DFS TEST REPORT **Applicant: YEALINK(XIAMEN) NETWORK TECHNOLOGY** CO.,LTD. Address: 309, 3rd Floor, No.16, Yun Ding North Road, Huli District, Xiamen City, Fujian, P.R. China FCC ID: T2C-YL43455 IC: 10741A-YL43455 **HVIN: YL43455** **Product Name: Wi-Fi+BT Module** Standard(s): 47 CFR Part 15, Subpart E(15.407) RSS-247 Issue 2, February 2017 FCC KDB 905462 D02 UNII DFS Compliance **Procedures New Rules v02** The above equipment has been tested and found compliance with the requirement of the relative standards by China Certification ICT Co., Ltd (Dongguan) Report Number: CR21100090-00E Date Of Issue: 2021-11-03 **Reviewed By: Sun Zhong** Sun 2hong Title: Manager **Test Laboratory:** China Certification ICT Co., Ltd (Dongguan) No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China Tel: +86-769-82016888 ### **Test Facility** The Test site used by China Certification ICT Co., Ltd (Dongguan) to collect test data is located on the No. 113, Pingkang Road, Dalang Town, Dongguan, Guangdong, China. Report No.: CR21100090-00E The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 442868, the FCC Designation No. : CN1314. The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0123. #### **Declarations** China Certification ICT Co., Ltd (Dongguan) is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with a triangle symbol "\(\Lambda \)". Customer model name, addresses, names, trademarks etc. are not considered data. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report cannot be reproduced except in full, without prior written approval of the Company. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0. This report may contain data that are not covered by the accreditation scope and shall be marked with an asterisk "★". | 2
4
5
5 | |---------------------------------------| | 4
5 | | 5
5 | | 5 | | 5 | | 5
5 | | 6 | | 7 | | 7 | | 11 | | 12 | | 13 | | 14 | | .14 | | .14
17 | | .17 | | | **CONTENTS** # 1. GENERAL INFORMATION | 1.1 Product Description for Equipment under Test (EUT) | | | |---|--|--| | EUT Name: | Wi-Fi+BT Module | | | EUT Model: | YL43455 | | | Operation Frequency: | 5180-5240 MHz (802.11a/n ht20/ac vht20) 5190-5230 MHz(802.11n ht40/ac vht40) 5210 MHz(802.11ac vht80) 5260-5320 MHz (802.11a/n ht20/ac vht20) 5270-5310 MHz(802.11n ht40/ac vht40) 5290 MHz(802.11ac vht80) 5500-5700 MHz (802.11a/n ht20/ac vht20) 5510-5710 MHz(802.11a ht40/ac vht40) 5530-5690 MHz(802.11ac vht80) 5745-5825 MHz (802.11a/n ht20/ac vht20) 5755-5795 MHz(802.11n ht40/ac vht40) 5775 MHz(802.11ac vht80) | | | Maximum Peak Output Power
(Conducted): | 14.12 dBm (5150-5250 MHz)
14.38 dBm (5250-5350 MHz)
12.04 dBm (5470-5725 MHz)
13.37 dBm (5725-5850 MHz) | | | Maximum EIRP: | 17.12 dBm (5150-5250 MHz)
17.38 dBm (5250-5350 MHz)
15.04 dBm (5470-5725 MHz)
16.37 dBm (5725-5850 MHz) | | | Modulation Type: | OFDM | | | Rated Input Voltage: | DC 3.3V | | | Serial Number: | CR21100090-RF-S1 | | | EUT Received Date: | 2021.10.11 | | | EUT Received Status: Good | | | | Note: For Canada, 5600-5650 MHz was disabled by software. | | | Report No.: CR21100090-00E ### 1.1.3 Antenna Information Detail ▲: | Antenna Manufacturer | Antenna
Type | input impedance
(Ohm) | Antenna Gain
/Frequency Range | §15.203&
RSS-Gen
Requirement | |---|-----------------|--------------------------|----------------------------------|------------------------------------| | YEALINK(XIAMEN) NETWORK TECHNOLOGY CO.,LTD. | РСВ | 50 | 3 dBi/
5.15∼5.85GHz | Compliance | | The Method of §15.203 Compliance: ☐Antenna must be permanently attached to the unit. ☐Antenna must use a unique type of connector to attach to the EUT. | | | | | Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the ### 1.1.4 Accessory Information: correct antenna is employed with the unit. No. ### 1.2 Description of Test Configuration ### 1.2.1 EUT Operation Condition: | 11211 Ee 1 o berutten conditiont | | |----------------------------------|--| | EUT Operation Mode: | The system was configured for testing in Engineering Mode, which was provided by the manufacturer. | | Equipment Modifications: | No | | EUT Exercise Software: | Tfgen | | | | Report No.: CR21100090-00E WLAN traffic is generated by software "Tfgen", software is used by IP and Frame based systems for loading the test channel during the In-service compliance testing of the U-NII device. Data pakge streamed from the Access Point to the Client using the software "Tfgen". ### 1.2.2 Support Equipment List and Details | Manufacturer | Description | Model | Serial Number | |--------------|-----------------|----------|----------------------| | ThinkPad | Laptop | E450 | PF-0MR8KV 16/08 | | Huawei | Wireless Router | HG8245Q2 | 2102311RGB6RH1000087 | Note: The mater AP model: HG8245Q2, FCC ID: QISHG8245Q2 ### 1.2.3 Support Cable List and Details | Cable Description | Shielding
Type | Ferrite Core | Length (m) | From Port | То | |-------------------|-------------------|--------------|------------|-----------|-----------------| | RJ45 Cable | No | No | 10 | Laptop | Wireless Router | ### 1.2.4 Block Diagram of Test Setup # 2. SUMMARY OF TEST RESULTS The following result table represents the list of measurements required under the CFR $\S47$ Part 15.407(h) and RSS-247, Issue 2, February 2017, KDB: 905462 D02 UNII DFS Compliance Procedures New Rules v02 Report No.: CR21100090-00E | Items | Description of Test | Result | |-----------------------------|---|----------------| | Detection
Bandwidth | UNII Detection Bandwidth | Not applicable | | D. C | Initial Channel Availability Check Time (CAC) | Not applicable | | Performance
Requirements | Radar Burst at the Beginning of the CAC | Not applicable | | Check | Radar Burst at the End of the CAC | Not applicable | | | Channel Move Time | Compliance | | In-Service
Monitoring | Channel Closing Transmission Time | Compliance | | | Non-Occupancy Period | Compliance | | Radar Detection | Statistical Performance Check | Not applicable | Note: Not applicable: The EUT is a client unit without radar detection. # 3. REQUIREMENTS AND TEST PROCEDURES ### 3.1 DFS Requirement CFR §47 Part 15.407(h) and RSS-247, Issue 2, February 2017 FCC KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02 Table 1: Applicability of DFS Requirements Prior to Use of a Channel Report No.: CR21100090-00E | Requirement | Operational Mode | | | |---------------------------------|------------------|---|--------------------------------------| | | Master | Client
Without
Radar
Detection | Client
With
Radar
Detection | | Non-Occupancy Period | Yes | Not
required | Yes | | DFS Detection Threshold | Yes | Not
required | Yes | | Channel Availability Check Time | Yes | Not
required | Not
required | | U-NII Detection Bandwidth | Yes | Not
required | Yes | Table 2: Applicability of DFS requirements during normal operation | Requirement | Operational Mode | | | |-----------------------------------|---|-----------------------------------|--| | | Master Device or Client
with Radar Detection | Client Without
Radar Detection | | | DFS Detection Threshold | Yes | Not required | | | Channel Closing Transmission Time | Yes | Yes | | | Channel Move Time | Yes | Yes | | | U-NII Detection Bandwidth | Yes | Not required | | | Additional requirements for devices | Master Device or Client | Client Without | |-------------------------------------|---------------------------|-----------------------| | with multiple bandwidth modes | with Radar Detection | Radar Detection | | U-NII Detection Bandwidth and | All BW modes must be | Not required | | Statistical Performance Check | tested | | | Channel Move Time and Channel | Test using widest BW mode | Test using the widest | | Closing Transmission Time | available | BW mode available | | | | for the link | | All other tests | Any single BW mode | Not required | Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency. | Maximum Transmit Power | Value | |--|-------------------------| | | (See Notes 1, 2, and 3) | | EIRP ≥ 200 milliwatt | -64 dBm | | EIRP < 200 milliwatt and | -62 dBm | | power spectral density < 10 dBm/MHz | | | EIRP < 200 milliwatt that do not meet the power spectral | -64 dBm | | density requirement | | Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. **Note 2:** Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01. Table 4: DFS Response Requirement Values | Parameter | Value | |-----------------------------------|------------------------| | Non-occupancy period | Minimum 30 minutes | | Channel Availability Check Time | 60 seconds | | Channel Move Time | 10 seconds | | | See Note 1. | | Channel Closing Transmission Time | 200 milliseconds + an | | | aggregate of 60 | | | milliseconds over | | | remaining 10 second | | | period. | | | See Notes 1 and 2. | | U-NII Detection Bandwidth | Minimum 100% of the U- | | | NII 99% transmission | | | power bandwidth. See | | | Note 3. | Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. **Note 3:** During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. Table 5 - Short Pulse Radar Test Waveforms | Radar | Pulse | PRI | Number of Pulses | Minimum | Minimum | |-------------|-------------|---------------------|---|---------------|----------| | 1 | | | runiber of Pulses | | | | Type | Width | (µsec) | | Percentage of | Number | | | (µsec) | | | Successful | of | | | | | | Detection | Trials | | 0 | 1 | 1428 | 18 | See Note 1 | See Note | | | | | | | 1 | | 1 | 1 | Test A: 15 unique | [(1)] | 60% | 30 | | | | PRI values | $\left(\frac{360}{360}\right)$. | | | | | | randomly selected | Rounding | | | | | | from the list of 23 | 19·10 ⁶ | | | | | | PRI values in | $\left(\left \overline{\mathrm{PRI}_{\musec}} \right \right)$ | | | | | | Table 5a | (\ ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' | | | | | | Test B: 15 unique | | | | | | | PRI values | | | | | | | randomly selected | | | | | | | within the range | | | | | | | of 518-3066 µsec, | | | | | | | with a minimum | | | | | | | increment of 1 | | | | | | | μsec, excluding | | | | | | | PRI values | | | | | | | selected in Test A | | | | | 2 | 1-5 | 150-230 | 23-29 | 60% | 30 | | 3 | 6-10 | 200-500 | 16-18 | 60% | 30 | | 4 | 11-20 | 200-500 | 12-16 | 60% | 30 | | Aggregate (| Radar Types | 1-4) | | 80% | 120 | Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests. A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B. For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 usec is selected, the number of pulses would be Roundup $\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Roundup} \left\{ 17.2 \right\} = 18.$ Report No.: CR21100090-00E Table 5a - Pulse Repetition Intervals Values for Test A | Pulse Repetition
Frequency
Number | Pulse Repetition Frequency
(Pulses Per Second) | Pulse Repetition
Interval
(Microseconds) | |---|---|--| | 1 | 1930.5 | 518 | | 2 | 1858.7 | 538 | | 3 | 1792.1 | 558 | | 4 | 1730.1 | 578 | | 5 | 1672.2 | 598 | | 6 | 1618.1 | 618 | | 7 | 1567.4 | 638 | | 8 | 1519.8 | 658 | | 9 | 1474.9 | 678 | | 10 | 1432.7 | 698 | | 11 | 1392.8 | 718 | | 12 | 1355 | 738 | | 13 | 1319.3 | 758 | | 14 | 1285.3 | 778 | | 15 | 1253.1 | 798 | | 16 | 1222.5 | 818 | | 17 | 1193.3 | 838 | | 18 | 1165.6 | 858 | | 19 | 1139 | 878 | | 20 | 1113.6 | 898 | | 21 | 1089.3 | 918 | | 22 | 1066.1 | 938 | | 23 | 326.2 | 3066 | The aggregate is the average of the percentage of successful detections of Short Pulse Radar Types 1-4. For example, the following table indicates how to compute the aggregate of percentage of successful detections. | Radar Type | Number of Trials | Number of Successful
Detections | Minimum Percentage
of Successful
Detection | | | |---|------------------|------------------------------------|--|--|--| | 1 | 35 | 29 | 82.9% | | | | 2 | 30 | 18 | 60% | | | | 3 | 30 | 27 | 90% | | | | 4 | 50 | 44 | 88% | | | | Aggregate (82.9% + 60% + 90% + 88%)/4 = 80.2% | | | | | | Table 6 - Long Pulse Radar Test Waveform Report No.: CR21100090-00E | | | - | JIC 0 201 | 5 I also Italia | | | | |-------|--------|----------|-----------|-----------------|-----------|---------------|-----------| | Radar | Pulse | Chirp | PRI | Number | Number | Minimum | Minimum | | Type | Width | Width | (µsec) | of Pulses | of Bursts | Percentage of | Number of | | | (µsec) | (MHz) | | per Burst | | Successful | Trials | | | | | | | | Detection | | | 5 | 50-100 | 5-20 | 1000- | 1-3 | 8-20 | 80% | 30 | | | | | 2000 | | | | | Table 7 - Frequency Hopping Radar Test Waveform | | Tuble / Trequency Tropping Tuttur Test //u/erorm | | | | | | | | |---|--|--------|--------|--------|---------|----------|---------------|-----------| | | Radar | Pulse | PRI | Pulses | Hopping | Hopping | Minimum | Minimum | | - | Type | Width | (µsec) | per | Rate | Sequence | Percentage of | Number of | | - | | (µsec) | | Hop | (kHz) | Length | Successful | Trials | | | | | | | | (msec) | Detection | | | | 6 | 1 | 333 | 9 | 0.333 | 300 | 70% | 30 | ### 3.2 Test Procedure A spectrum analyzer is used as a monitor verifies that the EUT status including Channel Closing Transmission Time and Channel Move Time, and does not transmit on a Channel during the Non-Occupancy Period after the diction and Channel move. # 4. Test DATA AND RESULTS | Serial Number: | CR21100090-RF-S1 | Test Date: | 2021-11-03 | |----------------|------------------|--------------|------------| | Test Site: | RF | Test Mode: | Traffic | | Tester: | Wolf Mo | Test Result: | Pass | Report No.: CR21100090-00E | Environmental Conditions: | | | | | | |-------------------------------------|------|------------------------------|----|---------------------|-------| | Temperature: $(^{\circ}\mathbb{C})$ | 27.6 | Relative
Humidity:
(%) | 53 | ATM Pressure: (kPa) | 101.4 | **Test Equipment List and Details:** | Manufacturer | Description | Model | Serial
Number | Calibration
Date | Calibration Due
Date | |-------------------------|------------------------------------|----------|------------------|---------------------|-------------------------| | National Instruments | NI PXI-1042 8-
Slot chassis | PXI-1042 | VOBX40FBD | N/A | N/A | | National
Instruments | Arbitrary
Waveform
Generator | PXI-5421 | N/A | N/A | N/A | | National
Instruments | RF Upconverter | PXI-5610 | N/A | N/A | N/A | | ASCOR | Upconverter | AS-7202 | N/A | N/A | N/A | | Agilent | Spectrum
Analyzer | E4440A | SG456544 | 2021-08-25 | 2022-08-24 | | Ditorn | Splitter/Combiner | D3C4080 | SN2244 | Each time | N/A | | Ditorn | Splitter/Combiner | D3C4080 | SN2231 | Each time | N/A | | zhuoxiang | Coaxial Cable | SMA-178 | 211012 | Each time | N/A | | zhuoxiang | Coaxial Cable | SMA-178 | 211013 | Each time | N/A | ^{*} Statement of Traceability: China Certification ICT Co., Ltd (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI). ## 4.1 Radar Waveform Calibration Plots of Radar Waveforms 5290 MHz: Radar Type 0 ### 4.2 Channel Move Time And Channel Closing Transmission Time #### **4.2.1 Test Procedure** Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst. Report No.: CR21100090-00E The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. The aggregate channel closing transmission time is calculated as follows: Aggregate Transmission Time = N*Dwell Time N is the number of spectrum analyzer bins showing a device transmission Dwell Time is the dwell time per bin (i.e. Dwell Time = S/B, S is the sweep time and B is the number of bin, i.e. 8192) #### 4.2.2 Test Results | Frequency
(MHz) | Bandwidth
(MHz) | Radar Type | Results | |--------------------|--------------------|------------|-----------| | 5290 | 80 | Type 0 | Compliant | Please refer to the following tables and plots. #### 5290 MHz Type 0 radar channel move time result: # Type0 radar channel closing transmission time result: | Transmission
After 200ms | Aggregate
Transmission Time
After 200ms Delay
(ms) | Limit for Aggregate
Transmission Time
After 200ms Delay
(ms) | Result | |-----------------------------|---|---|--------| | Yes | 33.95 | 60 | Pass | ### 4.3 Non-occupancy Period #### 4.3.1 Test Procedure Measure the EUT for more than 30 minutes following the channel close/move time to very that the EUT does not resume any transmissions on this channel. Provide one plot to demonstrate no transmission on the channel for the non-occupancy period (30 minutes observation time) #### 4.3.2 Test Result | Frequency(MHz) | Bandwidth
(MHz) | Spectrum Analyzer Display | |----------------|--------------------|-----------------------------------| | 5290 | 80 | No transmission within 30 minutes | Please refer to the following plots. #### 5290 MHz ***** END OF REPORT *****