

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for FCC Grant of Equipment Authorization Canada Certification

Innovation, Science and Economic Development Canada RSS-Gen Issue 4 / RSS 247 Issue 2 FCC Part 15 Subpart C

Model: H0A

IC CERTIFICATION #: FCC ID:	10395A-H0A A4RH0A
APPLICANT:	Google Inc. 1600 Amphitheatre Pky Mountain View, CA 94043
TEST SITE(S):	National Technical Systems - Silicon Valley 41039 Boyce Road. Fremont, CA. 94538-2435
IC SITE REGISTRATION #:	2845B-7
REPORT DATE:	August 14, 2017
REVISION DATE:	August 25, 2017
FINAL TEST DATES:	June 29 and July 21, 2017
TOTAL NUMBER OF PAGES:	60

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

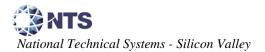
VALIDATING SIGNATORIES

PROGRAM MGR

Mark E Hill

Staff Engineer

TECHNICAL REVIEWER:


Mark E Hill Staff Engineer

FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

QUALITY ASSURANCE DELEGATE

Gary Izard Technical Writer

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	August 14, 2017	First release	
1.0	August 25, 2017	Removed detailed product information for confidentiality	MEH

TABLE OF CONTENTS

VALIDATING SIGNATORIES	2
REVISION HISTORY	
TABLE OF CONTENTS	
SCOPE	
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	6
TEST RESULTS SUMMARY FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHz, Less Than 75 Hopping Chann MEASUREMENT UNCERTAINTIES	ELS)7
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	10
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	12
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE INSTRUMENT CALIBRATION	13
TEST PROCEDURES EUT AND CABLE PLACEMENT	
EUT AND CABLE PLACEMENT	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	19
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	20
OUTPUT POWER LIMITS – FHSS SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	24
END OF REPORT	60

SCOPE

An electromagnetic emissions test has been performed on the Google Inc. model H0A, pursuant to the following rules:

RSS-Gen Issue 4 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10: 2013

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Google Inc. model H0A complied with the requirements of the following regulations:

RSS-Gen Issue 4 "General Requirements for Compliance of Radio Apparatus" RSS 247 Issue 2 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSS) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Google Inc. model H0A and therefore apply only to the tested sample. The sample was selected and prepared by Dominik Mente of Google Inc.

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

FREQUENCY HOPPING SPREAD SPECTRUM (2400 – 2483.5 MHz, Less Than 75 Hopping Channels)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247	RSS 247	20dB Bandwidth	Basic Rate: 945 kHz EDR: 1295 kHz	Channel spacing > 2/3rds 20dB BW	Complies
(a) (1)	5.1 (b)	Channel Separation	1000 kHz	(minimum 25 kHz)	Complies
15.247 (a) (1) (iii)	RSS 247 5.1 (d) & 5.4 (b)	Number of Channels	Min: 20 Max: 49	15 or more	Complies
15.247 (a) (1) (iii) & (b) (1)	RSS 247 5.1 (d)	Channel Dwell Time (average time of occupancy)	The system uses the Bluetooth algorithm and, therefore, meets all	<0.4 second within a period of 0.4 x number of channels	Complies
15.247 (a) (1)	RSS 247 5.1 (a)	Channel Utilization	requirements for channel utilization.	All channels shall, on average, be used equally	Complies
15.247 (b) (3)	RSS 247 5.4 (b)	Output Power	Basic Rate: 5.7 dBm (3.7mW) EDR: 5.5 dBm (3.5mW)	0.125 Watts	Complies
15.247(d)	RSS 247 5.5	Spurious Emissions – 30MHz – 25GHz	All spurious emissions < -20dBc	< -20dBc	Complies
15.247(d) / 15.209	RSS 247 5.5	Radiated Spurious Emissions 30MHz – 25GHz	38.0 dBµV/m @ 2483.5 MHz (-16.0 dB)	Refer to the limits section (p20) for restricted bands, all others < -20dBc	Complies
15.247 (a) (1)	RSS 247 5.1 (a)	Receiver bandwidth	Refer to operational description	Shall match the channel bandwidth	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Antennas are internal	Unique or integral antenna required	Complies
15.407 (b) (6)	RSS-Gen Table 3	AC Conducted Emissions	27.7 dBµV @ 0.823 MHz (-18.3 dB)	Refer to page 19	Complies
15.247 (i) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in separate exhibit, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP-100 RSS-Gen 6.6	Occupied Bandwidth	Basic Rate: 945 kHz EDR: 1295 kHz	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
Radiated enfission (new strength)	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Google Inc. model H0A is an interactive media streaming device. Since the EUT would be placed on a tabletop during operation, the EUT was treated as tabletop equipment during testing to simulate the end-user environment. The electrical rating of the EUT is 100-240 Volts ,50-60Hz Hz, 0.4 Amps.

The sample was received on June 28, 2017 and tested on June 29 and July 21, 2017. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Google	H0A	Streaming Media	Prototype Sample #2	A4RH0A
		Device (RF Radiated		
		and AC Conducted)		
Google	HOA	Streaming Media	Prototype Sample #1	A4RH0A
		Device (RF		
		Conducted)		
Chicony	W17-009N1X	AC-DC Adapter	N/A	N/A

ANTENNA SYSTEM

Two internal antennas: 4.0dBi and 3.4dBi @ 2.4GHz, 3.7dBi and 3.5dBi @ 5GHz Tx/Rx diversity

ENCLOSURE

The EUT enclosure is primarily constructed of uncoated plastic.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Dell	Latitude	Laptop	-	-
-	-	Laptop Power Supply	-	-

Note: The laptop was used to configure the radio operation and then was removed from the setup.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To		Cable(s)	
TOIL	Connected 10	Description	Shielded or Unshielded	Length(m)
EUT DC Power	External Power Supply	Multiwire	Shielded	2
AC In (external supply)	AC Mains	Direct plug in	-	-
USB	USB splitter	Multiwire	Shielded	0.3

EUT OPERATION

The EUT was configured to transmit continuously at the maximum output power setting. Specifics for the channel and mode are described in the test data.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Designation / Registration Numbers		Location
Sile	FCC	Canada	Location
Chamber 4		2845B-4	41039 Boyce Road
Chamber 7	US0027	2845B-7	Fremont, CA 94538-2435

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

Software is used to view and convert receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS EMI Test Software (rev 2.10)

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters for measurements below 1GHz and 1.5m for measurements above 1GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

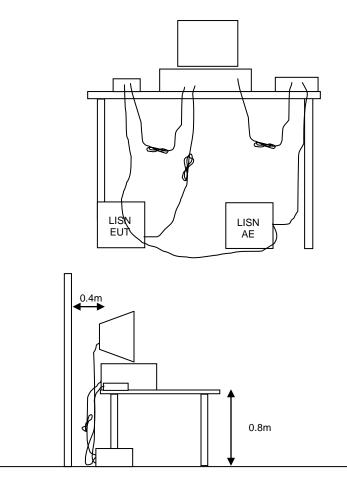
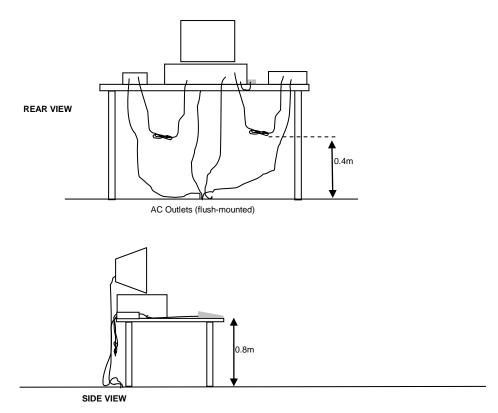
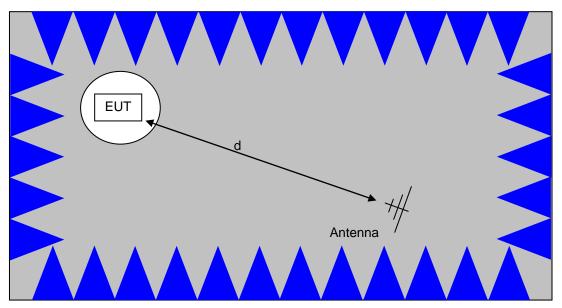


Figure 1 Typical Conducted Emissions Test Configuration

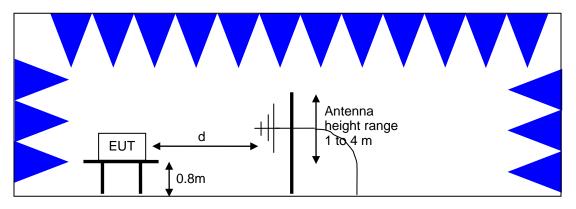
RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

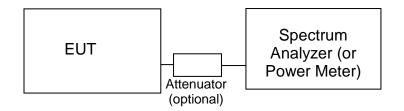

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

OUTPUT POWER LIMITS – FHSS SYSTEMS

The table below shows the limits for output power based on the number of channels available for the hopping system.

Operating Frequency (MHz)	Number of Channels	Output Power
2400 – 2483.5	≥ 15	0.125 Watts (21 dBm)

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 247. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

¹ The restricted bands are detailed in FCC 15.205 and RSS-Gen Table 6

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

 $R_r - S = M$ where: $R_r =$ Receiver Reading in dBuV S = Specification Limit in dBuV M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

 $F_d = 20*LOG_{10} (D_m/D_s)$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r +$$

 $M = R_c - L_s$

where:

- R_r = Receiver Reading in dBuV/m
- F_d = Distance Factor in dB

Fd

- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{d}$ microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Manufacturer Radiated Spurious F	<u>Description</u> missions, Bandedges, 1 - 6.5 0	Model	Asset #	Calibrated	Cal Due
National Technical Systems	NTS EMI Software (rev 2.10)	N/A	0		N/A
EMCO Rohde & Schwarz	Antenna, Horn, 1-18 GHz EMI Test Receiver, 20 Hz-7 GHz	3115 ESIB 7	786 1538	12/21/2015 2/11/2017	12/21/2017 2/11/2018
Radiated Emissions,	1000 - 25,000 MHz, 30-Jun-17				
EMCO	Antenna, Horn, 1-18 GHz	3115 D/N 84200	786	12/21/2015	12/21/2017
Hewlett Packard	High Pass filter, 8.2 GHz	P/N 84300- 80039	1156	5/10/2017	5/10/2018
HP / Miteq	SA40 P Head HF preAmplifier, 18-40 GHz (w/2415)	TTA1840-45-5P- HG-S	1772	9/12/2016	N/A
A. H. Systems	Spare System Horn, 18- 40GHz	SAS-574, p/n: 2581	2162	7/29/2015	7/29/2017
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	9/30/2016	9/30/2017
Micro-Tronics	Band Reject Filter, 2400-2500 MHz 18GHz	BRM50702-02	2238	5/17/2017	5/17/2018
Hewlett Packard	Spectrum Analyzer (SA40) Purple 9 kHz - 40 GHz,	8564E (84125C)	2415	3/1/2017	3/1/2018
Radiated Emissions,	30 - 1,000 MHz, 18-Jul-17				
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	10/12/2016	10/12/2018
Com-Power Rohde & Schwarz	Preamplifier, 30-1000 MHz EMI Test Receiver, 20 Hz-7 GHz	PA-103 ESIB 7	1632 1756	3/8/2017 7/8/2017	3/8/2018 7/8/2018
Micro-Tronics	Band Reject Filter, 2400-2500 MHz 18GHz	BRM50702-02	2238	5/17/2017	5/17/2018
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	2251	9/19/2016	9/19/2017
Radiated Emissions	1000 - 12,000 MHz, 18-Jul-17				
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/21/2015	12/21/2017
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	9/30/2016	9/30/2017
Micro-Tronics	Band Reject Filter, 2400-2500 MHz 18GHz	BRM50702-02	2238	5/17/2017	5/17/2018
Hewlett Packard	Spectrum Analyzer (SA40) Purple 9 kHz - 40 GHz,	8564E (84125C)	2415	3/1/2017	3/1/2018
Padia Antonna Port ((Power and Spurious Emission) 21- Jul-17			
Agilent Technologies	3Hz -44GHz PSA Spectrum Analyzer	E4446A	2796	5/22/2017	5/22/2018
Conducted Emission	ns - AC Power Ports, 21-Jul-17				
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	8/1/2016	8/1/2017
Rohde & Schwarz Rohde & Schwarz	Pulse Limiter EMI Test Receiver, 20 Hz-7 GHz	ESH3 Z2 ESIB 7	1401 1756	2/3/2017 7/8/2017	2/3/2018 7/8/2018

Appendix B Test Data

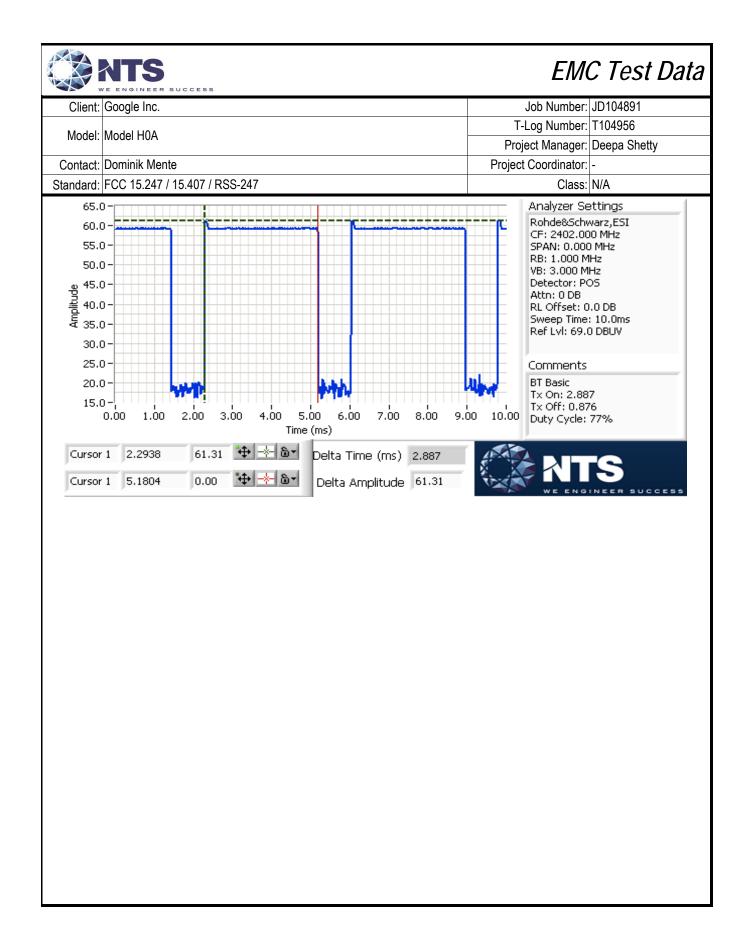
T104956 Pages 25 - 59

EMC Test Data

Client:	Google Inc.	Job Number:	JD104891
Product	Model H0A	T-Log Number:	T104956
System Configuration:	-	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Emissions Standard(s):	FCC 15.247 / 15.407 / RSS-247	Class:	В
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The


Google Inc.

Product

Model H0A

Date of Last Test: 7/24/2017

EMC Test Data NEER SUCCESS Client: Google Inc. Job Number: JD104891 T-Log Number: T104956 Model: Model H0A Project Manager: Deepa Shetty Contact: Dominik Mente **Project Coordinator:** Standard: FCC 15.247 / 15.407 / RSS-247 Class: N/A **Duty Cycle** Date of Test: 6/29/2017 Test Engineer: Rafael Varelas Test Location: FT Chamber #7 Duty cycle measurements performed on the worse case data rate for power. Notes: Measurements taken with maximum RBW/VBW settings allowed. Lin Volt Min VBW Duty Cycle Constant Pwr Cor Data Rate Mode T (ms) Cor DC? Factor* for FS (Hz) (x) Factor** Basic 1Mb/s 0.77 Yes 2.877 1.2 2.3 348 EDR 3Mb/s 0.77 2.887 1.2 2.3 346 Yes * Correction factor when using RMS/Power averaging - 10*log(1/x) ** Correction factor when using linear voltage average - 20*log(1/x) T = Minimum transmission duration Analyzer Settings 60.0 Rohde&Schwarz,ESI 55.0 CF: 2402.000 MHz SPAN: 0.000 MHz 50.0 RB: 1.000 MHz VB: 3.000 MHz 45.0 Detector: POS amplitude Amplitude 35.0 Attn: 0 DB RL Offset: 0.0 DB Sweep Time: 10.0ms Ref Lvl: 69.0 DBUV 30.0 25.0 Comments 20.0 BT EDR Tx On: 2.887 15.0 Tx Off: 0.876 4.00 5.00 7.00 2,00 3.00 6.00 8.00 9.00 10.00 0.00 1.00 Duty Cycle: 77% Time (ms) 1.6495 58.32 💠 🕂 🗟 🔹 Cursor 1 Delta Time (ms) 2.887 0.00 ₩ 🔶 🔂 ד Cursor 1 4.5361 Delta Amplitude 58.32

EMC Test Data

	VE ENGINEER SUCCESS		
Client:	Google Inc.	Job Number:	JD104891
Madal	T-Log Number: T10		T104956
wouer.	Nodel LICA	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247 / 15.407 / RSS-247	Class:	N/A

RSS-247 and FCC 15.247 (FHSS) Measurements Spurious Emissions

Test Specific Details

NTS

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:	Temperature:	22.4 °C
	Rel. Humidity:	38 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Target Power	Power Setting	Test Performed	Limit	Result / Margin
1a		2402	6	6	Restricted Band Edge (2390 MHz)		32.7 dBµV/m @ 2383.3 MHz (-21.3 dB)
Ia		2402	6	6	Radiated Emissions, 1 - 25 GHz		35.9 dBµV/m @ 4804.0 MHz (-18.1 dB)
1b	Basic rate 1Mb/s	2440	6	6	Radiated Emissions, 1 - 25 GHz		36.6 dBµV/m @ 4880.7 MHz (-17.4 dB)
1-		0490	6	6	Restricted Band Edge (2483.5 MHz)		36.4 dBµV/m @ 2483.6 MHz (-17.6 dB)
1c		2480	6	6	Radiated Emissions, 1 - 25 GHz	FCC Part 15.209 /	35.6 dBµV/m @ 4959.9 MHz (-18.4 dB)
		2402	6	6	Restricted Band Edge (2390 MHz)	15.247(d)	34.3 dBµV/m @ 2364.4 MHz (-19.7 dB)
2a			6	6	Radiated Emissions, 1 - 25 GHz		35.3 dBµV/m @ 4804.3 MHz (-18.7 dB)
2b	EDR 3Mb/s	2440	6	6	Radiated Emissions, 1 - 25 GHz		35.7 dBµV/m @ 4879. MHz (-18.3 dB)
25		0490	6	6	Restricted Band Edge (2483.5 MHz)		38.0 dBµV/m @ 2483.9 MHz (-16.0 dB)
2c		2480	6	6	Radiated Emissions, 1 - 25 GHz		35.6 dBµV/m @ 4960.0 MHz (-18.4 dB)

Model:	Model H0A
Contact:	Dominik Mente
Standard:	FCC 15.247 / 15.407 / RSS-247
	ions Made During Testing cations were made to the EUT during testing
	s From The Standard ons were made from the requirements of the standard.
	e Comments:

EER SUCCESS

Client: Google Inc.

Measurements performed in accordance with FCC KDB 558074

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
Basic	1Mb/s	0.77	Yes	2.877	1.2	2.3	348
EDR	3Mb/s	0.77	Yes	2.887	1.2	2.3	346

Measurement Specific Notes:

mousure	
Note 1:	Emission in non-restricted band, but limit of 15.209 used.
Note 2:	Emission in non-restricted band, the limit was set 20dB below the level of the fundamental and measured in 100kHz.
	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
Note 4:	peak detector, linear averaging, auto sweep, trace average 100 traces, measurement corrected by Linear voltage correction
	factor
Note 6:	Plots of the average bandedge do not account for any duty cycle correction. Refer to the tabluar results for final
NOLE O.	measurements.

EMC Test Data

Job Number: JD104891

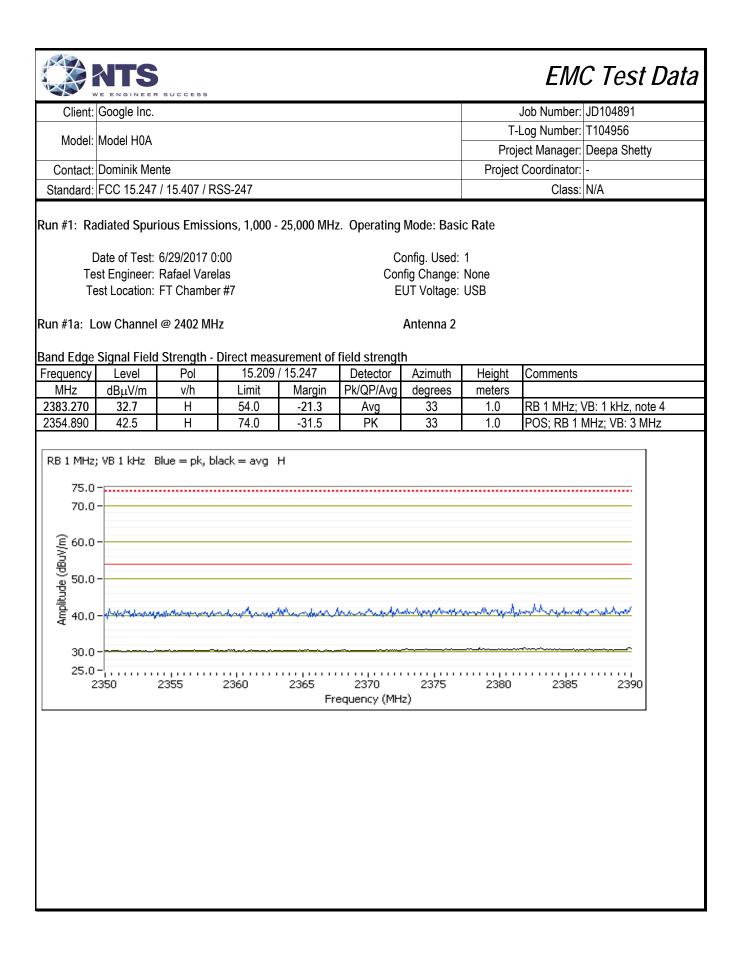
Project Manager: Deepa Shetty

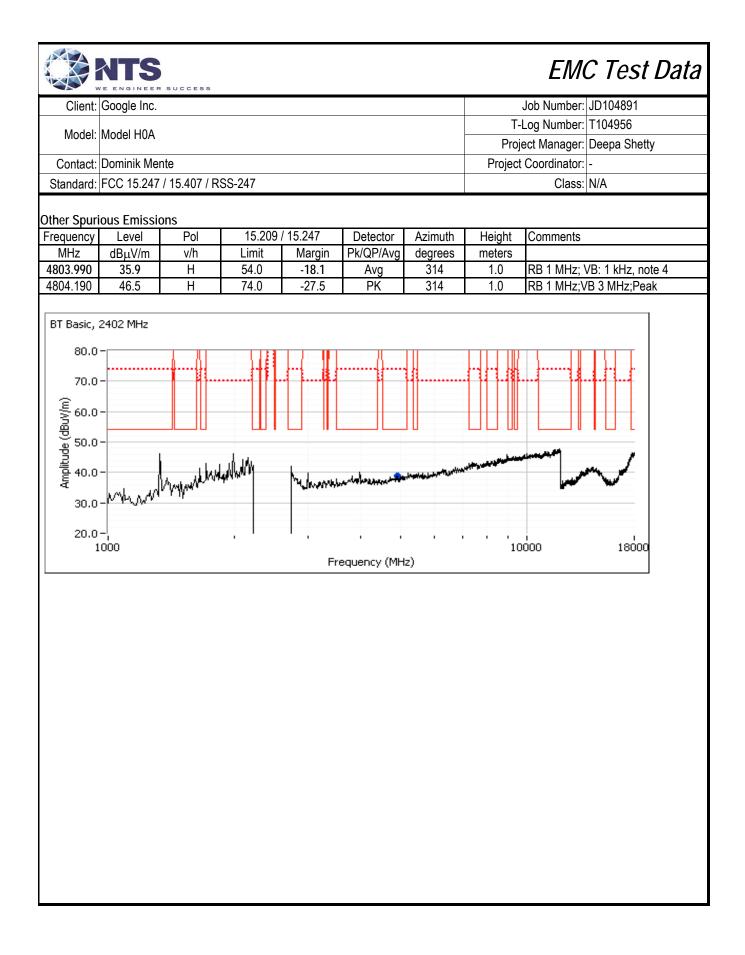
Class: N/A

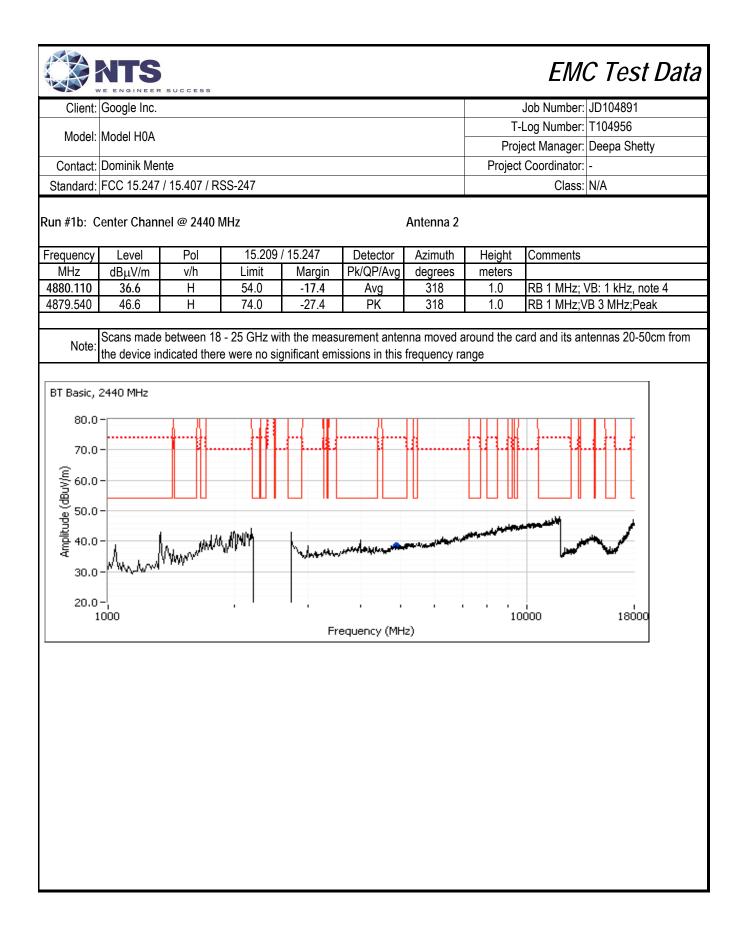
T-Log Number: T104956

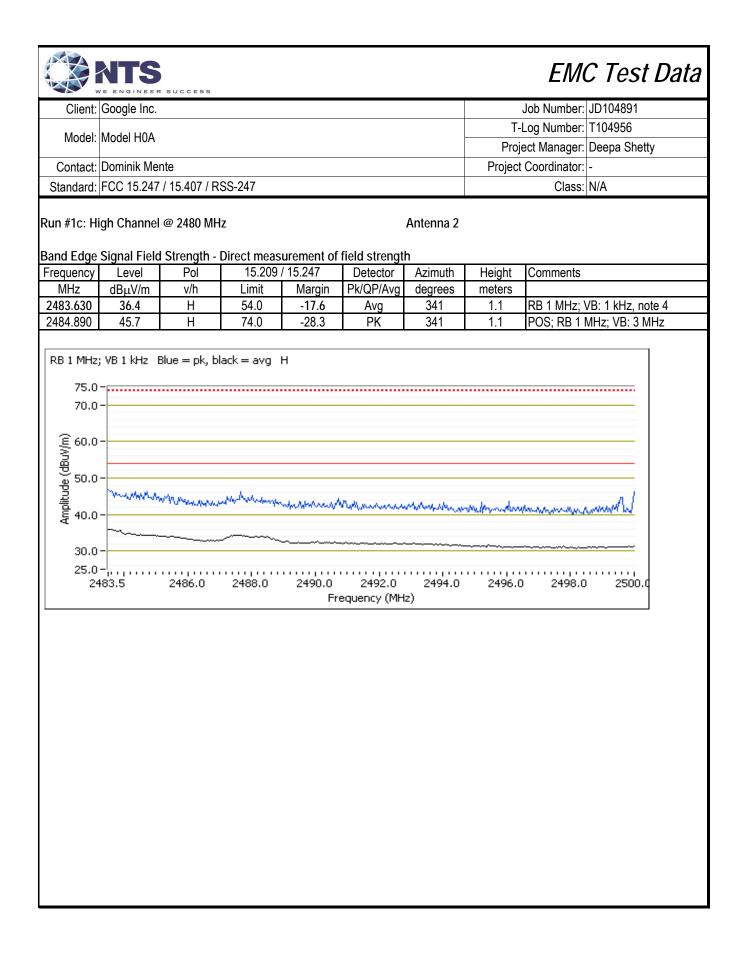
Project Coordinator:

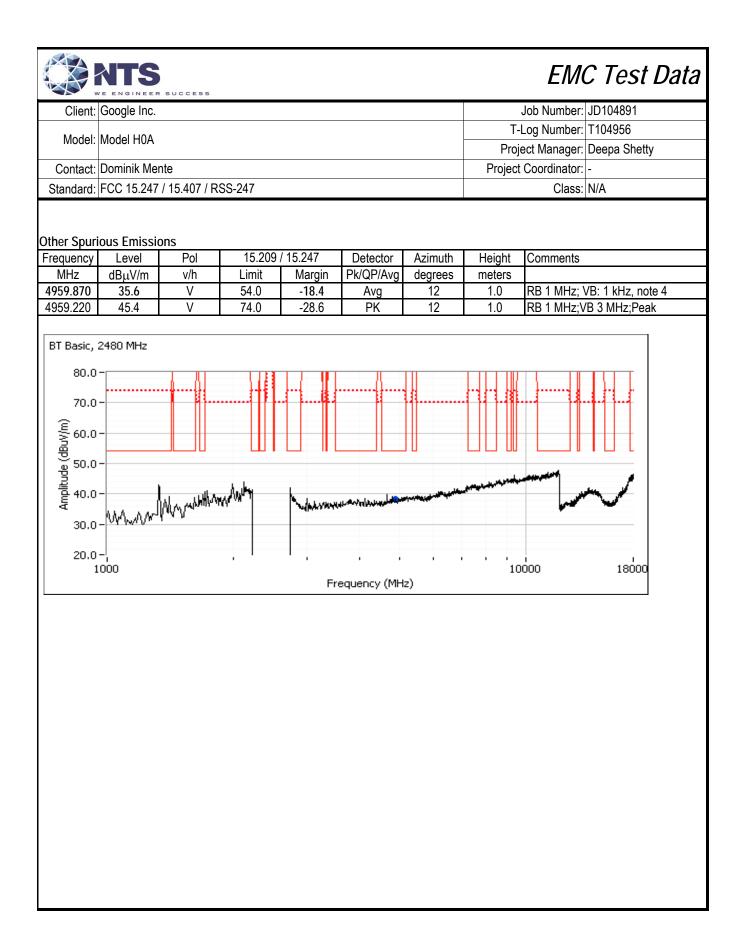
	E ENGINEER SUCCESS	EM	C Test Data
Client:	Google Inc.	Job Number:	JD104891
Madalı	Model H0A	T-Log Number:	T104956
wouer.		Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247 / 15.407 / RSS-247	Class:	N/A

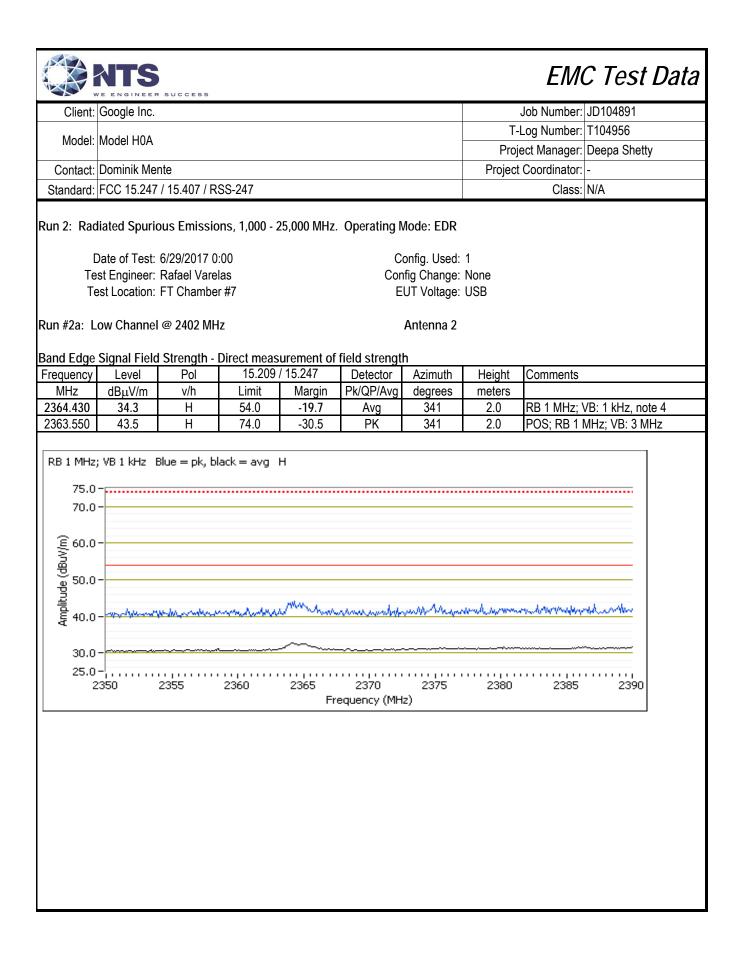

Sample Notes

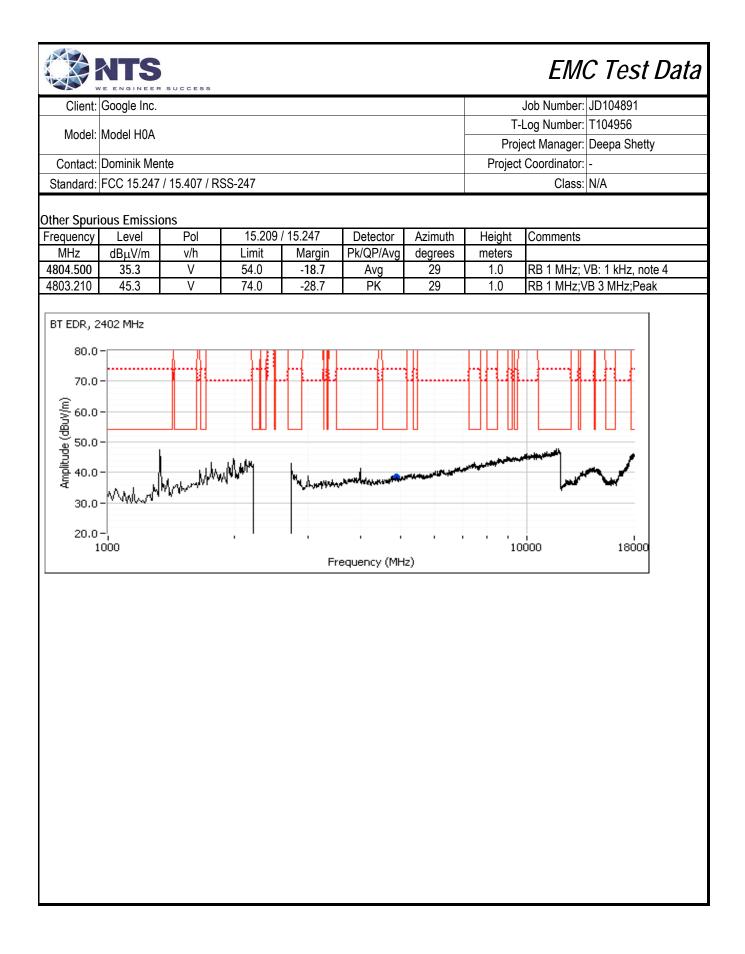

Sample S/N: Engineering Radiated Sample #2 Driver: -

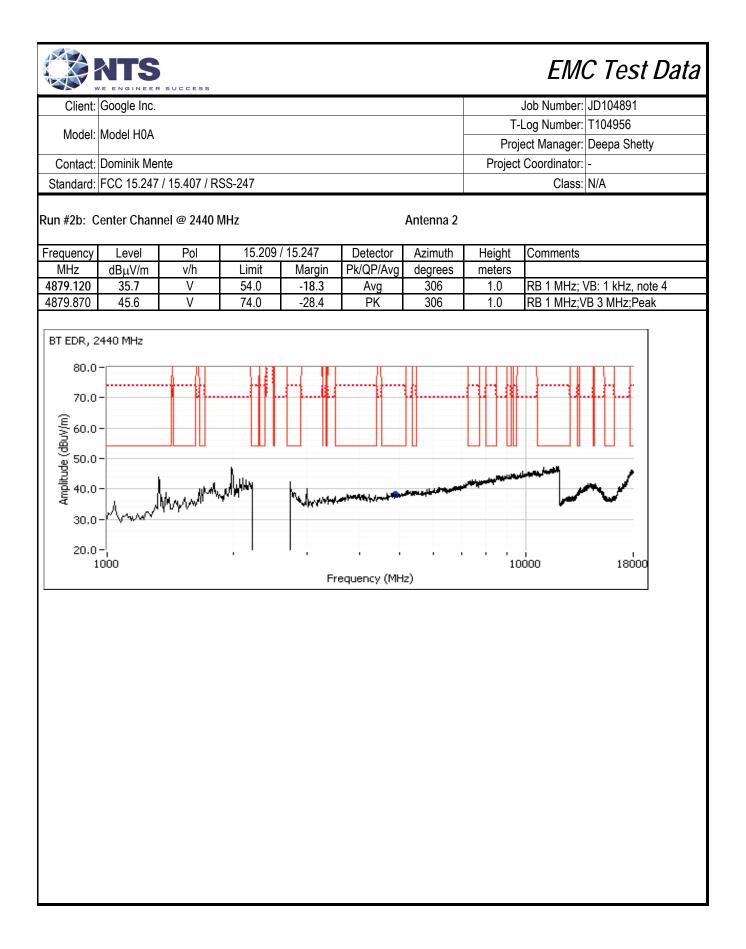

Antenna: Internal

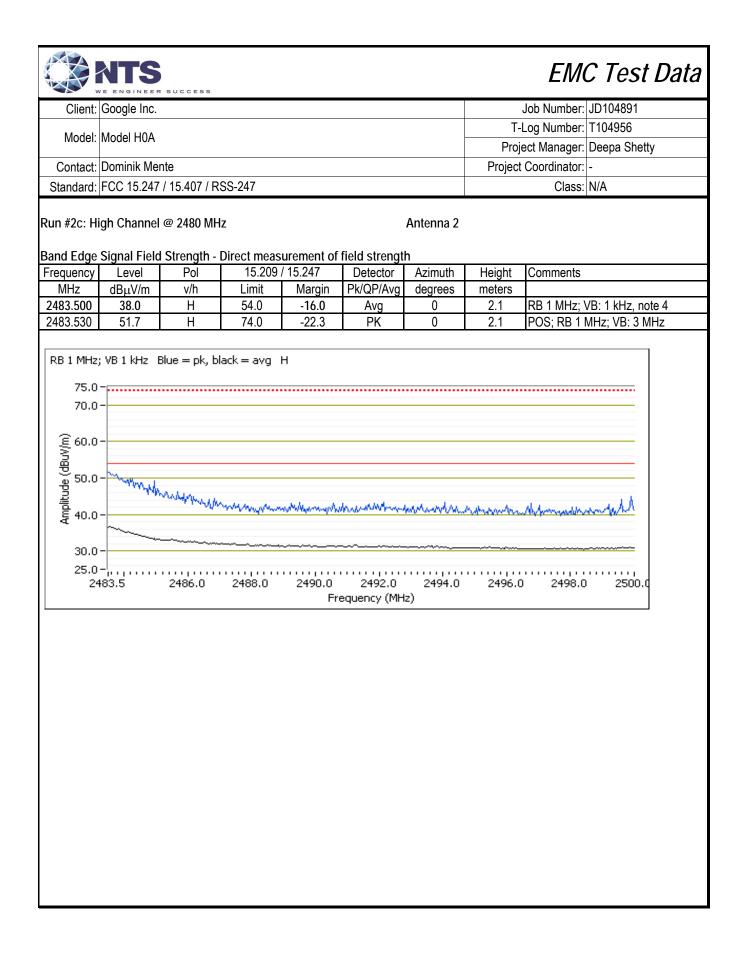

Note: All testing performed on the Antenna 2 port (wifi set to 10 1 1, which forces BT to Antenna 2), as this was worse case from preliminary measurements.

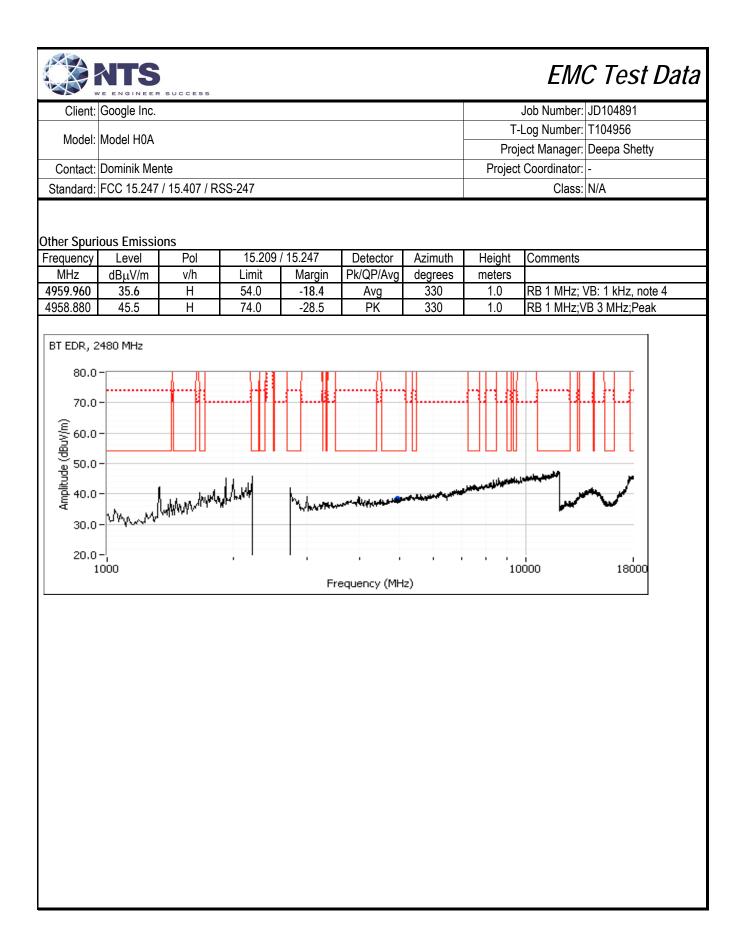

Preliminary measurement demonstrated no spurious emissions below 1GHz. Evaluation of simultanenous BT and Wifi operation is addressed in the DTS and UNII test reports.











EMC Test Data

	/e engineer success		
Client:	Google Inc.	Job Number:	JD104891
Madal	Model H0A	T-Log Number:	T104956
MOUEI.	INIQUEI FICK	Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247 / 15.407 / RSS-247	Class:	N/A

RSS-247 and FCC 15.247 (FHSS) Measurements Power, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

NTS

When measuring the conducted emissions, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

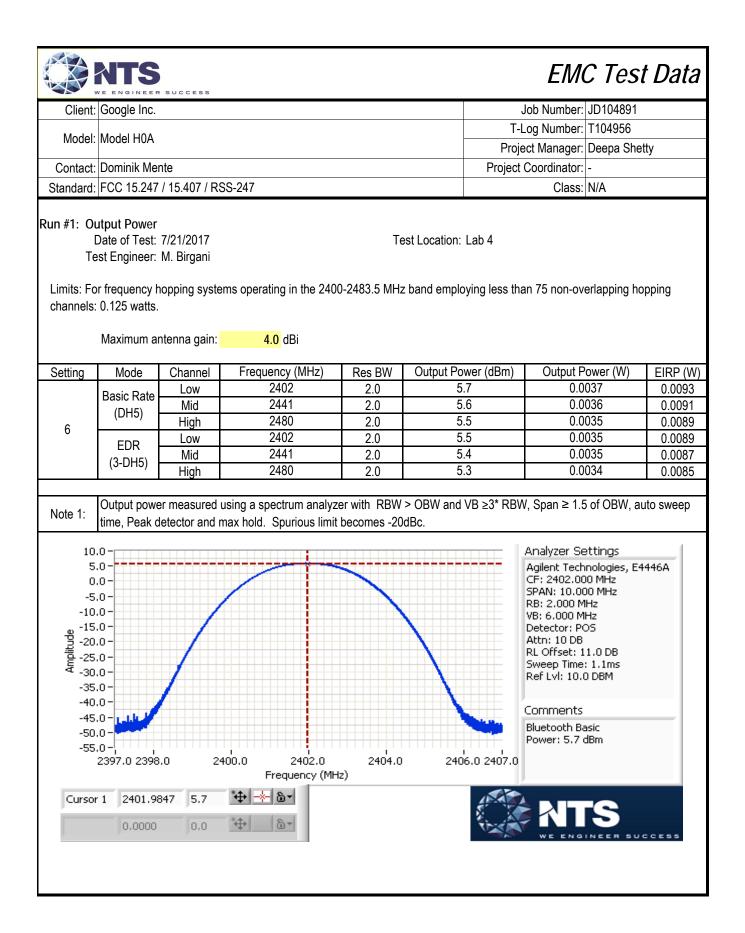
Unless stated otherwise the EUT was operating such that it constantly hopped on either the low, center or high channels.

Ambient Conditions:	Temperature:	22-24 °C
	Rel. Humidity:	43-47 %

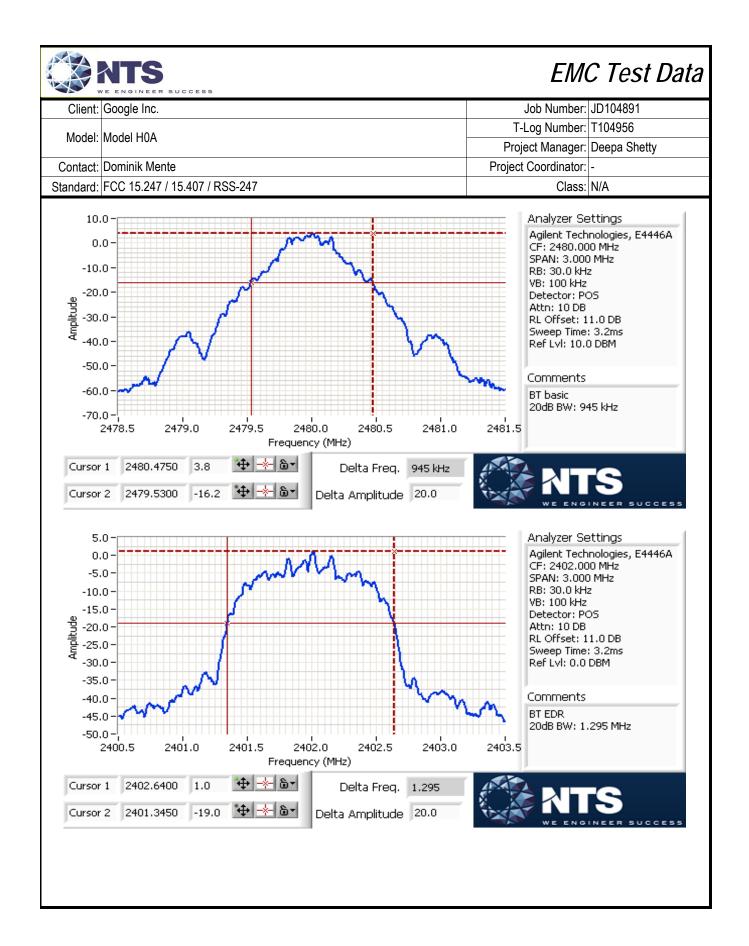
Summary of Results

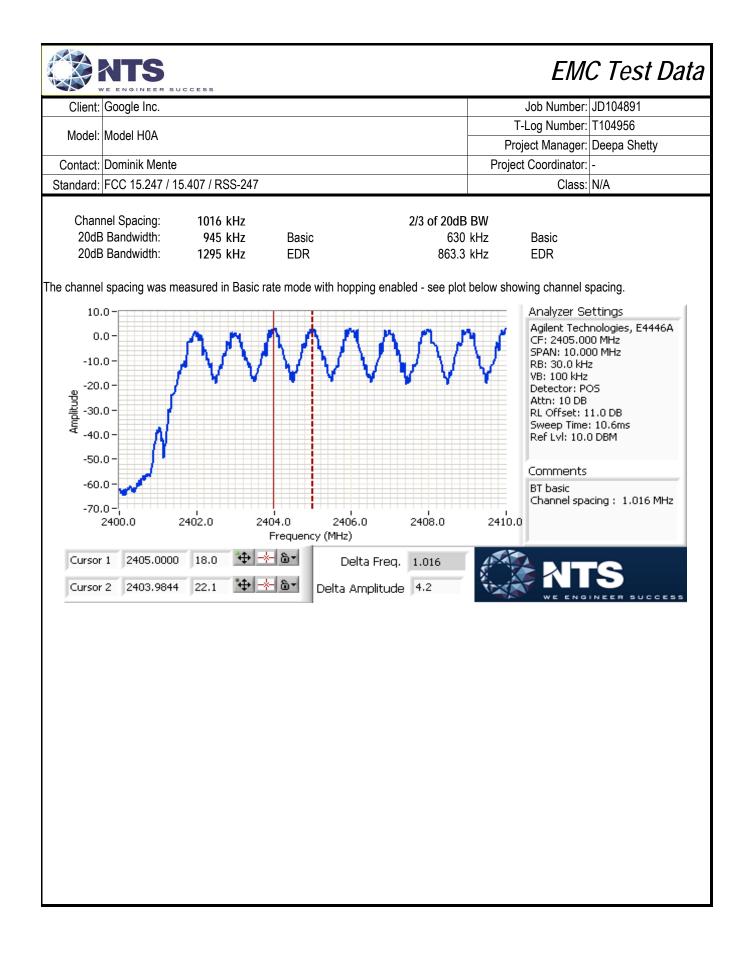
J				
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Output Power	15.247(b)	Pass	Basic Rate: 5.7 dBm (3.7mW)
I	Odiput Power	13.247(b)	r ass	EDR: 5.5 dBm (3.5mW)
2	20dB Bandwidth	15.247(a)	Pass	Basic Rate: 945 kHz
2		15.247 (d)	r ass	EDR: 1295 kHz
2	Channel Occupancy	15.247(a)	1 0 3 3	Device complies with the Bluetooth
				specifications with a minimum of 20
2	Number of Channels	15.247(a)	Pass	hopping channels
Λ	30 - 25,000 MHz - Transmitter	15.247(c)	Deee	All spurious < -20 dBc.
4	Conducted Spurious Emissions	15.247(0)	Pass	

Modifications Made During Testing:

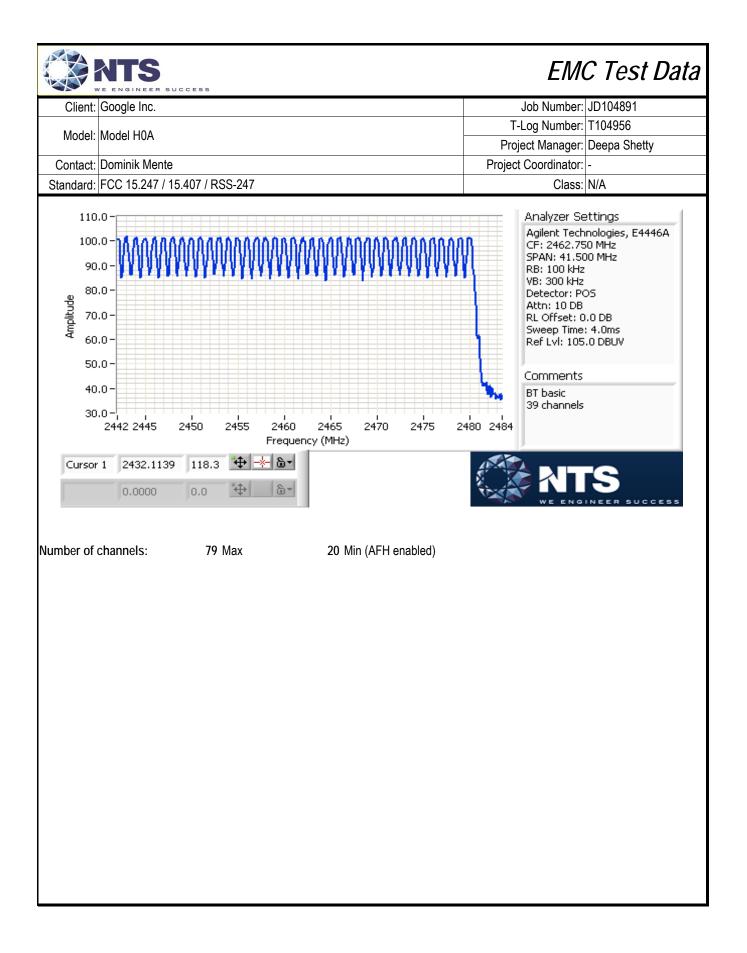

No modifications were made to the EUT during testing

Deviations From The Standard

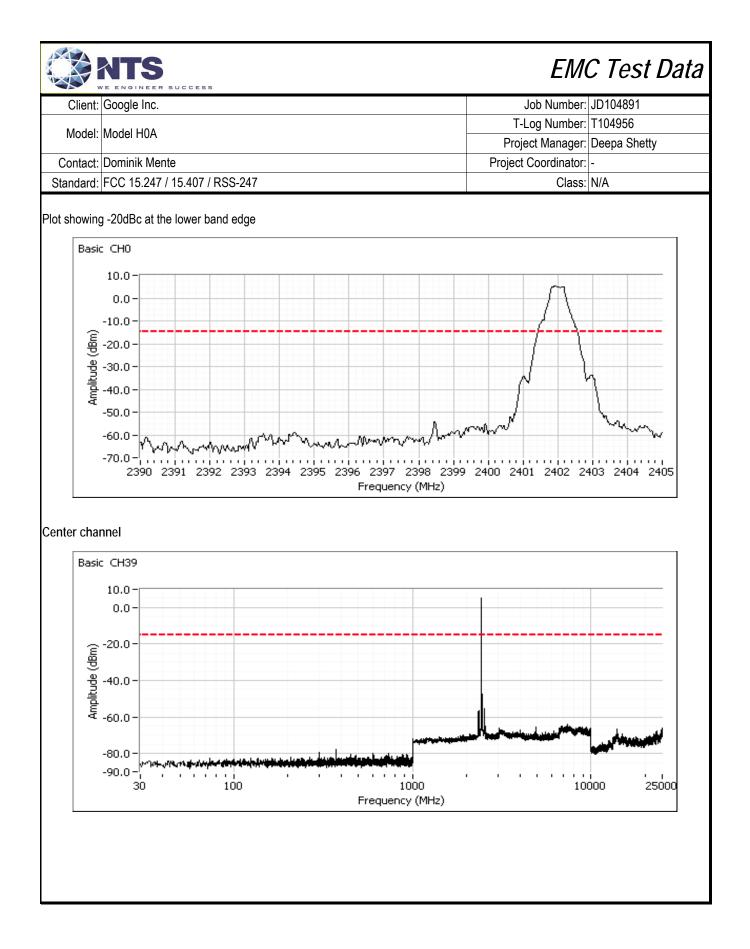

No deviations were made from the requirements of the standard.

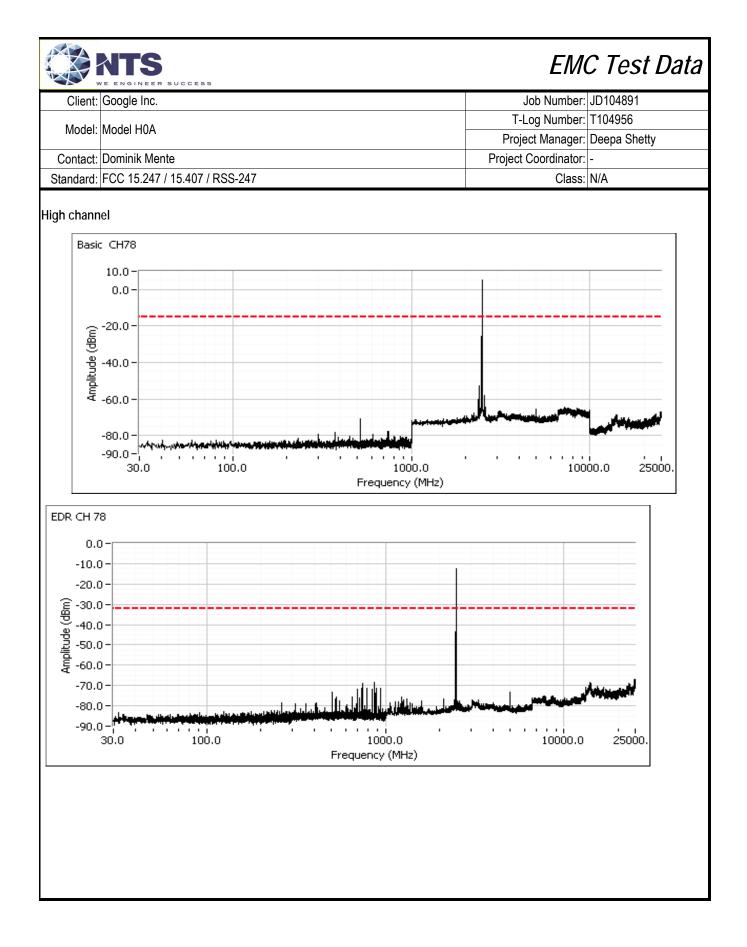

Sample Notes

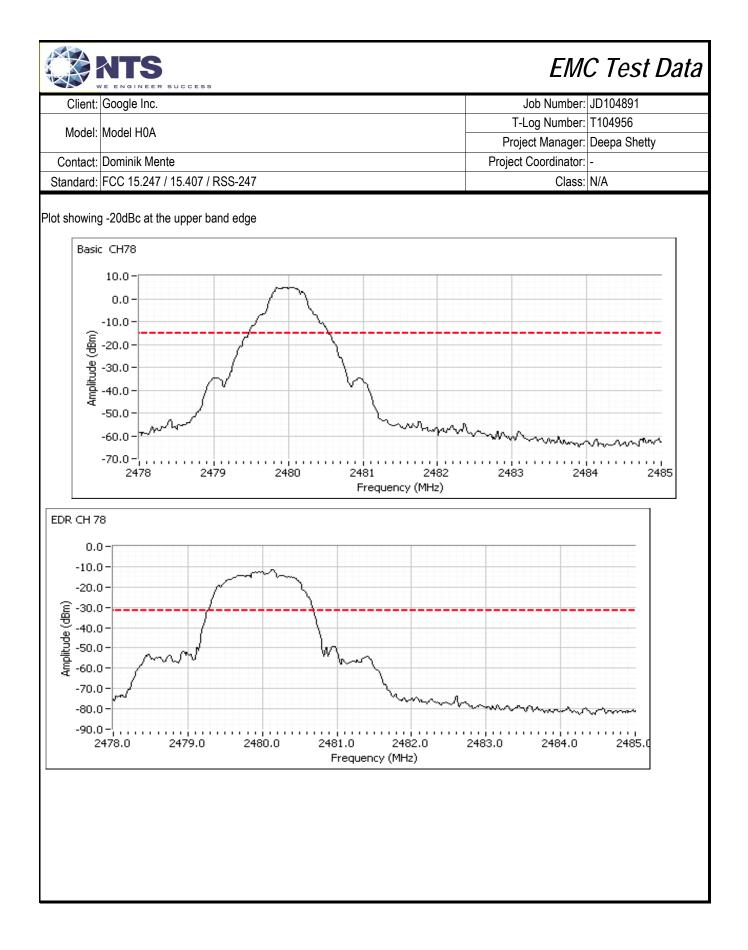
Sample S/N: Prototype Sample #1 Driver: -



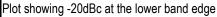
	VE ENGINEER	SUCCESS				EM	C Test Data
Client:	Google Inc.					Job Number:	JD104891
Model:	Model H0A				T-	_og Number:	T104956
					,		Deepa Shetty
Contact:	Dominik Mei	nte			Project	Coordinator:	-
Standard:	FCC 15.247	/ 15.407 / R	SS-247			Class:	N/A
[ndwidth, Ch Date of Test: est Engineer:	7/21/2017	bancy, Spacing and Nu		nnels est Location: lab 4		
				Resolution		1	
Mode	Setting	Channel	Frequency (MHz)	Bandwidth	20dB Bandwidth (kHz)		
	Ĵ			(kHz)	. ,		
Basic Rate		Low	2402	30	945	-	
(DH5)		Mid	<u> </u>	30	945 945	-	
	6	High Low	2400	30 30	1.295		
EDR		Mid	2441	30	1.290		
(3-DH5)		High	2480	30	1.290		
Note 1:			ed using RB = 30 kHz, V	D 400 I I I			
number of h frequency p The device adaptove fre	opping chanr rovided that a complies with equency hopp e used equal	hels employe a minimum of the Bluetoo bing and all 7 ly. hops per se	d. (Frequency hopping s 15 channels are used.) th protocol and employs	ystems may a a minimum of hannels are s channel may l	·	issions on a opping chann lom manner f	particular hopping lels when employing lo ensure, on average, all



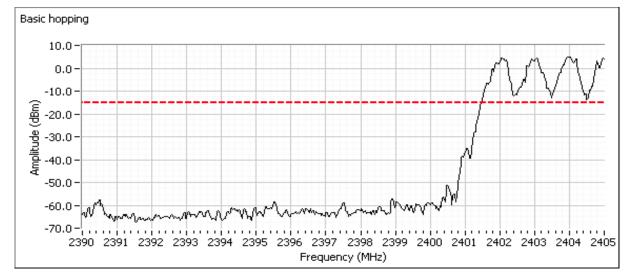



EMC Test Data SUCCESS Client: Google Inc. Job Number: JD104891 T-Log Number: T104956 Model: Model H0A Project Manager: Deepa Shetty Contact: Dominik Mente Project Coordinator: Standard: FCC 15.247 / 15.407 / RSS-247 Class: N/A Requirement: The channel spacing shall be greater than 2/3 of the highest 20dB bandwidth as the ouput power is < 0.125 W. The number of channels was measured in Basic rate mode with hopping enabled with both the maximum (all) channels enabled and with the minimum number of channels enabled. The system shall employ a minimum of 15 hopping channels. Requirement: The system shall employ a minimum of 15 hopping channels. 110.0 Analyzer Settings Agilent Technologies, E4446A 100.0 CF: 2420.500 MHz SPAN: 41.000 MHz 90.0 RB: 100 kHz VB: 300 kHz 80.0 Detector: POS Amplitude Attn: 10 DB 70.0 RL Offset: 0.0 DB Sweep Time: 3.9ms 60.0 Ref Lvl: 105.0 DBUV 50.0 Comments 40.0 BT basic 40 channels 30.0 2441 2430 2410 2415 2420 2425 2435 2400 2405 Frequency (MHz) * Շ-2394.3115 116.4 ÷Ŧ+ Cursor 1 0.0000 6.

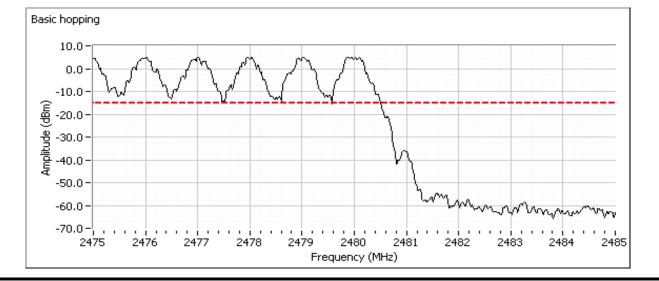
	Coogle Ine				lah Numer	
lient:	Google Inc.				Job Number: T-Log Number:	
odel:	Model H0A				Project Manager:	
ntact:	Dominik Mente				Project Coordinator:	
	FCC 15.247 / 15.407 / F	RSS-247			Class:	
[ntenna Conducted Spu Date of Test: 7/21/2017 est Engineer: John Caizz		ions, 30 - 25,0	00 MHz, Basic Rate Test Location	:: Lab #4b	
	Frequency (MHz)	Power Setting	Mode	Limit	Result]
	2402	, , , , , , , , , , , , , , , , , , ,			Pass	
	2441	6	Basic	-20dBc	Pass	
	2480				Pass	
	10.0-					
	10.0 -					
(mBh	0.0-					
ilitude (dBm)	0.0-					
Amplitude (dBm)	0.0-					
	0.0-					
	0.0 - -20.0 - -40.0 - -60.0 -					000 2500

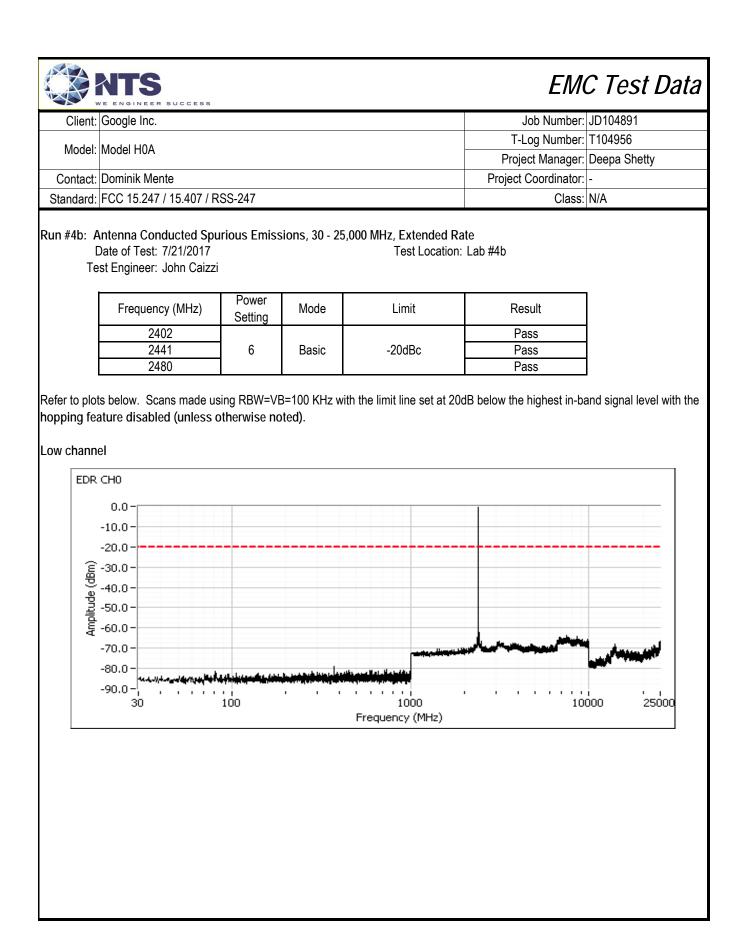


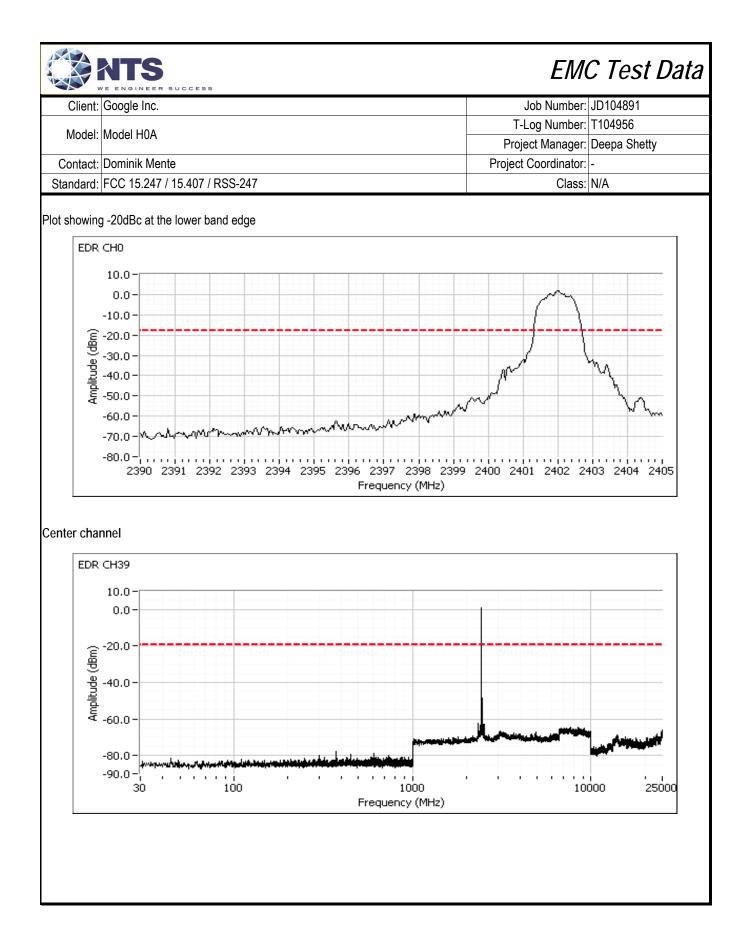
EMC Test Data
Job Number: JD104891

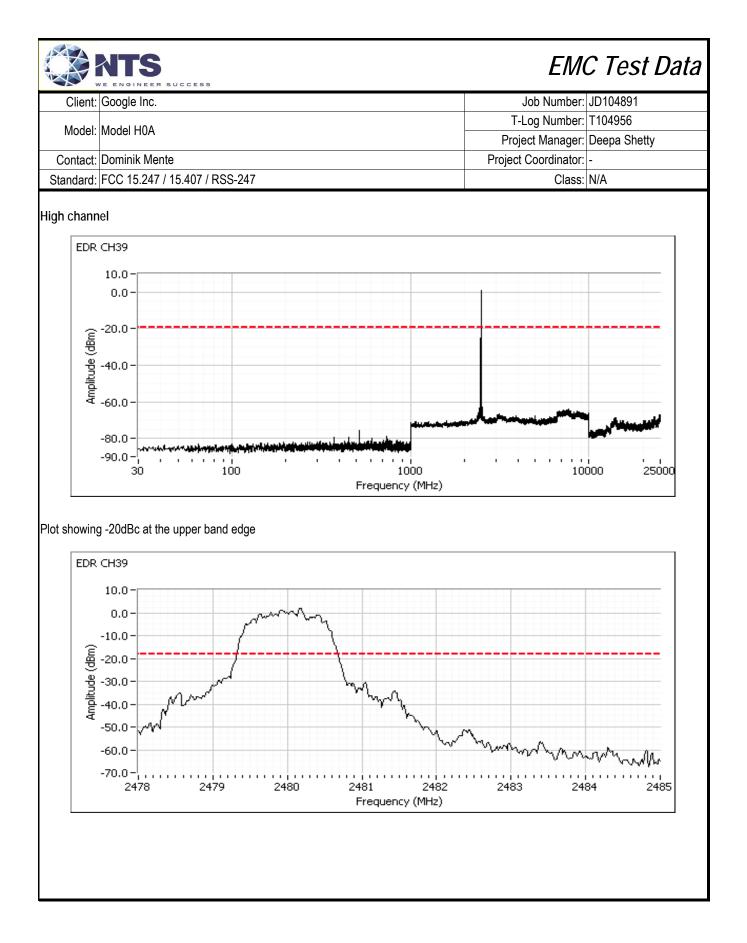

Client:	Google Inc.	Job Number:	JD104891
Model	Model H0A	T-Log Number:	T104956
wouer.		Project Manager:	Deepa Shetty
Contact:	Dominik Mente	Project Coordinator:	-
Standard:	FCC 15.247 / 15.407 / RSS-247	Class:	N/A

Refer to plots below. Scans made using RBW=100 KHz, VBW=300kHz with the limit line set at 20dB below the highest in-band signal level with the **hopping** feature enabled to show compliance with the -20dBc requirement at the allocated band edge. The spectrum analyzer is left in max hold mode until the trace stabilizes.

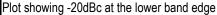

Low channel, hopping enabled

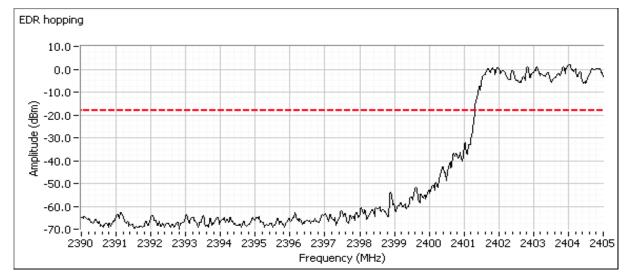



SUCCESS

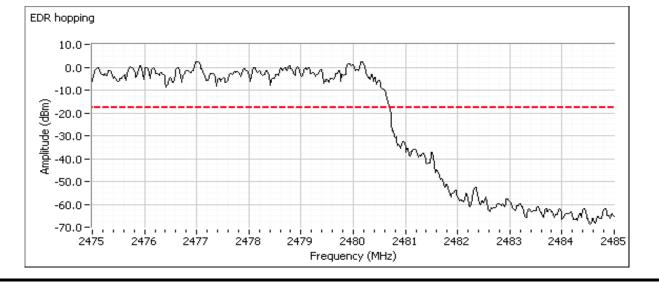


High channel, hopping enabled Plot showing -20dBc at the upper band edge

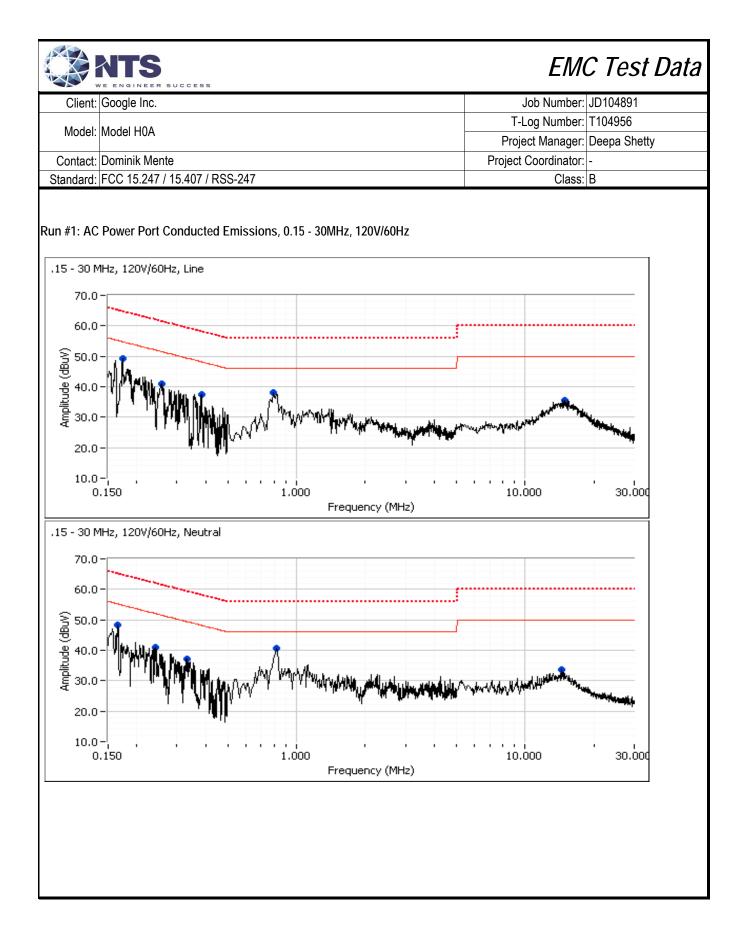



Client: Google Inc. Job Number: JD104891 Model: Model H0A T-Log Number: T104956	ta
Project Manager: Deepa Shetty	
Contact: Dominik Mente Project Coordinator: -	
Standard: FCC 15.247 / 15.407 / RSS-247 Class: N/A	

Refer to plots below. Scans made using RBW=100 KHz, VBW=300kHz with the limit line set at 20dB below the highest in-band signal level with the hopping feature enabled to show compliance with the -20dBc requirement at the allocated band edge. The spectrum analyzer is left in max hold mode until the trace stabilizes.


Low channel, hopping enabled

ľ



High channel, hopping enabled Plot showing -20dBc at the upper band edge

		SUCCESS				EMO	C Test Data
Client:	Google Inc.					Job Number:	JD104891
	Model H0A				T-I	Log Number:	T104956
IVIODEI:	IVIODEI HUA				Proje	ect Manager:	Deepa Shetty
Contact:	Dominik Men	te			Project	Coordinator:	-
Standard:	FCC 15.247	/ 15.407 / RSS-247				Class:	В
Test Spec	cific Details			ted Emission: ht Facility, Semi-Art	-	er)	
	•	The objective of this test s specification listed above.	ession is to p	perform final qualifica	ition testing of th	ne EUT with r	espect to the
L C	Date of Test:	7/21/2017		Config. Us	ed: 1		
	-	Rafael Varelas		Config Chan	ge: none		
Te	est Location:	FT Chamber #4		EUT Volta	ge: 120V/60Hz		
Ambient	om the LISN. Conditions	Re	mperature: I. Humidity:	23.4 °C 41 %			
Summary	OF RESULT	5					
Ru	n #	Test Performed		Limit	Result	Margin	
	1	CE, AC Power,120V	/60Hz	15.207	Pass	27.7 dBµV (@ 0.823 MHz (-18.3 dB)
No modificat Deviation	tions were ma s From Th	During Testing ade to the EUT during test e Standard from the requirements of	·				
Channel: Antenna	5180 MHz 2	Mode: Data Rate:	a 6MB/s				
Channel: Antenna	2480 MHz 2	Mode: Data Rate:	BLE 1MB/s				

		RSUCCESS					EMC Test
Client	Google Inc.						Job Number: JD104891
	-						T-Log Number: T104956
Model:	Model H0A						Project Manager: Deepa Shetty
Contact	Dominik Me	nte					Project Coordinator: -
		7 / 15.407 / R	\$\$_247				Class: B
reliminary requency	/ peak readi Level	ngs capture AC		e-scan (peak 207	Detector	s. average lim Comments	it)
MHz	dBµV	Line	Limit	Margin	QP/Ave		
0.172	49.2	Line 1	54.8	-5.6	Peak		
0.257	40.9	Line 1	51.5	-10.6	Peak		
0.383	37.4	Line 1	48.2	-10.8	Peak		
0.800	38.2	Line 1	46.0	-7.8	Peak		
14.888	35.6	Line 1	50.0	-14.4	Peak		
0.165	48.3	Neutral	55.2	-6.9	Peak		
0.240	41.0 37.1	Neutral Neutral	52.1 49.4	-11.1 -12.3	Peak Peak		
0.823	40.6	Neutral	49.4	-12.5	Peak		
14.437	33.5	Neutral	50.0	-16.5	Peak		
inal quasi	-peak and a	verage read	nas				
requency	Level	verage readi AC Line	15.	207 Margin	Detector QP/Ave	Comments	
				207 Margin -18.3	QP/Ave		
requency MHz	Level dBµV	AC Line	15. Limit	Margin		Comments AVG (0.10s) QP (1.00s)	
requency MHz 0.823	Level dBµV 27.7	AC Line Neutral	15. Limit 46.0	Margin -18.3	QP/Ave AVG	AVG (0.10s)	
requency MHz 0.823 0.823	Level dBµV 27.7 37.3	AC Line Neutral Neutral	15. Limit 46.0 56.0	Margin -18.3 -18.7	QP/Ave AVG QP	AVG (0.10s) QP (1.00s)	
requency MHz 0.823 0.823 0.800 0.800 0.172	Level dBµV 27.7 37.3 24.6 34.2 42.0	AC Line Neutral Neutral Line 1	15. Limit 46.0 56.0 46.0 56.0 64.9	Margin -18.3 -18.7 -21.4 -21.8 -22.9	QP/Ave AVG QP AVG QP QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s)	
requency MHz 0.823 0.823 0.800 0.800 0.172 0.165	Level dBµV 27.7 37.3 24.6 34.2 42.0 41.5	AC Line Neutral Line 1 Line 1 Line 1 Neutral	15. Limit 46.0 56.0 46.0 56.0 64.9 65.2	Margin -18.3 -18.7 -21.4 -21.8 -22.9 -23.7	QP/Ave AVG QP AVG QP QP QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s)	
Frequency MHz 0.823 0.823 0.800 0.800 0.172 0.165 0.257	Level dBµV 27.7 37.3 24.6 34.2 42.0 41.5 36.5	AC Line Neutral Line 1 Line 1 Line 1 Neutral Line 1	15. Limit 46.0 56.0 46.0 56.0 64.9 65.2 61.5	Margin -18.3 -18.7 -21.4 -21.8 -22.9 -23.7 -25.0	QP/Ave AVG QP AVG QP QP QP QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
requency MHz 0.823 0.823 0.800 0.800 0.172 0.165 0.257 0.330	Level dBµV 27.7 37.3 24.6 34.2 42.0 41.5 36.5 34.3	AC Line Neutral Line 1 Line 1 Line 1 Neutral Line 1 Neutral	15. Limit 46.0 56.0 46.0 56.0 64.9 65.2 61.5 59.5	Margin -18.3 -18.7 -21.4 -21.8 -22.9 -23.7 -25.0 -25.2	QP/Ave AVG QP AVG QP QP QP QP QP QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
requency MHz 0.823 0.823 0.800 0.800 0.172 0.165 0.257 0.330 14.888	Level dBµV 27.7 37.3 24.6 34.2 42.0 41.5 36.5 34.3 23.5	AC Line Neutral Line 1 Line 1 Line 1 Neutral Line 1 Neutral Line 1	15. Limit 46.0 56.0 46.0 56.0 64.9 65.2 61.5 59.5 50.0	Margin -18.3 -18.7 -21.4 -21.8 -22.9 -23.7 -25.0 -25.2 -26.5	QP/Ave AVG QP AVG QP QP QP QP QP QP AVG	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s)	
requency MHz 0.823 0.823 0.800 0.800 0.172 0.165 0.257 0.330 14.888 0.383	Level dB _µ V 27.7 37.3 24.6 34.2 42.0 41.5 36.5 34.3 23.5 31.3	AC Line Neutral Line 1 Line 1 Line 1 Neutral Line 1 Neutral Line 1 Line 1	15. Limit 46.0 56.0 46.0 56.0 64.9 65.2 61.5 59.5 50.0 58.2	Margin -18.3 -18.7 -21.4 -21.8 -22.9 -23.7 -25.0 -25.2 -26.5 -26.5 -26.9	QP/Ave AVG QP QP QP QP QP QP QP QP AVG QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s)	
requency MHz 0.823 0.823 0.800 0.800 0.172 0.165 0.257 0.330 14.888 0.383 14.437	Level dBµV 27.7 37.3 24.6 34.2 42.0 41.5 36.5 34.3 23.5 31.3 22.7	AC Line Neutral Line 1 Line 1 Line 1 Neutral Line 1 Line 1 Line 1 Neutral	15. Limit 46.0 56.0 46.0 56.0 64.9 65.2 61.5 59.5 50.0 58.2 50.0	Margin -18.3 -18.7 -21.4 -21.8 -22.9 -23.7 -25.0 -25.2 -26.5 -26.9 -27.3	QP/Ave AVG QP QP QP QP QP QP QP AVG QP AVG	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)	
requency MHz 0.823 0.823 0.800 0.800 0.172 0.165 0.257 0.330 14.888 0.383 14.437 0.240	Level dBµV 27.7 37.3 24.6 34.2 42.0 41.5 36.5 34.3 23.5 31.3 22.7 34.2	AC Line Neutral Line 1 Line 1 Line 1 Neutral Line 1 Line 1 Line 1 Neutral Neutral Neutral Neutral	15. Limit 46.0 56.0 46.0 56.0 64.9 65.2 61.5 59.5 50.0 58.2 50.0 62.1	Margin -18.3 -18.7 -21.4 -21.8 -22.9 -23.7 -25.0 -25.2 -26.5 -26.9 -27.3 -27.9	QP/Ave AVG QP QP QP QP QP QP QP AVG QP AVG QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s)	
requency MHz 0.823 0.823 0.800 0.800 0.172 0.165 0.257 0.330 14.888 0.383 14.437 0.240 14.888	Level dBµV 27.7 37.3 24.6 34.2 42.0 41.5 36.5 34.3 23.5 31.3 22.7 34.2 30.9	AC Line Neutral Line 1 Line 1 Line 1 Neutral Line 1 Line 1 Line 1 Neutral Neutral Neutral Neutral Line 1	15. Limit 46.0 56.0 46.0 56.0 64.9 65.2 61.5 59.5 50.0 58.2 50.0 58.2 50.0 62.1 60.0	Margin -18.3 -18.7 -21.4 -21.8 -22.9 -23.7 -25.0 -25.2 -26.5 -26.9 -27.3 -27.9 -29.1	QP/Ave AVG QP QP QP QP QP QP QP AVG QP AVG QP QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s)	
requency MHz 0.823 0.823 0.800 0.800 0.800 0.172 0.165 0.257 0.330 14.888 0.383 14.437 0.240 14.888 0.330	Level dB _µ V 27.7 37.3 24.6 34.2 42.0 41.5 36.5 34.3 23.5 31.3 22.7 34.2 30.9 18.7	AC Line Neutral Line 1 Line 1 Line 1 Neutral Line 1 Line 1 Neutral Neutral Neutral Neutral Neutral Neutral	15. Limit 46.0 56.0 46.0 56.0 64.9 65.2 61.5 59.5 50.0 58.2 50.0 62.1 60.0 49.5	Margin -18.3 -18.7 -21.4 -21.8 -22.9 -23.7 -25.0 -25.2 -26.5 -26.9 -27.3 -27.9 -29.1 -30.8	QP/Ave AVG QP QP QP QP QP QP AVG QP AVG QP AVG	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s)	
requency MHz 0.823 0.823 0.800 0.800 0.172 0.165 0.257 0.330 14.888 0.383 14.437 0.240 14.888 0.330 0.257	Level dB _µ V 27.7 37.3 24.6 34.2 42.0 41.5 36.5 34.3 23.5 31.3 22.7 34.2 30.9 18.7 20.6	AC Line Neutral Line 1 Line 1 Line 1 Neutral Line 1 Neutral Line 1 Neutral Neutral Line 1 Neutral Line 1 Neutral Line 1	15. Limit 46.0 56.0 46.0 56.0 64.9 65.2 61.5 59.5 50.0 58.2 50.0 62.1 60.0 49.5 51.5	Margin -18.3 -18.7 -21.4 -21.8 -22.9 -23.7 -25.0 -25.2 -26.5 -26.5 -26.9 -27.3 -27.9 -29.1 -30.8 -30.9	QP/Ave AVG QP QP QP QP QP QP AVG QP AVG QP AVG AVG AVG	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s)	
requency MHz 0.823 0.823 0.800 0.800 0.172 0.165 0.257 0.330 14.888 0.383 14.437 0.240 14.888 0.330	Level dBµV 27.7 37.3 24.6 34.2 42.0 41.5 36.5 34.3 23.5 31.3 22.7 34.2 30.9 18.7 20.6 16.9	AC Line Neutral Line 1 Line 1 Line 1 Neutral Line 1 Neutral Line 1 Neutral Neutral Line 1 Neutral Line 1 Neutral Line 1 Line 1 Line 1	15. Limit 46.0 56.0 46.0 56.0 64.9 65.2 61.5 59.5 50.0 58.2 50.0 62.1 60.0 49.5	Margin -18.3 -18.7 -21.4 -21.8 -22.9 -23.7 -25.0 -25.2 -26.5 -26.9 -27.3 -27.9 -27.9 -29.1 -30.8 -30.9 -31.3	QP/Ave AVG QP QP QP QP QP QP AVG QP AVG QP AVG	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) AVG (0.10s)	
Frequency MHz 0.823 0.823 0.800 0.800 0.800 0.172 0.165 0.257 0.330 14.888 0.383 14.437 0.240 14.888 0.330 0.257 0.383	Level dB _µ V 27.7 37.3 24.6 34.2 42.0 41.5 36.5 34.3 23.5 31.3 22.7 34.2 30.9 18.7 20.6	AC Line Neutral Line 1 Line 1 Line 1 Neutral Line 1 Neutral Line 1 Neutral Neutral Line 1 Neutral Line 1 Neutral Line 1	15. Limit 46.0 56.0 46.0 56.0 64.9 65.2 61.5 59.5 50.0 58.2 50.0 62.1 60.0 49.5 51.5 48.2	Margin -18.3 -18.7 -21.4 -21.8 -22.9 -23.7 -25.0 -25.2 -26.5 -26.5 -26.9 -27.3 -27.9 -29.1 -30.8 -30.9	QP/Ave AVG QP QP QP QP QP QP AVG QP AVG QP AVG AVG AVG AVG	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s)	
Frequency MHz 0.823 0.823 0.800 0.800 0.172 0.165 0.257 0.330 14.888 0.383 14.437 0.240 14.888 0.330 0.257 0.383 14.437	Level dBµV 27.7 37.3 24.6 34.2 42.0 41.5 36.5 34.3 23.5 31.3 22.7 34.2 30.9 18.7 20.6 16.9 27.9	AC Line Neutral Line 1 Line 1 Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Neutral Line 1 Line 1 Neutral	15. Limit 46.0 56.0 46.0 56.0 64.9 65.2 61.5 59.5 50.0 58.2 50.0 62.1 60.0 49.5 51.5 48.2 60.0	Margin -18.3 -18.7 -21.4 -21.8 -22.9 -23.7 -25.0 -25.2 -26.5 -26.9 -27.3 -27.9 -29.1 -30.8 -30.9 -31.3 -32.1	QP/Ave AVG QP QP QP QP QP QP AVG QP AVG QP AVG AVG AVG AVG QP	AVG (0.10s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) QP (1.00s) QP (1.00s) QP (1.00s) QP (1.00s) AVG (0.10s) AVG (0.10s) AVG (0.10s) QP (1.00s)	

End of Report

This page is intentionally blank and marks the last page of this test report.