Nalloy, LLC

REVISED TEST REPORT TO 104760-8

Model: XVZQ49

Tested to The Following Standards:

FCC Part 15 Subpart C Section(s)

15.207 & 15.247 (FHSS 902-928MHz)

Report No.: 104760-8A

Date of issue: April 6, 2021

Test Certificate # 803.01

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 70 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

Administrative Information	3
Test Report Information	5
Revision History	Error! Bookmark not defined
Report Authorization	
Test Facility Information	
Software Versions	
Site Registration & Accreditation Information	
Summary of Results	5
Modifications During Testing	
Conditions During Testing	
Equipment Under Test	6
General Product Information	
FCC Part 15 Subpart C	10
15.247(a)(1)(i) Transmitter Characteristics	10
15.247(a)(1) 20 dB Bandwidth	10
15.247(a)(1) Carrier Separation	14
15.247(a)(1)(i) Number of Hopping Channels	15
15.247(a)(1)(i) Time of Occupancy	16
15.247(b)(2) Output Power	18
15.247(d) RF Conducted Emissions & Band Edge	2º
15.247(d) Radiated Emissions & Band Edge	37
15.207 AC Conducted Emissions	61
Supplemental Information	69
Measurement Uncertainty	69

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Nalloy, LLC
2301 5th Avenue
CKC Laboratories, Inc.
Seattle, WA 98108
5046 Sierra Pines Drive
Mariposa, CA 95338

Representative: Naga Suryadevara Project Number: 104760

Customer Reference Number: 2D-04568090

DATE OF EQUIPMENT RECEIPT: December 11, 2020

DATE(S) OF TESTING: December 11, 14, and 17, 2020

February 17, 2021

Revision History

Original: Testing of the Model: XVZQ49 to 15.207 & 15.247 (FHSS)

Revision A: To add Appendix for test set up photos. Update test method in section 15.247(b).

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the equipment provided by the client, tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve J Belon

Steve Behm
Director of Quality Assurance & Engineering Services

CKC Laboratories, Inc.

Page 3 of 70 Report No.: 104760-8A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. Canyon Park 22116 23rd Drive S.E., Suite A Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.19

Site Registration & Accreditation Information

Location	*NIST CB #	FCC	Canada	Japan
Canyon Park, Bothell, WA	US0103	US1024	3082C	A-0136
Brea, CA	US0103	US1024	3082D	A-0136
Fremont, CA	US0103	US1024	3082B	A-0136
Mariposa, CA	US0103	US1024	3082A	A-0136

 $[\]hbox{\tt *CKC's list of NIST designated countries can be found at: \tt https://standards.gov/cabs/designations.html}\\$

Page 4 of 70 Report No.: 104760-8A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (FHSS 902-928MHz)

Test Procedure	Description	Modifications	Results
15.247(a)(1)(i)	Occupied Bandwidth	NA	PASS
15.247(a)(1)	Carrier Separation	NA	PASS
15.247(a)(1)(i)	Number of Hopping Channels	NA	PASS
15.247(a)(1)(i)	Average Time of Occupancy	NA	PASS
15.247(b)(2)	Output Power	NA	PASS
15.247(d)	RF Conducted Emissions & Band Edge	NA	PASS
15.247(d)	Radiated Emissions & Band Edge	NA	PASS
15.207	AC Conducted Emissions	NA	PASS

NA = Not Applicable

ISO/IEC 17025 Decision Rule

The declaration of pass or fail herein is based upon assessment to the specification(s) listed above, including where applicable, assessment of measurement uncertainties. For performance related tests, equipment was monitored for specified criteria identified in that section of testing.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

	 	<u> </u>
Summary of Conditions		
No modifications were made during testing.		

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions	
None	

Page 5 of 70 Report No.: 104760-8A

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N
NA	Nalloy, LLC	XVZQ49	(FCC ID 2AVOB-XVZQ49)
Support Equipment:			
Device	Manufacturer	Model #	S/N
PoE Injector	Ubiquiti	GP-C500-120G XVZQ49	NA

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
NA	Nalloy, LLC	XVZQ49	(FCC ID 2AVOB-XVZQ49)
Support Equipment:			
Device	Manufacturer	Model #	S/N

Device	Manufacturer	Model #	S/N
PoE Injector	Allnet	ALL048900V2	NA
Switching Power Supply	Fuyuang	FY5502000	NA
(For PoE Injector)			

Configuration 3

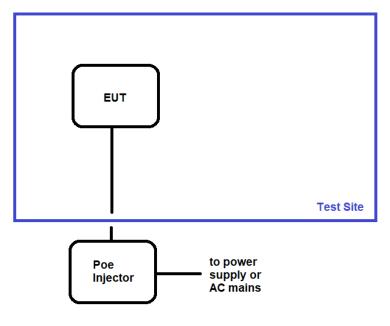
Equipment Tested:

Device	Manufacturer	Model #	S/N
NA	Nalloy, LLC	XVZQ49	(FCC ID 2AVOB-XVZQ49)

Support Equipment:

Device	Manufacturer	Model #	S/N
PoE Injector	Allnet	ALL048900V2	NA
Switching Power Supply	Fuyuang	FY5502000	NA
(For PoE Injector)			
Laptop	Lenovo	130S-11IGM	NA
Power Supply (for Laptop)	Lenovo	ADL45WCC	NA
Power Supply (for Module)	Maxtra	MA-305D	P7354

Page 6 of 70 Report No.: 104760-8A

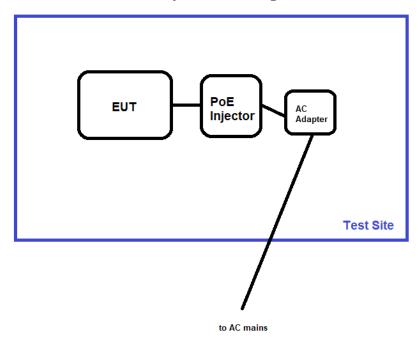


General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	Proprietary FHSS
Operating Frequency Range:	902.4-927.6MHz
Number of Hopping Channels:	64
Receiver Bandwidth and Synchronization:	The manufacturer declares the receiver input bandwidth matches the transmit channel bandwidth and shifts frequencies in synchronization with the transmitter.
Modulation Type(s):	GFSK-2
Maximum Duty Cycle:	100% as worst case
Number of TX Chains:	2
Antenna Type(s) and Gain:	Swivel Type Dipole, 2.5dBi declared per manufacturer
Beamforming Type:	NA
Antenna Connection Type:	External Connector
Nominal Input Voltage:	Module Input (3.3V nominal)
Firmware / Software used for Test:	Railtest_v2.2.0 Realterm 2.0.0.70

Block Diagram of Test Setup(s)

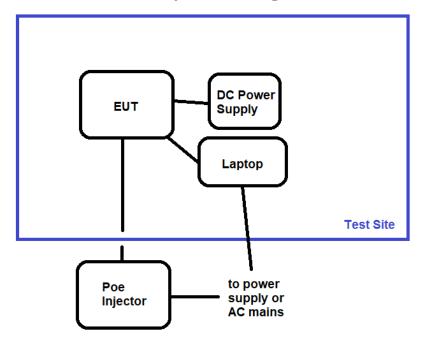
Test Setup Block Diagram



Configuration 1

Page 7 of 70 Report No.: 104760-8A

Test Setup Block Diagram



Configuration 2

Page 8 of 70 Report No.: 104760-8A

Test Setup Block Diagram

Configuration 3

Page 9 of 70 Report No.: 104760-8A

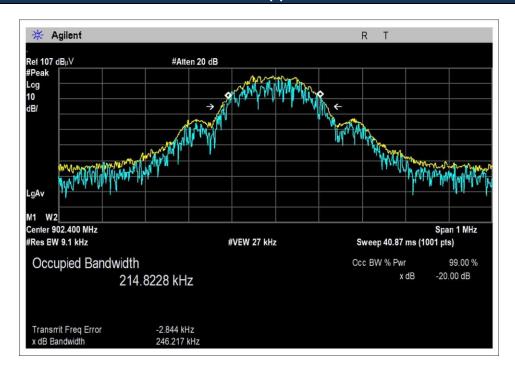
FCC Part 15 Subpart C

15.247(a)(1)(i) Transmitter Characteristics

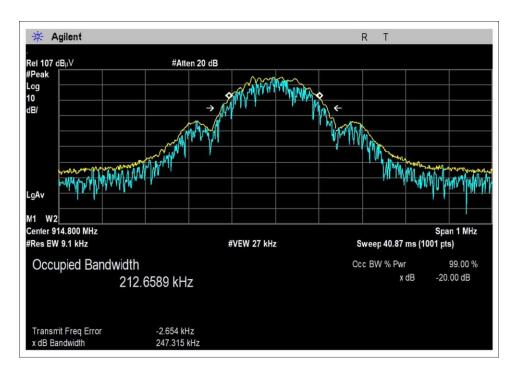
Test Setup/Conditions					
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson/M. Harrison		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	12/14/2020, 12/17/2020		
Configuration:	1				
Test Setup:	EUT is continuously transmitting. EUT has 2 antenna ports, only 1 can be used at a time. Investigated both antenna ports, worst case data reported. Spectrum analyzer and appropriate attenuation connected to antenna port under test, external antenna is removed to make direct RF conducted measurements.				

Environmental Conditions					
Temperature (°C)	19-22	Relative Humidity (%):	34-40		

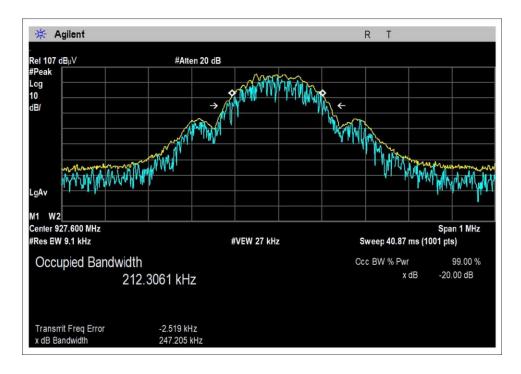
Test Equipment						
Asset# Description Manufacturer Model Cal Date Cal D						
02673	Spectrum Analyzer	Agilent	E4446A	2/22/2019	2/22/2021	
P06007	Cable	Andrew	Heliax	1/20/2020	1/20/2022	
P05748	Attenuator	Pasternack	PE7004-20	3/4/2020	3/4/2022	


15.247(a)(1) 20 dB Bandwidth

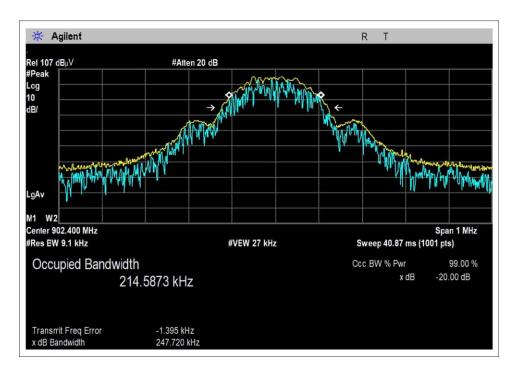
Test Data Summary						
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results	
902.4	0	GFSK-2	246.217	≤500	Pass	
914.8	0	GFSK-2	247.315	≤500	Pass	
927.6	0	GFSK-2	247.205	≤500	Pass	
902.4	1	GFSK-2	247.720	≤500	Pass	
914.8	1	GFSK-2	247.597	≤500	Pass	
927.6	1	GFSK-2	247.209	≤500	Pass	


Page 10 of 70 Report No.: 104760-8A

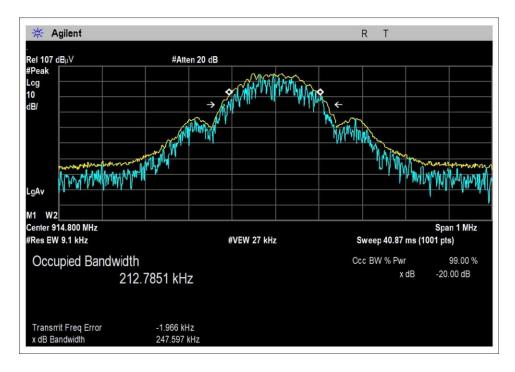
Plot(s)



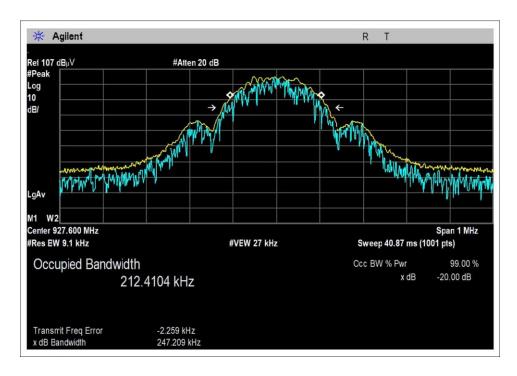
Low Channel, Antenna Port 0



Middle Channel, Antenna Port 0

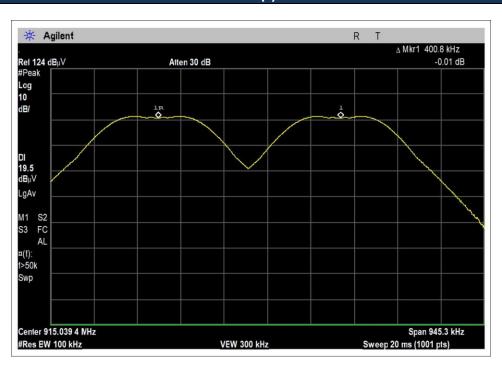


High Channel, Antenna Port 0



Low Channel, Antenna Port 1

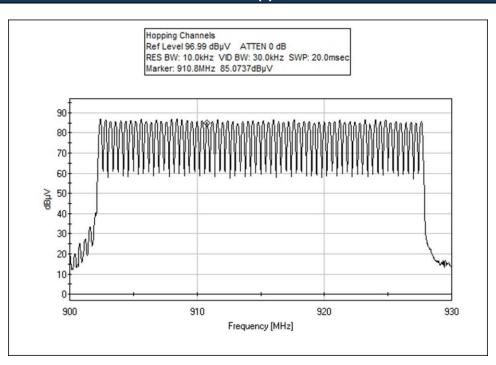
Middle Channel, Antenna Port 1


High Channel, Antenna Port 1

15.247(a)(1) Carrier Separation

Test Data Summary					
Limit applied:	Limit applied: 20dB bandwidth of the hopping channel.				
Antenna Port	Operational Mode	Measured (kHz)	Limit (kHz)	Results	
0, 1	Continuously Transmitting	400.8	>247.720	Pass	

Plot(s)


Page 14 of 70 Report No.: 104760-8A

15.247(a)(1)(i) Number of Hopping Channels

	Test Data Summary				
$Limit = \begin{cases} 50 & 0 \\ 25 & 0 \end{cases}$	$Limit = \begin{cases} 50 \ Channels \ 20 \ dB \ BW < 250kHz \\ 25 \ Channels \ 20 \ dB \ BW \ge 250kHz \end{cases}$				
Antenna Port	Operational Mode	Measured (Channels)	Limit (Channels)	Results	
0, 1	Continuously Transmitting	64	≥ 50	Pass	

Plot(s)

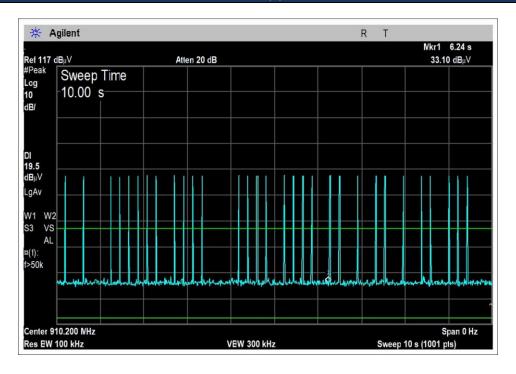
Page 15 of 70 Report No.: 104760-8A

15.247(a)(1)(i) Time of Occupancy

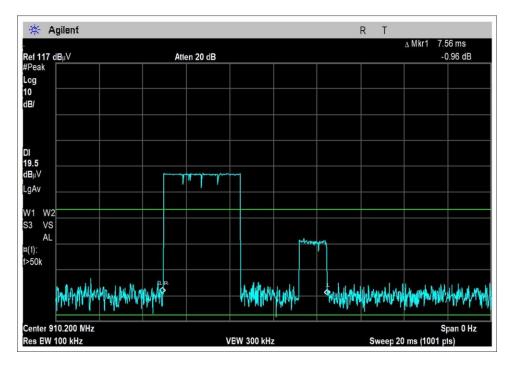
	Test Data Summary				
Observation Period, P_{obs} is derived from the following: $P_{obs} = \begin{cases} 20 \ Seconds \ 20 \ dB \ BW < 250kHz \\ 10 \ Seconds \ 20 \ dB \ BW \ge 250kHz \end{cases}$					
Antenna Port	Operational Mode	Measured (ms)	Limit (ms/P _{obs})	Results	
0, 1	Continuously Transmitting	303.2	≤400	Pass	

Measured results are calculated as follows:

$$Dwell\ time = \left(\sum_{Bursts} RF\ Burst\ On\ Time + \sum_{Control} Control\ Signal\ On\ time\right)\bigg|_{P_{obs}}$$


Actual Calculated Values:

Parameter	Value
Observation Period (Pobs):	20s
Number of RF Bursts / Pobs::	62
On time of RF Burst:	4.89ms
Number of Control or other signals / Pobs:	0
On time of Control or other Signals:	0
Total Measured On Time:	303.2ms


Page 16 of 70 Report No.: 104760-8A

Plot(s)

7.56ms Pulse, 10s

7.56ms Pulse Total On Time Measured = 7.56ms - (35.2mm/99.66mm) * 7.56ms = 4.89ms On Time

15.247(b)(2) Output Power

Test Setup/Conditions					
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson/M. Harrison		
Test Method:	ANSI C63.10 (2013)	Test Date(s):	12/14/2020, 12/17/2020, and 2/17/2021		
Configuration:	1 and 3				
Test Setup:	EUT is continuously transmitting. EUT has 2 antenna ports, only 1 ca Measurements collected on both Spectrum analyzer and appropriat external antenna is removed to m Manufacturer declares this modul SMA cable. Configuration 3 used for voltage v	antenna ports. te attenuation connect ake direct RF conduct le will always be used	ed measurements.		

Environmental Conditions					
Temperature (ºC)	19-22	Relative Humidity (%):	34-40		

Test Equipment						
Asset#	Asset# Description Manufacturer Model Cal I					
02673	Spectrum Analyzer	Agilent	E4446A	2/22/2019	2/22/2021	
P06007	Cable	Andrew	Heliax	1/20/2020	1/20/2022	
P05748	Attenuator	Pasternack	PE7004-20	3/4/2020	3/4/2022	
01318	Multimeter	Fluke	Fluke 85	7/22/2019	7/22/2021	
02871	Spectrum Analyzer	Agilent	E4440A	3/12/2020	3/12/2022	
P06008	Cable	Andrew	Heliax	2/1/2021	2/1/2023	
P05747	Attenuator	Pasternack	PE7004-20	7/1/2020	7/1/2022	

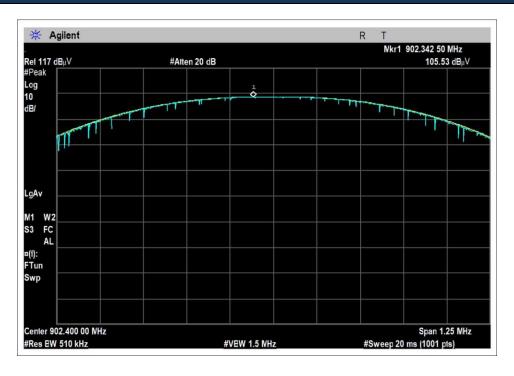
Page 18 of 70 Report No.: 104760-8A

	Test Data Summary - Voltage Variations							
Frequency (MHz)	Ant Port	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)			
902.4	0	18.4	19.0	18.9	0.6			
914.8	0	18.5	19.0	19.0	0.5			
927.6	0	18.3	19.0	19.0	0.7			
902.4	1	18.4	19.0	19.0	0.6			
914.8	1	18.4	19.0	19.0	0.6			
927.6	1	18.4	19.0	19.0	0.6			

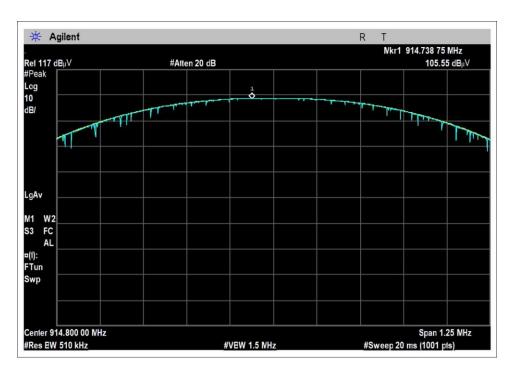
Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

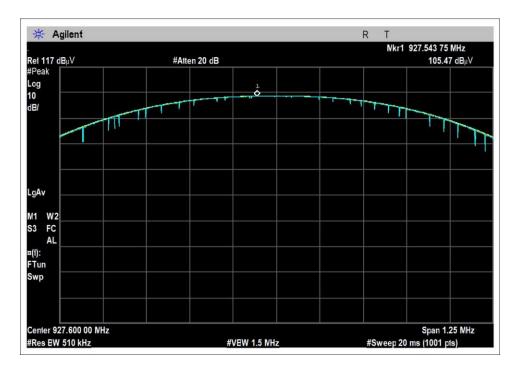
Measurements performed at input voltage Vnominal ± 15%.


Parameter	Value
V _{Nominal} :	3.3V
V _{Minimum} :	2.8V
V _{Maximum} :	3.8V

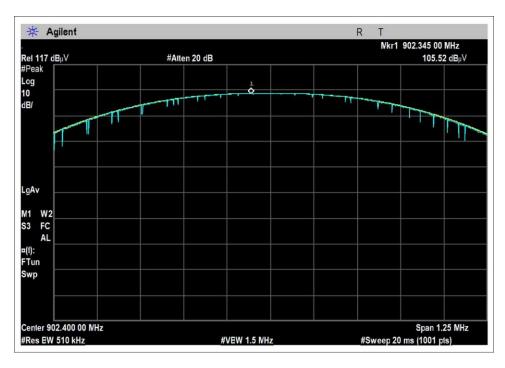
	Test Data Summary - RF Conducted Measurement									
1 1 1 m 1 t - 1	$Limit = \begin{cases} 30dBm \ Conducted/36dBm \ EIRP \mid \geq 50 \ Channels \\ 24dBm \ Conducted/30dBm \ EIRP \mid < 50 \ Channels \ (min 25) \end{cases}$									
Frequency (MHz) Modulation Ant. Type / Gain (dBi) Measured (dBm) Res										
902.4	GFSK-2	Port 0, Swivel Type Dipole / 2.5dBi	19.0	≤30	Pass					
914.8	GFSK-2	Port 0, Swivel Type Dipole / 2.5dBi	19.0	≤30	Pass					
927.6	GFSK-2	Port 0, Swivel Type Dipole / 2.5dBi	19.0	≤30	Pass					
902.4	GFSK-2	Port 1, Swivel Type Dipole / 2.5dBi	19.0	≤30	Pass					
914.8	GFSK-2	Port 1, Swivel Type Dipole / 2.5dBi	19.0	≤30	Pass					
927.6	GFSK-2	Port 1, Swivel Type Dipole / 2.5dBi	19.0	≤30	Pass					


Page 19 of 70 Report No.: 104760-8A

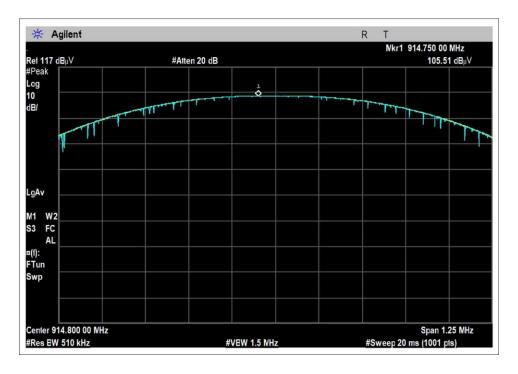
Plots



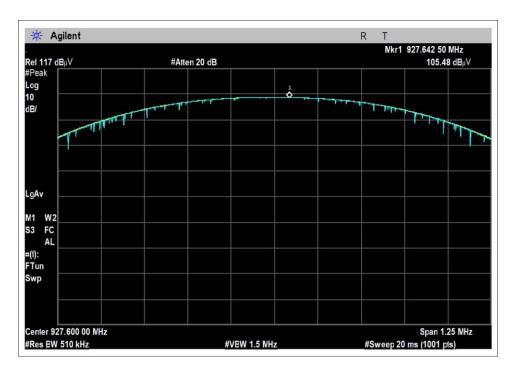
Low Channel, Antenna Port 0



Middle Channel, Antenna Port 0



High Channel, Antenna Port 0



Low Channel, Antenna Port 1

Middle Channel, Antenna Port 1

High Channel, Antenna Port 1

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(b) Power Output (902-928 MHz DTS)

Work Order #: 104760 Date: 12/14/2020
Test Type: Conducted Emissions Time: 15:01:40
Tested By: M. Harrison/M. Atkinson Sequence#: 11

Software: EMITest 5.03.19 115VAC 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

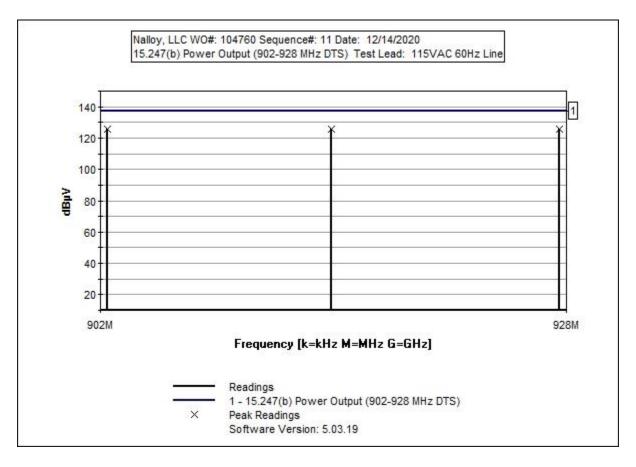
Test Environment Conditions:

Temperature: 20°C Relative Humidity: 33% Pressure: 102.1kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: Fundamental

Setup:


Continuously Transmitting

Antenna 0 and Antenna 1 ports measured

Channels measured: (0) 902.4 MHz, (31) 914.8MHz High (63) 927.6MHz

Page 23 of 70 Report No.: 104760-8A

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T2	ANP06007	Cable	Heliax	1/20/2020	1/20/2022
T3	ANP05748	Attenuator	PE7004-20	3/4/2020	3/4/2022

Measu	rement Data:	Re	eading list	ted by ma	argin.	Test Lead: Line					
#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	dΒμV	$dB\mu V$	dB	Ant
1	927.600M	105.5	+0.0	+0.5	+20.0		+0.0	126.0	137.0	-11.0	Line
									ant1		
2	914.800M	105.5	+0.0	+0.5	+20.0		+0.0	126.0	137.0	-11.0	Line
									ant1		
3	902.400M	105.5	+0.0	+0.5	+20.0		+0.0	126.0	137.0	-11.0	Line
									ant1		
4	927.600M	105.5	+0.0	+0.5	+20.0		+0.0	126.0	137.0	-11.0	Line
									ant0		
5	914.800M	105.5	+0.0	+0.5	+20.0		+0.0	126.0	137.0	-11.0	Line
									ant0		
6	902.400M	105.5	+0.0	+0.5	+20.0	•	+0.0	126.0	137.0	-11.0	Line
									ant0		

Page 24 of 70 Report No.: 104760-8A

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 104760 Date: 12/17/2020
Test Type: Conducted Emissions Time: 17:33:39
Tested By: M. Harrison/M. Atkinson Sequence#: 12

Software: EMITest 5.03.19 115VAC 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

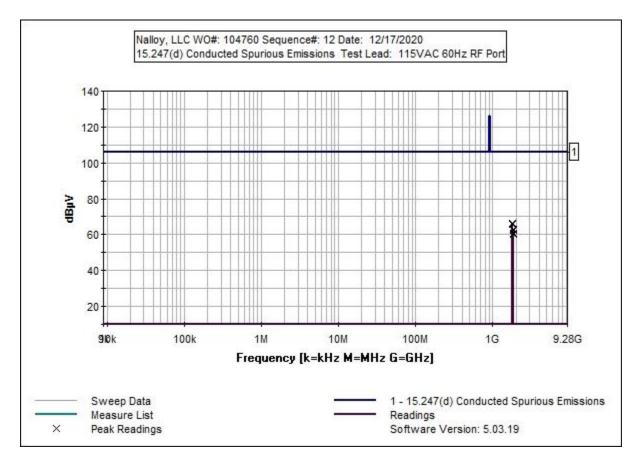
Test Environment Conditions:

Temperature: 20°C Relative Humidity: 33% Pressure: 102.1kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 9kHz-10GHz

Setup:


Continuously Transmitting

Antenna 0 and Antenna 1 ports measured

Channels measured: (0) 902.4 MHz, (31) 914.8MHz High (63) 927.6MHz

Page 25 of 70 Report No.: 104760-8A

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	ANP06007	Cable	Heliax	1/20/2020	1/20/2022
T2	ANP05748	Attenuator	PE7004-20	3/4/2020	3/4/2022

Measu	rement Data:	Re	eading lis	ted by ma	argin.	Test Lead: RF Port					
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	1804.000M	45.8	+0.6	+20.0			+0.0	66.4	105.9	-39.5	Ant1
									ant1		
2	1804.000M	44.9	+0.6	+20.0			+0.0	65.5	105.9	-40.4	Ant0
									ant0		
3	1832.000M	42.2	+0.7	+20.0			+0.0	62.9	105.9	-43.0	Ant0
									ant0		
4	1832.000M	41.7	+0.7	+20.0			+0.0	62.4	105.9	-43.5	Ant1
									ant1		
5	1851.000M	39.9	+0.7	+20.0			+0.0	60.6	105.9	-45.3	Ant0
									ant0		
6	1851.000M	39.3	+0.7	+20.0		•	+0.0	60.0	105.9	-45.9	Ant1
									ant1		

Page 26 of 70 Report No.: 104760-8A

Band Edge

Band Edge Summary

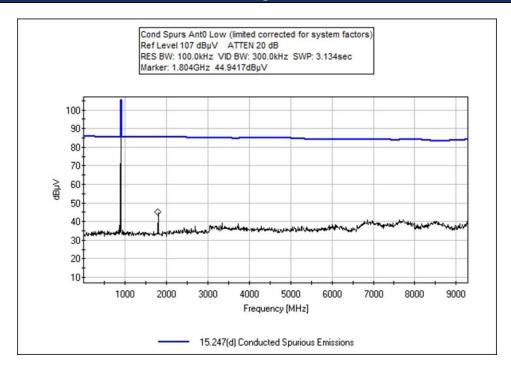
Limit applied: Max Power/100kHz - 20dB.

Operating Mode: Single Channel (Low and High)

Frequency Measured Limit Modulation Results (MHz) (dBµV) (dBµV) 902 (Ant Port 0) GFSK-2 78.3 <105.9 Pass 928 (Ant Port 0) GFSK-2 73.7 <105.9 Pass 902 (Ant Port 1) GFSK-2 78.4 <105.9 Pass 928 (Ant Port 1) GFSK-2 73.6 <105.9 Pass

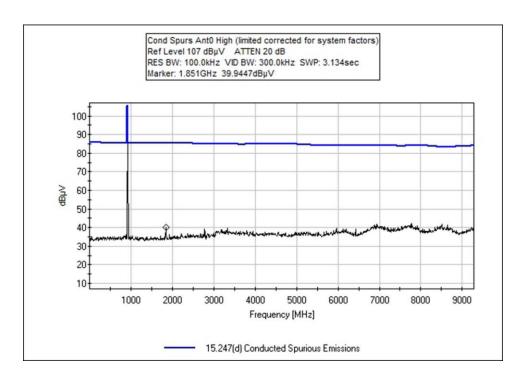
Band Edge Summary

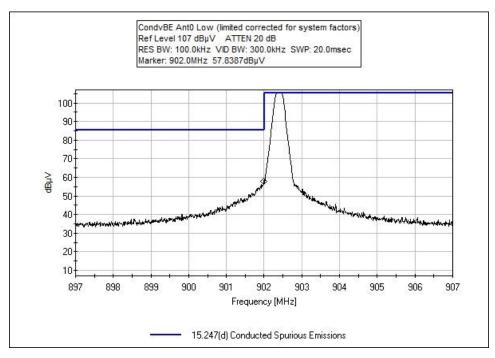
Limit applied: Max Power/100kHz - 20dB.

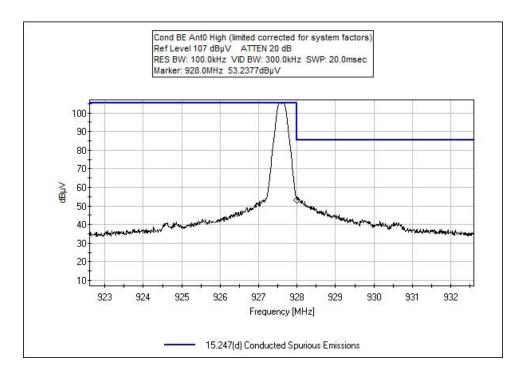

Operating Mode: Hopping

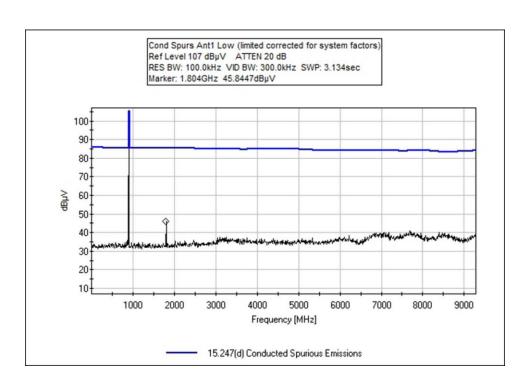
operating model nothing									
Frequency Modulation (MHz)		Measured (dBμV)	Limit (dBμV)	Results					
902 (Ant Port 0)	GFSK-2	81.6	<105.9	Pass					
928 (Ant Port 0)	GFSK-2	75.9	<105.9	Pass					
902 (Ant Port 1)	GFSK-2	73.1	<105.9	Pass					
928 (Ant Port 1)	GFSK-2	82.2	<105.9	Pass					

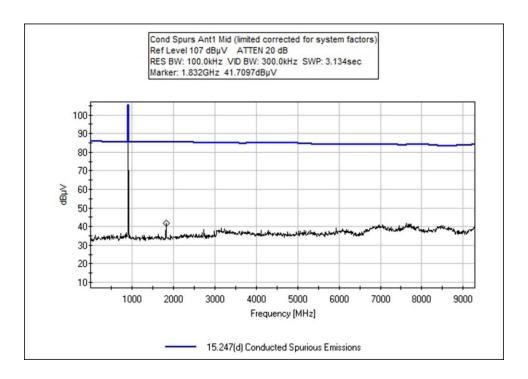
Page 27 of 70 Report No.: 104760-8A

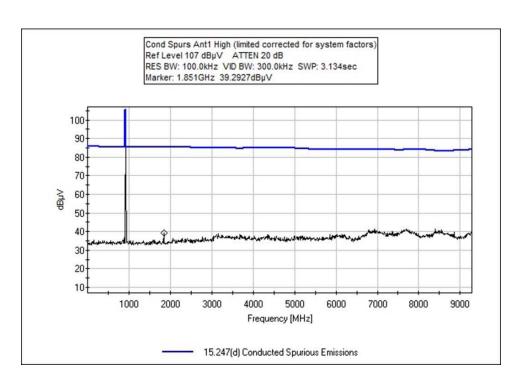


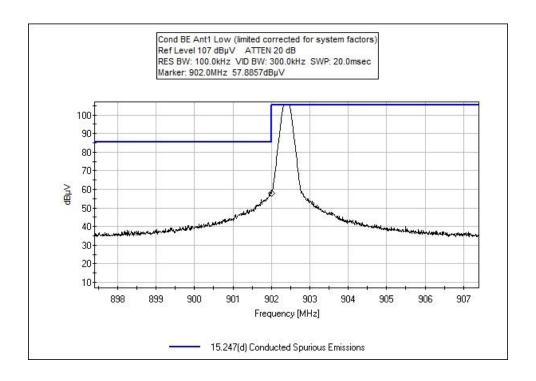

Band Edge Plots

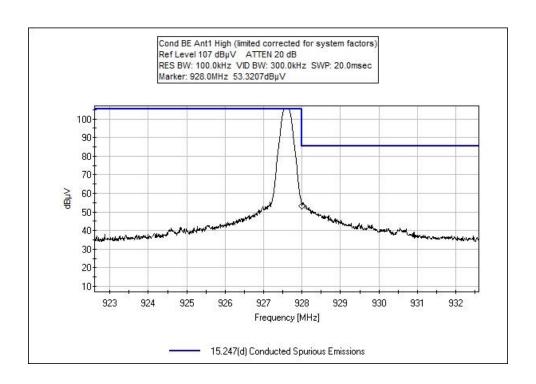


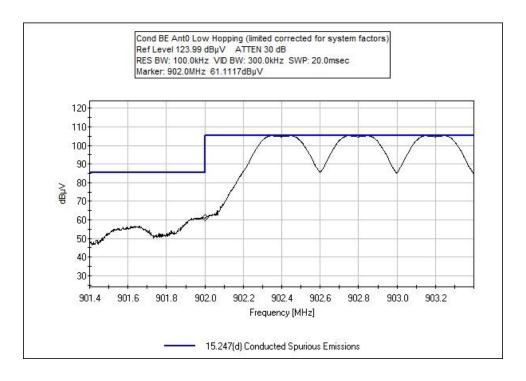


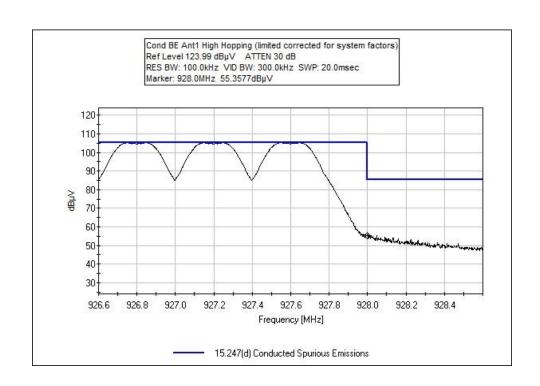


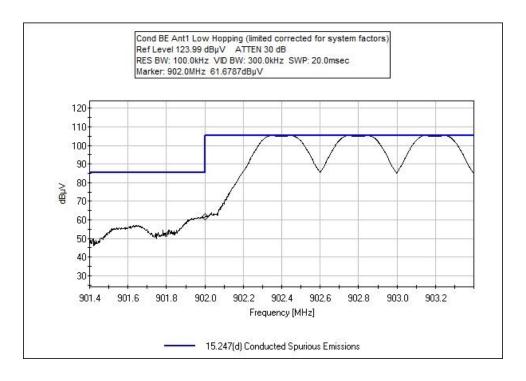


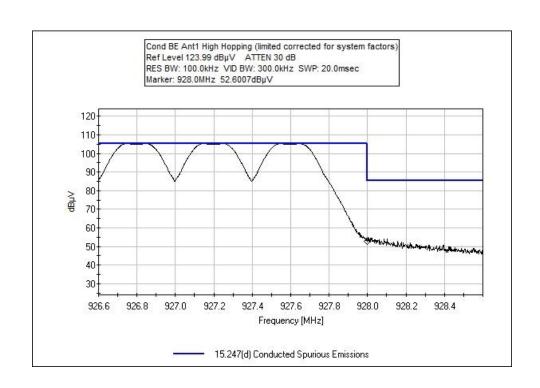

Page 30 of 70 Report No.: 104760-8A











Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 104760 Date: 12/17/2020
Test Type: Conducted Emissions Time: 17:33:39
Tested By: M. Harrison/M. Atkinson Sequence#: 12

Software: EMITest 5.03.19 115VAC 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N
Configuration 1			

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Relative Humidity: 33% Pressure: 102.1kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 9kHz-10GHz

Setup:

Continuously Transmitting

Antenna 0 and Antenna 1 ports measured

Channels measured: (0) 902.4 MHz, (31) 914.8MHz High (63) 927.6MHz

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	ANP06007	Cable	Heliax	1/20/2020	1/20/2022
T2	ANP05748	Attenuator	PE7004-20	3/4/2020	3/4/2022

Page 35 of 70 Report No.: 104760-8A

Meas	Measurement Data: Reading listed by margin.							Test Lea	ad: RF Port		
#	Freq	Rdng	T1	T2			Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	902.000M	61.7	+0.5	+20.0			+0.0	82.2	105.9	-23.7	RF Po
									ant1 hop		
2	902.000M	61.1	+0.5	+20.0			+0.0	81.6	105.9	-24.3	RF Po
									ant0 hop		
3	902.000M	57.9	+0.5	+20.0			+0.0	78.4	105.9	-27.5	Ant1
									ant1		
4	902.000M	57.8	+0.5	+20.0			+0.0	78.3	105.9	-27.6	Ant0
									ant0		
5	928.000M	55.4	+0.5	+20.0			+0.0	75.9	105.9	-30.0	RF Po
									ant0 hop		
6	928.000M	53.2	+0.5	+20.0			+0.0	73.7	105.9	-32.2	Ant0
									ant0		
7	928.000M	53.1	+0.5	+20.0			+0.0	73.6	105.9	-32.3	Ant1
									ant1		
8	928.000M	52.6	+0.5	+20.0			+0.0	73.1	105.9	-32.8	RF Po
									ant1 hop		

Page 36 of 70 Report No.: 104760-8A

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 104760
 Date: 12/11/2020

 Test Type:
 Maximized Emissions
 Time: 12:09:14

Tested By: M. Harrison/M. Atkinson Sequence#: 4

Software: EMITest 5.03.19

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Relative Humidity: 33% Pressure: 102.1kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 9kHz-10GHz

Setup: SBS Module Antenna 0

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz

GFSK-2

100% Duty Cycle PWR Level Setting: 200 PWR Output: 20dBm POE powered

Page 37 of 70 Report No.: 104760-8A

Nalloy, LLC WO#: 104760 Sequence#: 4 Date: 12/11/2020 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Various

Readings
 × QP Readings
 ▼ Ambient

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings * Average Readings

Average Readings Software Version: 5.03:19

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	AN03540	Preamp	83017A	5/13/2019	5/13/2021
T4	AN01467	Horn Antenna-ANSI	3115	7/5/2019	7/5/2021
		C63.5 Calibration			
T5	ANP06243	Attenuator	54A-10	1/27/2020	1/27/2022
T6	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T7	ANP07505	Cable	CLU40-KMKM-	1/17/2019	1/17/2021
			02.00F		
T8	AN03170	High Pass Filter	HM1155-11SS	10/23/2019	10/23/2021
Т9	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022
T10	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T11	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T12	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T13	ANP05360	Cable	RG214	2/3/2020	2/3/2022

Page 38 of 70 Report No.: 104760-8A

Measu	rement Data:	<u> </u>			argin.		Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar	
			T5	T6	T7	T8						
			T9	T10	T11	T12						
			T13									
	MHz	dΒμV	dB	dB	dB	dB	Table	•	$dB\mu V/m$	dB	Ant	
1	37.550M	13.8	+0.0	+0.1	+0.0	+0.0	+0.0	33.5	40.0	-6.5	Vert	
	QP		+0.0	+0.0	+0.0	+0.0						
			+0.0	+13.2	+5.8	+0.3						
	25.550).6	10.5	+0.3	0.1	0.0	0.0	0.0	20.2	40.0	0.0	T. 7	
٨	37.550M	19.5	+0.0	+0.1	+0.0	+0.0	+0.0	39.2	40.0	-0.8	Vert	
			+0.0	+0.0	+0.0	+0.0						
			+0.0 +0.3	+13.2	+5.8	+0.3						
3	172.135M	18.4	+0.0	+0.2	+0.0	+0.0	+0.0	35.7	43.5	-7.8	Vert	
	QP	10.4	+0.0	+0.2	+0.0	+0.0	+0.0	33.1	43.3	-7.0	v CI t	
	Qı		+0.0	+9.9	+5.8	+0.6						
			+0.8	17.7	13.0	10.0						
^	172.135M	21.5	+0.0	+0.2	+0.0	+0.0	+0.0	38.8	43.5	-4.7	Vert	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+9.9	+5.8	+0.6						
			+0.8									
5	2782.770M	33.3	+0.0	+0.7	-34.1	+28.5	+0.0	42.0	54.0	-12.0	Vert	
	Ave		+10.0	+2.9	+0.3	+0.4						
			+0.0	+0.0	+0.0	+0.0						
			+0.0									
^	2782.770M	41.9	+0.0	+0.7	+0.0	+0.0	+0.0	51.1	54.0	-2.9	Vert	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	+0.0	+5.9	+2.6						
	2600 40134	260	+0.0	0.0	22.0	20.2	0.0	20.4	540	17.6	T. 7	
1	3609.491M	26.9	+0.0	+0.8	-33.8	+30.3	+0.0	38.4	54.0	-15.6	Vert	
	Ave		+9.8 +0.0	$+3.4 \\ +0.0$	$+0.5 \\ +0.0$	+0.5 +0.0						
			+0.0	+0.0	+0.0	+0.0						
٨	3609.530M	38.9	+0.0	+0.8	-33.8	+30.3	+0.0	50.4	54.0	-3.6	Vert	
	3009.330IVI	30.9	+9.8	+3.4	+0.5	+0.5	+0.0	30.4	34.0	-3.0	VCIT	
			+0.0	+0.0	+0.0	+0.0						
			+0.0	. 0.0	. 0.0							
9	2707.298M	28.5	+0.0	+0.7	-34.1	+28.3	+0.0	37.0	54.0	-17.0	Vert	
	Ave		+10.0	+2.9	+0.3	+0.4						
			+0.0	+0.0	+0.0	+0.0						
			+0.0									
^	2707.390M	41.4	+0.0	+0.7	-34.1	+28.3	+0.0	49.9	54.0	-4.1	Vert	
			+10.0	+2.9	+0.3	+0.4						
			+0.0	+0.0	+0.0	+0.0						
			+0.0									

Page 39 of 70 Report No.: 104760-8A

11	1829.630M	48.8	+0.0	+0.5	-34.8	+26.3	+0.0	53.8	102.4	-48.6	Horiz
	Ave		+10.0	+2.4	+0.2	+0.4					
			+0.0	+0.0	+0.0	+0.0					
^	1829.590M	52.3	+0.0	+0.5	-34.8	+26.3	+0.0	57.3	102.4	-45.1	Horiz
	1629.390W	32.3	+10.0	+0.3	+0.2	+20.3	+0.0	31.3	102.4	-43.1	HOHZ
			+0.0	+0.0	+0.0	+0.0					
			+0.0	10.0	10.0	10.0					
٨	1829.610M	47.5	+0.0	+0.5	-34.8	+26.3	+0.0	52.5	102.4	-49.9	Horiz
			+10.0	+2.4	+0.2	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
14	1804.884M	48.5	+0.0	+0.5	-34.8	+26.1	+0.0	53.3	102.4	-49.1	Horiz
	Ave		+10.0	+2.3	+0.2	+0.5					
			+0.0	+0.0	+0.0	+0.0					
	10045035	45.1	+0.0		210	251	0.0	71 ^	100 1		** .
15	1804.760M	47.1	+0.0	+0.5	-34.8	+26.1	+0.0	51.9	102.4	-50.5	Horiz
	Ave		+10.0	+2.3	+0.2	+0.5					
			+0.0	+0.0	+0.0	+0.0					
٨	1804.842M	54.1	+0.0	+0.5	-34.8	+26.1	+0.0	58.9	102.4	-43.5	Horiz
	1004.042WI	34.1	+0.0	+0.3	+0.2	+20.1	+0.0	36.9	102.4	-43.3	попи
			+0.0	+0.0	+0.2	+0.0					
			+0.0	10.0	10.0	10.0					
٨	1804.760M	49.8	+0.0	+0.5	-34.8	+26.1	+0.0	54.6	102.4	-47.8	Horiz
	100 11, 001,1	.,.0	+10.0	+2.3	+0.2	+0.5	. 0.0	0	10211	.,.0	110112
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
18	1804.892M	46.7	+0.0	+0.5	-34.8	+26.1	+0.0	51.5	102.4	-50.9	Vert
	Ave		+10.0	+2.3	+0.2	+0.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^	1804.820M	47.8	+0.0	+0.5	-34.8	+26.1	+0.0	52.6	102.4	-49.8	Vert
			+10.0	+2.3	+0.2	+0.5					
			+0.0	+0.0	+0.0	+0.0					
20	1055 17014	460	+0.0	.0.5	247	1265	10.0	51.2	102.4	5 1 1	Vant
20	1855.170M	46.0	$+0.0 \\ +10.0$	+0.5 +2.4	-34.7 +0.2	$+26.5 \\ +0.4$	+0.0	51.3	102.4	-51.1	Vert
			+10.0	+2.4 +0.0	+0.2	+0.4					
			+0.0	±0.0	+0.0	±0.0					
2.1	1829.600M	45.3	+0.0	+0.5	-34.8	+26.3	+0.0	50.3	102.4	-52.1	Vert
	Ave	13.3	+10.0	+2.4	+0.2	+0.4	10.0	50.5	102.7	J2.1	, 011
	· ·		+0.0	+0.0	+0.0	+0.0					
			+0.0								
٨	1829.640M	49.4	+0.0	+0.5	-34.8	+26.3	+0.0	54.4	102.4	-48.0	Vert
			+10.0	+2.4	+0.2	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
23	1855.230M	44.9	+0.0	+0.5	-34.7	+26.5	+0.0	50.2	102.4	-52.2	Horiz
			+10.0	+2.4	+0.2	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

Page 40 of 70 Report No.: 104760-8A

								10- :		
24 1855.310M	44.8	+0.0	+0.5	-34.7	+26.6	+0.0	50.2	102.4	-52.2	Vert
		+10.0	+2.4	+0.2	+0.4					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
25 1855.230M	44.8	+0.0	+0.5	-34.7	+26.5	+0.0	50.1	102.4	-52.3	Vert
		+10.0	+2.4	+0.2	+0.4					
		+0.0	+0.0	+0.0	+0.0					
		+0.0								
26 864.050M	16.6	+0.0	+0.3	+0.0	+0.0	+0.0	49.9	102.4	-52.5	Vert
QP		+0.0	+0.0	+0.0	+0.0					
		+0.0	+23.8	+5.8	+1.4					
		+2.0								
^ 864.050M	20.3	+0.0	+0.3	+0.0	+0.0	+0.0	53.6	102.4	-48.8	Vert
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+23.8	+5.8	+1.4					
		+2.0								
28 188.100M	19.3	+0.0	+0.2	+0.0	+0.0	+0.0	36.7	102.4	-65.7	Vert
	->.0	+0.0	+0.0	+0.0	+0.0	. 3.0	2 3.7	 · ·	20.,	
		+0.0	+9.9	+5.8	+0.7					
		+0.8	17.7	15.0	10.7					
29 179.815M	18.0	+0.0	+0.2	+0.0	+0.0	+0.0	35.4	102.4	-67.0	Vert
QP	10.0	+0.0	+0.0	+0.0	+0.0	10.0	33.4	102.4	07.0	VCIT
Q1		+0.0	+10.0	+5.8	+0.6					
		+0.8	110.0	13.0	10.0					
^ 179.815M	21.4	+0.0	+0.2	+0.0	+0.0	+0.0	38.8	102.4	-63.6	Vert
1/9.8131	21.4	+0.0	+0.2	+0.0 +0.0	+0.0	+0.0	30.0	102.4	-03.0	vert
		+0.0	+10.0	+5.8	+0.6					
		+0.8	+10.0	+3.6	+0.0					
31 192.550M	17.3		+0.2	+0.0	+0.0	+0.0	34.7	102.4	-67.7	Vert
	17.5	+0.0				+0.0	34.7	102.4	-07.7	vert
QP		+0.0	+0.0	+0.0	+0.0					
		+0.0	+9.9	+5.8	+0.7					
A 102 5503 5	21.1	+0.8	.0.2	.00	. 0. 0	. 0. 0	20.5	102.4	(2.0	X 7 ·
^ 192.550M	21.1	+0.0	+0.2	+0.0	+0.0	+0.0	38.5	102.4	-63.9	Vert
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+9.9	+5.8	+0.7					
		+0.8						10- :		
33 31.580M	9.9	+0.0	+0.1	+0.0	+0.0	+0.0	32.3	102.4	-70.1	Vert
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+15.9	+5.8	+0.3					
		+0.3								
34 19.052M	19.2	+0.0	+0.1	+0.0	+0.0	-40.0	-12.9	102.4	-115.3	Horiz
		+0.0	+0.2	+0.0	+0.0					
		+7.6	+0.0	+0.0	+0.0					
		+0.0								
35 27.424M	18.9	+0.0	+0.1	+0.0	+0.0	-40.0	-15.4	102.4	-117.8	Horiz
		+0.0	+0.3	+0.0	+0.0					
		+5.3	+0.0	+0.0	+0.0					
		+0.0								
L										

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC

(4362)

Customer: Nalloy, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 103037 Date: 12/11/2020
Test Type: Maximized Emissions Time: 12:05:06
Tested By: M. Harrison/M. Atkinson Sequence#: 5

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions:

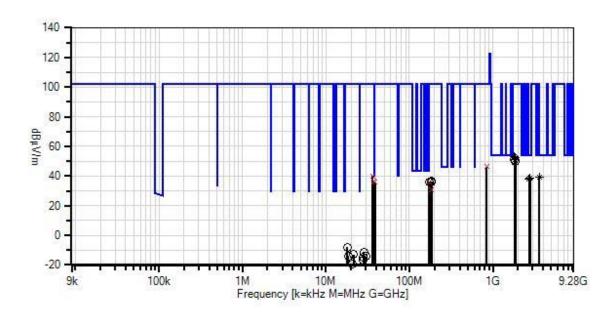
Temperature: 20°C Relative Humidity: 33% Pressure: 102.1kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 9kHz to 10GHz

Setup: SBS Antenna 1

Low Channel (0) 902.4 MHz, Mid (31) 914.8MHz, High (63) 927.6MHz


GFSK-2

100% Duty Cycle PWR Level Setting: 200 PWR Output: 20dBm POE powered

> Page 42 of 70 Report No.: 104760-8A

Nalloy, LLC WO#: 103037 Sequence#: 5 Date: 12/11/2020 15.247(d) / 15.209 Radiated Spurious Emissions Test Distance: 3 Meters Various

Readings
 × QP Readings
 ▼ Ambient

- 1 - 15.247(d) / 15.209 Radiated Spurious Emissions

O Peak Readings

* Average Readings

Average Readings Software Version: 5.03:19

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	AN03540	Preamp	83017A	5/13/2019	5/13/2021
T4	AN01467	Horn Antenna-ANSI	3115	7/5/2019	7/5/2021
		C63.5 Calibration			
T5	ANP06243	Attenuator	54A-10	1/27/2020	1/27/2022
Т6	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T7	ANP07505	Cable	CLU40-KMKM-	1/17/2019	1/17/2021
			02.00F		
T8	AN03170	High Pass Filter	HM1155-11SS	10/23/2019	10/23/2021
Т9	AN00052	Loop Antenna	6502	5/4/2020	5/4/2022
T10	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T11	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T12	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T13	ANP05360	Cable	RG214	2/3/2020	2/3/2022

Page 43 of 70 Report No.: 104760-8A

Measi	urement Data:	R	eading lis	ted by ma	argin.		Τe	est Distance	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13								
	MHz	dΒμV	dB	dB	dB	dB	Table	dBµV/m	$dB\mu V/m$	dB	Ant
1	37.573M	16.8	+0.0	+0.1	+0.0	+0.0	+0.0	36.5	40.0	-3.5	Vert
	QP		+0.0	+0.0	+0.0	+0.0					
			+0.0	+13.2	+5.8	+0.3					
			+0.3								
^	37.573M	19.6	+0.0	+0.1	+0.0	+0.0	+0.0	39.3	40.0	-0.7	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+13.2	+5.8	+0.3					
		100	+0.3								
3		19.0	+0.0	+0.2	+0.0	+0.0	+0.0	36.2	43.5	-7.3	Horiz
	QP		+0.0	+0.0	+0.0	+0.0					
			+0.0	+9.8	+5.8	+0.6					
	150 5003 5	21.5	+0.8	0.2			0.0	20.0	40.7		** .
^	172.592M	21.6	+0.0	+0.2	+0.0	+0.0	+0.0	38.8	43.5	-4.7	Horiz
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+9.8	+5.8	+0.6					
	2600 65014	27.7	+0.8	. 0. 0	22.0	. 20. 2	. 0. 0	20.2	540	14.0	
5	3609.650M	27.7	+0.0	+0.8	-33.8	+30.3	+0.0	39.2	54.0	-14.8	Horiz
	Ave		+9.8	+3.4	+0.5	+0.5					
			+0.0	+0.0	+0.0	+0.0					
^	2600 620М	20.2	+0.0	٠, ٥, ٥	22.0	+20.2	.00	40.7	540	4.2	II
	3609.630M	38.2	+0.0	+0.8 +3.4	-33.8 +0.5	+30.3 +0.5	+0.0	49.7	54.0	-4.3	Horiz
			+9.8 +0.0	+3.4	+0.0	+0.5					
			+0.0	+0.0	+0.0	+0.0					
٨	3609.650M	37.6	+0.0	+0.8	-33.8	+30.3	+0.0	49.1	54.0	-4.9	Horiz
	3009.030W	37.0	+9.8	+3.4	+0.5	+0.5	+0.0	47.1	34.0	-4.9	HOHZ
			+0.0	+0.0	+0.0	+0.0					
			+0.0	10.0	10.0	10.0					
8	2782.760M	29.9	+0.0	+0.7	-34.1	+28.5	+0.0	38.6	54.0	-15.4	Horiz
	Ave	۵٫۰٫	+10.0	+2.9	+0.3	+0.4	10.0	50.0	57.0	13.7	110112
	1170		+0.0	+0.0	+0.0	+0.0					
			+0.0	. 0.0	. 0.0	. 0.0					
٨	2782.760M	39.7	+0.0	+0.7	+0.0	+0.0	+0.0	48.9	54.0	-5.1	Horiz
	<u></u> , <u></u> , <u></u>	27.,	+0.0	+0.0	+0.0	+0.0	. 0.0	.0.,		2.1	
			+0.0	+0.0	+5.9	+2.6					
			+0.0								
10	2707.450M	29.7	+0.0	+0.7	-34.1	+28.3	+0.0	38.2	54.0	-15.8	Horiz
	Ave		+10.0	+2.9	+0.3	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
٨	2707.450M	42.4	+0.0	+0.7	-34.1	+28.3	+0.0	50.9	54.0	-3.1	Horiz
			+10.0	+2.9	+0.3	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								

	804.900M	48.0	+0.0	+0.5	-34.8	+26.1	+0.0	52.8	102.4	-49.6	Horiz
Av	/e		+10.0	+2.3	+0.2	+0.5					
			+0.0	+0.0	+0.0	+0.0					
Λ 10	804.900M	51.7	+0.0	+0.5	-34.8	+26.1	+0.0	56.5	102.4	-45.9	Horiz
10	504.900IVI	31.7	+10.0	+0.3	+0.2	+20.1	+0.0	30.3	102.4	-43.9	попи
			+0.0	+0.0	+0.2	+0.0					
			+0.0	10.0	10.0	10.0					
14 18	829.550M	47.5	+0.0	+0.5	-34.8	+26.3	+0.0	52.5	102.4	-49.9	Horiz
Av			+10.0	+2.4	+0.2	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
^ 18	829.550M	51.0	+0.0	+0.5	-34.8	+26.3	+0.0	56.0	102.4	-46.4	Horiz
			+10.0	+2.4	+0.2	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0		<u> </u>				40		
	855.358M	46.0	+0.0	+0.5	-34.7	+26.6	+0.0	51.4	102.4	-51.0	Horiz
Av	/e		+10.0	+2.4	+0.2	+0.4					
			+0.0	+0.0	+0.0	+0.0					
Λ 10	855.340M	50.5	+0.0	+0.5	-34.7	+26.6	+0.0	55.9	102.4	-46.5	Horiz
^ 10	555.540M	30.3	+0.0	+0.3	-34.7 +0.2	+20.0	+0.0	33.9	102.4	-40.3	попх
			+10.0	+2.4 +0.0	+0.2	+0.4 +0.0					
			+0.0	10.0	10.0	10.0					
18 18	804.850M	46.5	+0.0	+0.5	-34.8	+26.1	+0.0	51.3	102.4	-51.1	Vert
10 10	30 1.03 01.1	10.5	+10.0	+2.3	+0.2	+0.5	10.0	51.5	102.1	51.1	, 611
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
19 18	855.180M	44.4	+0.0	+0.5	-34.7	+26.5	+0.0	49.7	102.4	-52.7	Vert
			+10.0	+2.4	+0.2	+0.4					
			+0.0	+0.0	+0.0	+0.0					
			+0.0								
	338.000M	13.0	+0.0	+0.3	+0.0	+0.0	+0.0	46.2	102.4	-56.2	Vert
QF			+0.0	+0.0	+0.0	+0.0					
			+0.0	+23.7	+5.8	+1.4					
A 0	20.0003.4	10.0	+2.0	.0.2		. 0 0	.0.0	£1.0	100.4	<i>5</i> 1.0	X 7 .
^ 8	338.000M	18.0	+0.0	+0.3	+0.0	+0.0	+0.0	51.2	102.4	-51.2	Vert
			$+0.0 \\ +0.0$	+0.0 $+23.7$	+0.0 +5.8	$+0.0 \\ +1.4$					
			+2.0	±∠3.1	+3.6	⊤1. 4					
22	36.049M	19.7	+0.0	+0.1	+0.0	+0.0	+0.0	40.0	102.4	-62.4	Vert
QF		17.1	+0.0	+0.0	+0.0	+0.0	10.0	10.0	102.7	02.7	, 011
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			+0.0	+13.8	+5.8	+0.3					
			+0.3								
٨	36.049M	21.7	+0.0	+0.1	+0.0	+0.0	+0.0	42.0	102.4	-60.4	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+13.8	+5.8	+0.3					
			+0.3								
24 1	83.300M	19.1	+0.0	+0.2	+0.0	+0.0	+0.0	36.5	102.4	-65.9	Vert
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+10.0	+5.8	+0.6					
			+0.8								

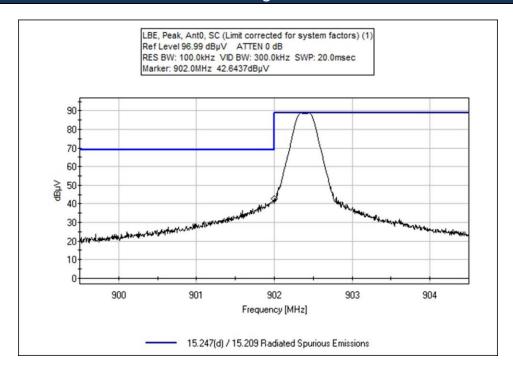
Page 45 of 70 Report No.: 104760-8A

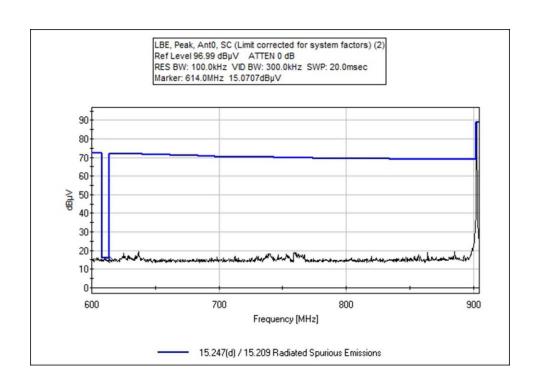
25 183.781M 18.9 +0.0 +0.2 +0.0 +0.0 +0.0 36.3 102.4 -66.1 Vert +0.0 +10.0 +10.0 +0.0 +0.0 +0.0 +0.0 +0												
10.0	25	183.781M	18.9	+0.0	+0.2	+0.0	+0.0	+0.0	36.3	102.4	-66.1	Vert
+0.8 26 174.500M 18.9 +0.0 +0.2 +0.0 +0.0 +0.0 36.1 102.4 -66.3 Vert +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +9.8 +5.8 +0.6 +0.8 27 38.569M 16.6 +0.0 +0.1 +0.0 +0.0 +0.0 35.9 102.4 -66.5 Vert QP +0.0 +12.8 +5.8 +0.3 +0.3 ^ 38.569M 19.5 +0.0 +0.1 +0.0 +0.0 +0.0 38.8 102.4 -63.6 Vert +0.0 +12.8 +5.8 +0.3 +0.3 29 182.733M 13.0 +0.0 +0.2 +0.0 +0.0 +0.0 30.4 102.4 -72.0 Vert QP +0.0 +10.0 +5.8 +0.6 +0.8 ^ 182.733M 17.8 +0.0 +0.2 +0.0 +0.0 +0.0 35.2 102.4 -67.2 Vert +0.0 +0.0 +10.0 +5.8 +0.6 +0.8 31 18.010M 23.7 +0.0 +0.1 +0.0 +0.0 +0.0 35.2 102.4 -110.4 Groun +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0												
26					+10.0	+5.8	+0.6					
+0.0				+0.8								
+0.0	26	174.500M	18.9	+0.0	+0.2	+0.0	+0.0	+0.0	36.1	102.4	-66.3	Vert
+0.8				+0.0	+0.0	+0.0	+0.0					
27 38.569M 16.6				+0.0	+9.8	+5.8	+0.6					
QP				+0.8								
QP	27	38.569M	16.6	+0.0	+0.1	+0.0	+0.0	+0.0	35.9	102.4	-66.5	Vert
+0.0 +12.8 +5.8 +0.3 +0.3	(
**No.												
^ 38.569M 19.5 +0.0 +0.1 +0.0 +0.0 +0.0 38.8 102.4 -63.6 Vert +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 20.0 40.0 +0.0 +0.0 +0.0 40.0 40.0 40.0 +0.0 +0.0 40.0 40.0 40.0 +0.0 +0.0 40.0 40.0 40.0 +0.0												
+0.0	^	38.569M	19.5		+0.1	+0.0	+0.0	+0.0	38.8	102.4	-63.6	Vert
+0.0		2 2 3 2 2 2 2 2 2	-,									
182.733M												
29 182.733M 13.0					112.0	15.0	10.5					
QP	29	182.733M	13.0		+0.2	+0.0	+0.0	+0.0	30.4	102.4	-72.0	Vert
+0.0			13.0					10.0	50.1	102.1	72.0	, 611
** 182.733M** 17.8	\	Α1										
^ 182.733M 17.8 +0.0 +0.2 +0.0 +0.0 +0.0 35.2 102.4 -67.2 Vert +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 -67.2 Vert 31 18.010M 23.7 +0.0 +0.1 +0.0 +0.0 -40.0 -8.0 102.4 -110.4 Groun +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 -8.0 102.4 -110.4 Groun 32 28.291M 23.3 +0.0 +0.1 +0.0 +0.0 -40.0 -11.4 102.4 -113.8 Para +0.0 +0.0 +0.0 +0.0 +0.0 -40.0 -11.4 102.4 -113.8 Para 33 21.568M 19.8 +0.0 +0.1 +0.0 +0.0 -40.0 -12.9 102.4 -115.3 Perp +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 -40.0 -12.9 102.4 -115.3 Perp +0.0 +0.0 +0.0 +0.0 +0					110.0	15.0	10.0					
+0.0	^	182 733M	17.8		+0.2	+0.0	+0.0	+0.0	35.2	102.4	-67.2	Vert
+0.0		102.73311	17.0					10.0	33.2	102.4	-07.2	VCIT
+0.8 31 18.010M 23.7 +0.0 +0.1 +0.0 +0.0 -40.0 -8.0 102.4 -110.4 Groun +0.0												
31 18.010M 23.7 +0.0 +0.1 +0.0 +0.0 -40.0 -8.0 102.4 -110.4 Groun +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.					110.0	13.0	10.0					
+0.0 +0.2 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0	31	18 010M	23.7		±0.1	±0.0	±0.0	40.0	8.0	102.4	110.4	Groun
+8.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0	31	10.010101	23.1					-40.0	-0.0	102.4	-110.4	Oroun
+0.0 32 28.291M 23.3 +0.0 +0.1 +0.0 +0.0 -40.0 -11.4 102.4 -113.8 Para +0.0 +0.3 +0.0 +0.0 +0.0 +4.9 +0.0 +0.0 +0.0 33 21.568M 19.8 +0.0 +0.1 +0.0 +0.0 -40.0 -12.9 102.4 -115.3 Perp +0.0 +0.0 +0.0 +0.0 +0.0 +7.0 +0.0 +0.0 +0.0 +0.0 34 18.543M 17.9 +0.0 +0.1 +0.0 +0.0 -40.0 -14.0 102.4 -116.4 Para +0.0 +0.2 +0.0 +0.0 +0.0												
32 28.291M 23.3 +0.0 +0.1 +0.0 +0.0 -40.0 -11.4 102.4 -113.8 Para +0.0 +0.0 +0.3 +0.0 +0.0 +0.0 +0.0 +0.0					+0.0	+0.0	+0.0					
+0.0 +0.3 +0.0 +0.0 +0.0 +0.0 +0.0 +0.0	22	29 201M	22.2		τΟ 1	+0.0	ι Ο Ο	40.0	11 /	102.4	112 0	Doro
+4.9 +0.0 +0.0 +0.0 +0.0 +0.0 33 21.568M 19.8 +0.0 +0.1 +0.0 +0.0 -40.0 -12.9 102.4 -115.3 Perp +0.0 +0.2 +0.0 +0.0 +0.0 +7.0 +0.0 +0.0 +0.0 +0.0 +0.0 34 18.543M 17.9 +0.0 +0.1 +0.0 +0.0 -40.0 -14.0 102.4 -116.4 Para +0.0 +0.2 +0.0 +0.0	32	20.291WI	23.3					-40.0	-11.4	102.4	-113.6	raia
+0.0 33 21.568M 19.8 +0.0 +0.1 +0.0 +0.0 -40.0 -12.9 102.4 -115.3 Perp +0.0 +0.2 +0.0 +0.0 +0.0 +7.0 +0.0 +0.0 +0.0 +0.0 34 18.543M 17.9 +0.0 +0.1 +0.0 +0.0 -40.0 -14.0 102.4 -116.4 Para +0.0 +0.2 +0.0 +0.0												
33 21.568M 19.8 +0.0 +0.1 +0.0 +0.0 -40.0 -12.9 102.4 -115.3 Perp +0.0 +0.2 +0.0 +0.0 +7.0 +0.0 +0.0 +0.0 +0.0 34 18.543M 17.9 +0.0 +0.1 +0.0 +0.0 -40.0 -14.0 102.4 -116.4 Para +0.0 +0.2 +0.0 +0.0					+0.0	+0.0	+0.0					
+0.0 +0.2 +0.0 +0.0 +7.0 +0.0 +0.0 +0.0 +0.0 34 18.543M 17.9 +0.0 +0.1 +0.0 +0.0 -40.0 -14.0 102.4 -116.4 Para +0.0 +0.2 +0.0 +0.0	22	21.5(0)//	10.0		₊ () 1	ι Ο Ο	100	40.0	12.0	102.4	115 2	Da
+7.0 +0.0 +0.0 +0.0 +0.0 34 18.543M 17.9 +0.0 +0.1 +0.0 +0.0 -40.0 -14.0 102.4 -116.4 Para +0.0 +0.2 +0.0 +0.0	33	21.308IVI	19.8					-40.0	-12.9	102.4	-115.5	Perp
+0.0 34 18.543M 17.9 +0.0 +0.1 +0.0 +0.0 -40.0 -14.0 102.4 -116.4 Para +0.0 +0.2 +0.0 +0.0												
34 18.543M 17.9 +0.0 +0.1 +0.0 +0.0 -40.0 -14.0 102.4 -116.4 Para +0.0 +0.2 +0.0 +0.0					+0.0	+0.0	+0.0					
+0.0 $+0.2$ $+0.0$ $+0.0$	2.4	10.5403.5	17.0		. 0. 1	.0.0	.0.0	40.0	140	102.4	1164	D
	34	18.543M	17.9					-40.0	-14.0	102.4	-116.4	Para
+/.8 +0.0 +0.0 +0.0												
					+0.0	+0.0	+0.0					
+0.0												
35 30.000M 21.0 +0.0 +0.1 +0.0 +0.0 -40.0 -14.4 102.4 -116.8 Para	35	30.000M	21.0					-40.0	-14.4	102.4	-116.8	Para
+0.0 +0.3 +0.0 +0.0												
+4.2 +0.0 +0.0 +0.0					+0.0	+0.0	+0.0					
+0.0	İ			+0.0								

36	28.176M	19.7	+0.0	+0.1	+0.0	+0.0	-40.0	-14.9	102.4	-117.3	Perp
			+0.0	+0.3	+0.0	+0.0					
			+5.0	+0.0	+0.0	+0.0					
			+0.0								
37	28.171M	17.8	+0.0	+0.1	+0.0	+0.0	-40.0	-16.8	102.4	-119.2	Para
			+0.0	+0.3	+0.0	+0.0					
			+5.0	+0.0	+0.0	+0.0					
			+0.0								
38	20.583M	13.1	+0.0	+0.1	+0.0	+0.0	-40.0	-19.4	102.4	-121.8	Para
			+0.0	+0.2	+0.0	+0.0					
			+7.2	+0.0	+0.0	+0.0					
			+0.0								

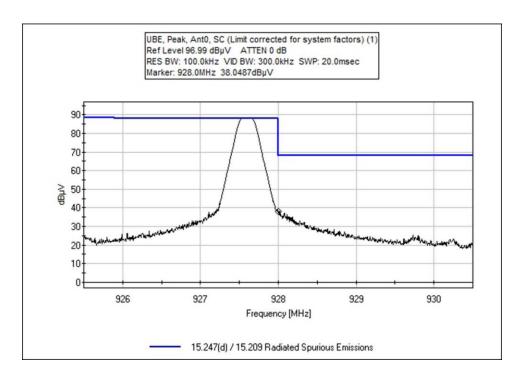
Page 47 of 70 Report No.: 104760-8A

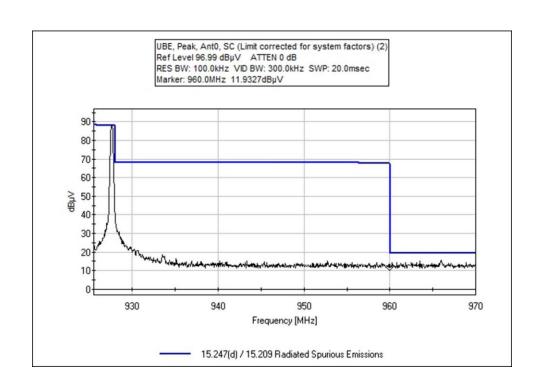
Band Edge

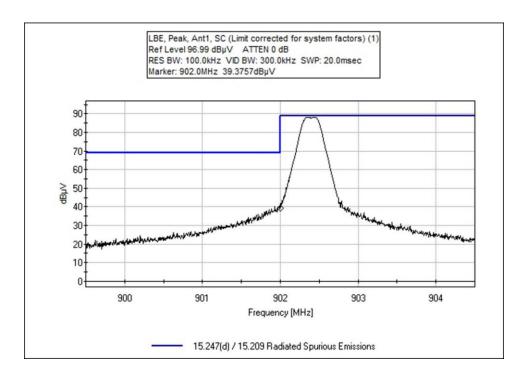

		Band Edg	e Summary										
Operating Mo	Operating Mode: Single Channel (Low and High)												
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results								
614 (Port 0)	GFSK-2	Swivel Type Dipole	39.6	<46	Pass								
902 (Port 0)	GFSK-2	Swivel Type Dipole	76	<102.4	Pass								
928 (Port 0)	GFSK-2	Swivel Type Dipole	72.1	<102.4	Pass								
960 (Port 0)	GFSK-2	Swivel Type Dipole	46.4	<54	Pass								
614 (Port 1)	GFSK-2	Swivel Type Dipole	39.5	<46	Pass								
902 (Port 1)	GFSK-2	Swivel Type Dipole	75.7	<102.4	Pass								
928 (Port 1)	GFSK-2	Swivel Type Dipole	69.2	<102.4	Pass								
960 (Port 1)	GFSK-2	Swivel Type Dipole	46.1	<54	Pass								

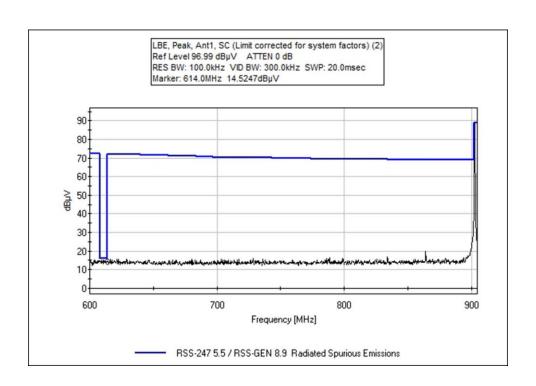

		Band Edg	e Summary		
Operating Mo	ode: Hopping				
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results
614 (Port 0)	GFSK-2	Swivel Type Dipole	39.5	<46	Pass
902 (Port 0)	GFSK-2	Swivel Type Dipole	79.8	<102.4	Pass
928 (Port 0)	GFSK-2	Swivel Type Dipole	65.8	<102.4	Pass
960 (Port 0)	GFSK-2	Swivel Type Dipole	43.8	<54	Pass
614 (Port 1)	GFSK-2	Swivel Type Dipole	39.5	<46	Pass
902 (Port 1)	GFSK-2	Swivel Type Dipole	79	<102.4	Pass
928 (Port 1)	GFSK-2	Swivel Type Dipole	70	<102.4	Pass
960 (Port 1)	GFSK-2	Swivel Type Dipole	43.9	<54	Pass

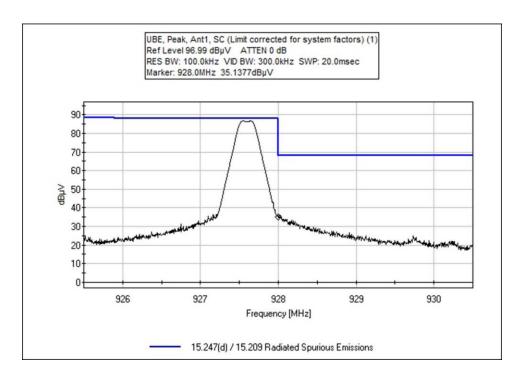
Page 48 of 70 Report No.: 104760-8A

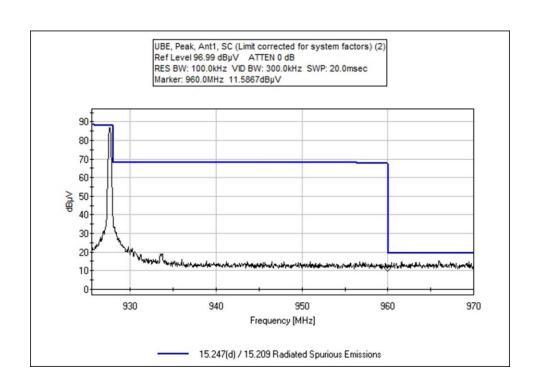

Band Edge Plots

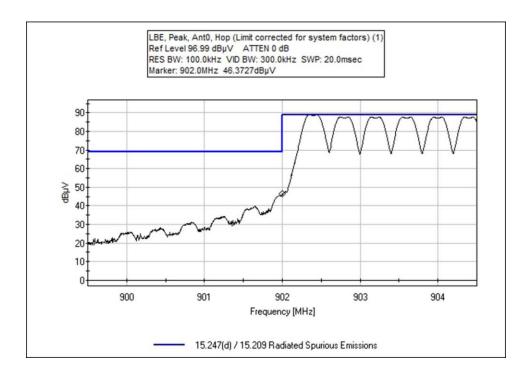


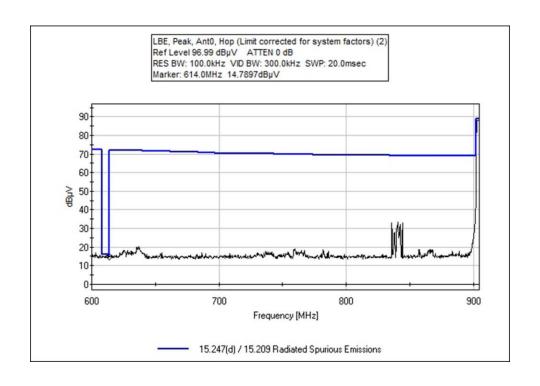

Page 49 of 70 Report No.: 104760-8A

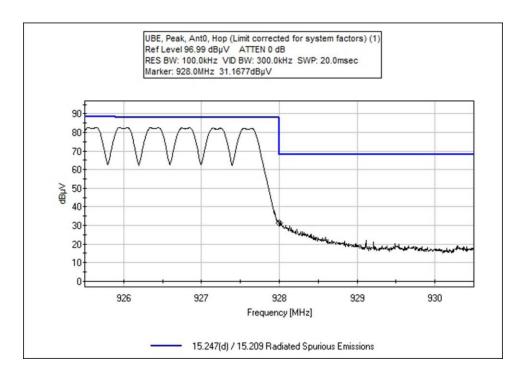


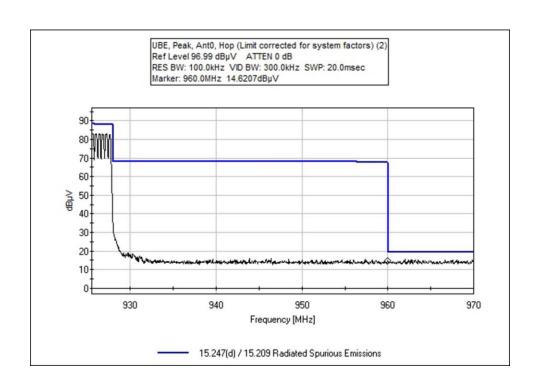


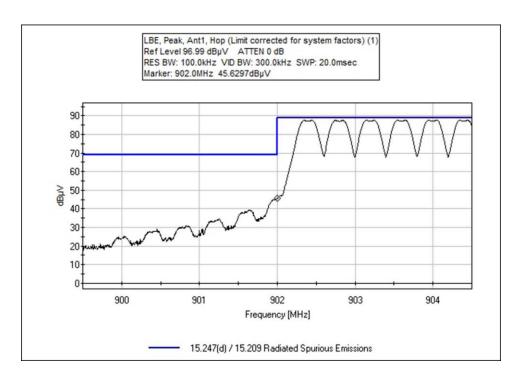


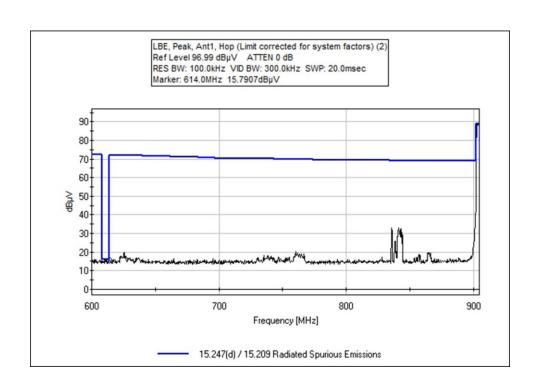


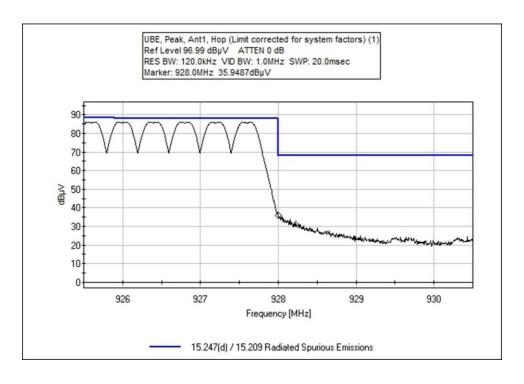


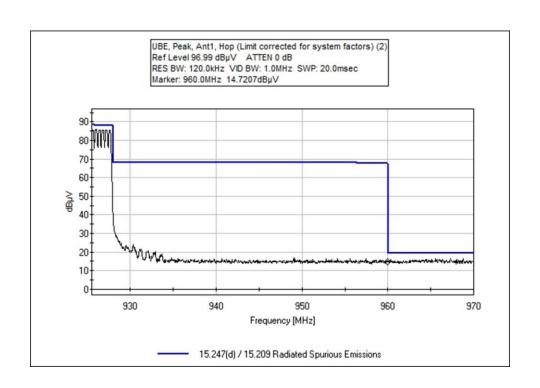












Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 9802 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 104760 Date: 12/17/2020
Test Type: Maximized Emissions Time: 15:51:38
Tested By: M. Harrison/M. Atkinson Sequence#: 8

Software: EMITest 5.03.19

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Relative Humidity: 33% Pressure: 102.1kPa

Test Method: ANSI C63.10: 2013

Frequency Range: 614-960 MHz

Setup: SBS Module Antenna 0

Low Channel (0) 902.4 MHz, High (63) 927.6MHz

GFSK-2

100% Duty Cycle PWR Level Setting: 200 PWR Output: 20dBm POE powered.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T4	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T5	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
Т6	ANP05360	Cable	RG214	2/3/2020	2/3/2022

Page 57 of 70 Report No.: 104760-8A

Measu	rement Data:	Re	eading lis	ted by ma	argin.		Т	est Distanc	e: 3 Meters	1	
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	902.343M	89.0	+0.0	+0.3	+23.8	+5.8	+0.0	122.4	122.4	+0.0	Vert
			+1.4	+2.1					SC		
2	614.000M	9.4	+0.0	+0.3	+21.2	+5.8	+0.0	39.6	46.0	-6.4	Vert
	QP		+1.2	+1.7					SC		
3	614.000M	9.3	+0.0	+0.3	+21.2	+5.8	+0.0	39.5	46.0	-6.5	Vert
	QP		+1.2	+1.7					Hop		
^	614.000M	15.1	+0.0	+0.3	+21.2	+5.8	+0.0	45.3	46.0	-0.7	Vert
			+1.2	+1.7					SC		
^	614.000M	14.8	+0.0	+0.3	+21.2	+5.8	+0.0	45.0	46.0	-1.0	Vert
			+1.2	+1.7					Нор		
6	960.000M	9.3	+0.0	+0.4	+24.6	+5.8	+0.0	43.8	54.0	-10.2	Vert
	QP		+1.5	+2.2					Hop		
٨	960.000M	14.6	+0.0	+0.4	+24.6	+5.8	+0.0	49.1	54.0	-4.9	Vert
			+1.5	+2.2					Hop		
^	960.000M	11.9	+0.0	+0.4	+24.6	+5.8	+0.0	46.4	54.0	-7.6	Vert
			+1.5	+2.2					SC		
9	902.000M	46.4	+0.0	+0.3	+23.8	+5.8	+0.0	79.8	102.4	-22.6	Vert
			+1.4	+2.1					Hop		
10	902.000M	42.6	+0.0	+0.3	+23.8	+5.8	+0.0	76.0	102.4	-26.4	Vert
			+1.4	+2.1					SC		
11	928.000M	38.0	+0.0	+0.4	+24.2	+5.8	+0.0	72.1	102.4	-30.3	Vert
			+1.5	+2.2					SC		
12	928.000M	31.2	+0.0	+0.4	+24.2	+5.8	+0.0	65.3	102.4	-37.1	Vert
			+1.5	+2.2					Hop		

Page 58 of 70 Report No.: 104760-8A

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Nalloy, LLC

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

Work Order #: 104760 Date: 12/17/2020
Test Type: Maximized Emissions Time: 16:06:58
Tested By: M. Harrison/M. Atkinson Sequence#: 9

Software: EMITest 5.03.19

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Test Environment Conditions:

Temperature: 20°C Relative Humidity: 33% Pressure: 102.1kPa

Test Method: ANSI C63.10: 2013

Frequency Range: 600-970MHz

Setup: SBS Module Antenna 1

Low Channel (0) 902.4 MHz, High (63) 927.6MHz

GFSK-2

100% Duty Cycle PWR Level Setting: 200 PWR Output: 20dBm POE powered.

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	AN03628	Biconilog Antenna	3142E	6/11/2019	6/11/2021
T4	ANP06123	Attenuator	18N-6	4/5/2019	4/5/2021
T5	ANP05305	Cable	ETSI-50T	9/6/2019	9/6/2021
T6	ANP05360	Cable	RG214	2/3/2020	2/3/2022

Page 59 of 70 Report No.: 104760-8A

Measu	rement Data:	Re	eading list	ted by ma	argin.		Τe	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	dΒμV	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	614.000M	9.3	+0.0	+0.3	+21.2	+5.8	+0.0	39.5	46.0	-6.5	Vert
	QP		+1.2	+1.7					Hop		
2	614.000M	9.3	+0.0	+0.3	+21.2	+5.8	+0.0	39.5	46.0	-6.5	Vert
	QP		+1.2	+1.7					SC		
^	614.000M	15.8	+0.0	+0.3	+21.2	+5.8	+0.0	46.0	46.0	+0.0	Vert
			+1.2	+1.7					Hop		
^	614.000M	14.5	+0.0	+0.3	+21.2	+5.8	+0.0	44.7	46.0	-1.3	Vert
			+1.2	+1.7					SC		
5	960.000M	9.4	+0.0	+0.4	+24.6	+5.8	+0.0	43.9	54.0	-10.1	Vert
	QP		+1.5	+2.2					Hop		
٨	960.000M	14.7	+0.0	+0.4	+24.6	+5.8	+0.0	49.2	54.0	-4.8	Vert
			+1.5	+2.2					Hop		
^	960.000M	11.6	+0.0	+0.4	+24.6	+5.8	+0.0	46.1	54.0	-7.9	Vert
			+1.5	+2.2					SC		
8	902.000M	45.6	+0.0	+0.3	+23.8	+5.8	+0.0	79.0	102.4	-23.4	Vert
			+1.4	+2.1					Hop		
9	902.000M	42.3	+0.0	+0.3	+23.8	+5.8	+0.0	75.7	102.4	-26.7	Vert
			+1.4	+2.1					SC		
10	928.000M	35.9	+0.0	+0.4	+24.2	+5.8	+0.0	70.0	102.4	-32.4	Vert
			+1.5	+2.2					Hop		
11	928.000M	35.1	+0.0	+0.4	+24.2	+5.8	+0.0	69.2	102.4	-33.2	Vert
			+1.5	+2.2					SC		

Page 60 of 70 Report No.: 104760-8A

15.207 AC Conducted Emissions

Test Setup / Conditions / Data

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC

Customer: Nalloy, LLC

Specification: 15.207 AC Mains - Average

Work Order #: 104760 Date: 12/14/2020
Test Type: Conducted Emissions Time: 10:09:11
Tested By: Michael Atkinson Sequence#: 14

Software: EMITest 5.03.19 115VAC 60Hz

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

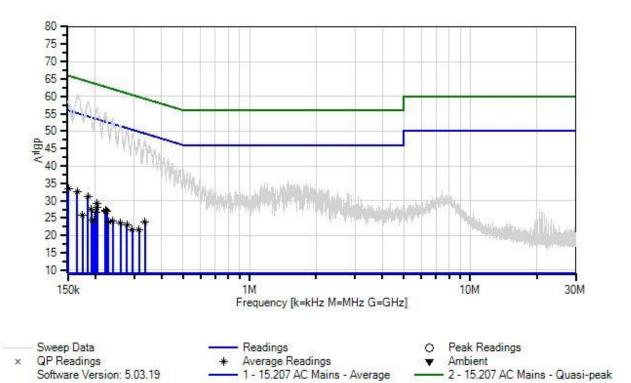
Test Environment Conditions:

Temperature: 19°C Relative Humidity: 34% Pressure: 102.0kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 0.15-30MHz

Setup:


Continuously transmitting. Antenna 0 and antenna 1 investigated, worst case reported. Low, mid, and high channels

investigated, worst case reported.

Page 61 of 70 Report No.: 104760-8A

Nalloy, LLC WO#: 104760 Sequence#: 14 Date: 12/14/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Line

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021
T1	AN02611	High Pass Filter	HE9615-150K-	1/10/2020	1/10/2022
			50-720B		
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021
T3	ANP06515	Cable	Heliax	7/1/2020	7/1/2022
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022
T5	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022
	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022

Page 62 of 70 Report No.: 104760-8A

Measu	rement Data:	Re	eading list	ted by ma	ırgin.			Test Lead	d: Line		
#	Freq	Rdng	T1 T5	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V$	$dB\mu V$	dB	Ant
1	150.943k Ave	24.6	+1.6 -1.8	+0.0	+0.0	+9.1	+0.0	33.5	55.9	-22.4	Line
٨	150.943k	49.9	+1.6	+0.0	+0.0	+9.1	+0.0	58.8	55.9	+2.9	Line
3	165.824k Ave	24.6	+0.5 -1.6	+0.0	+0.0	+9.1	+0.0	32.6	55.2	-22.6	Line
٨	165.824k	52.6	+0.5	+0.0	+0.0	+9.1	+0.0	60.6	55.2	+5.4	Line
5	185.212k Ave	23.0	+0.3 -1.3	+0.0	+0.0	+9.1	+0.0	31.1	54.2	-23.1	Line
٨	185.212k	50.5	+0.3	+0.0	+0.0	+9.1	+0.0	58.6	54.2	+4.4	Line
7	204.495k Ave	21.1	+0.2 -1.2	+0.0	+0.0	+9.1	+0.0	29.2	53.4	-24.2	Line
8	335.437k Ave	15.4	+0.1	+0.0	+0.0	+9.1	+0.0	24.0	49.3	-25.3	Line
٨	335.437k	38.9	+0.1	+0.0	+0.0	+9.1	+0.0	47.5	49.3	-1.8	Line
10	203.237k Ave	20.0	+0.2 -1.2	+0.0	+0.0	+9.1	+0.0	28.1	53.5	-25.4	Line
11	221.891k Ave	18.9	+0.3	+0.0	+0.0	+9.1	+0.0	27.3	52.7	-25.4	Line
12	225.664k Ave	18.5	+0.3	+0.0	+0.0	+9.1	+0.0	26.9	52.6	-25.7	Line
13	222.625k	18.6	+0.3	+0.0	+0.0	+9.1	+0.0	27.0	52.7	-25.7	Line
٨	Ave 221.891k	46.9	-1.0 +0.3	+0.0	+0.0	+9.1	+0.0	55.3	52.7	+2.6	Line
٨	222.625k	46.9	-1.0 +0.3 -1.0	+0.0	+0.0	+9.1	+0.0	55.3	52.7	+2.6	Line
16	191.500k Ave	19.5	+0.3 -1.3	+0.0	+0.0	+9.1	+0.0	27.6	54.0	-26.4	Line
17	200.932k	18.5	+0.2	+0.0	+0.0	+9.1	+0.0	26.6	53.6	-27.0	Line
٨	Ave 204.494k	48.7	-1.2 +0.2 -1.2	+0.0	+0.0	+9.1	+0.0	56.8	53.4	+3.4	Line
٨	203.237k	48.7	+0.2 -1.2	+0.0	+0.0	+9.1	+0.0	56.8	53.5	+3.3	Line
20	278.651k Ave	14.7	+0.1 -0.8	+0.0	+0.0	+9.1	+0.0	23.1	50.9	-27.8	Line
٨		42.0	+0.1 -0.8	+0.0	+0.0	+9.1	+0.0	50.4	50.9	-0.5	Line
22		15.2	+0.2	+0.0	+0.0	+9.1	+0.0	23.6	51.4	-27.8	Line
٨	Ave 259.781k	43.6	+0.2	+0.0	+0.0	+9.1	+0.0	52.0	51.4	+0.6	Line

Page 63 of 70 Report No.: 104760-8A

24 239.602k	15.9	+0.2	+0.0	+0.0	+9.1	+0.0	24.2	52.1	-27.9	Line
Ave		-1.0								
^ 239.602k	45.2	+0.2	+0.0	+0.0	+9.1	+0.0	53.5	52.1	+1.4	Line
		-1.0								
26 315.856k	13.0	+0.1	+0.0	+0.0	+9.1	+0.0	21.5	49.8	-28.3	Line
Ave		-0.7								
^ 315.855k	39.4	+0.1	+0.0	+0.0	+9.1	+0.0	47.9	49.8	-1.9	Line
		-0.7								
28 229.332k	15.6	+0.3	+0.0	+0.0	+9.1	+0.0	24.0	52.5	-28.5	Line
Ave		-1.0								
^ 225.664k	45.9	+0.3	+0.0	+0.0	+9.1	+0.0	54.3	52.6	+1.7	Line
		-1.0								
^ 229.332k	43.2	+0.3	+0.0	+0.0	+9.1	+0.0	51.6	52.5	-0.9	Line
		-1.0								
31 294.672k	13.2	+0.1	+0.0	+0.0	+9.1	+0.0	21.7	50.4	-28.7	Line
Ave		-0.7								
^ 294.672k	40.7	+0.1	+0.0	+0.0	+9.1	+0.0	49.2	50.4	-1.2	Line
		-0.7								
33 175.152k	17.7	+0.4	+0.0	+0.0	+9.1	+0.0	25.8	54.7	-28.9	Line
Ave		-1.4								
^ 175.151k	47.6	+0.4	+0.0	+0.0	+9.1	+0.0	55.7	54.7	+1.0	Line
		-1.4								
35 197.578k	16.2	+0.2	+0.0	+0.0	+9.1	+0.0	24.3	53.7	-29.4	Line
Ave		-1.2								
^ 200.931k	47.9	+0.2	+0.0	+0.0	+9.1	+0.0	56.0	53.6	+2.4	Line
		-1.2								
37 194.015k	16.3	+0.3	+0.0	+0.0	+9.1	+0.0	24.5	53.9	-29.4	Line
Ave		-1.2								
^ 191.500k	47.7	+0.3	+0.0	+0.0	+9.1	+0.0	55.8	54.0	+1.8	Line
		-1.3								
^ 197.578k	45.1	+0.2	+0.0	+0.0	+9.1	+0.0	53.2	53.7	-0.5	Line
		-1.2								
^ 194.015k	45.0	+0.3	+0.0	+0.0	+9.1	+0.0	53.2	53.9	-0.7	Line
		-1.2								
		_								

Test Location: CKC Laboratories, Inc. • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC

Customer: Nalloy, LLC

Specification: 15.207 AC Mains - Average

Work Order #: 104760 Date: 12/14/2020
Test Type: Conducted Emissions Time: 09:58:57
Tested By: Michael Atkinson Sequence#: 13

Software: EMITest 5.03.19 115VAC 60Hz

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 2			

Support Equipment:

Device Device	Manufacturer	Model #	S/N	
Configuration 2				

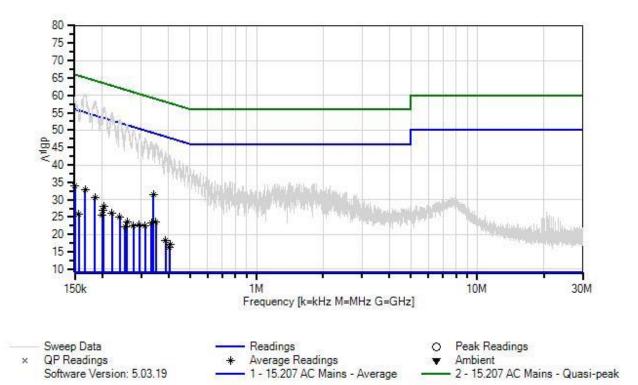
Test Conditions / Notes:

Test Environment Conditions:

Temperature: 19°C Relative Humidity: 34% Pressure: 102.0kPa

Test Method: ANSI C63.10 (2013)

Frequency Range: 0.15-30MHz


Setup:

Continuously transmitting. Antenna 0 and antenna 1 investigated, worst case reported. Low, mid, and high channels investigated, worst case reported.

Page 65 of 70 Report No.: 104760-8A

Nalloy, LLC WO#: 104760 Sequence#: 13 Date: 12/14/2020 15.207 AC Mains - Average Test Lead: 115VAC 60Hz Neutral

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date	
	AN02673	Spectrum Analyzer	E4446A	2/22/2019	2/22/2021	
T1	AN02611	High Pass Filter	HE9615-150K-	1/10/2020	1/10/2022	
			50-720B			
T2	ANP06540	Cable	Heliax	8/23/2019	8/23/2021	
T3	ANP06515	Cable	Heliax	7/1/2020	7/1/2022	
T4	ANP06219	Attenuator	768-10	4/7/2020	4/7/2022	
	AN01311	50uH LISN-Line1 (L)	3816/2	2/24/2020	2/24/2022	
T5	AN01311	50uH LISN-Line2 (N)	3816/2	2/24/2020	2/24/2022	

Page 66 of 70 Report No.: 104760-8A

Measu	rement Data:	Re	eading list	ted by ma	ırgin.			Test Lead	d: Neutral		
#	Freq	Rdng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
		1D 17	T5	1D	1D	1D	m 11	1D 17	1D 17	170	
1	MHz 340.244k	dBμV 22.8	dB +0.1	dB +0.0	dB +0.0	dB +9.1	Table +0.0	dBμV 31.4	dBμV 49.2	-17.8	Ant Neutr
_	340.244K Ave	22.8	+0.1 -0.6	+0.0	+0.0	+9.1	+0.0	31.4	49.2	-17.8	Neutr
٨	340.243k	37.2	+0.1	+0.0	+0.0	+9.1	+0.0	45.8	49.2	-3.4	Neutr
3	150.104k Ave	24.3	+2.4 -1.8	+0.0	+0.0	+9.1	+0.0	34.0	56.0	-22.0	Neutr
٨	150.103k	50.0	+2.4 -1.8	+0.0	+0.0	+9.1	+0.0	59.7	56.0	+3.7	Neutr
5	167.605k Ave	24.8	+0.4 -1.5	+0.0	+0.0	+9.1	+0.0	32.8	55.1	-22.3	Neutr
٨	167.605k	52.5	+0.4 -1.5	+0.0	+0.0	+9.1	+0.0	60.5	55.1	+5.4	Neutr
7	185.421k Ave	22.6	+0.3 -1.3	+0.0	+0.0	+9.1	+0.0	30.7	54.2	-23.5	Neutr
٨	185.420k	50.3	+0.3 -1.3	+0.0	+0.0	+9.1	+0.0	58.4	54.2	+4.2	Neutr
9	203.236k Ave	20.1	+0.2 -1.2	+0.0	+0.0	+9.1	+0.0	28.2	53.5	-25.3	Neutr
10	350.213k Ave	14.9	+0.1 -0.6	+0.0	+0.0	+9.1	+0.0	23.5	49.0	-25.5	Neutr
٨	350.212k	37.9	+0.1 -0.6	+0.0	+0.0	+9.1	+0.0	46.5	49.0	-2.5	Neutr
12	333.301k Ave	14.7	+0.1 -0.6	+0.0	+0.0	+9.1	+0.0	23.3	49.4	-26.1	Neutr
٨	333.301k	38.2	+0.1 -0.6	+0.0	+0.0	+9.1	+0.0	46.8	49.4	-2.6	Neutr
14	221.052k Ave	17.7	+0.3 -1.0	+0.0	+0.0	+9.1	+0.0	26.1	52.8	-26.7	Neutr
٨	221.052k	46.8	+0.3 -1.0	+0.0	+0.0	+9.1	+0.0	55.2	52.8	+2.4	Neutr
16	201.350k Ave	18.8	+0.2 -1.2	+0.0	+0.0	+9.1	+0.0	26.9	53.6	-26.7	Neutr
17	240.440k Ave	16.7	+0.2 -0.9	+0.0	+0.0	+9.1	+0.0	25.1	52.1	-27.0	Neutr
٨	240.437K	44.8	+0.2 -0.9	+0.0	+0.0		+0.0				Neutr
19	Ave	14.0	+0.1 -0.7	+0.0	+0.0	+9.1		22.5	49.9	-27.4	Neutr
٨	312.031K	39.2	+0.1 -0.7	+0.0	+0.0	+9.1	+0.0	47.7	49.9	-2.2	Neutr
	Ave	14.2	+0.1 -0.7	+0.0	+0.0	+9.1	+0.0	22.7	50.4	-27.7	Neutr
٨	273.700K	40.6	+0.1 -0.7	+0.0	+0.0	+9.1		49.1	50.4	-1.3	Neutr
23	258.713k Ave	15.0	+0.2 -0.8	+0.0	+0.0	+9.1	+0.0	23.5	51.5	-28.0	Neutr

Page 67 of 70 Report No.: 104760-8A

24	199.988k	17.4	+0.2	+0.0	+0.0	+9.1	+0.0	25.5	53.6	-28.1	Neutr
	Ave		-1.2								
^	203.236k	48.5	+0.2	+0.0	+0.0	+9.1	+0.0	56.6	53.5	+3.1	Neutr
			-1.2								
^	201.350k	48.1	+0.2	+0.0	+0.0	+9.1	+0.0	56.2	53.6	+2.6	Neutr
			-1.2								
^	199.987k	47.1	+0.2	+0.0	+0.0	+9.1	+0.0	55.2	53.6	+1.6	Neutr
			-1.2								
28	276.515k	14.0	+0.1	+0.0	+0.0	+9.1	+0.0	22.4	50.9	-28.5	Neutr
	Ave		-0.8								
^	276.514k	41.8	+0.1	+0.0	+0.0	+9.1	+0.0	50.2	50.9	-0.7	Neutr
			-0.8								
30	254.273k	13.7	+0.2	+0.0	+0.0	+9.1	+0.0	22.2	51.6	-29.4	Neutr
	Ave		-0.8								
^	258.713k	43.3	+0.2	+0.0	+0.0	+9.1	+0.0	51.8	51.5	+0.3	Neutr
			-0.8								
^	254.273k	41.5	+0.2	+0.0	+0.0	+9.1	+0.0	50.0	51.6	-1.6	Neutr
			-0.8								
33	387.417k	9.4	+0.2	+0.0	+0.0	+9.1	+0.0	18.2	48.1	-29.9	Neutr
	Ave		-0.5								
^	387.417k	35.2	+0.2	+0.0	+0.0	+9.1	+0.0	44.0	48.1	-4.1	Neutr
			-0.5								
35	156.706k	17.6	+0.7	+0.0	+0.0	+9.1	+0.0	25.7	55.6	-29.9	Neutr
	Ave		-1.7								
^	156.706k	48.2	+0.7	+0.0	+0.0	+9.1	+0.0	56.3	55.6	+0.7	Neutr
			-1.7								
37	405.041k	8.3	+0.2	+0.0	+0.0	+9.1	+0.0	17.1	47.7	-30.6	Neutr
	Ave		-0.5								
38	402.727k	7.6	+0.2	+0.0	+0.0	+9.1	+0.0	16.4	47.8	-31.4	Neutr
	Ave		-0.5								
٨	405.040k	34.1	+0.2	+0.0	+0.0	+9.1	+0.0	42.9	47.7	-4.8	Neutr
			-0.5								
٨	402.726k	33.8	+0.2	+0.0	+0.0	+9.1	+0.0	42.6	47.8	-5.2	Neutr
			-0.5								

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS						
	Meter reading $(dB\mu V)$					
+	Antenna Factor	(dB/m)				
+	Cable Loss	(dB)				
-	Distance Correction	(dB)				
-	Preamplifier Gain	(dB)				
=	Corrected Reading	(dBµV/m)				

Page 69 of 70 Report No.: 104760-8A

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE							
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING				
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz				
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz				
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz				
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz				

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

Page 70 of 70 Report No.: 104760-8A