

Königswinkel 10 32825 Blomberg, Germany Phone: +49 (0) 52 35 / 95 00-0 Fax: +49 (0) 52 35 / 95 00-10 office@phoenix-testlab.de

office@phoenix-testlab.de www.phoenix-testlab.de

Test Report

Report Number:

F191161E7

Equipment under Test (EUT):

Track&Trace Satellite

Applicant:

TRUMPF Werkzeugmaschinen GmbH + Co. KG

Manufacturer:

TRUMPF Werkzeugmaschinen GmbH + Co. KG

References

- [1] **ANSI C63.4:2014** American National Standard for Methods of Measuring of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
- [2] FCC 47 CFR Part 2: General Rules and Regulations
- [3] FCC 47 CFR Part 15: Radio Frequency Devices (Subpart B)

Test Result

The requirements of the tests performed as shown in the overview (clause 4) were fulfilled by the equipment under test. The complete test results are presented in the following.

Tested and written by:	Bernward ROHDE	0. s.o. 1. Ci	07.09.2020
	Name	Signature	Date
Reviewed and approved			
by:	Bernd STEINER		07.09.2020
	Name	Signature	Date

This test report is only valid in its original form.

Any reproduction of its contents in extracts without written permission of the accredited test laboratory PHOENIX TESTLAB GmbH is prohibited.

The test results herein refer only to the tested sample. PHOENIX TESTLAB GmbH is not responsible for any generalisations or conclusions drawn from these test results concerning further samples. Any modification of the tested samples is prohibited and leads to the invalidity of this test report. Each page necessarily contains the PHOENIX TESTLAB Logo and the TEST REPORT NUMBER.

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161
 Page 2 of 29

C	ontent	is:	Page
1	Identif	ication	4
	1.1 Ap	pplicant	4
	1.2 Ma	anufacturer	4
	1.3 Te	est Laboratory	4
	1.4 EU	JT (Equipment under Test)	5
	1.5 Te	echnical Data of Equipment	6
	1.5.1	802.15.4 Radio mode	7
	1.5.2	BLE Radio mode	8
	1.5.3	UWB Radio mode	9
	1.5.4	Ancillary Equipment / Equipment used for testing	10
	1.6 Da	ates	10
2	Opera	tional States	11
	2.1 De	escription of function of the EUT	11
	2.2 Th	ne following states were defined as the operating conditions	11
3	Additio	onal Information	13
4	Overv	iew	14
5	Result	ts	15
	5.1 Co	onducted emissions on power supply lines (150 kHz to 30 MHz)	15
	5.1.1	Method of measurement	15
	5.1.2	Test results (conducted emissions on power supply lines)	16
	5.1.2	.1 Test results with EUT supplied via PoE	16
	5.1.2	.2 Test results with EUT supplied via USB	17
	5.2 Ra	adiated emissions	18
	5.2.1	Test method	18
	5.2.2	Result final measurement from 30 MHz to 1 GHz	21
	5.2.3	Result final measurement above 1 GHz	23
6	Test E	quipment used for Tests	27
7	Test s	ite Validation	28
8	Repor	t History	28
9	List of	Annexes	29

1 Identification

1.1 Applicant

Name:	TRUMPF Werkzeugmaschinen GmbH + Co. KG
Address:	Johann-Maus-Str. 2, 71254 Ditzingen
Country:	Germany
Name for contact purposes:	Mr. Guido Schönhardt
Phone:	07156-303-36117
eMail address:	Guido.schoenhardt@trumpf.com
Manufacturer represented during the test by the following person:	

1.2 Manufacturer

Name:	TRUMPF Werkzeugmaschinen GmbH + Co. KG
Address:	Johann-Maus-Str. 2, 71254 Ditzingen
Country:	Germany
Name for contact purposes:	Mr. Guido Schönhardt
Phone:	07156-303-36117
eMail address:	Guido.schoenhardt@trumpf.com
Manufacturer represented during the test by the following person:	

1.3 Test Laboratory

The tests were carried out by: PHOENIX TESTLAB GmbH

Königswinkel 10 32825 Blomberg Germany

Accredited by Deutsche Akkreditierungsstelle GmbH (DAkkS) in compliance with DIN EN ISO/IEC 17025 under Reg. No. D-PL-17186-01-06 and D-PL-17186-01-05, FCC Test Firm Designation Number DE0004, FCC Test Firm Registration Number 469623, CAB Identifier DE0003 and ISED# 3469A.

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 4 of 29

1.4 EUT (Equipment under Test)

EUT		
Test object: *	Satellite for indoor localization	
PMN / Model name: *	Track&Trace Satellite	
FCC ID: *	2AVYV-2554432-01	
Serial number: *	204339990	
PCB identifier: *	1901154A00102B90	
Hardware version: *	Rev D	
Software version: *	3.0.6	

^{*} Declared by the applicant

Note: PHOENIX TESTLAB GmbH does not take samples. The samples used for tests are provided

exclusively by the applicant.

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 5 of 29

1.5 Technical Data of Equipment

EUT data						
Power supply EUT: *	DC (by POE	DC (by POE or USB)				
Supply voltage EUT POE: *	U _{nom} = 48.0 V _{DC} U _{min} = 42.5 V _{DC} U _{max} = 57.0 V _E		57.0 V _{DC}			
Supply voltage EUT (USB): *	U _{nom} =	5.0 V _{DC}	U _{min} =	4.45 V _{DC}	U _{max} =	5.25 V _{DC}
Temperature range: *	-10 °C to +39 °C					
Lowest / highest internal clock frequency: * 32 kHz / 4500 MHz						

Ports / Connectors					
Identification			Length	Shielding	
поенинсации	EUT	Ancillary	during test	(Yes / No)	
USB	USB-C	USB-A	2 m	Yes	
Ethernet (with POE)	RJ45	RJ45	3 m	Yes	

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 6 of 29

1.5.1 802.15.4 Radio mode

IEEE 802.15.4 radio mode				
Fulfils radio specification: *	IEEE 802.15.4			
Radio chip: *	Atmega256RFR2			
Antenna type: *	Chip-Ceramic			
Antenna name: *	RFANT3216120A5T			
Antenna gain: *	2 dBi (Typical)			
Antenna connector: *	MM8030-2610RJ3			
Conducted output power: *	IEEE 802.15.4 -14.1 dBm (Peak)			
		-14.3 dBm (Average)		
Type of modulation: *	IEEE 802.15.4	O-QPSK (250 kbit/s)		
Operating frequency range: *	IEEE 802.15.4	2405 – 2480 MHz		
Number of channels: *	IEEE 802.15.4	16 (5 MHz channel spacing)		

	IEEE 802.15.4 frequencies				
Channel 11	RX	2405 MHz	TX	2405 MHz	
Channel 12	RX	2410 MHz	TX	2410 MHz	
Channel 13	RX	2415 MHz	TX	2415 MHz	
Channel 14	RX	2420 MHz	TX	2420 MHz	
Channel 15	RX	2425 MHz	TX	2425 MHz	
Channel 16	RX	2430 MHz	TX	2430 MHz	
Channel 17	RX	2435 MHz	TX	2435 MHz	
Channel 18	RX	2440 MHz	TX	2440 MHz	
Channel 19	RX	2445 MHz	TX	2445 MHz	
Channel 20	RX	2450 MHz	TX	2450 MHz	
Channel 21	RX	2455 MHz	TX	2455 MHz	
Channel 22	RX	2460 MHz	TX	2460 MHz	
Channel 23	RX	2465 MHz	TX	2465 MHz	
Channel 24	RX	2470 MHz	TX	2470 MHz	
Channel 25	RX	2475 MHz	TX	2475 MHz	
Channel 26	RX	2480 MHz	TX	2480 MHz	

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 7 of 29

1.5.2 BLE Radio mode

Bluetooth® Low Energy radio mode					
Fulfils radio specification: *	BLE 4.2 (1 Mbit/s only)				
Radio chip: *	Nordic nRF52840	Nordic nRF52840			
Antenna type: *	Internal PCB antenna				
Antenna name: *	ANT2	ANT2			
Antenna gain: *	2 dBi				
Antenna connector: *	none				
Conducted output power: *	BLE 1 Mbit/s	-1.3 dBm (Peak)			
		-1.8 dBm (Average)			
Type of modulation: *	BLE 1 Mbit/s	GFSK (1 Mbit/s)			
Operating frequency range: *	BLE 1 Mbit/s	2402 – 2480 MHz			
Number of channels: *	BLE 1 Mbit/s	40 (2 MHz channel spacing)			

Bluetooth® Low Energy frequencies				
Channel 0	RX	2402 MHz	TX	2402 MHz
Channel 1	RX	2404 MHz	TX	2404 MHz
Channel 19	RX	2440 MHz	TX	2440 MHz
Channel 38	RX	2478 MHz	TX	2478 MHz
Channel 39	RX	2480 MHz	TX	2480 MHz

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 8 of 29

1.5.3 UWB Radio mode

UWB radio mode			
Channel 1	$f_C = 3.575 \text{ GHz}, 500 \text{ MHz}$ bandwidth		
Channel 4	$f_C = 4.000 \text{ GHz}$, 500 MHz bandwidth		
Channel 3	$f_C = 4.500 \text{ GHz}$, 500 MHz bandwidth		
Channel 4	f _C = 4.000 GHz, 1000 MHz bandwidth		
Rated rf-output power: *	-41.3 dBm (e.i.r.p.)		
Antenna type: *	Internal PCB antenna only		
Antenna gain: *	2 dBi		
Antenna connector: *	None		

^{*} declared by the applicant.

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 9 of 29

1.5.4 Ancillary Equipment / Equipment used for testing

Equipment used for testing					
POE switch/injector *1	PowerSine 3001				
Laptop for remote access: *2	Fujitsu NS751-018; SN: DSBW019318				
UWB Marker: *1	Marker #204305055				
USB power supply: *2	Samsung travel adapter EP-TA20EBE				

1.6 Dates

Date of receipt of test sample:	13.09.2019
Start of test:	09.07.2020
End of test:	31.07.2020

Examiner: Bernward ROHDE Date of Issue: 03.08.2020 Report Number: F191161E7 Order Number: 19-111161 Page 10 of 29

^{*1} Provided by the applicant *2 Provided by the laboratory

2 Operational States

2.1 Description of function of the EUT

The EUT is intended to be used as transceiver for locating of machine tools inside a factory building. It will be fixed mounted inside the factory building. Therefore, it is defined as fixed indoor equipment.

All radiated tests were carried out with an unmodified test sample powered with 48 V_{DC} via PoE from a PoE switch. Because the EUT also could be supplied with 5.0 VDC via USB, the conducted emission measurement on the power supply line was additionally carried out with this kind of power supply.

2.2 The following states were defined as the operating conditions

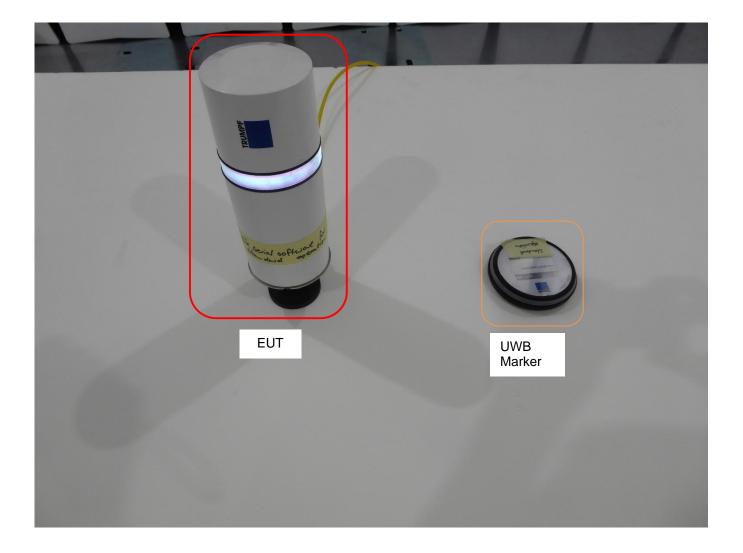
The setup was done according to customer specification.

EUT is communicating with an ancillary Laptop via Ethernet.

Zigbee was active.

Radio technology	Frequency [MHz]	Channel / Band
UWB	4000	2
BLE	2402- 2480	Advertising
IEEE 802.15.4	2408	26

The system setup as follows:


 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 11 of 29

The physical boundaries of the EUT are shown below.

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 12 of 29

3 Additional Information

General information:			
- none			
Classification of cables:			

Maximum length of cables, declared by the manufacturer:

- no maximum length declared

Type of cables, declared by the manufacturer:

- no special type of cable declared

Deviation of the standard or test plan: none

Special EMC measures, as a result of the tests:

- none

- none

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 13 of 29

4 Overview

Conducted emissions FCC 47 CFR Part 15 section 15.107 (b) [3]							
Application	Frequency range	Limits	Reference standard	Remark	Status		
AC supply line	0.15 to 0.5 MHz	79 dBµV (QP) 66 dBµV (AV)	ANSI C63.4	Class A	-		
	0.5 to 30 MHz	73 dBμV (QP) 60 dBμV (AV)					
AC supply line	0.15 to 0.5 MHz	66 to 56 dBµV (QP)* 56 to 46 dBµV (AV)*	ANSI C63.4	Class B	Passed		
	0.5 to 5 MHz	56 dBμV (QP) 46 dBμV (AV)					
	5 to 30 MHz	60 dBμV (QP) 50 dBμV (AV)					
*: Decreases with th	e logarithm of the frequ	uency					
Radiated emissions	FCC 47 CFR Part 15 s	section 15.109 (b) [3]					
Application	Frequency range	Limits	Reference standard	Remark	Status		
Radiated Emission	30 to 88 MHz 88 to 216 MHz	39.0 dBµV /m QP at 10 m 43.5 dBµV /m QP at 10 m	ANSI C63.4	Class A	-		
	216 to 960 MHz	46.5 dBµV /m QP at 10 m					
	960 to 1000 MHz	49.5 dBµV /m QP at 10 m					
	above 1000 MHz	49.5 dBµV /m AV at 10 m and					
		69.5 dBµV /m PK at 10 m					
Radiated Emission	30 to 88 MHz	40.0 dBµV/m QP at 3 m	ANSI	Class B	Passed		
	88 to 216 MHz	43.5 dBµV/m QP at 3 m	C63.4				
	216 to 960 MHz	46.0 dBµV/m QP at 3 m					
	960 to 1000 MHz	54.0 dBµV/m QP at 3 m					
	above 1000 MHz	54.0 dBµV/m AV at 3 m and					
		74.0 dBµV/m PK at 3 m					

Remark: As declared by the applicant the highest internal clock frequency is 4.5 GHz.

Therefore the radiated emission measurement must be carried out up to 5th of the highest internal clock frequency in this case 25 GHz.

The EUT was classified by the applicant as CLASS B equipment.

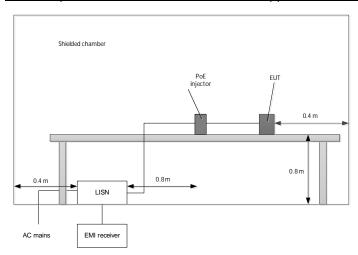
 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

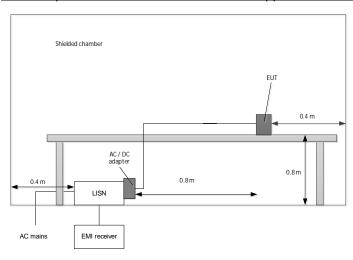
 Page 14 of 29

5 Results

5.1 Conducted emissions on power supply lines (150 kHz to 30 MHz)


5.1.1 Method of measurement

This test will be carried out in a shielded chamber. Tabletop devices will set up on a non-conducting support with a size of 1 m by 1.5 m and a height of 80 cm above the ground plane. Floor-standing devices will be placed directly on the ground plane. The setup of the Equipment under test will be in accordance to [1].


The frequency range 150 kHz to 30 MHz will be measured with an EMI Receiver set to MAX Hold mode with peak and average detector and a resolution bandwidth of 9 kHz. A scan will be carried out on the phase (or plus pole in case of DC powered devices) of the AC mains network. If levels detected 10 dB below the appropriable limit, this emission will be measured with the average and quasi-peak detector on all lines.

Frequency range	Resolution bandwidth
150 kHz to 30 MHz	9 kHz

Test setup for measurement with the EUT supplied via PoE:

Test setup for measurement with the EUT supplied via USB:

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 15 of 29

5.1.2 Test results (conducted emissions on power supply lines)

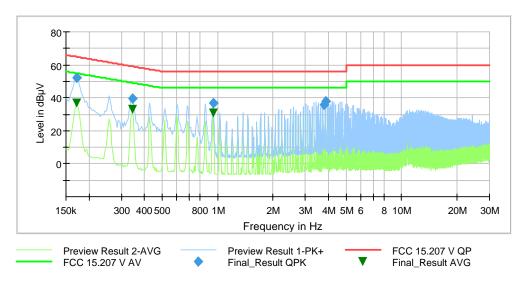
5.1.2.1 Test results with EUT supplied via PoE

Ambient temperature	21 °C	
Relative humidity	71 %	

Date	09.07.2020
Tested by	Y. KHALEK

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m.

Cable guide: The cables of the EUT were fixed on the non-conducting table. For further information


of the cable guide refer to the pictures in annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During this test the EUT was powered with 48 V_{DC} by the power injector PowerSine

3001, which was itself supplied with 120 V_{AC} / 60 Hz.

The curves in the diagram only represent for each frequency point the maximum measured value of all preliminary measurements which were made for each power supply line. The top measured curve represents the peak measurement and the bottom measured curve the average measurement. The quasi-peak measured points are marked by , the average measured points with .

Frequency [MHz]	QuasiPeak [dBµV]	Average [dBµV]	Limit [dBµV]	Margin [dB]	Meas. Time [ms]	Bandwidth [kHz]	Line	PE	Corr. [dB]
0.172500		52.0	64.8	12.8	5000	9	N	GND	9.8
0.172500	37.0		54.8	17.8	5000	9	L1	FLO	9.8
0.344400	32.7		49.1	16.4	5000	9	N	FLO	9.9
0.344400		39.7	59.1	19.4	5000	9	L1	GND	9.9
0.946500		36.9	56.0	19.1	5000	9	N	FLO	9.9
0.949200	30.9		46.0	15.1	5000	9	N	FLO	9.9
3.789600		35.7	56.0	20.3	5000	9	N	GND	10.3
3.877800		37.9	56.0	18.1	5000	9	N	GND	10.3
Measu	urement uncertainty ±2.8 dB								

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 16 of 29

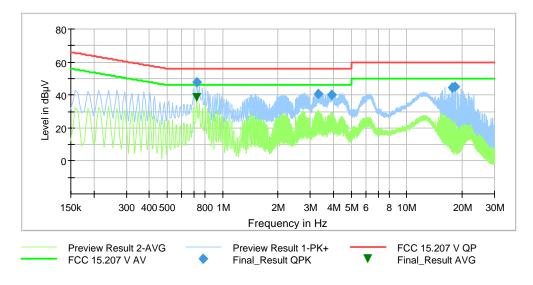
5.1.2.2 Test results with EUT supplied via USB

Ambient temperature	21 °C
Relative humidity	71 %

Date	09.07.2020
Tested by	Y. KHALEK

Position of EUT: The EUT was set-up on a non-conducting table of a height of 0.8 m.

Cable guide: The cables of the EUT were fixed on the non-conducting table. For further information


of the cable guide refer to the pictures in annex A of this test report.

Test record: All results are shown in the following.

Supply voltage: During this test the EUT was powered with 5.0 V_{DC} by the Samsung travel adapter EP-

TA20EBE, which was itself supplied with 120 V_{AC} / 60 Hz.

The curves in the diagram only represent for each frequency point the maximum measured value of all preliminary measurements which were made for each power supply line. The top measured curve represents the peak measurement and the bottom measured curve the average measurement. The quasi-peak measured points are marked by •, the average measured points with \checkmark .

Frequency [MHz]	QuasiPeak [dBµV]	Average [dBµV]	Limit [dBµV]	Margin [dB]	Meas. Time [ms]	Bandwidth [kHz]	Line	PE	Corr. [dB]
0.721500		38.4	46.0	7.6	5000	9	L1	FLO	9.9
0.721500	47.7		56.0	8.3	5000	9	L1	FLO	9.9
3.291000	40.4		56.0	15.6	5000	9	L1	FLO	10.2
3.905700	40.0		56.0	16.0	5000	9	L1	GND	10.3
17.692800	44.6		60.0	15.4	5000	9	L1	FLO	10.9
18.241800	45.3		60.0	14.7	5000	9	L1	FLO	10.9
Measi	urement uncerta	ncertainty ±2.8 dB							

Test: Passed

Test equipment (please refer to chapter 6 for details)
21 - 26

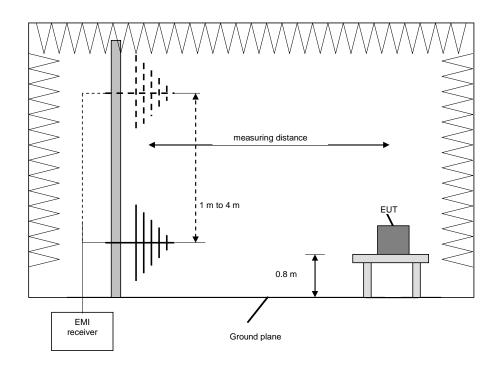
 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 17 of 29

5.2 Radiated emissions

5.2.1 Test method


Preliminary and final measurement (30 MHz to 1 GHz)

The preliminary and final measurements were conducted in a semi-anechoic chamber with a metal ground plane in a 3 m distance.

During the test the EUT will be rotated in the range of 0 ° to 360 °, the measuring antenna will be set to horizontal and vertical polarization and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions.

The resolution bandwidth of the EMI Receiver will be set to the following values:

Test	Frequency range	Resolution bandwidth	Step size	Measurement time
Preliminary measurement	30 MHz to 1 GHz	120 kHz	30 kHz	100 ms
Frequency peak search	3 x RBW	120 kHz	10 kHz	1000 ms
Final measurement	30 MHz to 1 GHz	120 kHz	-	5 x 1000 ms

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 18 of 29

Procedure preliminary measurement:

The following procedure is used:

- 1. Set the measurement antenna to 1 m height.
- 2. Monitor the frequency range at vertical polarisation and a EUT azimuth of 0°.
- 3. Rotate the EUT by 360° to maximize the detected signals.
- 4. Repeat 1) to 2) with the vertical polarisation of the measuring antenna.
- 5. Increase the height of the antenna for 0.5 m and repeat steps 2 4 until the final height of 4 m is reached.
- 6. The highest values for each frequency will be saved by the software, including the antenna height, measurement antenna polarization and turntable azimuth for that value.

Procedure final measurement:

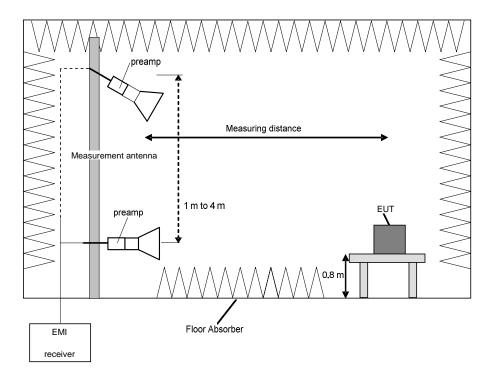
The following procedure is used:

- 1. Select the highest frequency peaks to the limit for the final measurement.
- 2. The software will determine the exact peak frequencies by doing a partial scan with reduced RBW with +/10 times the RBW of the pre-scan of the selected peaks.
- 3. If the EUT is portable or ceiling mounted, find the worst case EUT position (x,y,z) for the final test.
- 4. The worst measurement antenna height is found by the measurement software by varying the measurement antenna height by +/- 0.5 m from the value obtained in the preliminary measurement, and to monitor the emission level.
- 5. The worst azimuth turntable position is found by varying the turntable azimuth by +/- 30° from the value obtained in the preliminary measurement, and to monitor the emission level.
- 6. The final measurement is performed at the worst case antenna height and the worst case turntable azimuth
- 7. Steps 2 6 will be repeated for each frequency peak selected in step 1.

Preliminary and final measurement (1 – 40 GHz)

The preliminary and final measurements were conducted in a semi-anechoic chamber with floor absorbers between EUT and measurement antenna in a 3 m distance.

During the test the EUT will be rotated in the range of 0 ° to 360 °, the measuring antenna will be set to horizontal and vertical polarization and raised and lowered in the range from 1 m to 4 m to find the maximum level of emissions. For each height the angle of the antenna will be tilted so that the measurement antenna is always aiming at the EUT.


The resolution bandwidth of the EMI Receiver will be set to the following values:

Test	Frequency range	Resolution	Step size	Measurement
		bandwidth		time
Preliminary	1 - 40 GHz	1 MHz	250 kHz	10 ms
measurement				
Frequency peak search	+ / - 1 MHz	1 MHz	50 kHz	100 ms
Final measurement	1 - 40 GHz	1 MHz	-	10 x 100 ms

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161
 Page 19 of 29

Procedure preliminary measurement:

The following procedure is used:

- 1. Set the measurement antenna to 1 m height.
- 2. Monitor the frequency range at vertical polarisation and a EUT azimuth of 0 °.
- 3. Rotate the EUT by 360° to maximize the detected signals.
- 4. Repeat 1) to 2) with the vertical polarisation of the measuring antenna.
- 5. Increase the height of the antenna for 0.5 m and repeat steps 2 4 until the final height of 4 m is reached.
- 6. The highest values for each frequency will be saved by the software, including the antenna height, measurement antenna polarization and turntable azimuth for the highest value.

Procedure final measurement:

The following procedure is used:

- 1. Select the highest frequency peaks to the limit for the final measurement.
- 2. The software will determine the exact peak frequencies by doing a partial scan with reduced RBW with +/10 times the RBW of the pre-scan of the selected peaks.
- 3. If the EUT is portable or ceiling mounted, find the worst case EUT orientation (x,y,z) for the final test.
- 4. The worst measurement antenna height is found by the measurement software by varying the measurement antenna height by +/- 0.5 m from the worst case value obtained in the preliminary measurement, and to monitor the emission level.
- 5. The worst azimuth turntable position is found by varying the turntable azimuth by +/- 30° from the worst case value obtained in the preliminary measurement, and to monitor the emission level.
- 6. The final measurement is performed at the worst case antenna height and the worst case turntable azimuth.
- 7. Steps 2 6 will be repeated for each frequency peak selected in step 1.

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 20 of 29

5.2.2 Result final measurement from 30 MHz to 1 GHz

Ambient temperature	21 °C
Relative humidity	71 %

Date	29.07.2020
Tested by	B. ROHDE

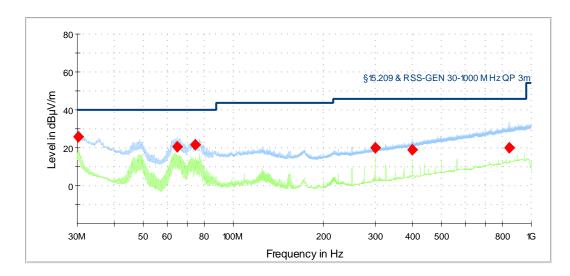
Test description: Radiated emission measurement according to FCC PART 15

EUT: Track&Trace Satellite

Manufacturer: TRUMPF Werkzeugmaschinen GmbH + Co. KG

Operating conditions: UWB tracking, IEEE802.15.4 active

data communication via Ethernet to ancillary laptop, see 2 PHOENIX TESTLAB GmbH, semi anechoic chamber M276


Operator: B. Rohde

Test site:

Power supply: Via POE from injector

Limit FCC: eCFR §15.109 Class B @3m

The measured points and the limit line in the following diagram refer to the standard measurement of the emitted interference in compliance with the above-mentioned standard. The measured points marked with "• " are the measured results of the standard subsequent measurement in a semi anechoic chamber.

The results of the standard subsequent measurement in a semi anechoic chamber are indicated in the table below. The limits as well as the measured results (levels) refer to the above-mentioned standard while taking account of the specified requirements for a 3 m measuring distance.

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 21 of 29
 Page 21 of 29

Result Table

Frequency	Result QP	Limit	Margin	Readings	Correction	Height	Azimuth	Pol.	Result
[MHz]	[dBµV/m]	[dBµV/m]	[dB]	[dBµV]	[dB/m]	[cm]	[deg]		
30.260000	25.9	40	14.1	0.6	25.3	130	322	V	Passed
64.750000	20.6	40	19.4	7.5	13.2	146	160	٧	Passed
74.560000	21.4	40	18.6	6.3	15.2	166	280	V	Passed
299.980000	19.8	46.02	26.2	0.5	19.3	115	205	Η	Passed
400.000000	19.2	46.02	26.8	-3.0	22.1	170	69	V	Passed
845.230000	19.9	46.02	26.1	-9.6	29.5	232	265	Н	Passed
	Measurement	uncertainty				±5.5 dl	В		

The correction factor was calculated as follows.

Corr. (dB/m) = cable attenuation (dB) + 6 dB attenuator (dB) + antenna factor (dB/m)

Therefore the reading can be calculated as follows:

Reading $(dB\mu V)$ = result QuasiPeak $(dB\mu V/m)$ - Corr. (dB/m)

Test equipment (please refer to chapter 6 for details)

9 – 15, 17, 27

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 22 of 29

5.2.3 Result final measurement above 1 GHz

Ambient temperature	21 °C
Relative humidity	71 %

Date	30.07.2020
	31.07.2020
Tested by	B. ROHDE

Test description: Radiated emission measurement according to FCC PART 15

EUT: Track&Trace Satellite

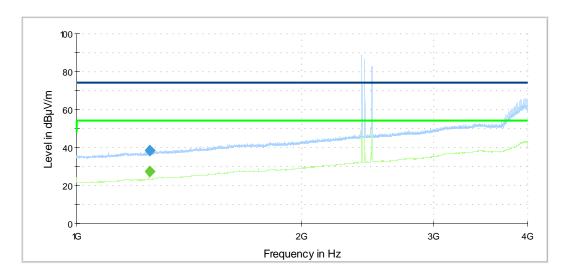
Manufacturer: TRUMPF Werkzeugmaschinen GmbH + Co. KG

Operating conditions: UWB tracking, IEEE802.15.4 active

data communication via Ethernet to ancillary laptop, see 2

Test site: PHOENIX TESTLAB GmbH, semi anechoic chamber M276

Operator: B. Rohde


Power supply: Via POE from injector

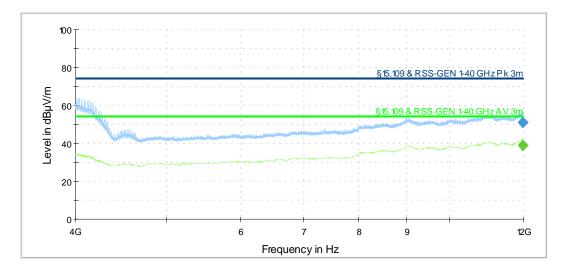
Limit FCC: eCFR §15.109 Class B @3m

The curves in the diagram only represent the maximum measured value for each frequency point of all preliminary measurements, which were carried out with various EUT and antenna positions.

The top measured curve represents the peak measurement. The measured points marked with "\u2221 are frequency points for the final peak detector measurement. These values are indicated in the following table. The bottom measured curve represents the average measurement. The measured points marked with "\u2221" are frequency points for the final average detector measurement.

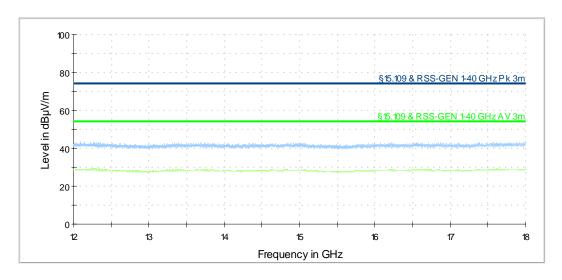
Final Plot 1 – 4 GHz

The emissions in the 2.4 GHz-band are wanted radio links, so they were excluded from evaluation. The Emissions @4 GHz is a wanted radio link, so they were excluded from evaluation


 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 23 of 29

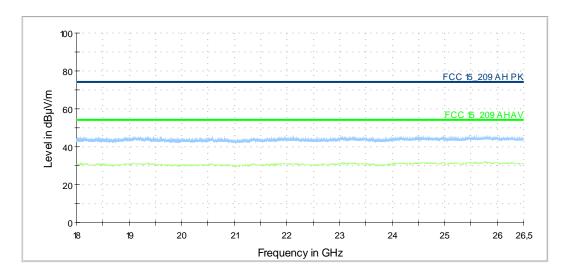


Final Plot 4 -12 GHz

The Emissions @4 GHz is a wanted radio link, so they were excluded from evaluation

Plot 12 -18 GHz

No final measurement conducted


 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 24 of 29

Plot 18 - 26.5 GHz

No final measurement conducted

The results of the standard subsequent measurement above 1 GHz in a semi anechoic chamber are indicated in the table below. The limits as well as the measured results (levels) refer to the above-mentioned standard while taking account of the specified requirements for a 3 m measuring distance.

Examiner: Bernward ROHDE Report Number: F191161E7
Date of Issue: 03.08.2020 Order Number: 19-111161

Frequency [MHz]	Result (Pk) [dBµV/m]	Result (Av) [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Reading [dBµV]	Correction [dB/m]	Height [cm]	Azimuth [deg]	Pol.	Comment
1250.000000		27.3	54	26.7	26.9	0.4	109	189	V	Passed
1250.000000	38.4		74	35.6	26.9	11.4	109	189	V	Passed
4024.700000	64.2		74	9.8	5.9	58.3	229	348	V	Passed
4024.700000		28.9	54	25.1	5.9	23	229	348	V	Passed
	Measurement uncertainty						±5.5 c	IB		

All other emissions were either caused by wanted radio links, or the emissions were more than 20 dB below the limit.

The correction factor was calculated as follows. Corr. (dB/m) = cable attenuation (dB) + preamplifier (dB) + antenna factor (dB/m) Reading (dB μ V) + Corr. (dB/m) = Result (dB μ V/m) [Peak or Average]

Test equipment (please refer to chapter 6 for details)

1 – 16, 18

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 26 of 29

6 Test Equipment used for Tests

No.	Test equipment	Туре	Manufacturer	Serial No.	PM. No.	Cal. Date	Cal Due
1	Low Noise Amplifier 100 MHz - 18 GHz	LNA-30- 00101800-25- 10P	Narda-Miteq	2110917	482967	18.02.2020	02.2022
2	Log Per Antenna	HL050	Rohde & Schwarz	4062.4063.02- 100908	482977	13.08.2019	08.2022
4	Low Noise Amplifier 18 GHz - 26.5 GHz	LNA-30- 18002650-20- 10P	Narda-Miteq	2110911	482969	17.02.2020	02.2022
5	Standard Gain Horn 20 dB, 18 GHz -26 GHz	20240-20	Flann	266399	483026	Calibration not	necessary
9	RF Switch Matrix	OSP220	Rohde & Schwarz		482976	Calibration not	necessary
10	Turntable	TT3.0-3t	Maturo	825/2612/.01	483224	Calibration not	necessary
11	Antennasupport	BAM 4.5-P-10kg	Maturo	222/2612.01	483225	Calibration not	necessary
12	Controller	NCD	Maturo	474/2612.01	483226	Calibration not	necessary
13	Semi Anechoic Chamber M276	SAC5-2	Albatross Projects	C62128-A540- A138-10-0006	483227	Calibration not	necessary
14	Measurment software EMC32 M276	EMC32	Rohde & Schwarz	100970	482972	Calibration not necessary	
15	EMI Testreceiver	ESW44	Rohde & Schwarz	101828	482979	14.11.2019	11.2021
16	Preamplifier 12 GHz - 18 GHz	JS3-12001800- 16-5A	MITEQ Hauppauge N.Y.	571667	480343	13.02.2020	02.2022
17	Antenna (Bilog)	CBL6111D	Schaffner Elektrotest GmbH / Teseq GmbH	25761	480894	19.10.2017	10.2020
18	Low Noise Amplifier 12 GHz - 18 GHz	LNA-30- 12001800-13- 10P	Narda-Miteq	2089798	482968	17.02.2020	02.2022
21	Shielded chamber M4	-	Siemens	B83117-S1- X158	480088	Calibration not	necessary
22	EMI Receiver	ESIB 26	Rohde & Schwarz	1088.7490	481182	12.02.2020	02.2022
23	LISN	NSLK8128	Schwarzbeck	8128161	480138	11.02.2020	02.2022
24	Transient Limiter	CFL 9206A	Teseq	38268	481982	Calibration not	necessary
25	Software	EMC32	Rohde & Schwarz	100061	481022	Calibration not	necessary
26	AC source	AC6803A	Keysight	JPVJ002509	482350	Calibration not	necessary
27	Attenuator 6 dB	WA2-6	Weinschel	-	482794	Calibration not	necessary

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 27 of 29

7 Test site Validation

Test equipment	PM. No.	Frequency range	Type of validation	According to	Val. Date	Val Due
Semi anechoic chamber M276	483227	30 – 1000 MHz	NSA	ANSI C63.4a-2017	19.09.2019	18.09.2021
Semi anechoic chamber M276	483227	1 -18 GHz	SVSWR	CISPR 16-1-4 + Cor1:2010 + A1:2012 +A2:2017	19.09.2019	18.09.2021
Semi anechoic chamber M276	483227	1 -18 GHz	SVSWR	CISPR 16-1-4 + Cor1:2010 + A1:2012 +A2:2017	01.10.2019	30.09.2021
Shielded chamber M4	480088	9 kHz – 30 MHz	GND-Plane	ANSI C63.4-2014	06.11.2018	05.11.2020

8 Report History

Report Number	Date	Comment
F191161E7	03.08.2020	Initial Test Report
-	-	-
-	-	-

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 28 of 29

9 List of Annexes

Annex A Test Setup Photos 7 pages

Annex B External EUT Photos 4 pages

Annex C Internal Setup Photos 8 pages

 Examiner:
 Bernward ROHDE
 Report Number:
 F191161E7

 Date of Issue:
 03.08.2020
 Order Number:
 19-111161

 Page 29 of 29