

Report No. : EED32K00249902 Page 1 of 72

TEST REPORT

Product: WIFI+BT Module

Trade mark : GSD

Model/Type reference : WCT1BR2201D, WCT1BR2701T

Serial Number : N/A

Report Number : EED32K00249902

FCC ID : 2AC23-WCT1B

Date of Issue : Nov. 16, 2018

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Hui Zhou Gaoshengda Technology Co., LTD No. 75 Zhongkai Development Area Huizhou,Guangdong,China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Peter Compiled by:

Reviewed by: S Tom - Chen Approved by:

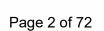
Tom chen Nov. 16, 2018

Compiled by:

Reviewed by: S Tom Chen Kevin Lan

Kevin Lan

Kevin Lan

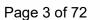

Kevin yang

Check No.:3096372854

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

2 Version

Version No.	Date	Description
00	Nov. 16, 2018	Original
	(57)	



3 Test Summary

rest Gairminary				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(1)	ANSI C63.10-2013	PASS	
20dB Occupied Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Carrier Frequencies Separation	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Hopping Channel Number	47 CFR Part 15 Subpart C Section 15.247 (b)	ANSI C63.10-2013	PASS	
Dwell Time	47 CFR Part 15 Subpart C Section 15.247 (a)(1)	ANSI C63.10-2013	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15 Subpart C Section 15.247(b)(4)&TCB Exclusion List (7 July 2002)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious emissions	47 CFR Part 15 Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested samples and the sample information are provided by the client.

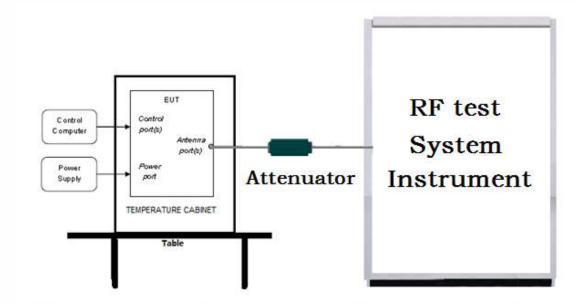
Model No.: WCT1BR2201D, WCT1BR2701T

Only the model WCT1BR2701T was tested, since the electrical circuit design, layout, components used and internal wiring were identical for the above models, with difference being of the antenna connection.

Page 4 of 72

4 Content

1 COVER PAGE	••••••			1
2 VERSION	•••••		•••••	2
3 TEST SUMMARY				3
4 CONTENT				4
5 TEST REQUIREMENT				5
5.1.1 For Conducte 5.1.2 For Radiated 5.1.3 For Conducte 5.2 TEST ENVIRONMEN	d test setup Emissions test setupd Emissions test setup			
6 GENERAL INFORMAT	ΓΙΟΝ			7
6.2 GENERAL DESCRIP 6.3 PRODUCT SPECIFIC 6.4 DESCRIPTION OF SI 6.5 TEST LOCATION 6.6 DEVIATION FROM SI 6.7 ABNORMALITIES FROM 6.8 OTHER INFORMATION	TION OF EUT CATION SUBJECTIVE TO THIS STUPPORT UNITS TANDARDS OM STANDARD CONDITIONS ON REQUESTED BY THE CUSTOCERTAINTY (95% CONFIDENCE	TANDARD		
7 EQUIPMENT LIST	•••••	•••••		10
8 RADIO TECHNICAL R	EQUIREMENTS SPECIFIC	ATION		13
Appendix B): Carrie Appendix C): Dwell Appendix D): Hoppi Appendix E): Condi Appendix F): Band- Appendix G): RF Condi Appendix H): Pseud Appendix I): Antenr Appendix J): AC Pon Appendix K): Restri Appendix L): Radia	Occupied Bandwidther Frequency Separation Time ing Channel Number ucted Peak Output Power edge for RF Conducted Emonducted Spurious Emissidorandom Frequency Hoppina Requirement bwer Line Conducted Emissided bands around fundamented Spurious Emissions	issions ons ng Sequence on ental frequency (Radiated)		
PHOTOGRAPHS OF TE	ST SETUP			69
PHOTOGRAPHS OF EU	IT CONSTRUCTIONAL DE	TAILS		72



Report No. : EED32K00249902 Page 5 of 72

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

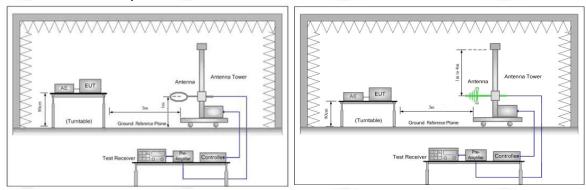


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

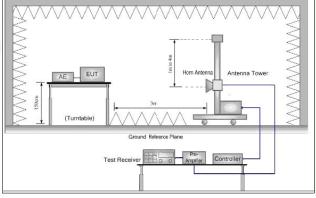
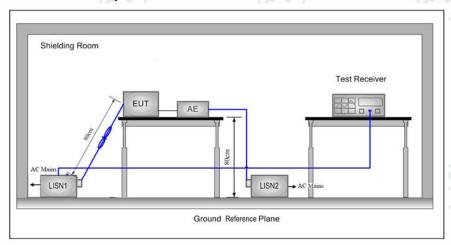



Figure 3. Above 1GHz

Report No. : EED32K00249902 Page 6 of 72

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment:		(6)
Temperature:	24°C	
Humidity:	56 % RH	
Atmospheric Pressure:	1010mbar	

5.3 Test Condition

Test Mode	Tx	RF Channel				
rest wode	IX.	Low(L)	Middle(M)	High(H)		
GFSK/π/4DQPSK/	2402MHz ~2480 MHz	Channel 1	Channel 40	Channel79		
8DPSK(DH1,DH3, DH5)		2402MHz	2441MHz	2480MHz		
TX mode: The EUT transmitted the continuous signal at the specific channel(s).						

Test mode:

Pre-scan under all rate at Lowest channel 1

Mode	GFSK			
packets	1-DH1 1-DH3 1-DH5			
Power(dBm)	5.845	6.124	6.281	

(2)	π/4DQPSK	(88)
2-DH1	2-DH3	2-DH5
7.125	7.456	7.666
Mode 8DF		
3-DH1	3-DH3	3-DH5
7.245	7.520	7.832
	7.125 3-DH1	2-DH1 2-DH3 7.125 7.456 8DPSK 3-DH1 3-DH3

Through Pre-scan, 1-DH5 packet the power is the worst case of GFSK, 2-DH5 packet the power is the worst case of $\pi/4DQPSK$, 3-DH5 packet the power is the worst case of 8DPSK.

Report No. : EED32K00249902 Page 7 of 72

6 General Information

6.1 Client Information

Applicant:	Hui Zhou Gaoshengda Technology Co., LTD	
Address of Applicant:	No. 75 Zhongkai Development Area Huizhou,Guangdong,China	
Manufacturer:	Hui Zhou Gaoshengda Technology Co., LTD	15
Address of Manufacturer:	No. 75 Zhongkai Development Area Huizhou,Guangdong,China	(6)
Factory:	Hui Zhou Gaoshengda Technology Co., LTD	
Address of Factory:	No. 75 Zhongkai Development Area Huizhou,Guangdong,China	

6.2 General Description of EUT

Product Name:	WIFI+BT Module			
Model No.(EUT):	WCT1BR2201D, WCT1BR2701T			
Test Model No.:	WCT1BR2701T			
Trade mark:	GSD			
EUT Supports Radios application: BT 4.2 Dual mode, 2402-2480MHz 2.4G WiFi, 802.11b/g/n(20MHz)/n(40MHz), 2412-2462MHz 5G WiFi, 802.11a/n(HT20)/n(HT40)/ac(HT20)/ac(HT40)/ac(HT80) 5G WiFi, 5150-5250MHz; 5725-5850MHz				
Power Supply:	DC 3.3V	·		
Sample Received Date:	Sep. 12, 2018			
Sample tested Date:	Sep. 12, 2018 to Nov. 14, 2018			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	
Bluetooth Version:	Other than BT 4.2	130
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)	(0,)
Modulation Type:	GFSK, π/4DQPSK, 8DPSK	
Number of Channel:	79	
Sample Type:	mobile production	
Hopping Channel Type:	Adaptive Frequency Hopping systems	
Firmware version of the sample:	V1.0(manufacturer declare)	
Hardware version of the sample:	V1.0(manufacturer declare)	(3)
Test Power Grade:	N/A	(67)
Test Software of EUT:	Bluetooth RF Test Tool V2017.10.20(manufacturer declare)	
Antenna Type:	PIFA Antenna	
Antenna gain:	2.72dBi	
Test Voltage:	DC 3.3V	

Report No. : EED32K00249902 Page 8 of 72

13	_			700		/35	
Operation	Frequency ea	ch of channe	1	(20)		(250)	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		(18)

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	sociated ment name	Manufacture	model	serial number	Supplied by	Certification
AE1	Laptop	HP	430 G3	5CD6082JLC	CTI	FCC
AE2	Mouse	L.Selectron	OP-308	G1103000147VJKJ	СТІ	FCC

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32K00249902 Page 9 of 72

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

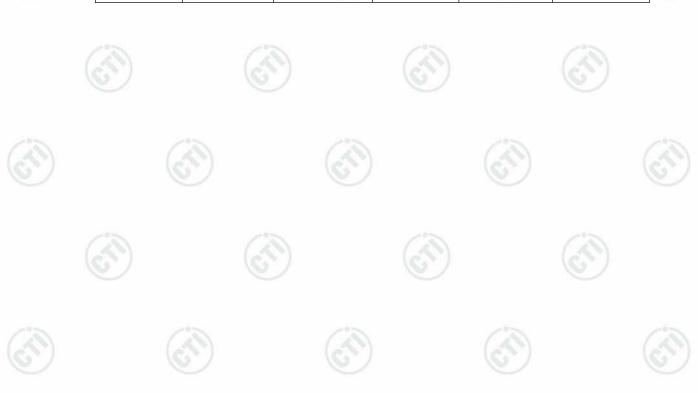
None.

6.8 Other Information Requested by the Customer

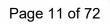
None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
	Dedicted Country emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
	Conduction aminaian	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32K00249902 Page 10 of 72


7 Equipment List

		RF test	system		
Equipment	Manufacturer	lanufacturer Model No. Serial Number		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-13-2018	03-12-2019
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-13-2018	03-12-2019
Signal Generator	Keysight	N5182B	MY53051549	03-13-2018	03-12-2019
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002	(2/1)	01-10-2018	01-09-2019
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-10-2018	01-09-2019
DC Power	Keysight	E3642A	MY54426035	03-13-2018	03-12-2019
PC-1	Lenovo	R4960d		03-13-2018	03-12-2019
BT&WI-FI Automatic control	R&S	OSP120	101374	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-2	15860006	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-1	15860004	03-13-2018	03-12-2019
RF control unit	JS Tonscend	JS0806-4	158060007	03-13-2018	03-12-2019
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-13-2018	03-12-2019

 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Equipment Manufacturer Model No. Serial Number (mm-dd-yyyy) Cal. Due date (mm-dd-yyyy) Receiver R&S ESCI 100435 05-25-2018 05-24-2019 Femperature/ Humidity Indicator Defu TH128 / 07-02-2018 07-01-2019 communication test set Agilent E5515C GB47050 534 03-16-2018 03-15-2019 communication test set R&S CMW500 152394 03-16-2018 03-15-2019 LISN R&S ENV216 100098 05-10-2018 05-10-2019 LISN schwarzbeck NNLK8121 8121-529 05-10-2018 05-10-2019 Voltage Probe R&S ESH2-23 0299.7810.5 100042 06-13-2017 06-11-2020 Current Probe R&S EZ-17 816.2063.03 100106 05-30-2018 05-29-2019 ISN TESEQ ISN 1800 30297 02-06-2018 02-05-2019 Barometer changchun DYM3 1188 07-02-2018 07-01-2019	Receiver Temperature/ Humidity Indicator ommunication	R&S		Number		
Temperature Humidity Defu TH128	Temperature/ Humidity Indicator ommunication		ESCI	400405	· ······ JJJJ/	(mm-dd-yyyy)
Humidity Indicator Defu TH128	Humidity Indicator ommunication	Defu		100435	05-25-2018	05-24-2019
test set Agient E3515C 534 03-16-2018 03-15-2019 communication test set R&S CMW500 152394 03-16-2018 03-15-2019 LISN R&S ENV216 100098 05-10-2018 05-10-2019 LISN schwarzbeck NNLK8121 8121-529 05-10-2018 05-10-2019 //oltage Probe R&S 0299.7810.5 100042 06-13-2017 06-11-2020 6 //ourrent Probe R&S E2-17 816.2063.03 100106 05-30-2018 05-29-2019 ISN TESEQ ISN T800 30297 02-06-2018 02-05-2019 Barometer changchun DYM3 1188 07-02-2018 07-01-2019			TH128	1	07-02-2018	07-01-2019
test set R&S CMW90U 193394 03-16-2018 03-16-2019 LISN R&S ENV216 100098 05-10-2018 05-10-2019 LISN schwarzbeck NNLK8121 8121-529 05-10-2018 05-10-2019 Voltage Probe R&S 0299-7810.5 100042 06-13-2017 06-11-2020 Current Probe R&S EZ-17 816-2063.03 100106 05-30-2018 05-29-2019 ISN TESEQ ISN T800 30297 02-06-2018 02-05-2019 Barometer changchun DYM3 1188 07-02-2018 07-01-2019		Agilent	E5515C		03-16-2018	03-15-2019
LISN schwarzbeck NNLK8121 8121-529 05-10-2018 05-10-2019 **R&S 0299.7810.5 100042 06-13-2017 06-11-2020 6 0 05-30-2018 05-29-2019 **Current Probe R&S 82-17 816.2063.03 100106 05-30-2018 05-29-2019 ISN TESEQ ISN T800 30297 02-06-2018 02-05-2019 **Barometer changchun DYM3 1188 07-02-2018 07-01-2019		R&S	CMW500	152394	03-16-2018	03-15-2019
Angle Probe R&S 0299.7810.5 100042 06-13-2017 06-11-2020 06-11-2020 06-13-2017 06-11-2020 06-13-2017 06-11-2020 06-13-2017 06-11-2020 06-13-2018 05-29-2019 05-29-201	LISN	R&S	ENV216	100098	05-10-2018	05-10-2019
/oltage Probe R&S 0299.7810.5 100042 06-13-2017 06-11-2020	LISN	schwarzbeck	NNLK8121	8121-529	05-10-2018	05-10-2019
ISN TESEQ ISN T800 30297 02-06-2018 02-05-2019 Barometer changchun DYM3 1188 07-02-2018 07-01-2019	/oltage Probe	R&S	0299.7810.5	100042	06-13-2017	06-11-2020
Barometer changchun DYM3 1188 07-02-2018 07-01-2019	Current Probe	R&S		100106	05-30-2018	05-29-2019
	ISN	TESEQ	ISN T800	30297	02-06-2018	02-05-2019
	Barometer	changchun	DYM3	1188	07-02-2018	07-01-2019

Page 12 of 72

3M Semi/full-anechoic Chamber								
Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date			
3M Chamber & Accessory Equipment	TDK	SAC-3		(mm-dd-yyyy) 06-04-2016	(mm-dd-yyyy) 06-03-2019			
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	04-26-2018	04-25-2019			
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019			
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019			
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-19-2018	01-18-2019			
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-18 69	04-25-2018	04-23-2021			
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019			
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018	05-10-2019			
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019			
Multi device Controller	maturo	NCD/070/107 11112		01-10-2018	01-09-2019			
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019			
LISN	schwarzbeck	NNBM8125	81251548	05-11-2018	05-10-2019			
Signal Generator	Agilent	E4438C	MY45095 744	03-13-2018	03-12-2019			
Signal Generator	Keysight	E8257D	MY53401 106	03-13-2018	03-12-2019			
Temperature/ Humidity Indicator	TAYLOR	1451	1905	05-02-2018	05-01-2019			
Communication test set	Agilent	E5515C	GB47050 534	03-16-2018	03-15-2019			
Cable line	Fulai(7M)	SF106	5219/6A	01-10-2018	01-09-2019			
Cable line	Fulai(6M)	SF106	5220/6A	01-10-2018	01-09-2019			
Cable line	Fulai(3M)	SF106	5216/6A	01-10-2018	01-09-2019			
Cable line	Fulai(3M)	SF106	5217/6A	01-10-2018	01-09-2019			
Communication test set	R&S	CMW500	104466	02-05-2018	02-04-2019			
High-pass filter	Sinoscite	FL3CX03WG 18NM12-039 8-002		01-10-2018	01-09-2019			
High-pass filter	MICRO- TRONICS	SPA-F-63029 -4		01-10-2018	01-09-2019			
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-10-2018	01-09-2019			
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-10-2018	01-09-2019			
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-10-2018	01-09-2019			
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-10-2018	01-09-2019			

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

8 Radio Technical Requirements Specification

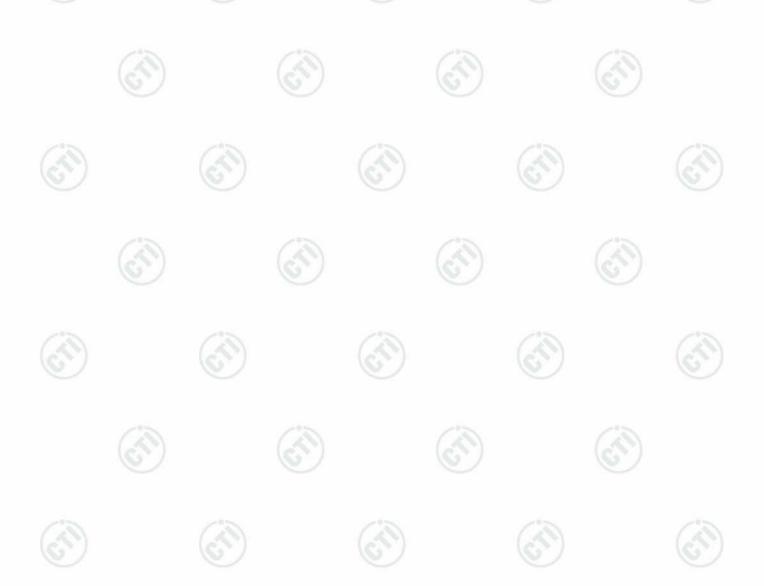
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(1)	ANSI 63.10	20dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Carrier Frequencies Separation	PASS	Appendix B)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Dwell Time	PASS	Appendix C)
Part15C Section 15.247 (b)	ANSI 63.10	Hopping Channel Number	PASS	Appendix D)
Part15C Section 15.247 (b)(1)	ANSI 63.10	Conducted Peak Output Power	PASS	Appendix E)
Part15C Section 15.247(d)	ANSI 63.10	Band-edge for RF Conducted Emissions	PASS	Appendix F)
Part15C Section 15.247(d)	ANSI 63.10	RF Conducted Spurious Emissions	PASS	Appendix G)
Part15C Section 15.247 (a)(1)	ANSI 63.10	Pseudorandom Frequency Hopping Sequence	PASS	Appendix H)
Part15C Section 15.203/15.247 (c)	ANSI 63.10	Antenna Requirement	PASS	Appendix I)
Part15C Section 15.207	ANSI 63.10	AC Power Line Conducted Emission	PASS	Appendix J)
Part15C Section 15.205/15.209	ANSI 63.10	Restricted bands around fundamental frequency (Radiated) Emission)	PASS	Appendix K)
Part15C Section 15.205/15.209	ANSI 63.10	Radiated Spurious Emissions	PASS	Appendix L)

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

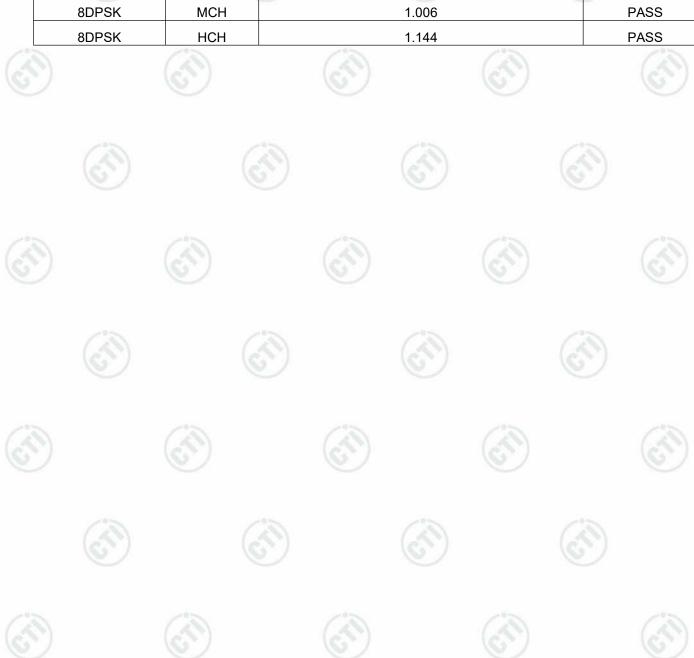


Report No. : EED32K00249902 Page 14 of 72

Appendix A): 20dB Occupied Bandwidth

Test Result

Toot Hoodit		A STATE OF THE STA			
Mode	Channel.	20dB Bandwidth [MHz]	99% OBW [MHz]	Verdict	Remark
GFSK	LCH	0.9421	0.83935	PASS	(3)
GFSK	MCH	0.9448	0.83988	PASS	(67)
GFSK	нсн	0.9455	0.84337	PASS	
π /4DQPSK	LCH	1.285	1.1775	PASS	
π /4DQPSK	MCH	1.286	1.1776	PASS	Peak
π /4DQPSK	НСН	1.284	1.1774	PASS	detector
8DPSK	LCH	1.295	1.1662	PASS	
8DPSK	MCH	1.294	1.1663	PASS	
8DPSK	HCH	1.293	1.1653	PASS	(2)

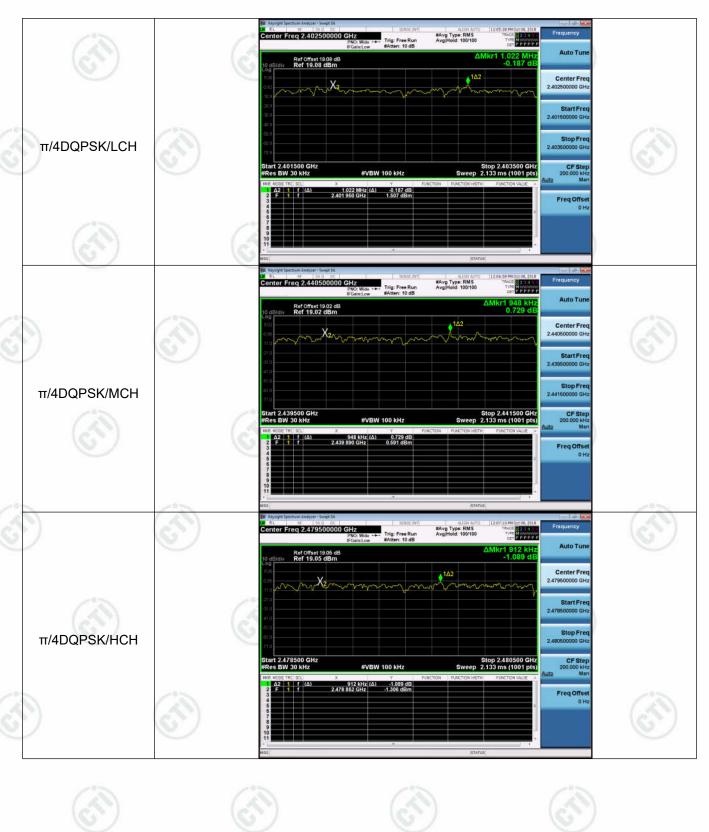


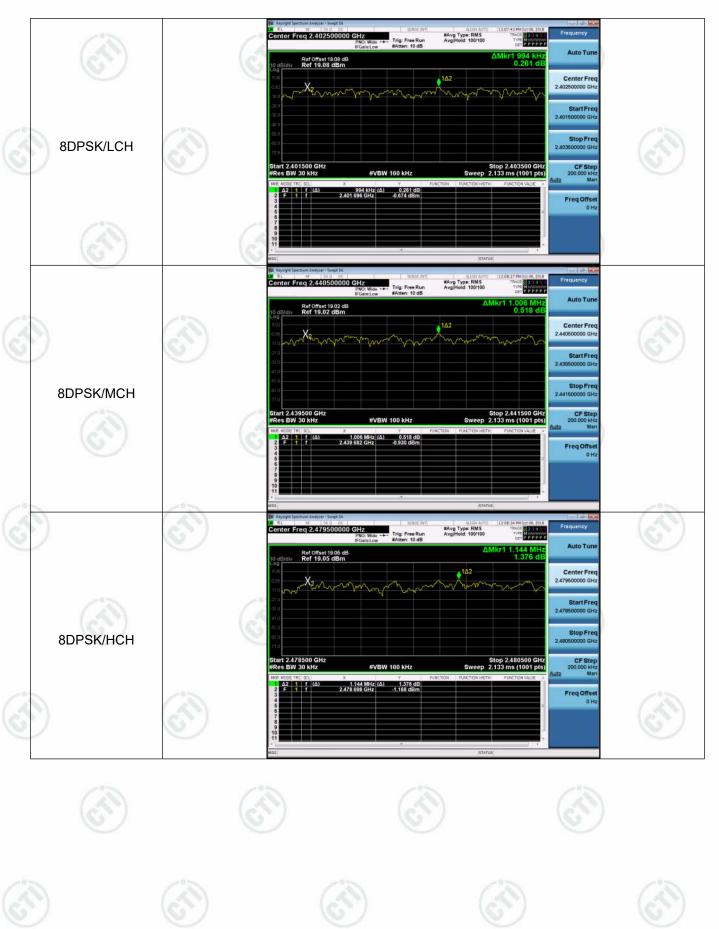
Report No. : EED32K00249902 Page 18 of 72

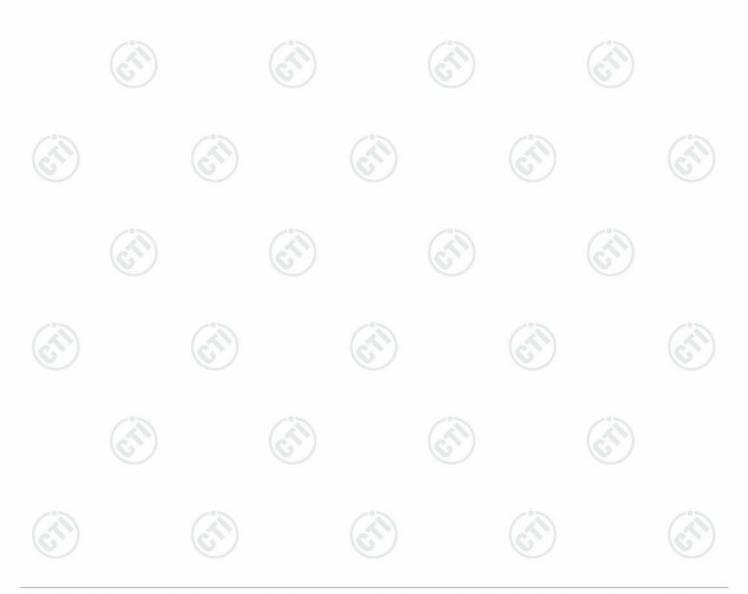
Appendix B): Carrier Frequency Separation

Result Table

Mode	Channel.	Carrier Frequency Separation [MHz]	Verdict
GFSK	LCH	0.980	PASS
GFSK	MCH	0.996	PASS
GFSK	НСН	1.090	PASS
π/4DQPSK	LCH	1.022	PASS
π/4DQPSK	MCH	0.948	PASS
π/4DQPSK	HCH	0.912	PASS
8DPSK	LCH	0.994	PASS
8DPSK	MCH	1.006	PASS
8DPSK	НСН	1.144	PASS



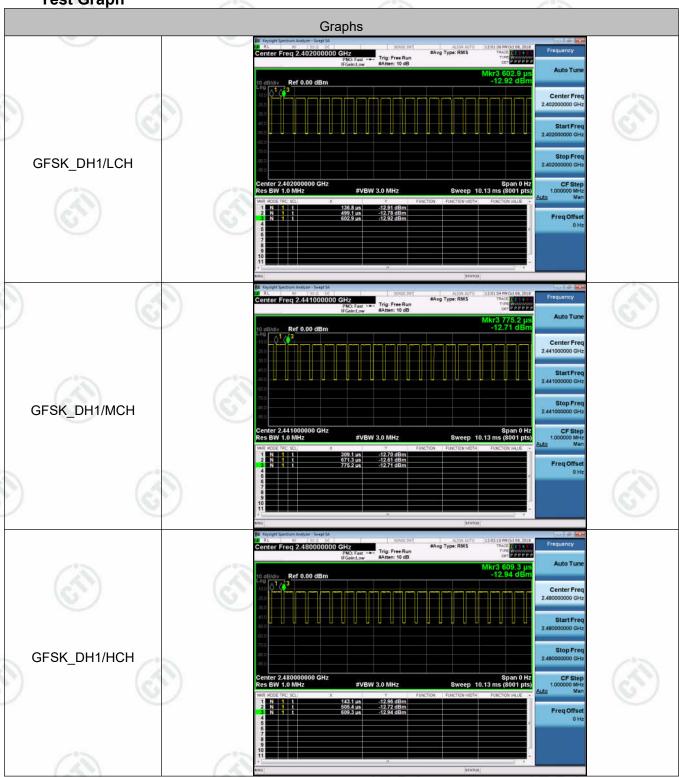




Report No. : EED32K00249902 Page 22 of 72

Appendix C): Dwell Time

Result Table


Mode	Packet	Channel	Burst Width [ms/hop/ch]	Total Hops[hop*ch]	Dwell Time[s]	Duty Cycle [%]	Verdict
GFSK	DH1	LCH	0.362267	320	0.116	0.78	PASS
GFSK	DH1	МСН	0.362266	320	0.116	0.78	PASS
GFSK	DH1	НСН	0.362267	320	0.116	0.78	PASS
GFSK	DH3	LCH	1.6188	160	0.259	0.94	PASS
GFSK	DH3	мсн	1.61754	160	0.259	0.94	PASS
GFSK	DH3	НСН	1.618797	160	0.259	0.94	PASS
GFSK	DH5	LCH	2.852	106.7	0.304	0.96	PASS
GFSK	DH5	МСН	2.852	106.7	0.304	0.96	PASS
GFSK	DH5	НСН	2.852	106.7	0.304	0.96	PASS

Report No.: EED32K00249902 Page 23 of 72

Test Graph

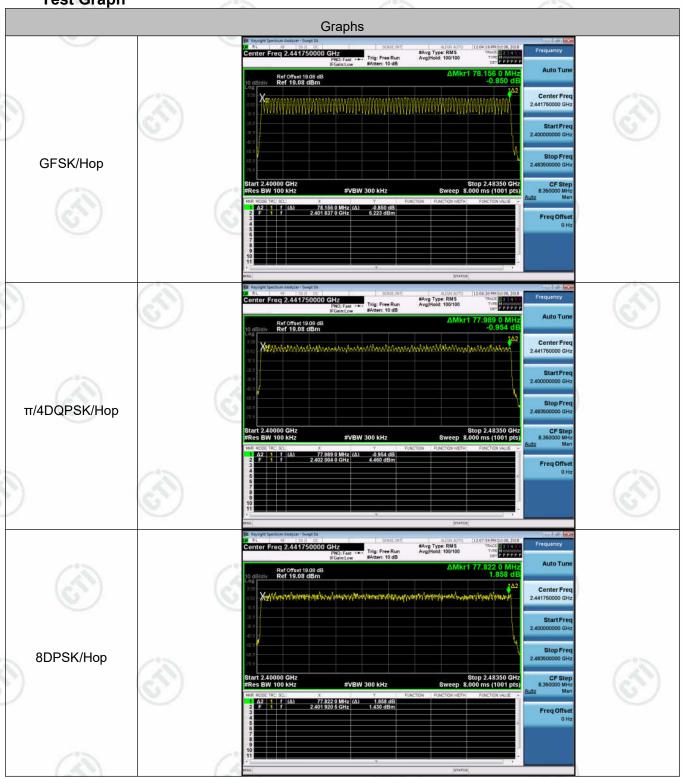
Report No. : EED32K00249902 Page 24 of 72

Report No. : EED32K00249902 Page 25 of 72

Report No. : EED32K00249902 Page 26 of 72

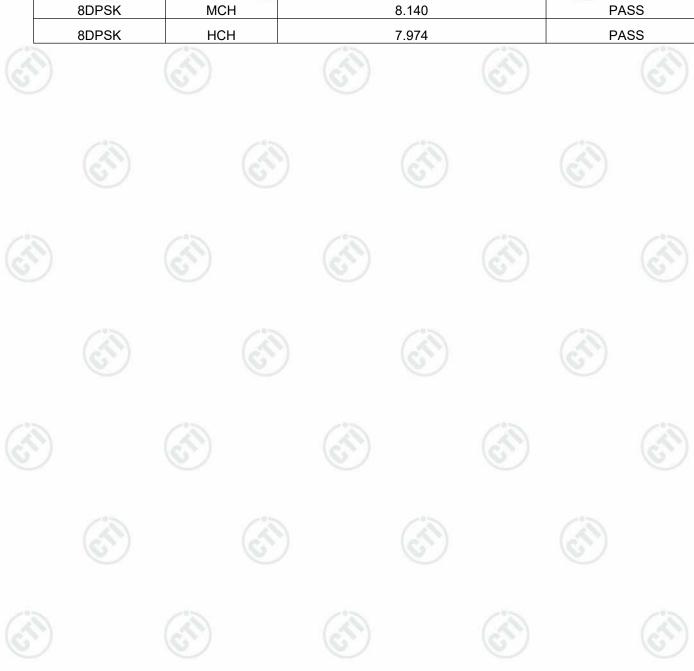
Appendix D): Hopping Channel Number

Result Table


Mode	Channel.	Number of Hopping Channel	Verdict
GFSK	Нор	79	PASS
π/4DQPSK	Нор	79	PASS
8DPSK	Нор	79	PASS

Report No. : EED32K00249902 Page 27 of 72

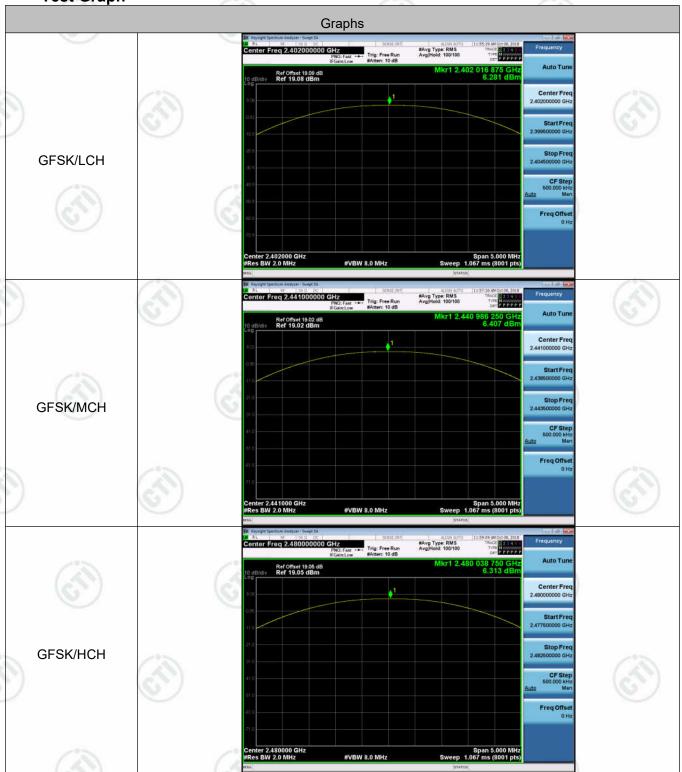
Test Graph



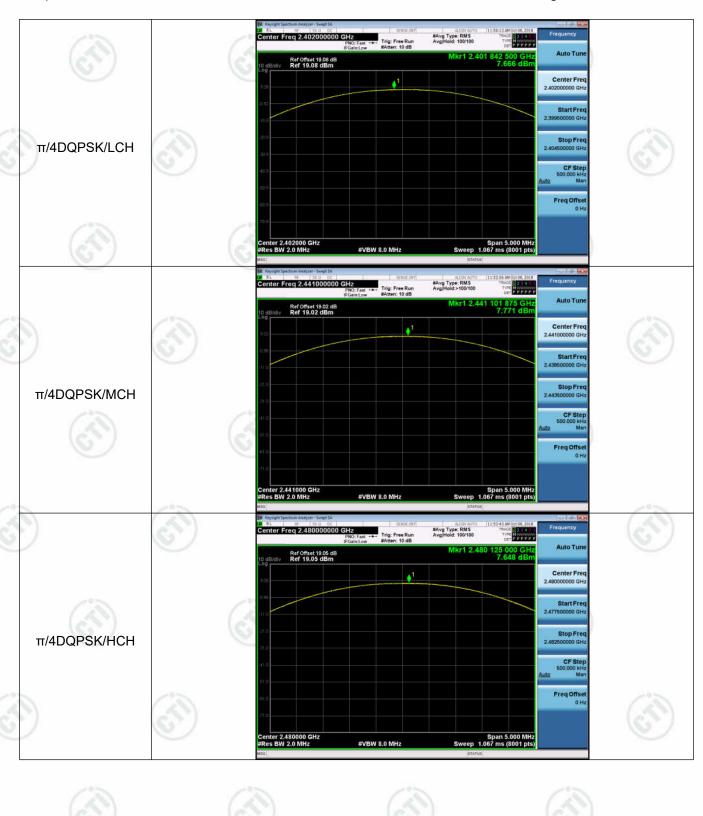
Report No. : EED32K00249902 Page 28 of 72

Appendix E): Conducted Peak Output Power

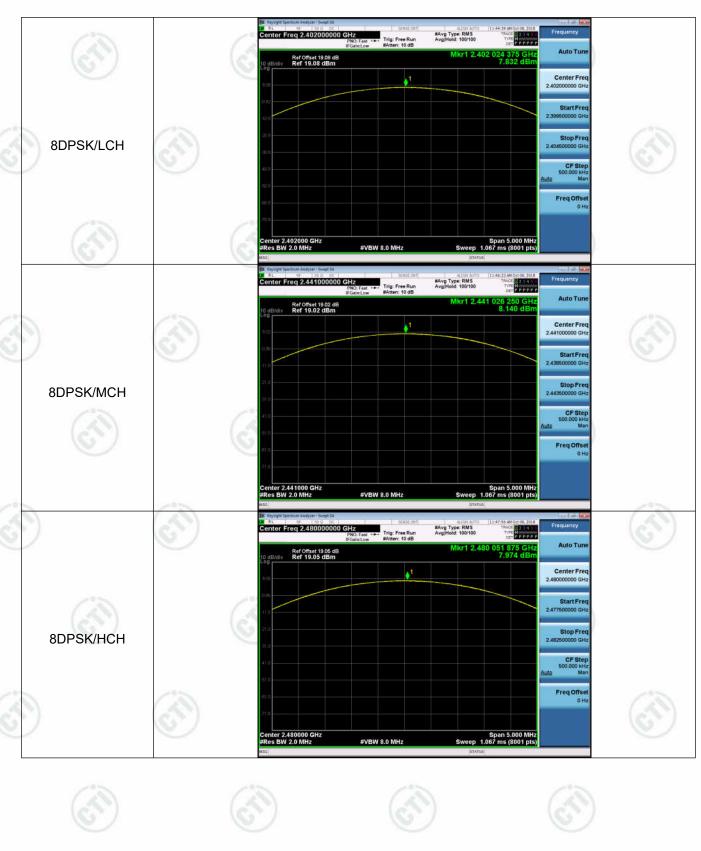
Result Table


1105ait Table	Later Town	J. LEYLY J.	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Mode	Channel.	Maximum Peak Output Power [dBm]	Verdict
GFSK	LCH	6.281	PASS
GFSK	MCH	6.407	PASS
GFSK	HCH	6.313	PASS
π/4DQPSK	LCH	7.666	PASS
π/4DQPSK	MCH	7.771	PASS
π/4DQPSK	HCH	7.648	PASS
8DPSK	LCH	7.832	PASS
8DPSK	MCH	8.140	PASS
8DPSK	НСН	7.974	PASS

Test Graph



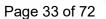
Page 30 of 72



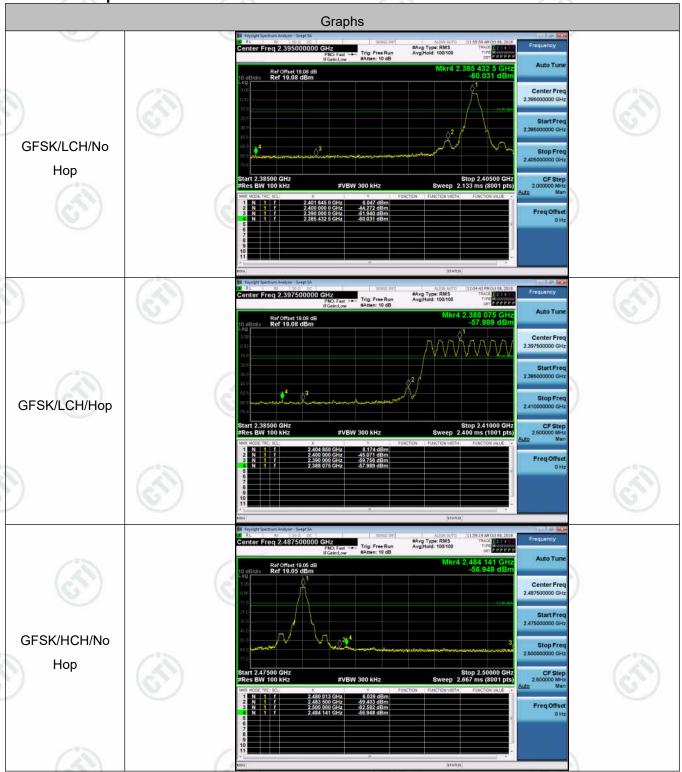
Report No. : EED32K00249902 Page 31 of 72

Report No. : EED32K00249902 Page 32 of 72

Appendix F): Band-edge for RF Conducted Emissions

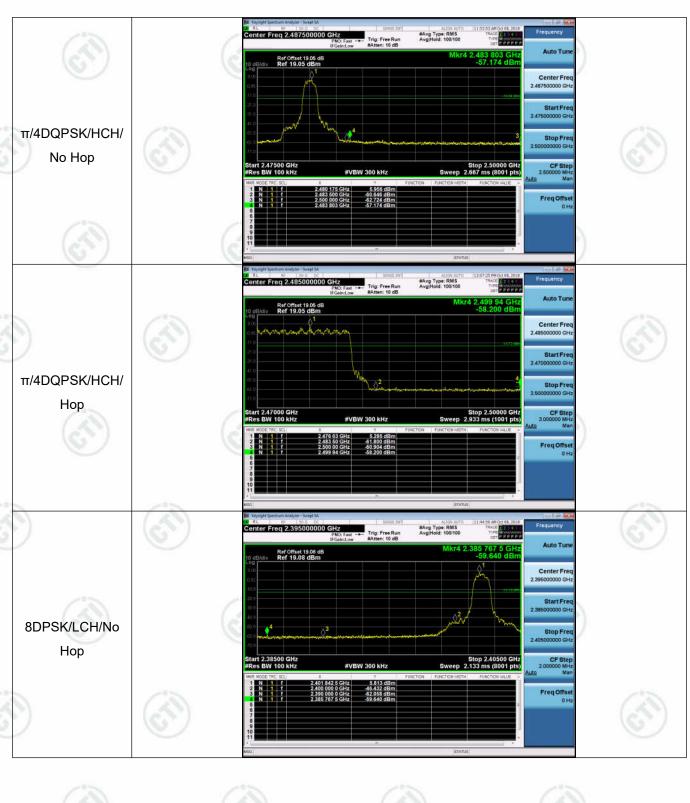

Result Table

Mode	Channel	Carrier Frequency [MHz]	Carrier Power [dBm]	Frequency Hopping	Max Spurious Level [dBm]	Limit [dBm]	Verdict
0501		0.400	6.047	Off	-60.031	-13.95	PASS
GFSK	LCH	2402	6.174	On	-57.989	-13.83	PASS
0501		0.400	6.039	Off	-56.948	-13.96	PASS
GFSK	HCH	2480	5.990	On	-58.568	-14.01	PASS
(4D0D0)(H 2402	6.122	Off	-60.067	-13.88	PASS
π/4DQPSK	LCH		6.009	On	-59.570	-13.99	PASS
//DODON		0.400	5.956	Off	-57.174	-14.04	PASS
π/4DQPSK	HCH	2480	5.285	On	-58.200	-14.72	PASS
000014		0.400	5.813	Off	-59.640	-14.19	PASS
8DPSK	LCH	2402	6.343	On	-59.058	-13.66	PASS
ODDOK.	11011	0.400	6.036	Off	-57.207	-13.96	PASS
8DPSK	HCH	HCH 2480	6.144	On	-58.445	-13.86	PASS



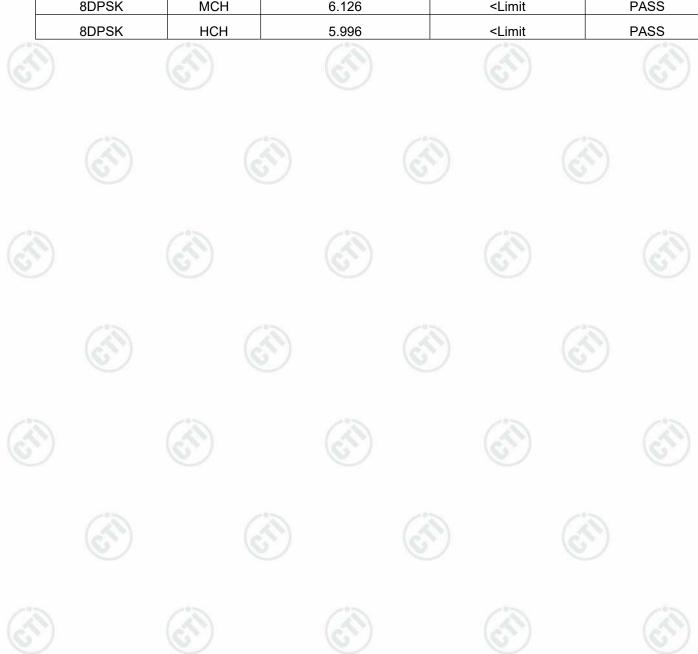
 $Hot line; 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Report No. : EED32K00249902 Page 34 of 72



Report No. : EED32K00249902 Page 35 of 72



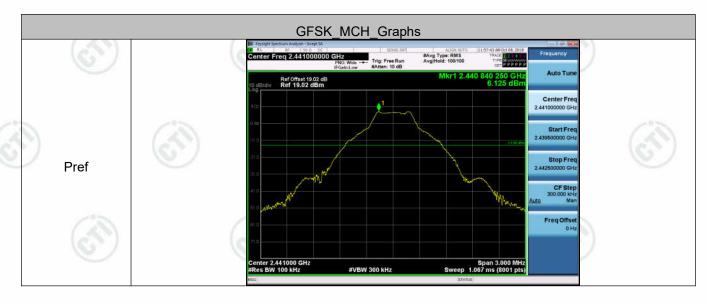


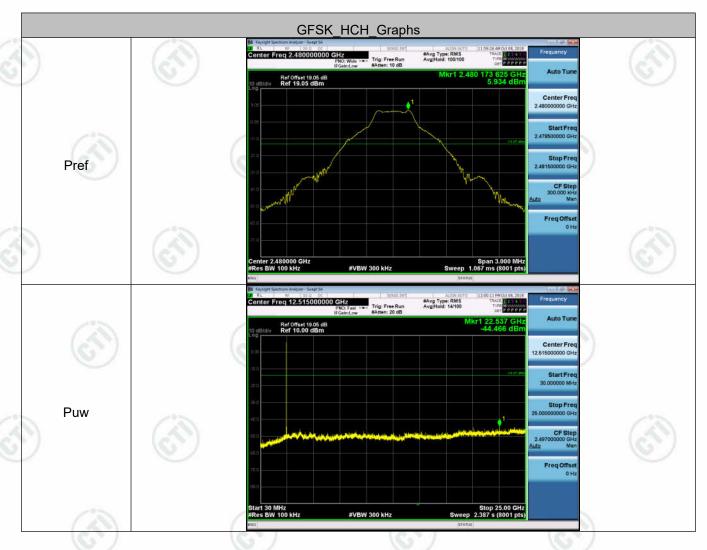
Report No. : EED32K00249902 Page 37 of 72

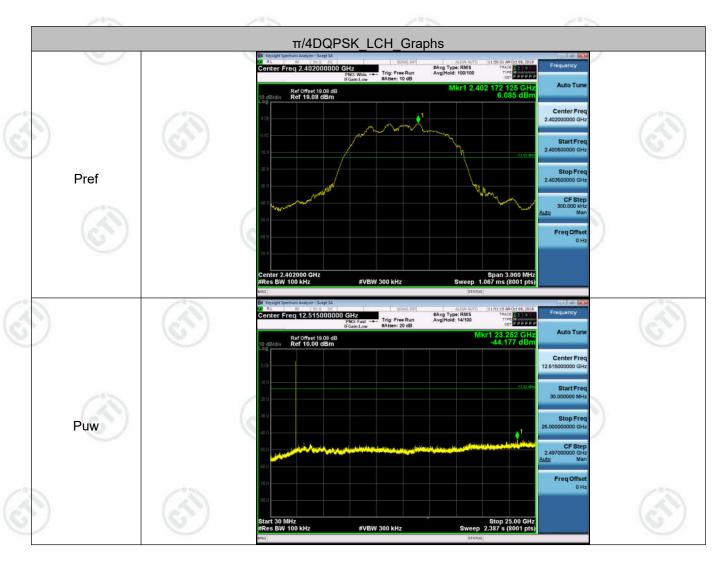
Appendix G): RF Conducted Spurious Emissions

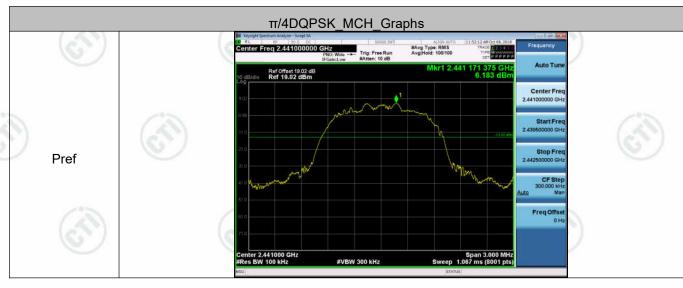
Result Table

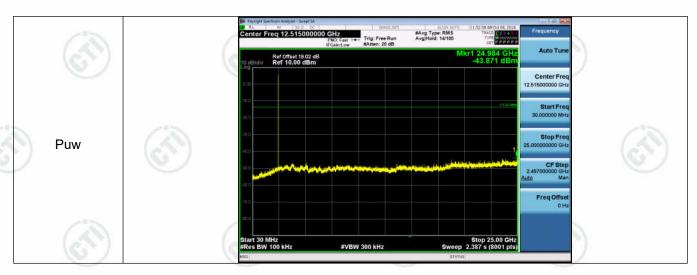
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
GFSK	LCH	6.045	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	MCH	6.125	<limit< td=""><td>PASS</td></limit<>	PASS
GFSK	НСН	5.934	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	LCH	6.085	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	МСН	6.183	<limit< td=""><td>PASS</td></limit<>	PASS
π/4DQPSK	нсн	5.911	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	LCH	5.615	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	MCH	6.126	<limit< td=""><td>PASS</td></limit<>	PASS
8DPSK	НСН	5.996	<limit< td=""><td>PASS</td></limit<>	PASS

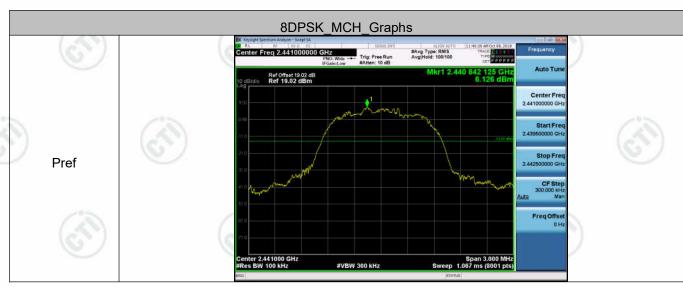


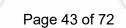


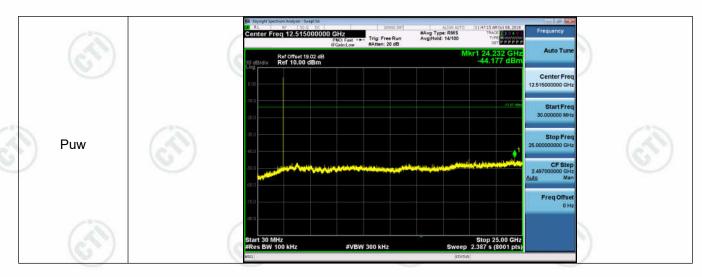








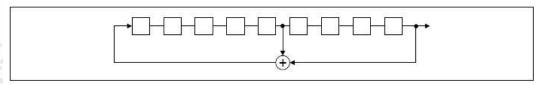




Appendix H): Pseudorandom Frequency Hopping Sequence

Test Requirement:

47 CFR Part 15C Section 15.247 (a)(1) requirement:


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

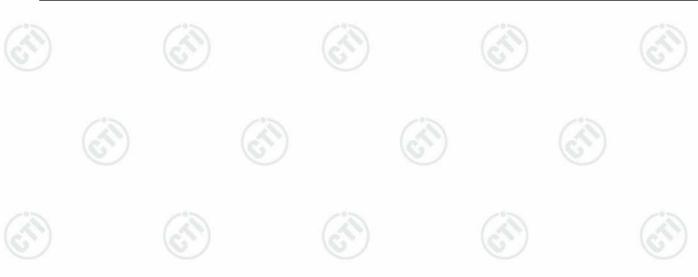
Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence


An example of Pseudorandom Frequency Hopping Sequence as follow:

7 64 8 73 16 75 1

Each frequency used equally on the average by each transmitter.

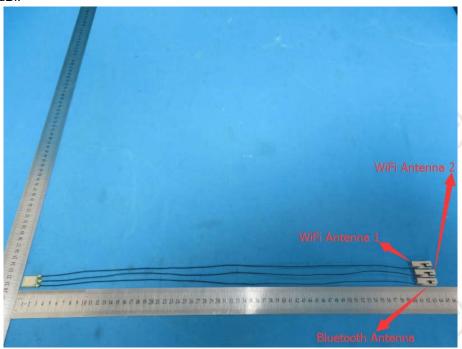
The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

The device does not have the ability to be coordinated with other FHSS systems in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report No. : EED32K00249902 Page 45 of 72

Appendix I): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

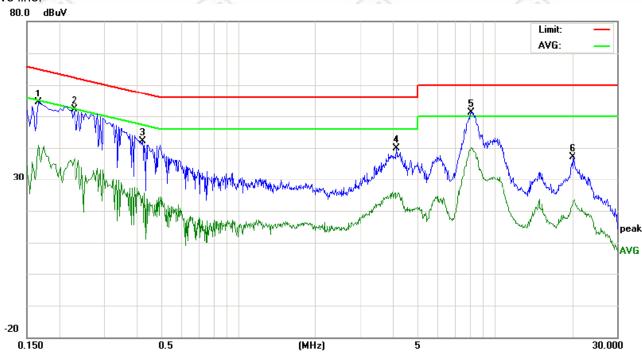
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PIFA Antenna and no consideration of replacement. The best case gain of the Bluetooth antenna is 2.72dBi.

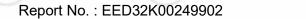
Page 46 of 72 Report No. : EED32K00249902

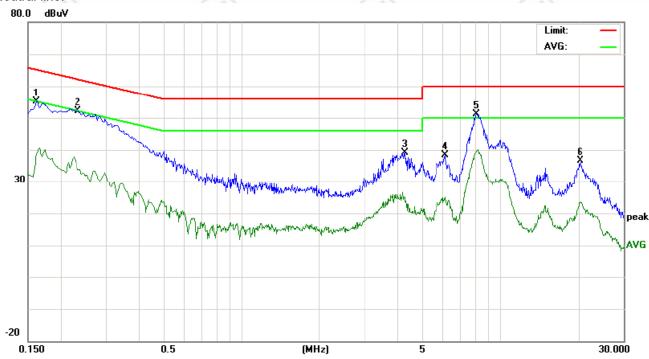
Test Procedure:	Test frequency range :150KHz	-30MHz								
	1)The mains terminal disturbar		onducted in a shielde	d room						
	2) The EUT was connected to AC power source through a LISN 1 (Line Impeda Stabilization Network) which provides a $50\Omega/50\mu H + 5\Omega$ linear impedance. power cables of all other units of the EUT were connected to a second LISN									
	which was bonded to the graph for the unit being measure multiple power cables to a second exceeded.	round reference plane d. A multiple socket o	in the same way as outlet strip was used	the LIS to con						
	3)The tabletop EUT was place reference plane. And for flo horizontal ground reference	or-standing arrangem		-						
	4) The test was performed with EUT shall be 0.4 m from the reference plane was bonder 1 was placed 0.8 m from the	e vertical ground refered to the horizontal gro	ence plane. The vert ound reference plane	ical gro . The L						
	1 was placed 0.8 m from to ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	or LISNs mounted or etween the closest po	n top of the ground ints of the LISN 1 an	l refere d the E						
	5) In order to find the maximum of the interface cables must conducted measurement.									
mit:	conducted measurement.	(67)	(67)							
IIIC.		11. 11.	ID 10							
	Frequency range (MHz)	Limit (c								
		Quasi-peak	Average							
	0.15-0.5	66 to 56*	56 to 46*	(4)						
	0.5-5	56	46							
	5-30	60	50							
	* The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is applied.	200	-15	range						
(83)	11012 : The letter limit is appli-	sable at the transition	n equency							
	performed on the live and neutral l ge measurement were performed a			ission v						
asi-Peak and Avera ected.										


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Live line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasurem (dBuV)		Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1660	44.64	41.69	31.22	9.75	54.39	51.44	40.97	65.15	55.15	-13.71	-14.18	Р	
2	0.2300	42.41	39.78	27.19	9.73	52.14	49.51	36.92	62.45	52.45	-12.94	-15.53	Р	
3	0.4220	32.42	29.64	14.78	9.74	42.16	39.38	24.52	57.41	47.41	-18.03	-22.89	Р	
4	4.1380	30.20	27.88	14.78	9.65	39.85	37.53	24.43	56.00	46.00	-18.47	-21.57	Р	
5	8.1420	41.51	38.54	30.48	9.68	51.19	48.22	40.16	60.00	50.00	-11.78	-9.84	Р	
6	20.2620	27.06	23.14	13.07	10.07	37.13	33.21	23.14	60.00	50.00	-26.79	-26.86	Р	





Neutral line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	Measurement (dBuV)			Lin (dBı			rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1620	45.47	42.65	29.06	9.75	55.22	52.40	38.81	65.36	55.36	-12.96	-16.55	Р	
2	0.2340	41.60	38.97	22.53	9.73	51.33	48.70	32.26	62.30	52.30	-13.60	-20.04	Р	
3	4.3020	29.43	26.33	14.02	9.64	39.07	35.97	23.66	56.00	46.00	-20.03	-22.34	Р	
4	6.1340	28.70	25.48	15.59	9.62	38.32	35.10	25.21	60.00	50.00	-24.90	-24.79	Р	
5	8.0860	41.46	38.74	29.81	9.68	51.14	48.42	39.49	60.00	50.00	-11.58	-10.51	Р	
6	20.3980	26.59	23.45	13.40	10.07	36.66	33.52	23.47	60.00	50.00	-26.48	-26.53	Р	

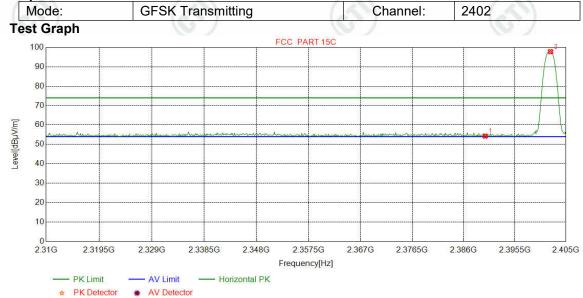
Notes:

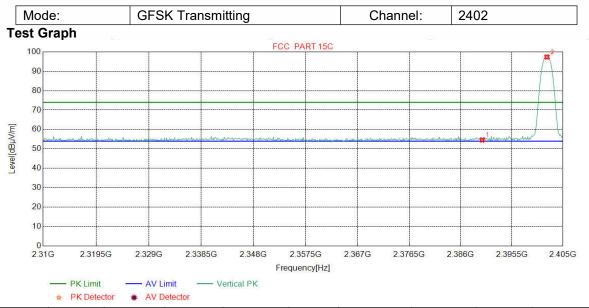
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32K00249902 Page 49 of 72

Appendix K): Restricted bands around fundamental frequency (Radiated)

(Radialed)	(828)	2010	- (
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	A1 4011	Peak	1MHz	3MHz	Peak	- 0.5
	Above 1GHz	Peak	1MHz	10Hz	Average	
est Procedure:	Below 1GHz test procedu	re as below:	-6		-	6
est riocedule.	a. The EUT was placed of at a 3 meter semi-anec determine the position of the EUT was set 3 meters was mounted on the top of the antenna height is well determine the maximum polarizations of the antended to the antenna was tuned to table was turned from the antenna was tuned to table was turned from the enterna was turned from the enter	n the top of a ro hoic camber. The highest raters away from p of a variable-rating from one in value of the firm are set to hission, the EUT to heights from 0 degrees to 360 m was set to Peum Hold Mode. Ind of the restrict pliance. Also mum analyzer plannel in as below: The is the test site ber and change in the distance is 1 owest channel in ments are performant.	the table was adiation. the interfer neight ante meter to fo eld strengtl make the r was arran 1 meter to 0 degrees t eak Detect cted band of easure any ot. Repeat to e, change fire form table meter and the Highe rmed in X,	ence-receinna tower. our meters n. Both hor neasuremenged to its 4 meters to find the in Function a closest to the remissions for each por rom Semi- table is 1.5 st channel Y, Z axis p	ving antenna, above the groizontal and verth. worst case an and the rotata maximum reand Specified the transmit is in the restrict ower and modern and specified to 1.5 meter).	whice ound ertical d the ble ding.
	Transmitting mode, and j. Repeat above procedu					e.
imit:	Frequency	Limit (dBµV	/m @3m)	Rei	mark	
	30MHz-88MHz	40.0	ס	Quasi-pe	eak Value	
	88MHz-216MHz	43.5	5	Quasi-pe	eak Value	
	216MHz-960MHz	46.0)	Quasi-pe	eak Value	
	960MHz-1GHz	54.0)	Quasi-pe	eak Value	
	/ J 1963	544	1 1 1	Averag	ıa Malua	
	Above 1GHz	54.0	100	Averag	je Value	

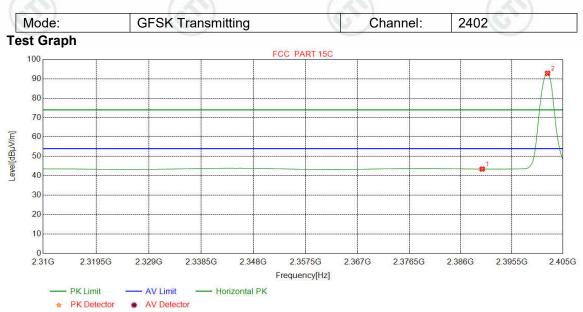




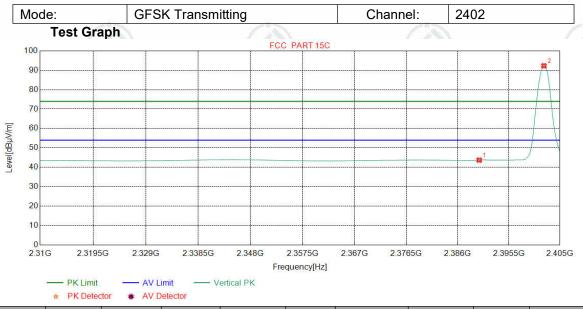
Report No.: EED32K00249902 Page 50 of 72

Test plot as follows:

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.27	54.27	74.00	19.73	Pass	Н	Peak
2	2402.1464	32.26	13.31	-36.60	88.83	97.80	74.00	-23.80	Pass	Н	Peak

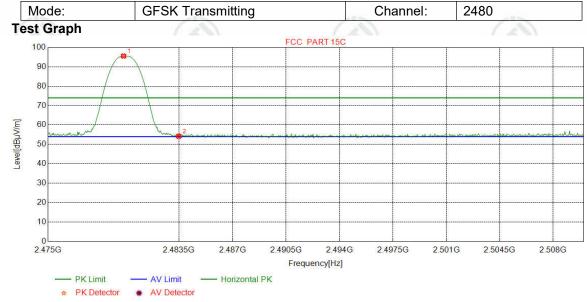


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	45.60	54.60	74.00	19.40	Pass	V	Peak
2	2402.0275	32.26	13.31	-36.60	88.41	97.38	74.00	-23.38	Pass	V	Peak

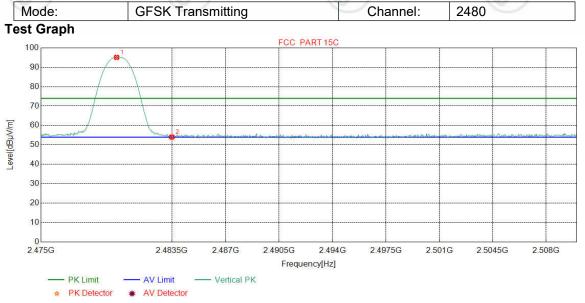

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

Report No. : EED32K00249902 Page 51 of 72

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.46	43.46	54.00	10.54	Pass	Н	AV
2	2402.1464	32.26	13.31	-36.60	83.87	92.84	54.00	-38.84	Pass	Н	AV



NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390.0000	32.25	13.37	-36.62	34.67	43.67	54.00	10.33	Pass	V	AV
2	2402.0275	32.26	13.31	-36.60	83.37	92.34	54.00	-38.34	Pass	V	AV


Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.9061	32.37	13.39	-36.77	86.55	95.54	74.00	-21.54	Pass	Н	Peak
2	2483.5000	32.38	13.38	-36.80	45.24	54.20	74.00	19.80	Pass	Н	Peak

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµ V/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2479.9061	32.37	13.39	-36.77	86.14	95.13	74.00	-21.13	Pass	V	Peak
2	2483.5000	32.38	13.38	-36.80	45.07	54.03	74.00	19.97	Pass	V	Peak

