2.405G
			AV Limit — Vertic AV Detector	al PK — Vertical AV						
	Suspected	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	11.29	36.25	47.54	74.00	26.46	PASS	Vertical	PK
	2	2390	11.29	21.55	32.84	54.00	21.16	PASS	Vertical	AV

Page 34 of 45

	Test_Mod	e	.E 2M GFSł ansmitting	<	Test_Frequ	ency	2480MH	Z	
)	Tset_Engine	eer Ai	den.wang	(\mathbf{c})	Test_Dat	te	2024\10\	19	
	Remark	١							
Test Grapi									
Imitia		10 2462	44	24888C	2.489G 2.49120 requency[H2]	2.49346		PCC-PARTISC-P	<pre>ctume ctume c</pre>
	PK Limit AV Detector	- AV Limit — Hori	zontal PK — Horizontal AV	6)					
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	11.32	36.69	48.01	74.00	25.99	PASS	Horizontal	PK
 2	2483.5	11.32	22.20	33.52	54.00	20.48	PASS	Horizontal	AV



	Test_Mod	e	E 2M GFSP	(Test_Freque	ency	2480MHz	2	
	Tset_Engin	eer Aid	len.wang	Ì	Test_Dat	e d	2024\10\	19	
	Remark	١							
Test Grapi									
[mytB]twil			Herences generation of a whole					FCC-PART-ISC-PI	
	10 0 -10 -20 2478G 2.480	20 2.4824	3 2.4846G	2.4008G	2.489G 2.4912G requency[Hz]	2.4934G	2.4956G	2.4078G	256
)	* AV Detector	57		6		G	9		(r)
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	11.32	39.55	50.87	74.00	23.13	PASS	Vertical	PK

Note:

2

2483.5

11.32

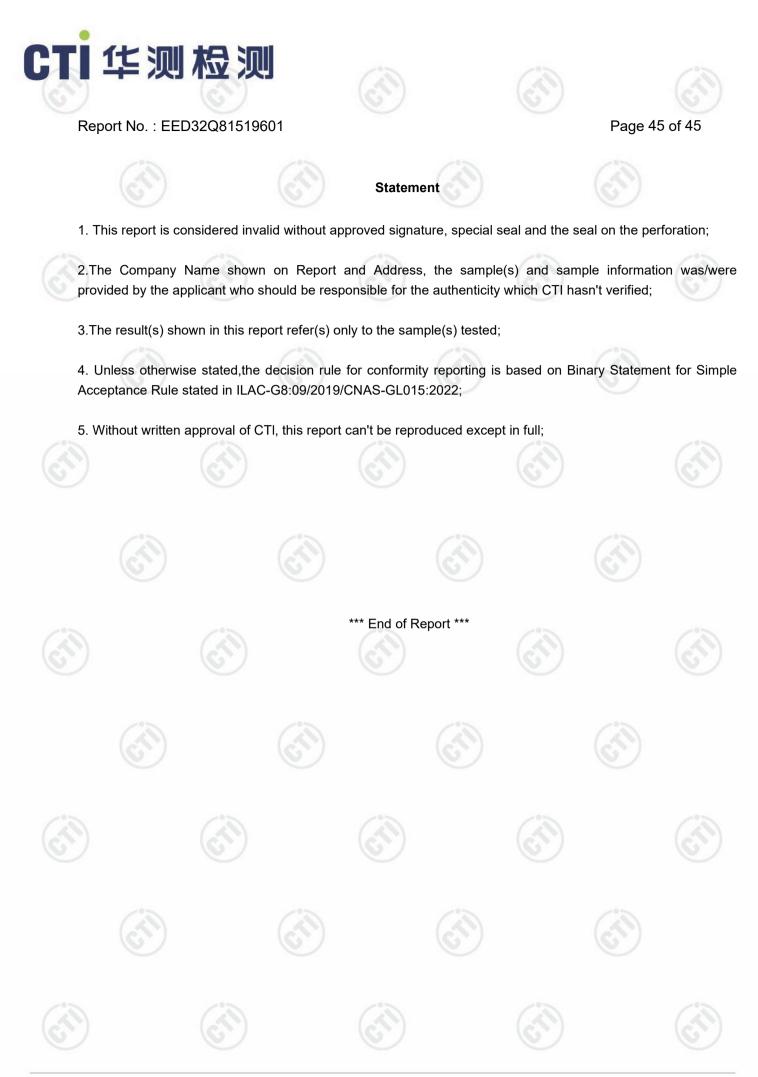
29.14

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor Correct Factor = Preamplifier Factor– Antenna Factor–Cable Factor

40.46

54.00

PASS


Vertical

AV

13.54

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com