

FCC ID: PQSWAVENET-DUAL-V

Exhibit 2e

Engineering Report on

Frequency Stability (2.1055)

Assessment of Compliance

of

Device Frequency Stability in accordance with the FCC Rules & Regulations Parts 2.1055 and 90.213

PDA Wireless Modem attachment for Palm V/V_x DWV 100D

Wavenet Technologies Pty Ltd.

June 2001

APREL Project No.:WVTB-Dual Wave V -3279

51 Spectrum Way Nepean ON K2R 1E6 Tel: (613) 820-2730 Fax: (613) 820-4161 email: info@aprel.com

Engineering Report

Subject:

Assessment of Compliance of Device Frequency Stability

In accordance with

FCC Rules & Regulations Parts 2.1055 and 90.213

FCC ID:

PQSWAVENET-DUAL-V

Equipment:

PDA Wireless Modem attachment for Palm V/Vx

Model:

DWV 100D

Client:

Wavenet Technologies Pty Ltd.

140 Burswood Rd

Burswood, Perth, WA 6100

AUSTRALIA

Project #:

WVTB-Dual Wave V -3729

Prepared By: APREL Laboratories,

Regulatory Compliance Division

51 Spectrum Way Nepean, Ontario

K2R IE6

Approved by:

Jay Sarkar

Technical Director Standards & Certification

Submitted by:

Jay Sarkar

Technical Director, Standards & Certification

Released by:

Dr. Jack J. Wojcik, P.Eng.

Date

Date

FCC ID: PQSWAVENET-DUAL-V
Applicant: Wavenet Technologies Pty Ltd.

Equipment: PDA Wireless Modem attachment for Palm V/V_x

Model: DWV 100D

Standard: FCC Rules and Regulations Part 2.1055 and 90.213

ENGINEERING SUMMARY

This report contains the results of the Frequency Stability measurement performed on a Wavenet PDA Wireless Modem attachment for Palm V/V_x model DWV 100D The measurements were carried out in accordance with the FCC Rules and Regulations Parts 2.1055 and 90.213. The product was evaluated for frequency stability when it was set at the maximum power level.

Frequency stability was measured at the nominal frequencies of 806 MHz, 815 MHz, and 821 MHz.

Frequency was measured with respect to voltage at 3.5 V, 3.8 V, and 4.1 V supply levels at 25°C.

Frequency was measured with respect to Temperature at 3.8 V supply with a temperature range of -30° to $+60^{\circ}$.

(The results presented in this report relate only to the sample tested.)

Summary of the Results

Test Description	Page	Test Set-up	Results
	No.	Figure No.	Summary
Ref. Paragraph 2.1055 and 90213	8	1	Passed

INTRODUCTION

General

This report describes the results of the frequency stability measurement conducted on a Wavenet Technologies PDA Wireless Modem attachment for Palm V/V_X model DWV 100D.

Test Facility

The evaluation for the compliance was performed for Wavenet Technologies Pty Ltd. by APREL Laboratories at APREL's EMI facility located in Nepean, Ontario, Canada. The laboratory operates an (3m and 10m) Open Area Test Site (OATS). The measurement facility is calibrated in accordance with ANSI C63.4-1992.

A description of the measurement facility in accordance with the radiated and AC line conducted test site criteria per ANSI C63.4-1992 is on file with the Federal Communications Commission and is in compliance with the requirements of Section 2.948 of the Commissions rules and regulations. *APREL's registration number is:* 90416

APREL is accredited by Standard Council of Canada. APREL is also accredited by Industry Canada and recognised by the Federal Communications Commissions (FCC).

Standard

The evaluation and analysis were conducted in accordance with FCC Rules and Regulations Parts 2.1055 and 90.213.

Test Equipment

The test equipment used during the evaluation is listed in Table 1 with calibration due dates.

Environmental Conditions

Measurements were conducted in open area test site.

- Temperature: $25 \,^{\circ}\text{C} \pm 2$ - Relative Humidity: $30 - 50 \,^{\circ}\text{M}$ - Air Pressure: $101 \,^{\circ}\text{kPa} \pm 3$

This report was written by Jayanta (Jay) Sarkar and data by Roman Kuleba.

FCC SUBMISSION INFORMATION

FCC ID: PQSWAVENET-DUAL-V

Equipment (type): PDA Wireless Modem attachment for Palm V/V_x

As Marketed

Model: **DWV 100D**

For: Certification

Applicant: Wavenet Technologies Pty Ltd.

140 Burswood Rd

Burswood, Perth, WA 6100

AUSTRALIA

Manufacturer: Wavenet Technologies Pty Ltd.

140 Burswood Rd

Burswood, Perth, WA 6100

AUSTRALIA

Evaluated by: **APREL Laboratories**

51 Spectrum Way Nepean, Ontario Canada K2R 1E6

MANUFACTURER'S DATA

FCC ID No: PQSWAVENET-DUAL-V

Equipment Type: PDA Wireless Modem attachment for Palm V/V_x

Model: DWV 100D

Reference: FCC Rules and Regulations Parts 2 and Part 90

Manufacturer: Wavenet Technologies Pty Ltd

Development

Stage of Unit: Production

GENERAL SPECIFICATIONS

1. Frequency Range: 806.00 to 821.00 MHz (Transmitter)

2. Measured ERP 1.862 (32.7 dBm)

3. Emission Designators (See 47 CFR § 2.201 and §2.202): 20K0F1D

4. Antenna Impedance: 50 Ohms

Test: Frequency Stability

Ref: FCC Part 2, Paragraph 2.995, and Part 90, Paragraph 90.213

Criteria: 2.5 ppm

Description: Frequency stability is a measure of the frequency drift due to temperature and

supply voltage variations, with reference to the frequency measured at + 25°C and rated supply voltage. The RF carrier frequency shall not depart from the

reference frequency in excess of 2.5 PPM.

Set-up: See Figure 6

Conditions: See procedure

Equipment: See Table 1

Procedure: See Section 4

DEVICE FREQUENCY STABILITY

Test Data	Roger Lam	Date	25/04/01	DOC No.	
Approved	Ross Clark			File No.	

1. Standards.

FCC CFR 47 Ch 1 rules.

Part 2 Required Measurements

Frequency Stability - Procedure, Temperature variation, Voltage variation.

Part 90 Subpart Technical standards.

90.213 Frequency Tolerance

- (a) Maintain carrier frequency within 2.5ppm of assigned frequency.
- (b) Verify Maximum Power output used for measurement.

Frequency and Output power are both measured at the same time.

These are measured at 806MHz, 815MHz, 821MHz.

Frequency is measured with respect to Voltage at 3.5V, 3.8V, 4.1V supply levels at 25°C.

Frequency is measured with respect to Temperature at 3.8V supply with a Temperature range of-30°C to +60°C.

2. Cable calibration

The N type cable and Narda directional coupler used from device port to HP8920 I/P Loss was 0.8dB. for $806 \sim 821MHz$.

A calibrated HP8920A and a stable signal generator were used to measure level change from extra insertion loss of cable assembly.

Table 1

3. Power and Frequency Measurements

Place: Lab at Wavenet Technology, Perth.

Date: 25/04/01

Instruments

msuuments	<u>radic r</u>
T TT 1	C : IN I

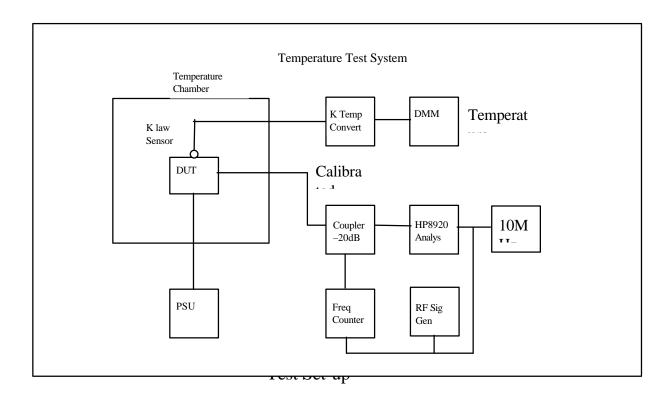
Serial Number		Calibrated on
MX40001704		A ~ilant 20/01/01
		Agilent 28/01/01
US36134925		Agilent 28/01/01
o.11112	Agilent	16/05/01
3541U000513		Agilent 16/05/01
119754/012		Agilent 17/05/01
38750		
33287		19/10/98
AA000	94448	21/02/01 (1yr)
US36134925	16/05/01	_
	MY40001704 US36134925 o.11112 3541U000513 119754/012 38750 33287 AA000	US36134925 o.11112 Agilent 3541U000513 119754/012 38750 33287 AA00094448

4. Procedure

The Wavenet Dualwave V S/N 4.18 was placed in the Temperature chamber and connected to the instruments outside. Refer to fig 1. for details of test system.

The probe temperature was used to set the chamber exactly.

The tests were done once the chamber had stabilised as seen by the Temperature probe. This was 5minutes for the higher temperatures above 0° C and 8 minutes for below 0° C.


The Device was continuously transmitting with a 2 sec TX ON and 8 sec TX OFFcycle.

Modulation was set at RDLAP Symbol Sync (4.8kHz sine wave). (F8 – 6 setting)

The frequency was changed for each 3 frequencies and measurements done for Power and Frequency.

FIGURE 1

5. Results

Frequency deviation at temperature variation.

Nominal Frequency: 806 MHz (3.8V)

1 tollillar i requell	cy: 000 111112	(3.0)	
PROBE TEMP	Freq Dev Hz	Freq Dev PPM	O/P Power
-30	-222	-0.27	32.4
-25	177	0.22	32.5
-20	330	0.40	32.5
-15	393	0.48	32.5
-10	432	0.53	32.5
-5	430	0.53	32.5
0	459	0.56	32.5
5	427	0.52	32.5
10	349	0.43	32.5
15	233	0.29	32.4
20	127	0.16	32.4
25	-50	-0.06	32.4
30	-202	-0.25	32.3
35	-323	-0.40	32.3
40	-42	-0.05	32.3
45	-436	-0.53	32.3
50	-331	-0.41	32.2
55	-345	-0.42	32.2
60	-255	-0.31	32.1

Frequency deviation at temperature variation.

Nominal Frequency: 815 MHz

1 tollillar i reques	ney. 013 MILL			
PROBE TEMP	Freq Dev Hz	Freq Dev PPM	O/P Power	
-30	-224	-0.27		32.2
-25	185	0.23		32.3
-20	327	0.40		32.3
-15	392	0.48		32.3
-10	420	0.52		32.3
-5	435	0.53		32.3
0	465	0.57		32.3
5	430	0.53		32.3
10	354	0.43		32.3
15	244	0.30		32.2
20	121	0.15		32.2
25	-34	-0.04		32.2
30	-167	-0.20		32
35	-339	-0.42		32.1
40	-400	-0.49		32.1
45	-444	-0.54		32
50	-388	-0.48		32.1
55	-350	-0.43		32
60	-261	-0.32		32

Frequency deviation at temperature variation.

Nominal Frequency: 821 MHz

Frequency deviation at temperature variation.

Nominal Frequency: 821 MHz

PROBE TEMP	Freq Dev Hz	Freq Dev PPM	O/P Power
-30	-190	-0.23	32.2
-25	172	0.21	32.2
-20	323	0.40	32.3
-15	393	0.48	32.3
-10	424	0.52	32.3
-5		0.53	32.3
0		0.59	32.2
5	435	0.53	32.2
10	355	0.44	32.2
15		0.30	32.2
20	91	0.11	32.1
25	-52	-0.06	32.1
30	-208	-0.26	32.1
35	-342	-0.42	32.1
40		-0.50	32
45	-442	-0.54	32
50	-372	-0.46	32
55		-0.43	32
60		-0.36	32

Frequency deviation at Power Variation

Supply Voltage [V]	Temp [°C]	Frequency [MHz]	Frequency Deviation [Hz]	Frequency Deviation [PPM]
4.1	25	806.0	+40	+0.050
3.8	25	806.0	-225	-0.279
3.5	25	806.0	-760	-0.943
4.1	25	815.0	+55	+0.067
3.8	25	815.0	-210	-0.258
3.5	25	815.0	-800	-0.982
4.1	25	821.0	+45	+0.055
3.8	25	821.0	-205	-0.250
3.5	25	821.0	-810	-0.987

Test Data: Ku Celin Loune date: June, 2001

Palm V and Wavenet DWV 100D PDA Wireless Modem tested for Frequency Stability at Power Variation