

# Limited Test report

460990-8TRFWL

Date of issue: September 30, 2022

Applicant:

**Cubic Transportation Systems** 

Product:

**Bus Validator** 

Model:

Validator 3.0

FCC ID: LVCVAL3 IC ID: 4387A-VAL3

#### Specifications:

- ♦ FCC 47 CFR Part 15, Subpart C §15.247
  Operation within the bands 902 928 MHz, 2400 2483.5 MHz, 5727 5850 MHz
- Industry Canada RSS-247, Issue 2
   Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices





#### Lab and test locations

| Company name    | Nemko USA Inc.                                                   |
|-----------------|------------------------------------------------------------------|
| Address         | 2210 Faraday Ave, Suite 150                                      |
| City            | Carlsbad                                                         |
| State           | California                                                       |
| Postal code     | 92008                                                            |
| Country         | USA                                                              |
| Telephone       | +1 760 444 3500                                                  |
| Website         | www.nemko.com                                                    |
| FCC Site Number | Test Firm Registration Number: 392943 Designation Number: US5058 |
| ISED Test Site  | 2040B-3                                                          |
|                 |                                                                  |
| Tested by       | Lan Sayasane, EMC Test Engineer                                  |
| Reviewed by     | James Cunningham, EMC/MIL/WL Supervisor                          |

| Reviewer signature | - 71 |
|--------------------|------|
|                    | 28   |

September 30, 2022

### Limits of responsibility

Review date

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko USA's ISO/IEC 17025 accreditation.

This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

### Copyright notification

Nemko USA Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko USA Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko USA Inc.

Report reference ID: 460990-8TRFWL Page 2 of 21



# **Table of Contents**

| Table of C | Contents                                                                             | . 3 |
|------------|--------------------------------------------------------------------------------------|-----|
| Section 1  | Report summary                                                                       | . 4 |
| 1.1        | Applicant                                                                            | 4   |
| 1.2        | Manufacturer                                                                         | 4   |
| 1.3        | Test specifications                                                                  | 4   |
| 1.4        | Test methods                                                                         | 4   |
| 1.5        | Exclusions                                                                           | 4   |
| 1.6        | Statement of compliance                                                              | 4   |
| 1.7        | Test report revision history                                                         | 4   |
| Section 2  | Summary of test results                                                              | . 5 |
| 2.1        | FCC Part 15 Subpart C, general requirements                                          | 5   |
| 2.2        | FCC Part 15.247                                                                      | 5   |
| 2.3        | IC RSS-247, Issue 2                                                                  | 5   |
| 2.4        | IC RSS-GEN, Issue 5                                                                  | 5   |
| 2.5        | Scope of limited testing                                                             | 6   |
| Section 3  | Equipment under test (EUT) details                                                   | . 7 |
| 3.1        | Sample information                                                                   | 7   |
| 3.2        | EUT information                                                                      | 7   |
| 3.3        | Technical information                                                                | 7   |
| 3.4        | EUT exercise and monitoring details                                                  | 8   |
| Section 4  | Engineering considerations                                                           | . 9 |
| 4.1        | Modifications incorporated in the EUT                                                | 9   |
| 4.2        | Technical judgment                                                                   | 9   |
| 4.3        | Deviations from laboratory tests procedures                                          | 9   |
| Section 5  | Test conditions                                                                      | 10  |
| 5.1        | Atmospheric conditions                                                               | 10  |
| 5.2        | Power supply range                                                                   | 10  |
| Section 6  | Measurement uncertainty                                                              | 11  |
| 6.1        | Uncertainty of measurement                                                           | 11  |
| Section 7  | Test Equipment                                                                       | 12  |
| Section 8  | Testing data                                                                         | 13  |
| 8.1        | FCC 15.247(b) and RSS-247 5.4 (4) Transmitter output power and e.i.r.p. requirements | 13  |
| 8.2        | FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission   | 15  |
| Section 9  |                                                                                      |     |
| 9.1        | Radiated emissions set-up                                                            | 21  |



### Section 1 Report summary

### 1.1 Applicant

| Company name    | Cubic Transportation Systems |
|-----------------|------------------------------|
| Address         | 9233 Balboa Ave.             |
| City            | San Diego                    |
| State           | CA                           |
| Postal/Zip code | 92123                        |
| Country         | USA                          |

### 1.2 Manufacturer

| Company name    | Cubic Transportation Systems |
|-----------------|------------------------------|
| Address         | 9233 Balboa Ave.             |
| City            | San Diego                    |
| State           | CA                           |
| Postal/Zip code | 92123                        |
| Country         | USA                          |

### 1.3 Test specifications

| FCC 47 CFR Part 15, Subpart C – §15.247 | Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz                                                   |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| IC RSS-247 Issue 2                      | Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices |

### 1.4 Test methods

| ANSI C63.10-2013                    | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices  |
|-------------------------------------|-------------------------------------------------------------------------------------------------|
| 558074 D01 DTS Measurement Guidance | Guidance for Performing Compliance Measurements on Digital Transmission Systems (DTS) Operating |
| v03r02 (June 5, 2014)               | Under §15.247                                                                                   |

### 1.5 Exclusions

Testing only includes Radiated Spurious and Restricted Band Edge measurements and limited maximum peak conducted power calculations.

### 1.6 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.5 above. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

### 1.7 Test report revision history

Table 1.7-1: Test report revision history

| Revision #    | Details of changes made to test report |  |
|---------------|----------------------------------------|--|
| 460990-8TRFWL | Original report issued                 |  |
|               |                                        |  |
| Notes:        | None                                   |  |

Report reference ID: 460990-8TRFWL Page 4 of 21



# Section 2 Summary of test results

### 2.1 FCC Part 15 Subpart C, general requirements

|            | Part | Test description          | Verdict    |
|------------|------|---------------------------|------------|
| §15.207(a) |      | Conducted limits          | Not tested |
| §15.31(e)  |      | Variation of power source | Not tested |
| §15.203    |      | Antenna requirement       | Not tested |

Notes: EUT is AC powered

The antenna is located within the protective cover of EUT on PCB

#### 2.2 FCC Part 15.247

| Part               | Test description                                                                                                           | Verdict           |
|--------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------|
| §15.247(a)(1)(i)   | Frequency hopping systems operating in the 902–928 MHz band                                                                | Not applicable    |
| §15.247(a)(1)(ii)  | Frequency hopping systems operating in the 5725–5850 MHz band                                                              | Not applicable    |
| §15.247(a)(1)(iii) | Frequency hopping systems operating in the 2400–2483.5 MHz band                                                            | Not tested        |
| §15.247(a)(2)      | Minimum 6 dB bandwidth for systems using digital modulation techniques                                                     | Not tested        |
| §15.247(b)(1)      | Maximum peak output power of frequency hopping systems operating in the 2400–<br>2483.5 MHz band and 5725–5850 MHz band    | Not tested        |
| §15.247(b)(2)      | Maximum peak output power of Frequency hopping systems operating in the 902–928 MHz band                                   | Not applicable    |
| §15.247(b)(3)      | Maximum peak output power of systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands | Pass <sup>1</sup> |
| §15.247(b)(4)      | Transmitting antennas of directional gain greater than 6 dBi                                                               | Not applicable    |
| §15.247(c)(1)      | Fixed point-to-point operation with directional antenna gains greater than 6 dBi                                           | Not applicable    |
| §15.247(c)(2)      | Transmitters operating in the 2400–2483.5 MHz band that emit multiple directional beams                                    | Not applicable    |
| §15.247(d)         | Spurious emissions                                                                                                         | Pass              |
| §15.247(e)         | Power spectral density for digitally modulated devices                                                                     | Not tested        |
| §15.247(f)         | Time of occupancy for hybrid systems                                                                                       | Not tested        |

Limited calculations only

### 2.3 IC RSS-247, Issue 2

| Part    | Test description                                                                 | Verdict           |
|---------|----------------------------------------------------------------------------------|-------------------|
| 5.1 (a) | Bandwidth of a frequency hopping channel                                         | Not tested        |
| 5.1 (b) | Minimum channel spacing for frequency hopping systems                            | Not tested        |
| 5.1 (c) | Frequency hopping systems operating in the 902–928 MHz band                      | Not applicable    |
| 5.1 (d) | Frequency hopping systems operating in the 2400–2483.5 MHz band                  | Not tested        |
| 5.1 (e) | Frequency hopping systems operating in the 5725–5850 MHz band                    | Not applicable    |
| 5.2 (a) | Minimum 6 dB bandwidth                                                           | Not tested        |
| 5.2 (b) | Maximum power spectral density                                                   | Not tested        |
| 5.3 (a) | Digital modulation turned off                                                    | Not tested        |
| 5.3 (b) | Frequency hopping turned off                                                     | Not tested        |
| 5.4 (a) | Frequency hopping systems operating in the 902–928 MHz band                      | Not applicable    |
| 5.4 (b) | Frequency hopping systems operating in the 2400–2483.5 MHz band                  | Not tested        |
| 5.4 (c) | Frequency hopping systems operating in the 5725–5850 MHz                         | Not applicable    |
| 5.4 (d) | Systems employing digital modulation techniques                                  | Pass <sup>1</sup> |
| 5.4 (e) | Point-to-point systems in 2400–2483.5 MHz and 5725–5850 MHz band                 | Not tested        |
| 5.4 (f) | Transmitters which operate in the 2400–2483.5 MHz band with multiple directional | Not tested        |
|         | beams                                                                            |                   |
| 5.5     | Out-of-band emissions                                                            | Pass              |

Limited calculations only

### 2.4 IC RSS-GEN, Issue 5

| Part | Test description                                                         | Verdict        |
|------|--------------------------------------------------------------------------|----------------|
| 7.3  | Receiver radiated emission limits                                        | Not applicable |
| 7.4  | Receiver conducted emission limits                                       | Not applicable |
| 8.8  | Power Line Conducted Emissions Limits for License-Exempt Radio Apparatus | Not tested     |

Report reference ID: 460990-8TRFWL Page 5 of 21



### 2.5 Scope of limited testing

The EUT supports the following wireless technologies:

- Bluetooth Low Energy (BLE)

The following table summarizes the scope of the limited assessments performed:

| Clause                                                  | Tests                          |
|---------------------------------------------------------|--------------------------------|
| §15.247(b)(1) Maximum peak output power                 | BLE, LOW channel (2402 MHz)    |
|                                                         | BLE, MIDDLE channel (2440 MHz) |
|                                                         | BLE, HIGH channel (2480 MHz)   |
| §15.247(d) Restricted band edges                        | BLE, High and Low band edge    |
| §15.247(d) Radiated spurious emissions, 30 MHz – 26 GHz | BLE, LOW channel (2402 MHz)    |



# Section 3 Equipment under test (EUT) details

### 3.1 Sample information

| Receipt date           | 14-Mar-2022 |
|------------------------|-------------|
| Nemko sample ID number | 460990      |

### 3.2 EUT information

| Product name  | Bus Validator |
|---------------|---------------|
| Model         | Validator 3.0 |
| Serial number | N/A           |
| Part number   | N/A           |

### 3.3 Technical information

| Frequency band          | 2400 – 2483.5 MHz                            |
|-------------------------|----------------------------------------------|
| Minimum frequency (MHz) | 2402                                         |
| Maximum frequency (MHz) | 2480                                         |
| Type of modulation      | Bluetooth Low Energy (BLE) – GFSK modulation |
| Power requirements      | 24 V DC powered via AC/DC adaptor            |
| Antenna information     | 1.8 dBi gain, Pulse Chip antenna PN: W3006   |



### 3.4 EUT exercise and monitoring details

The EUT was controlled by support laptop running scripts to configure the EUT to transmit BLE signals at max power while on the Low, Middle, and High channels—as applicable per test.

**Table 3.4-1:** EUT sub assemblies

| Description   | Brand name                      | Model/Part number | Serial number | Rev. |
|---------------|---------------------------------|-------------------|---------------|------|
| Bus Validator | Cubic Transportation<br>Systems | Validator 3       | n/a           | n/a  |

Table 3.4-2: EUT interface ports

| Description    | Qty. |
|----------------|------|
| Serial cable   | 1    |
| Ethernet cable | 1    |
| DC input       | 1    |

Table 3.4-3: Support equipment

| Description                         | Brand name      | Model/Part number | Serial number | Rev. |
|-------------------------------------|-----------------|-------------------|---------------|------|
| Wideband Radio Communication Tester | Rohde & Schwarz | CMW500            | 143306        | n/a  |
| AC/DC adaptor                       | XP Power        | VER36US240-JA     | n/a           | n/a  |
| PC                                  | Dell            | Latitude 7480     | ID IT2381     | n/a  |

Table 3.4-4: Inter-connection cables

| Cable description | From                       | То           | Length (m) |
|-------------------|----------------------------|--------------|------------|
| DC power          | EUT (Equipment Under Test) | Power source | 2.0 m      |
| Serial cable      | FUT (Equipment Under Test) | PC           | 1.5 m      |

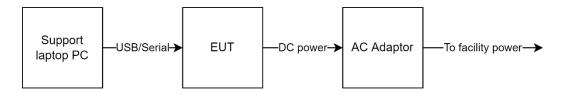



Figure 3.4-1: Test setup diagram



# Section 4 Engineering considerations

### 4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

### 4.2 Technical judgment

None

### 4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.



### Section 5 Test conditions

### 5.1 Atmospheric conditions

| Temperature       | 15-30 °C   |
|-------------------|------------|
| Relative humidity | 20-75 %    |
| Air pressure      | 86–106 kPa |

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

### 5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.



# Section 6 Measurement uncertainty

### 6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

| Test name                     | Measurement uncertainty, dB |
|-------------------------------|-----------------------------|
| Radiated spurious emissions   | 3.78                        |
| Powerline conducted emissions | 1.38                        |
| All antenna port measurements | 0.55                        |
| Conducted spurious emissions  | 1.13                        |



# Section 7 Test Equipment

**Table 6.1-1:** Test Equipment List

| Equipment         | Manufacturer           | Model no.        | Asset no. | Cal cycle | Next cal.   |
|-------------------|------------------------|------------------|-----------|-----------|-------------|
| EMI Test Receiver | Rohde & Schwarz        | ESU40            | E1131     | 1 year    | 02-Mar-2023 |
| System Controller | Sunol Sciences         | SC 104V          | E1191     | NCR       | NCR         |
| Antenna, Bilog    | Schaffner-Chase        | CBL 6111D        | 1763      | 2 years   | 18-May-2022 |
| Antenna, DRG Horn | ETS-Lindgren           | 3117-PA          | E1139     | 2 years   | 19-Apr-2023 |
| Filter, 2.4GHz    | N/A                    | N/A              |           | NCR       | NCR         |
| High pass filter  | Wainwright Instruments | WHKX10-5850-6500 | E1208     | NCR       | NCR         |

Notes: NCR - no calibration required

Table 6.1-2: Test Software

| Manufacturer of Software | Details                               |
|--------------------------|---------------------------------------|
| Rohde & Schwarz          | EMC 32 V10.60.15 (radiated emissions) |

Notes: None



### Section 8 Testing data

### 8.1 FCC 15.247(b) and RSS-247 5.4 (4) Transmitter output power and e.i.r.p. requirements

#### 8.1.1 Definition and limits

Title 47  $\rightarrow$  Chapter I  $\rightarrow$  Subchapter A  $\rightarrow$  Part 15  $\rightarrow$  Subpart C  $\rightarrow$  §15.247(b)(2) / (3)

- (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following:
  - (3) For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 W (30 dBm). As an alternative to a peak power measurement, compliance with the one-Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
  - (4) The conducted output power limit specified in paragraph (b) of this Section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this Section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this Section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
    - i) Systems operating in the 2400–2483.5 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

RSS-247  $\rightarrow$  §5.4(d)

(d) For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

#### 8.1.2 Test summary

| Verdict |       | Pass |
|---------|-------|------|
|         |       |      |
| 8.1.3 N | Notes |      |

No testing was performed. The EIRP was calculated on the basis of test data from the original test report on the "Test-Report-BLE-3863451". EIRP was recalculated from the original test data using the new manufacturer declared antenna gain.

Manufacturer declared antenna gain: 1.8 dBi.



### 8.1.4 Test data

|                | Table 8.1-1: Output power  |                                  |                          |                                |            |                     |  |  |  |  |  |
|----------------|----------------------------|----------------------------------|--------------------------|--------------------------------|------------|---------------------|--|--|--|--|--|
| Operating Mode | Test<br>Frequency<br>(MHz) | Maximum Conducted<br>Power (dBm) | Conducted<br>Limit (dBm) | Declared Antenna<br>Gain (dBi) | EIRP (dBm) | EIRP Limit<br>(dBm) |  |  |  |  |  |
| BLE, GFSK      | 2402                       | 5.11                             | 30.0                     | 1.8                            | 6.91       | 36.0                |  |  |  |  |  |
| BLE, GFSK      | 2440                       | 4.23                             | 30.0                     | 1.8                            | 6.03       | 36.0                |  |  |  |  |  |
| BLE, GFSK      | 2480                       | 3.02                             | 30.0                     | 1.8                            | 4.82       | 36.0                |  |  |  |  |  |



### 8.2 FCC 15.247(d) and RSS-247 5.5 Radiated restricted band-edges and spurious emission

#### 8.2.1 Definition and limits

Title 47  $\rightarrow$  Chapter I  $\rightarrow$  Subchapter A  $\rightarrow$  Part 15  $\rightarrow$  Subpart C  $\rightarrow$  §15.247(d)

(d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

#### RSS-247 → §5.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Field strength of emissions Measurement distance, m Frequency, MHz μV/m  $dB\mu V/m$ 0.009-0.490  $67.6 - 20 \times \log_{10}(F)$ 300 2400/F 0.490-1.705  $87.6 - 20 \times \log_{10}(F)$ 24000/F 30 1.705-30.0 30 29.5 30 30–88 100 40.0 3 88-216 150 43.5 3 216-960 200 46.0 above 960 500 54.0 3

Table 8.2-1: FCC §15.209- Radiated emission limits

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test.

| MHz               | MHz                 | MHz           | GHz         |
|-------------------|---------------------|---------------|-------------|
| 0.090-0.110       | 16.42-16.423        | 399.9–410     | 4.5–5.15    |
| 0.495–0.505       | 16.69475-16.69525   | 608–614       | 5.35-5.46   |
| 2.1735-2.1905     | 16.80425-16.80475   | 960–1240      | 7.25–7.75   |
| 4.125–4.128       | 25.5–25.67          | 1300–1427     | 8.025–8.5   |
| 4.17725-4.17775   | 37.5–38.25          | 1435–1626.5   | 9.0–9.2     |
| 4.20725-4.20775   | 73–74.6             | 1645.5-1646.5 | 9.3–9.5     |
| 6.215-6.218       | 74.8–75.2           | 1660–1710     | 10.6–12.7   |
| 6.26775-6.26825   | 108-121.94          | 1718.8-1722.2 | 13.25-13.4  |
| 6.31175-6.31225   | 123–138             | 2200–2300     | 14.47–14.5  |
| 8.291–8.294       | 149.9–150.05        | 2310-2390     | 15.35–16.2  |
| 8.362-8.366       | 156.52475-156.52525 | 2483.5–2500   | 17.7–21.4   |
| 8.37625-8.38675   | 156.7-156.9         | 2690–2900     | 22.01–23.12 |
| 8.41425-8.41475   | 162.0125-167.17     | 3260–3267     | 23.6–24.0   |
| 12.29-12.293      | 167.72-173.2        | 3332-3339     | 31.2-31.8   |
| 12.51975-12.52025 | 240–285             | 3345.8–3358   | 36.43–36.5  |
| 12.57675–12.57725 | 322–335.4           | 3600-4400     | Above 38.6  |
| 13.36–13.41       |                     |               |             |

Table 8.2-2: FCC restricted frequency bands



### 8.2.2 Test summary

| Verdict       | Pass                                        |                     |           |
|---------------|---------------------------------------------|---------------------|-----------|
| Test date     | March 18, 2022                              | Temperature         | 22 °C     |
| rest date     | March 24, 2022                              | remperature         | 22 °C     |
| Test engineer | Lan Sayasane, EMC Test Engineer             | Air pressure        | 1008 mbar |
| rest engineer | Lan Sayasane, Elvic Test Engineer           | All pressure        | 1004 mbar |
| Test location | 3m semi-anechoic chamber (Radiated)         | Relative humidity   | 54 %      |
| rest location | Sili sellil-allectioic challiber (Nadiated) | Relative Hallingity | 44 %      |

#### 8.2.3 Notes

The EUT was configured to transmit continuously on the lowest, middle and highest channels.

The spectrum was search from 30 MHz to 26 GHz (above the  $10^{th}$  harmonic of the highest transmit frequency).

Radiated measurements were performed at a 3 m measurement distance.

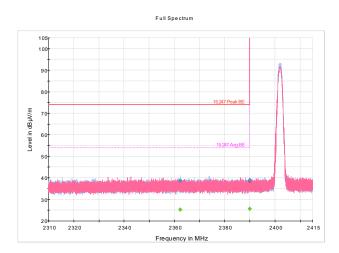
### 8.2.4 Setup details

Trace mode

Measurement time

| EUT setup configuration                                        | Tabletop                                                               |
|----------------------------------------------------------------|------------------------------------------------------------------------|
| Test facility                                                  | Nemko San Diego                                                        |
| Measurement details                                            | Radiated spurious emissions measurement performed as per C63.10 §11.12 |
|                                                                |                                                                        |
| Desciver settings for redicted measure                         | mants within restricted bands below 1 CUT                              |
|                                                                | ments within restricted bands below 1 GHz:                             |
| Receiver settings for radiated measure<br>Resolution bandwidth | ments within restricted bands below 1 GHz: 120 kHz                     |
|                                                                |                                                                        |
| Resolution bandwidth                                           | 120 kHz                                                                |

Receiver settings for radiated measurements within restricted bands above 1 GHz:


Max Hold

5 s (final measurements)

| necesses settings for radiated meas | dictions within restricted bands above 1 GHz. |
|-------------------------------------|-----------------------------------------------|
| Resolution bandwidth                | 1 MHz                                         |
| Video bandwidth                     | 3 MHz                                         |
| Detector mode                       | Average and peak (final measurements)         |
| Trace mode                          | Max Hold                                      |
| Measurement time                    | 5 s (final measurements)                      |



#### 8.2.5 Test data



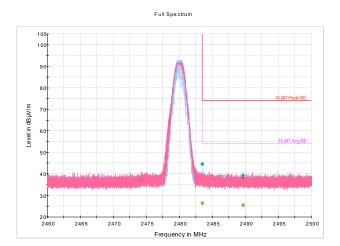



Figure 8.2-1: Radiated emissions, restricted band edge, BLE

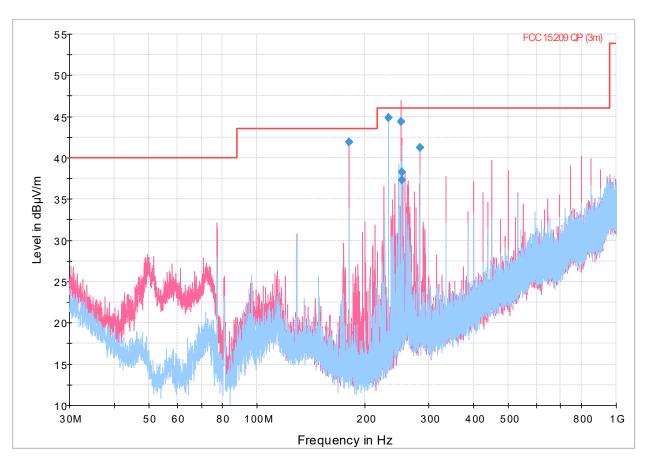
Table 8.2-2: Radiated emissions, restricted band edge, BLE (Low Channel)

| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | CAverage<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB/m) |
|--------------------|---------------------|----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|-----------------|
| 2362.398500        |                     | 25.25                | 53.90             | 28.65          | 5000.0                | 1000.000           | 352.0          | V   | 279.0            | -10.1           |
| 2362.398500        | 38.75               |                      | 73.90             | 35.15          | 5000.0                | 1000.000           | 352.0          | V   | 279.0            | -10.1           |
| 2390.000000        |                     | 25.53                | 53.90             | 28.37          | 5000.0                | 1000.000           | 303.0          | V   | 35.0             | -10.0           |
| 2390.000000        | 38.96               |                      | 73.90             | 34.94          | 5000.0                | 1000.000           | 303.0          | V   | 35.0             | -10.0           |

Notes:  $^{1}$  Field strength (dB $\mu$ V/m) = receiver/spectrum analyzer value (dB $\mu$ V) + correction factor (dB)

 Table 8.2-3: Radiated emissions, restricted band edge, BLE (High Channel)

| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | CAverage<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB/m) |
|--------------------|---------------------|----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|-----------------|
| 2489.628000        | 39.27               |                      | 73.90             | 34.63          | 5000.0                | 1000.000           | 337.0          | Н   | 108.0            | -9.6            |
| 2489.628000        |                     | 25.33                | 53.90             | 28.57          | 5000.0                | 1000.000           | 337.0          | Н   | 108.0            | -9.6            |
| 2483.500000        | 44.60               |                      | 73.90             | 29.30          | 5000.0                | 1000.000           | 144.0          | V   | 198.0            | -9.7            |
| 2483.500000        |                     | 26.36                | 53.90             | 27.54          | 5000.0                | 1000.000           | 144.0          | V   | 198.0            | -9.7            |


Notes:  $^{1}$  Field strength (dB $\mu$ V/m) = receiver/spectrum analyzer value (dB $\mu$ V) + correction factor (dB)

<sup>&</sup>lt;sup>2</sup> Correction factors = antenna factor ACF (dB) + cable loss (dB) – pre-amp (dB)

<sup>&</sup>lt;sup>2</sup> Correction factors = antenna factor ACF (dB) + cable loss (dB) – pre-amp (dB)



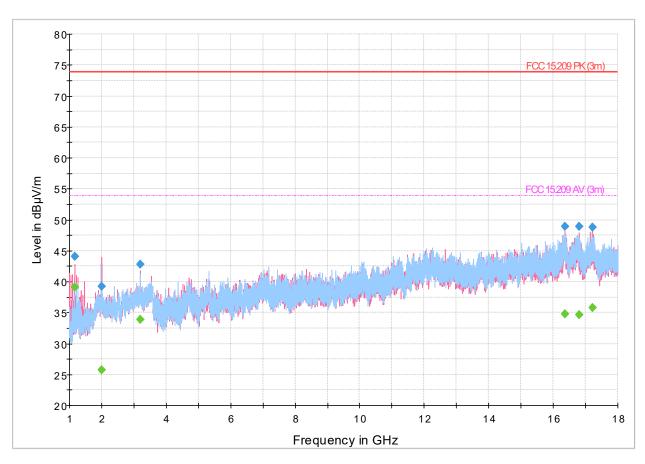
#### Full Spectrum



The spectral plot is a summation of a vertical and horizontal scan. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

Figure 8.2-2: Radiated spurious emissions, BLE, 30-1000 MHz spectral plot (2402 MHz)

Table 8.2-4: Radiated spurious emissions, BLE, 30-1000 MHz (2402 MHz) (Quasi-Peak) results


| Frequency<br>(MHz) | QuasiPeak<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB/m) |
|--------------------|-----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|---------------|-----------------|
| 180.467000         | 41.88                 | 43.50             | 1.62           | 5000.0                | 120.000            | 100.0          | V   | 11.0          | 16.3            |
| 232.038667         | 44.84                 | 46.00             | 1.16           | 5000.0                | 120.000            | 119.0          | V   | 88.0          | 17.9            |
| 251.374000         | 44.41                 | 46.00             | 1.59           | 5000.0                | 120.000            | 151.0          | V   | 118.0         | 20.4            |
| 252.764333         | 37.28                 | 46.00             | 8.72           | 5000.0                | 120.000            | 100.0          | Н   | 136.0         | 20.6            |
| 253.188000         | 38.29                 | 46.00             | 7.71           | 5000.0                | 120.000            | 132.0          | V   | 136.0         | 20.7            |
| 283.570333         | 41.23                 | 46.00             | 4.77           | 5000.0                | 120.000            | 153.0          | V   | 45.0          | 20.9            |

Notes:

- $^1Field$  strength (dBµV/m) = receiver/spectrum analyzer value (dBµV) + correction factor (dB)
- <sup>2</sup> Correction factor = antenna factor ACF (dB) + cable loss (dB)
- <sup>3</sup> The maximum measured value observed over a period of 5 seconds was recorded.
- <sup>4</sup> Limits converted to dBμV/m and an inverse proportionality factor of 20 dB per decade has been used to normalize the specification limit to a measurement distance of 3 meters to determine compliance.



#### Full Spectrum

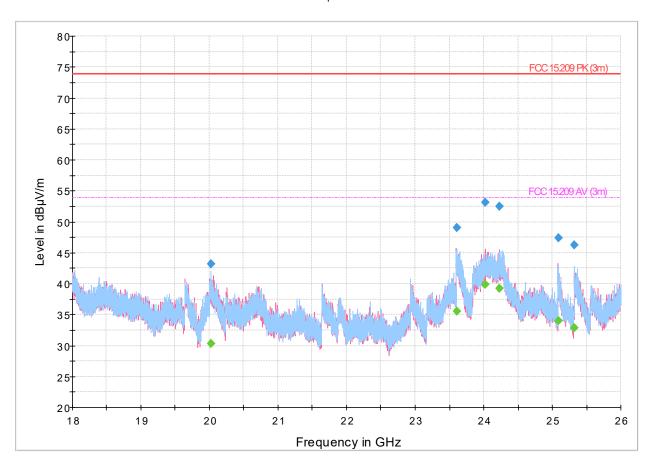


The spectral plot is a summation of a vertical and horizontal scan. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

Figure 8.2-3: Radiated spurious emissions, BLE, 1-18 GHz spectral plot (2462 MHz)

 Table 8.2-5: Radiated spurious emissions, BLE, 1-18 GHz results (2462 MHz)

| Frequency<br>(MHz) | MaxPeak<br>(dBµV/m) | CAverage<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB/m) |
|--------------------|---------------------|----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|-----------------|
| 1160.200000        | 44.13               |                      | 73.90             | 29.77          | 5000.0                | 1000.000           | 204.0          | V   | 42.0             | -14.5           |
| 1160.200000        |                     | 39.13                | 53.90             | 14.77          | 5000.0                | 1000.000           | 204.0          | V   | 42.0             | -14.5           |
| 2011.866667        |                     | 25.68                | 53.90             | 28.22          | 5000.0                | 1000.000           | 205.0          | V   | 158.0            | -10.9           |
| 2011.866667        | 39.25               |                      | 73.90             | 34.65          | 5000.0                | 1000.000           | 205.0          | V   | 158.0            | -10.9           |
| 3197.933333        | 42.86               |                      | 73.90             | 31.04          | 5000.0                | 1000.000           | 211.0          | V   | 44.0             | -7.1            |
| 3197.933333        |                     | 33.94                | 53.90             | 19.96          | 5000.0                | 1000.000           | 211.0          | V   | 44.0             | -7.1            |
| 16369.200000       | 48.97               |                      | 73.90             | 24.93          | 5000.0                | 1000.000           | 307.0          | V   | 160.0            | 12.9            |
| 16369.200000       |                     | 34.78                | 53.90             | 19.12          | 5000.0                | 1000.000           | 307.0          | V   | 160.0            | 12.9            |
| 16802.133333       | 48.95               |                      | 73.90             | 24.95          | 5000.0                | 1000.000           | 402.0          | V   | 184.0            | 14.4            |
| 16802.133333       |                     | 34.68                | 53.90             | 19.22          | 5000.0                | 1000.000           | 402.0          | V   | 184.0            | 14.4            |
| 17215.966667       |                     | 35.74                | 53.90             | 18.16          | 5000.0                | 1000.000           | 244.0          | V   | 220.0            | 15.0            |
| 17215.966667       | 48.75               |                      | 73.90             | 25.15          | 5000.0                | 1000.000           | 244.0          | V   | 220.0            | 15.0            |


Notes:  $^{1}$  Field strength (dB $\mu$ V/m) = receiver/spectrum analyzer value (dB $\mu$ V) + correction factor (dB)

<sup>2</sup> Correction factors = antenna factor ACF (dB) + cable loss (dB) – pre-amp (dB)

A 2.4 GHz notch filter was used to remove the fundamental carrier frequency







The spectral plot is a summation of a vertical and horizontal scan. The spectral scan has been corrected with the associated transducer factors (i.e. antenna factors, cable loss, amplifier gains, and attenuators).

Figure 8.2-4: Radiated spurious emissions, BLE, 18-26 GHz (2462 MHz) spectral plot

Table 8.2-6: Radiated spurious emissions, BLE, 18-26 GHz results (2462 MHz)

| Frequency<br>(MHz) | MaxPeak<br>(dBμV/m) | CAverage<br>(dBµV/m) | Limit<br>(dBµV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Height<br>(cm) | Pol | Azimuth<br>(deg) | Corr.<br>(dB/m) |
|--------------------|---------------------|----------------------|-------------------|----------------|-----------------------|--------------------|----------------|-----|------------------|-----------------|
| 20027.700000       | 43.19               |                      | 73.90             | 30.71          | 5000.0                | 1000.000           | 369.0          | Н   | 290.0            | 18.6            |
| 20027.700000       |                     | 30.31                | 53.90             | 23.59          | 5000.0                | 1000.000           | 369.0          | Н   | 290.0            | 18.6            |
| 23604.500000       |                     | 35.54                | 53.90             | 18.36          | 5000.0                | 1000.000           | 159.0          | V   | 302.0            | 25.8            |
| 23604.500000       | 49.07               |                      | 73.90             | 24.83          | 5000.0                | 1000.000           | 159.0          | V   | 302.0            | 25.8            |
| 24026.100000       | 53.15               |                      | 73.90             | 20.75          | 5000.0                | 1000.000           | 294.0          | V   | 75.0             | 29.7            |
| 24026.100000       |                     | 39.82                | 53.90             | 14.08          | 5000.0                | 1000.000           | 294.0          | V   | 75.0             | 29.7            |
| 24229.300000       |                     | 39.22                | 53.90             | 14.68          | 5000.0                | 1000.000           | 334.0          | V   | 161.0            | 29.1            |
| 24229.300000       | 52.43               |                      | 73.90             | 21.47          | 5000.0                | 1000.000           | 334.0          | V   | 161.0            | 29.1            |
| 25087.300000       | 47.34               |                      | 73.90             | 26.56          | 5000.0                | 1000.000           | 100.0          | V   | 186.0            | 24.3            |
| 25087.300000       |                     | 33.96                | 53.90             | 19.94          | 5000.0                | 1000.000           | 100.0          | V   | 186.0            | 24.3            |
| 25323.700000       | 46.21               |                      | 73.90             | 27.69          | 5000.0                | 1000.000           | 203.0          | Н   | 160.0            | 23.4            |
| 25323.700000       |                     | 32.91                | 53.90             | 20.99          | 5000.0                | 1000.000           | 203.0          | Н   | 160.0            | 23.4            |

Notes:  $^{1}$  Field strength (dB $\mu$ V/m) = receiver/spectrum analyzer value (dB $\mu$ V) + correction factor (dB)

 $^2$  Correction factors = antenna factor ACF (dB) + cable loss (dB) – pre-amp (dB)



# Section 9 Block diagrams of test set-ups

### 9.1 Radiated emissions set-up

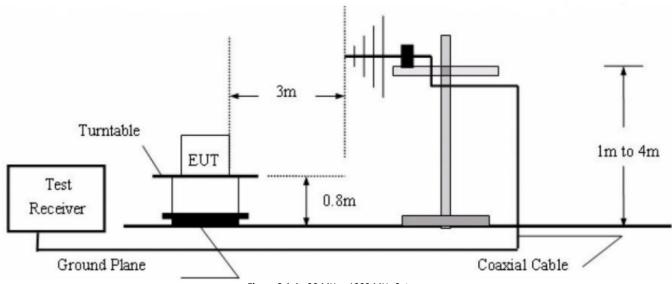



Figure 9.1-1: 30 MHz - 1000 MHz Setup

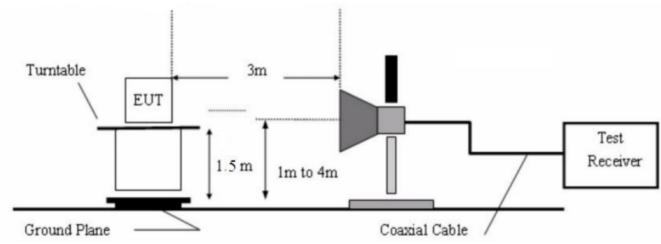



Figure 9.1-2: 1 GHz - 26 GHz Setup