

LNi

**FCC RADIO TEST REPORT** 

FCC ID: 2AQBD-R51

Sample: Wireless Transmitter

Trade Name: N/A

Main Model: R51

Additional Model: R50

Report No.: UNIA22071301ER-61

# **Prepared for**

FUJIAN YOUTONG INDUSTRIES CO., LTD.

North part of 1st, 2nd-3rd floor, Building 1#, M9511 industries Park, No.18, Majiang Road, Mawei District, Fuzhou City, Fujian, China

# Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang
Community, Xixiang Str, Bao'an District, Shenzhen, China



LN

**TEST RESULT CERTIFICATION** 

| Applicant                        | : FUJIAN YOUTONG INDUSTRIES CO., LTD.                                                                                           |  |  |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Address                          | North part of 1st, 2nd-3rd floor, Building 1#, M9511 industries Park,                                                           |  |  |  |  |
|                                  | No.18, Majiang Road, Mawei District, Fuzhou City, Fujian, China                                                                 |  |  |  |  |
|                                  | ······: FUJIAN YOUTONG INDUSTRIES CO., LTD.                                                                                     |  |  |  |  |
| Address                          | North part of 1st, 2nd-3rd floor, Building 1#, M9511 industries Park,                                                           |  |  |  |  |
|                                  | No.18, Majiang Road, Mawei District, Fuzhou City, Fujian, China                                                                 |  |  |  |  |
| Product description              |                                                                                                                                 |  |  |  |  |
| Product                          | Wireless Transmitter                                                                                                            |  |  |  |  |
| Trade Name                       | N/A                                                                                                                             |  |  |  |  |
| Model Name                       | R51, R50                                                                                                                        |  |  |  |  |
| Test Methods                     | FCC Part 15 Subpart C 15.231                                                                                                    |  |  |  |  |
|                                  | ANSI C63.10: 2013                                                                                                               |  |  |  |  |
|                                  | has been tested by Shenzhen United Testing Technology                                                                           |  |  |  |  |
|                                  | s show that the equipment under test (EUT) is in compliance<br>And it is applicable only to the tested sample identified in the |  |  |  |  |
| report.                          | which is applicable only to the toolea cample lacinimod in the                                                                  |  |  |  |  |
|                                  | oduced except in full, without the written approval of UNI, this                                                                |  |  |  |  |
| -                                | revised by Shenzhen United Testing Technology Co., Ltd.,                                                                        |  |  |  |  |
| personnel only, and shall be     | noted in the revision of the document.                                                                                          |  |  |  |  |
| Date (s) of performance of tests | s: June 15, 2022                                                                                                                |  |  |  |  |
| Date of Issue                    |                                                                                                                                 |  |  |  |  |
| Test Result                      | : Pass                                                                                                                          |  |  |  |  |
|                                  | The Party of the                                                                                                                |  |  |  |  |
|                                  | kahn.yang                                                                                                                       |  |  |  |  |
| Prepared by:                     | <del>1</del>                                                                                                                    |  |  |  |  |
|                                  | Kahn yang/Supervisor                                                                                                            |  |  |  |  |
| Reviewer:                        | kenythong                                                                                                                       |  |  |  |  |
| Reviewer.                        | Kelly Cheng/Supervisor                                                                                                          |  |  |  |  |
|                                  | 0                                                                                                                               |  |  |  |  |
| Approved & Authorized S          | igner:                                                                                                                          |  |  |  |  |
|                                  | Liuze/Manager                                                                                                                   |  |  |  |  |





# **Table of Contents**

| 1 | TES | ST SUMMARY                      | 4  |
|---|-----|---------------------------------|----|
| 2 | GEI | NERAL INFORMATION               | 6  |
|   | 2.1 | GENERAL DESCRIPTION OF EUT      | 6  |
|   | 2.2 | CARRIER FREQUENCY OF CHANNELS   | 7  |
|   | 2.3 | OPARATION OF EUT DURING TESTING | 7  |
|   | 2.4 | DESCRIPTION OF TEST SETUP       |    |
|   | 2.5 | ENVIRONMENTAL CONDITIONS        | 7  |
|   | 2.6 | MEASUREMENT INSTRUMENTS LIST    | 8  |
| 3 | TES | T CONDITIONS AND RESULTS        | 9  |
|   | 3.1 | RADIATED EMISSION TEST          | 9  |
|   | 3.2 | -20DB OCCUPIED BANDWIDTH        | 14 |
|   | 3.3 | DEACTIVATION TIME               | 15 |
|   | 3.4 | CALCULATION OF AVERAGE FACTOR   | 17 |
|   | 3.5 | ANTENNA REQUIREMENT             | 19 |
| , | ВЦ  | OTOCD ADU OF TEST               | 20 |



Page 4 of 20 Report No.: UNIA22071301ER-61

# 1 TEST SUMMARY

# 1 TEST PROCEDURES AND RESULTS

| FCC and IC Requirements                              | <b>S</b>                 |           |  |
|------------------------------------------------------|--------------------------|-----------|--|
| FCC Part 15.207                                      | Conducted Emission       | N/A       |  |
| FCC Part 15.231(e)                                   | Radiated Emission        | Compliant |  |
| FCC Part 15.231(c)                                   | 20dB Bandwidth           | Compliant |  |
| FCC Part 15.231(e)                                   | Release Time Measurement | Compliant |  |
| FCC Part 15.203                                      | Antenna Requirement      | Compliant |  |
| The product is aactivated automatically transmitter. |                          |           |  |

# 2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address : 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 21947

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.





# 3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence ofapproximately 95 %.

# A. Radiated Measurement:

| Test Site | Method            | Measurement Frequency Range | U, (dB) | NOTE |
|-----------|-------------------|-----------------------------|---------|------|
| UNI       | ANSI 9kHz ~ 30MHz |                             | 2.50    |      |
|           | 30MHz ~ 1000MHz   |                             | 4.80    | 1    |
| 10        |                   | 1000MHz ~ 18000MHz          | 4.13    | 17   |



# **2 GENERAL INFORMATION**

# 2.1 GENERAL DESCRIPTION OF EUT

The following information of EUT submitted and identified by applicant:

| Product                                             | Wireless Transmitter                                   |
|-----------------------------------------------------|--------------------------------------------------------|
| Trade Name                                          | N/A                                                    |
| Main Model                                          | R51                                                    |
| Serial No.                                          | N/A                                                    |
|                                                     | All above models are identical in the same PCB layout, |
| Model Difference                                    | interior structure and electrical circuits.            |
| The only difference is model name for commercial pu |                                                        |
| FCC ID                                              | 2AQBD-R51                                              |
| Antenna Type                                        | Spring Antenna                                         |
| Antenna Gain                                        | 0dBi                                                   |
| Frequency Range                                     | 433.9116MHz                                            |
| Number of Channels                                  | 1CH                                                    |
| Modulation Type                                     | ASK                                                    |
| Battery                                             | N/A                                                    |
| PowerSource                                         | DC 3V (2 x 1.5V battery)                               |





# 2.2 CARRIER FREQUENCY OF CHANNELS

| Channel | Frequency(MHz) |  |
|---------|----------------|--|
| J 1 J   | 433.9116       |  |

# 2.3 OPARATION OF EUT DURING TESTING

new battery is used during all test Operating Mode The mode is used: Transmitting mode

# 2.4 DESCRIPTION OF TEST SETUP

Operation of EUT during Below1GHz Radiation testing:

EUT

Operation of EUT during Above1GHz Radiation testing:

EUT

Table forauxiliary equipment:

| Equipment Description | Manufacturer | Model | Calibration Due Date |
|-----------------------|--------------|-------|----------------------|
| 1                     | /            | /     | 1                    |

# 2.5 ENVIRONMENTAL CONDITIONS

During the measurement the environmental conditions were within the listed ranges:

| Temperature Normal Temperature: |                        | 26°C    |
|---------------------------------|------------------------|---------|
| Voltage                         | Voltage Normal Voltage |         |
| Other in                        | Relative Humidity      | 55 %    |
| Other                           | Air Pressure           | 101 kPa |





2.6 MEASUREMENT INSTRUMENTS LIST

| Item                           | Equipment                              | Manufacturer  | Model No.    | Serial No.    | Calibrated until |
|--------------------------------|----------------------------------------|---------------|--------------|---------------|------------------|
| Radiated Emissions Measurement |                                        |               |              |               | Ĭ.               |
| 1                              | Radiated Emission<br>Test Software     | EZ-EMC        | Ver.CCS-03A1 | N/A           | N/A              |
| 2                              | Horn Antenna                           | Sunol         | DRH-118      | A101415       | 2022.09.27       |
| 3                              | Broadband Hybrid<br>Antenna            | Sunol         | JB1          | A090215       | 2024.02.26       |
| 4                              | PREAMP                                 | HP            | 8449B        | 3008A00160    | 2022.09.22       |
| 5                              | PREAMP                                 | HP            | 8447D        | 2944A07999    | 2023.05.17       |
| 6                              | EMI TEST<br>RECEIVER                   | Rohde&Schwarz | ESR3         | 101891        | 2022.09.22       |
| 7                              | VECTOR Signal<br>Generator             | Rohde&Schwarz | SMU200A      | 101521        | 2022.09.22       |
| 8                              | Signal Generator                       | Agilent       | E4421B       | MY4335105     | 2022.09.22       |
| 9                              | MXA Signal Analyzer                    | Agilent       | N9020A       | MY50510140    | 2022.09.22       |
| 10                             | MXA Signal Analyzer                    | Keysight      | N9020A       | MY51110104    | 2022.09.22       |
| 11                             | RF Power sensor                        | DARE          | RPR3006W     | 15I00041SNO88 | 2023.05.17       |
| 12                             | RF Power sensor                        | DARE          | RPR3006W     | 15I00041SNO89 | 2023.05.17       |
| 13                             | RF power divider                       | Anritsu       | K241B        | 992289        | 2022.09.22       |
| 14                             | Wideband radio communication tester    | Rohde&Schwarz | CMW500       | 154987        | 2022.09.22       |
| 15                             | Active Loop Antenna                    | Com-Power     | AL-130R      | 10160009      | 2022.07.25       |
| 16                             | Broadband Hybrid<br>Antennas           | Schwarzbeck   | VULB9163     | VULB9163#958  | 2022.09.22       |
| 17                             | Horn Antenna                           | Schwarzbeck   | BBHA9120D    | 9120D-1680    | 2023.05.23       |
| 18                             | Horn Antenna                           | A-INFOMW      | LB-180400-KF | J211060660    | 2022.09.27       |
| 19                             | Microwave<br>Broadband<br>Preamplifier | Schwarzbeck   | BBV 9721     | 100472        | 2022.09.22       |
| 20                             | Signal Generator                       | Agilent       | N5183A       | MY47420153    | 2022.09.22       |
| 21                             | Spctrum Analyzer                       | Rohde&Schwarz | FSP 40       | 100501        | 2022.09.22       |
| 22                             | Power Meter                            | KEYSIGHT      | N1911A       | MY50520168    | 2022.09.22       |
| 23                             | Frequency Meter                        | VICTOR        | VC2000       | 997406086     | 2022.09.22       |
| 24                             | DC Power Source                        | HYELEC        | HY5020E      | 055161818     | 2022.09.22       |
|                                |                                        |               |              |               |                  |





3 TEST CONDITIONS AND RESULTS

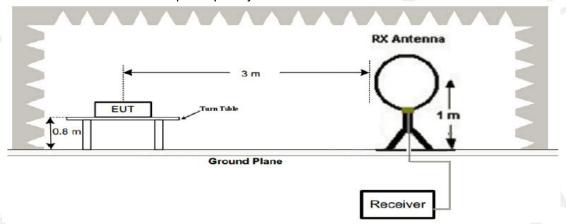
#### 3.1 RADIATED EMISSION TEST

# **Radiation Limit**

For unintentional device, according to § 15.109(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

|   | Frequency<br>(MHz) | Distance<br>(Meters) | Radiated<br>(dBµV/m) | Radiated<br>(μV/m) |
|---|--------------------|----------------------|----------------------|--------------------|
| 0 | 30-88              | 3                    | 40                   | 100                |
|   | 88-216             | 3                    | 43.5                 | 150                |
|   | 216-960            | 3                    | 46                   | 200                |
|   | Above 960          | 3                    | 54                   | 500                |

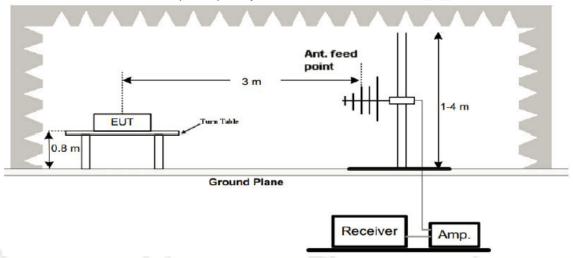
For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.


In addition to the provisions of 15.231(e), the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

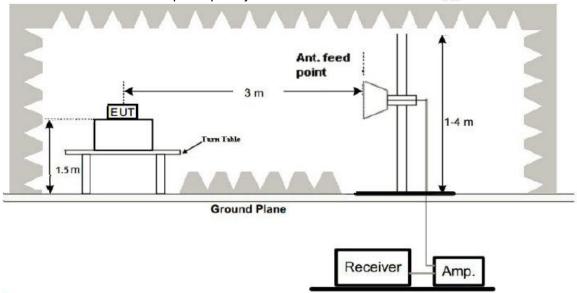
| perated under this section shall not       | perated under this section shall not exceed the following.       |                                                               |  |  |  |
|--------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|--|--|--|
| Frequency Range of<br>Fundamental<br>[MHz] | Field Strength of<br>Fundamental Emission<br>[Average]<br>[μV/m] | Field Strength of<br>Spurious Emission<br>[Average]<br>[μV/m] |  |  |  |
| 40.66-40.70                                | 1000                                                             | 100                                                           |  |  |  |
| 70-130                                     | 500                                                              | 50                                                            |  |  |  |
| 130-174                                    | 500-1500*                                                        | 50-150*                                                       |  |  |  |
| 174-260                                    | 1500                                                             | 150                                                           |  |  |  |
| 260-470                                    | 1500-5000*                                                       | 150-500*                                                      |  |  |  |
| Above 470                                  | 5000                                                             | 500                                                           |  |  |  |
| Note:*Linear interpolation                 |                                                                  |                                                               |  |  |  |

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters= 22.73(F) – 2454.55; forthe band 260-470 MHz, uV/m at 3 meters=16.67(F)-2833.33. The maximum permitted unwantedemission level is 20 dB below the maximum permitted fundamental level.

#### **Test Setup**


1. Radiated Emission Test-Up Frequency Below 30MHz






LNi

# 2. Radiated Emission Test-Up Frequency 30MHz~1GHz



#### 3. Radiated Emission Test-Up Frequency Above 1GHz



#### **Test Procedure**

TheEUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

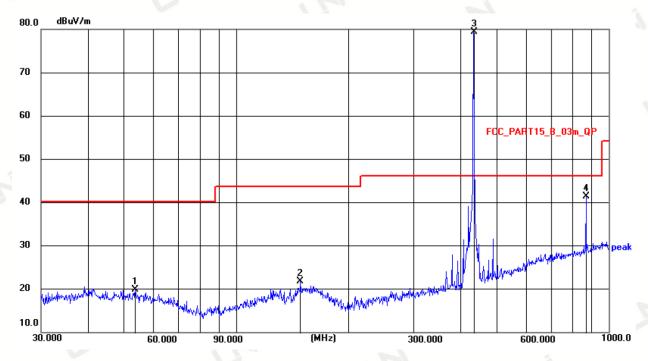
The bandwidth of test receiver is set at 120 kHz in 30-1000MHz, and 1MHz in 1000 MHz.

#### Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.

#### **Test Result**

---PASS----



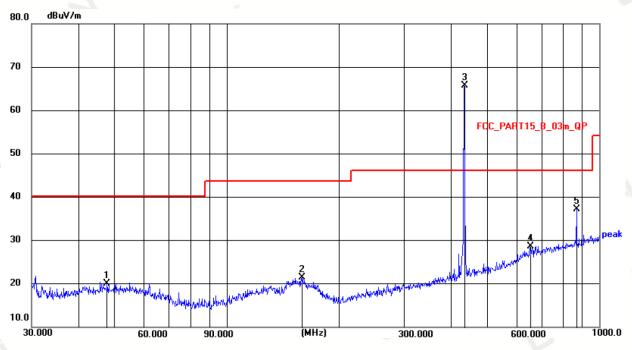

#### Remark:

- 1. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.
- 2. The frequency range from 9 kHz to 5000 MHz is checked.
- 3. Below 30MHz, the emissions are lower than 20dB below the allowable limit. Therefore, 9kHz-30MHz data were not recorded.

# Below 1GHz Test Results:

| Temperature:  | 24°C         | Relative Humidity: | 49%        |
|---------------|--------------|--------------------|------------|
| Test Date:    | June 28,2022 | Pressure:          | 1010hPa    |
| Test Voltage: | DC 3V        | Polarization:      | Horizontal |
| Test Mode:    | Normal work  |                    |            |




| N | 0. | Frequency (MHz) | Reading (dBuV) | Factor (dB/m) | Level (dBuV/m) | Limit (dBuV/m) | Margin (dB) | Height (cm) | Azimuth (deg) | Remark |
|---|----|-----------------|----------------|---------------|----------------|----------------|-------------|-------------|---------------|--------|
|   | 1  | 53.6931         | 5.50           | 14.31         | 19.81          | 40.00          | 20.19       | 238         | 64            | peak   |
| 2 | 2  | 148.9624        | 5.98           | 15.78         | 21.76          | 43.50          | 21.74       | 219         | 322           | peak   |
|   | 3  | 433.9116        | 61.70          | 17.65         | 79.35          | 100.82         | 21.47       | 153         | 107           | peak   |
| 4 | 1  | 867.8232        | 17.73          | 23.67         | 41.40          | 80.82          | 39.42       | 160         | 86            | peak   |

Remark: Level= Reading+ Factor, Margin= Limit- Level Factor=Ant. Factor + Cable Loss - Pre-amplifier



Page 12 of 20 Report No.: UNIA22071301ER-61

| Temperature:  | 24°C         | Relative Humidity: | 49%      |
|---------------|--------------|--------------------|----------|
| Test Date:    | June 28,2022 | Pressure:          | 1010hPa  |
| Test Voltage: | DC 3V        | Polarization:      | Vertical |
| Test Mode:    | Normal work  |                    | U,       |



| No. | Frequency | Reading | Factor | Level    | Limit    | Margin | Height | Azimuth | Remark |
|-----|-----------|---------|--------|----------|----------|--------|--------|---------|--------|
|     | (MHz)     | (dBuV)  | (dB/m) | (dBuV/m) | (dBuV/m) | (dB)   | (cm)   | (deg)   |        |
| 1   | 47.8260   | 5.46    | 14.55  | 20.01    | 40.00    | 19.99  | 128    | 126     | peak   |
| 2   | 159.7844  | 5.42    | 15.99  | 21.41    | 43.50    | 22.09  | 160    | 360     | peak   |
| 3   | 433.9116  | 48.10   | 17.65  | 65.75    | 100.82   | 35.07  | 122    | 53      | peak   |
| 4   | 651.9417  | 7.03    | 21.64  | 28.67    | 46.00    | 17.33  | 219    | 274     | peak   |
| 5   | 867.8232  | 13.63   | 23.67  | 37.30    | 80.82    | 43.52  | 105    | 3       | peak   |

Remark: Level= Reading + Factor, Margin= Limit- Level Factor=Ant. Factor + Cable Loss - Pre-amplifier



Page 13 of 20 Report No.: UNIA22071301ER-61

# Above 1 GHz Test Results:

| Frequency<br>(MHz) | Reading<br>(dB <sub>µ</sub> V/m) | Factor<br>Corr. | Average<br>Factor<br>(dB) | Result<br>(dBμV/m) |       | Limit<br>(dBµV/m) |       | Margin<br>(dB) |        | Polarization |
|--------------------|----------------------------------|-----------------|---------------------------|--------------------|-------|-------------------|-------|----------------|--------|--------------|
|                    | PEAK                             | (dB)            |                           | AV                 | PEAK  | AV                | PEAK  | AV             | PEAK   | in,          |
| 433.9116           | 61.7                             | 17.65           | -12.04                    | 67.31              | 79.35 | 72.86             | 92.86 | -5.55          | -13.51 |              |
| 867.8232           | 17.73                            | 23.67           | -12.04                    | 29.36              | 41.4  | 52.86             | 72.86 | -23.5          | -31.46 |              |
| 1735.6464          | 62.43                            | -12.34          | -12.04                    | 38.05              | 50.09 | 52.86             | 72.86 | -14.81         | -22.77 |              |
| 2603.4696          | 59.77                            | -9.43           | -12.04                    | 38.3               | 50.34 | 52.86             | 72.86 | -14.56         | -22.52 |              |
| 3037.3812          | 62.66                            | -8.36           | -12.04                    | 42.26              | 54.3  | 52.86             | 72.86 | -10.6          | -18.56 | Horizontal   |
| 3471.2928          | 68.85                            | -7.88           | -12.04                    | 48.93              | 60.97 | 52.86             | 72.86 | -3.93          | -11.89 |              |
| 3905.2044          | 66.96                            | -6.92           | -12.04                    | 48                 | 60.04 | 52.86             | 72.86 | -4.86          | -12.82 |              |
| 4339.116           | 56.6                             | -6.09           | -12.04                    | 38.47              | 50.51 | 52.86             | 72.86 | -14.39         | -22.35 |              |
| 4773.0276          | 59.67                            | -5.09           | -12.04                    | 42.54              | 54.58 | 52.86             | 72.86 | -10.32         | -18.28 | i            |
| 433.9116           | 48.1                             | 17.65           | -12.04                    | 53.71              | 65.75 | 72.86             | 92.86 | -19.15         | -27.11 | 17           |
| 867.8232           | 13.63                            | 23.67           | -12.04                    | 25.26              | 37.3  | 52.86             | 72.86 | -27.6          | -35.56 |              |
| 1735.6464          | 55.36                            | -12.34          | -12.04                    | 30.98              | 43.02 | 52.86             | 72.86 | -21.88         | -29.84 |              |
| 2603.4696          | 54.35                            | -9.43           | -12.04                    | 32.88              | 44.92 | 52.86             | 72.86 | -19.98         | -27.94 | Vertical     |
| 3037.3812          | 56.81                            | -8.36           | -12.04                    | 36.41              | 48.45 | 52.86             | 72.86 | -16.45         | -24.41 |              |
| 3471.2928          | 60.76                            | -7.88           | -12.04                    | 40.84              | 52.88 | 52.86             | 72.86 | -12.02         | -19.98 |              |
| 3905.2044          | 64.97                            | -6.92           | -12.04                    | 46.01              | 58.05 | 52.86             | 72.86 | -6.85          | -14.81 |              |

Note: 1.Average value= PK value + Average Factor (duty factor)

2. If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform separate average measurement.





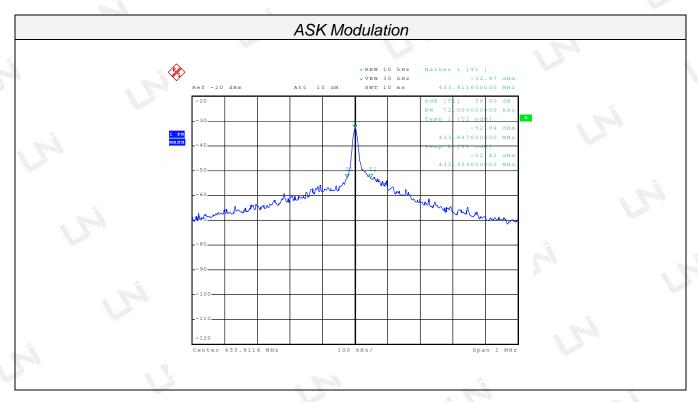
# 3.2 -20db OCCUPIED BANDWIDTH

#### Limit

According to 47 CFR 15.231(c) The bandwidth of the emission shall be no wider than 0.25% of the centre frequency for devices operating above 70MHz and below 900MHz. Bandwidth is determined at the points 20dB down from the modulated carrier.

# **Test Procedure**

- 1.Set SPA Center Frequency = Fundamental frequency, RBW = 10 kHz, VBW = 30 kHz, Span = 1MHz.
- 2. Set SPA Max hold, Mark peak, -20 dB.


# **Test Configuration**



# **Test Result**

#### ---PASS---

| Modulation | Channel<br>Frequency<br>(MHz) | 20dB<br>bandwidth<br>(kHz) | Limit<br>(kHz)        | Result |  |
|------------|-------------------------------|----------------------------|-----------------------|--------|--|
| ASK        | 433.9116                      | 72                         | 0.25%*433911.6=1084.8 | Pass   |  |





Page 15 of 20 Report No.: UNIA22071301ER-61

# 3.3 Deactivation Time

# **LIMIT**

According to FCC §15.231(e), Section 15.231(e) devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

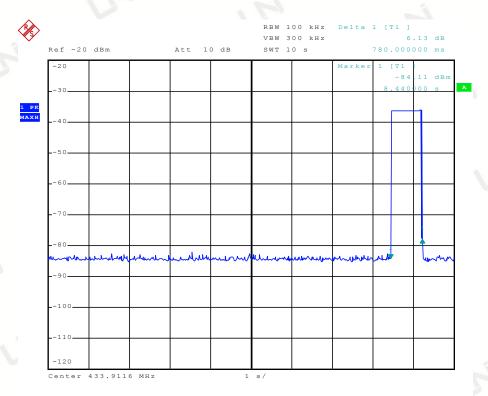
# **TEST PROCEDURE**

- Set SPA Center Frequency = Fundamental frequency,
   RBW = 100 kHz, VBW = 300 kHz, Span = 0 Hz.
- 2. Set EUT as normal operation and press Transmitter button.
- 3. Set SPA View. Delta Mark time.

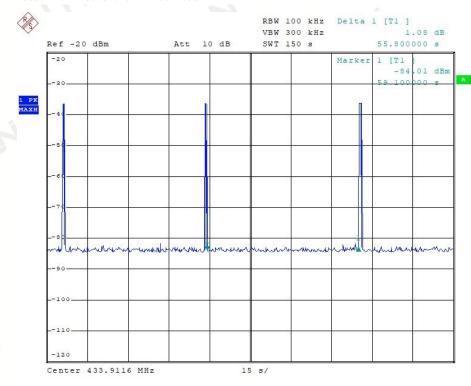
#### **Test Configuration**



# **TEST RESULTS**


Period Time = 55.8s + 0.78s = 56.58s

Duration time =0.78s < 1s


Silent time =55.8s > 10s

Silent time =55.8s > 30\*0.78s = 23.4s





Date: 15.JUN.2022 18:14:53



Date: 15.JUN.2022 18:39:14

United Testing Technology(Hong Kong) Limited



Page 17 of 20 Report No.: UNIA22071301ER-61

#### 3.4 CALCULATION OF AVERAGE FACTOR

According to ANSI C63.10-2013.

ANSI C63.10-2013 Section 7.5 Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 s (100 ms). In cases where the pulse train exceeds 0.1 s, the measured field strength shall be determined during a 0.1 s interval.64 The following procedure is an example of how the average value may be determined. The average field strength may be found by measuring the peak pulse amplitude (in log equivalent units) and determining the duty cycle correction factor (in dB) associated with the pulse modulation as shown in Equation (10): Average factor in dB = 20 log (duty cycle)

# **TEST RESULTS**

- Set SPA Center Frequency = Fundamental frequency,
   RBW = 100 kHz, VBW = 300 kHz, Span = 0 Hz.
- 2. Set EUT as normal operation and press Transmitter button.
- 3. Set SPA View. Delta Mark time.
- 4. The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation

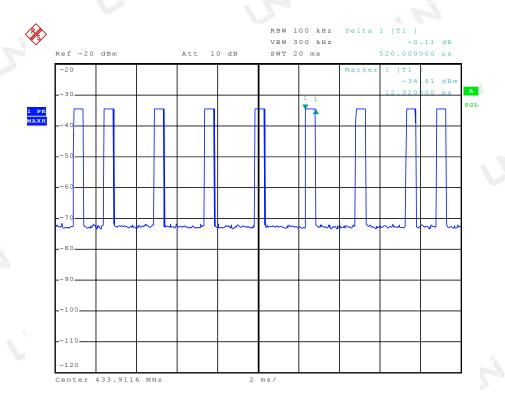
#### **Test Configuration**

The equipment are installed on Release Time Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

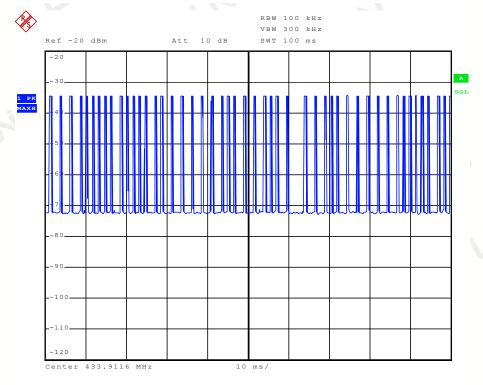


# TEST RESULTS ---PASS---

The duty cycle is simply the on time divided by the period:


Effective period of the cycle = (0.52\*49)ms = 25.48ms

DC = 25.48 ms / 100 ms = 0.25


Therefore, the average factor is found by 20log0.25= -12.04dB

The spectral following.





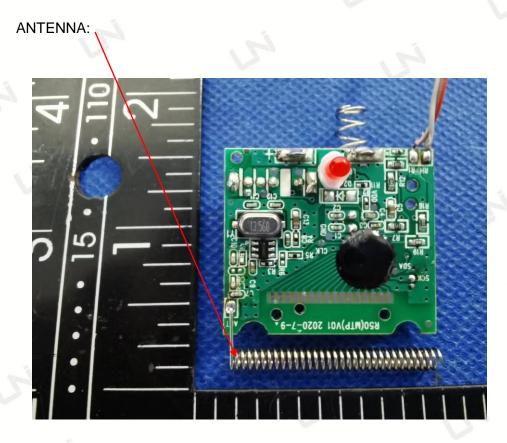




Date: 15.JUN.2022 17:24:39





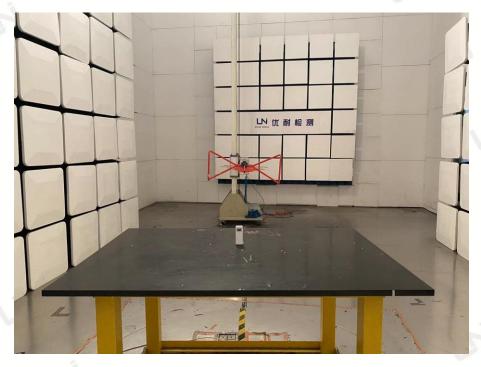

# 3.5 ANTENNA REQUIREMENT

#### Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

#### **Antenna Construction**

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203.








# 4 PHOTOGRAPH OF TEST

# Radiated Emission





\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*End of Report\*\*\*\*\*\*\*\*\*\*\*\*\*