

TEST REPORT

Test Report No. : UL-RPT-RP-12783492-116-FCC

Applicant	:	Disruptive Technologies Research AS	
Model No.	:	Sensor US	
FCC ID	:	2ATFX-100541	
Technology	:	902 – 928 MHz (DTS)	
Test Standard(s)	:	FCC Parts 15.209(a) & 15.247	
		For details of applied tests refer to test result summary	

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL International Germany GmbH.
- 2. The results in this report apply only to the sample tested.
- 3. The test results in this report are traceable to the national or international standards.
- 4. Test Report Version 1.0
- 5. Result of the tested sample: **PASS**

Frame have

Prepared by: Krume, Ivanov Title: Laboratory Engineer Date: 09 December 2019

Stare

Approved by: Ajit Phadtare Title: Lead Test Engineer Date: 09 December 2019

Deutsche
 Akkreditierungsstelle
 D-PL-19381-02-00

This laboratory is accredited by DAkkS. The tests reported herein have been performed in accordance with its' terms of accreditation.

UL INTERNATIONAL GERMANY GMBH

Hedelfinger Str. 61 70327 Stuttgart, Germany STU.CTECHLab@ul.com This page has been left intentionally blank.

Table of Contents

1. Customer Information	4
1.1.Applicant Information	4
1.2.Manufacturer Information	4
2. Summary of Testing	5
2.1. General Information	5
Applied Standards	5
Location	5
Date information	5
2.2. Summary of Test Results	6
2.3. Methods and Procedures	6
2.4. Deviations from the Test Specification	6
3. Equipment Under Test (EUT)	7
3.1. Identification of Equipment Under Test (EUT)	7
3.2. Description of EUT	7
3.3. Modifications Incorporated in the EUT	7
3.4. Additional Information Related to Testing	8
3.5. Support Equipment	9
A. Support Equipment (In-house)	9
B. Support Equipment (Manufacturer supplied)	9
4. Operation and Monitoring of the EUT during Testing	
4.1. Operating Modes	10
4.2. Configuration and Peripherals	10
5. Measurements, Examinations and Derived Results	11
5.1. General Comments	11
5.2. Test Results	12
5.2.1. Transmitter Minimum 6 dB Bandwidth	12
5.2.2. Transmitter Duty Cycle	15
5.2.3. Transmitter Power Spectral Density	19
5.2.4. Transmitter Maximum Peak Output Power	23
5.2.5. Transmitter Radiated Emissions	27 43
5.2.6. Transmitter Band Edge Radiated Emissions	
6. Measurement Uncertainty	47
7. Used equipment	48
8. Report Revision History	49

<u>1. Customer Information</u>

1.1.Applicant Information

Company Name:	Disruptive Technologies Research AS	
Company Address:	Ytrebygdsveien 215, 5258 Blomsterdalen, Bergen, Norway	
Contact Person:	Bengt Johannes Lundberg	
Contact E-Mail Address:	: bengt.lundberg@disruptive-technologies.com	
Contact Phone No.:	+47 91633887	

1.2.Manufacturer Information

Company Name:	Zollner Elektronik AG	
Company Address:	Manfred-Zollner-Straße 1, 93499 Zandt, Germany	
Contact Person:	Thomas Glasschröder (QA Manager)	
Contact E-Mail Address:	thomas_glasschroeder@zollner.de	
Contact Phone No.:	+49 9944-201-7146	

2. Summary of Testing

2.1. General Information

Applied Standards

47CFR15.247
Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) - Section 15.247
47CFR15.209
Code of Federal Regulations Volume 47 (Telecommunications): Part 15 Subpart C (Intentional Radiators) – Sections 15.209
399704

Location

Location of Testing:	UL International Germany GmbH		
	Hedelfinger Str. 61		
	70327 Stuttgart		
	Germany		

Date information

Order Date:	22 March 2019
EUT arrived:	02 September 2019
Test Dates:	02 September 2019 to 05 December 2019
EUT returned:	-/-

2.2. Summary of Test Results

Clause	Measurement	Complied	Did not comply	Not performed	Not applicable
Part 15.207	Transmitter AC Conducted Emissions ⁽¹⁾				\boxtimes
Part 15.247(a)(2)	Transmitter Minimum 6 dB Bandwidth	\boxtimes			
Part 15.35(c)	Transmitter Duty Cycle	\boxtimes			
Part 15.247(e)	Transmitter Power Spectral Density	\boxtimes			
Part 15.247(b)(3)	Transmitter Maximum Peak Output Power	\boxtimes			
Part 15.247(d)/15.209(a)	Transmitter Radiated Emissions	\boxtimes			
Part 15.247(d)/15.209(a)	Transmitter Band Edge Radiated Emissions	\boxtimes			

Note:

1. Not Applicable as EUT operates using a non rechargeable battery power.

2.3. Methods and Procedures

Reference:	ANSI C63.10-2013	
Title:	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices	
Reference:	KDB 558074 D01 15.247 Meas Guidance v05r02 April 2, 2019	
Title:	Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating Under Section 15.247 of the FCC Rules	
Reference:	KDB 414788 D01 Radiated Test Site v01r01, July 12, 2018	
Title:	TEST SITES FOR RADIATED EMISSION MEASUREMENTS	

2.4. Deviations from the Test Specification

For the measurements contained within this test report, there were no deviations from, additions to, or exclusions from the test specification identified above.

3. Equipment Under Test (EUT)

3.1. Identification of Equipment Under Test (EUT)

Brand Name:	Disruptive Technologies	
Model Name or Number:	Sensor US	
Test Sample Serial Number:	U1,U2,U5,U7,U9,U10 (Radiated samples)	
Hardware Version Number:	100541-1.2	
Software Version Number:	cc13xx_firmware/1.2.28	
FCC ID:	2ATFX-100541	

Brand Name:	Disruptive Technologies	
Model Name or Number:	Sensor US	
Test Sample Serial Number: T1 (Conducted samples with RF port)		
Hardware Version Number:	100541-1.2	
Software Version Number:	cc13xx_firmware/1.2.28	
FCC ID:	2ATFX-100541	

3.2. Description of EUT

The equipment under test was Wireless IoT Sensor powered via non rechargeable battery; operating on 902-928 MHz (DTS) communications through a Cloud Connector gateway.

3.3. Modifications Incorporated in the EUT

No modifications were applied to the EUT during testing.

3.4. Additional Information Related to Testing

Tested Technology:	902-928 MHz (Digital Transmission System) Standard Mode		
Power Supply Requirement:	Nominal 3 V DC (Internal battery)		
Type of Unit:	Transceiver		
Channel Spacing:	Fixed frequency		
Modulation:	Frequency Shift Keying (FSK)		
Data Rate (kbps):	240		
Measured Maximum Conducted Output Power:	8.87 dBm		
Antenna Gain:	-27.0 dBi		
Antenna Type:	Integrated PCB Antenna		
Antenna Details :	Model No. PN 100132-1 "DT Sensor antenna, 1st segment" and PN 100134-1 "DT Sensor antenna, 3rd segment" Manufacturer: DISRUPTIVE TECHNOLOGIES		
Transmit Frequency Range:	903.250 MHz to 926.750 MHz		
Transmit Channels Tested:	Channel ID	Channel Frequency (MHz)	
	Bottom	903.250	
	Middle	915.000	
	Тор	926.750	

3.5. Support Equipment

The following support equipment was used to exercise the EUT during testing:

A. Support Equipment (In-house)

Item	Description	Brand Name	Model Name or Number	Serial Number
1	RJ 45 Cable	Not stated	Not stated	Not stated

B. Support Equipment (Manufacturer supplied)

Item	Description	Brand Name	Model Name or Number	Serial Number
1	Ethernet switch with power- over-ethernet (PoE) Injector	D-Link	DPE-101GI	SQ031HB003386
2	Switching Power Supply (PoE)	mimosa	POE16R-560	502-00005
3	POE/LAN Cable 5 m (M12x Coded to RJ45)	Not stated	1407473	Not stated
4	Laptop computer	Apple	MacBook Pro	C02T60V0GY25
5	Gateway with an 902-928 MHz RF-Technology, that relays communication between sensors and the cloud	Disruptive Technologies Research AS	Cloud Connector US	bjemb9tuvn3g0008o500

4. Operation and Monitoring of the EUT during Testing

4.1. Operating Modes

The EUT was tested in the following operating mode(s):

☑ Transmitting Mode - Standard Mode Fixed Channel Frequency Mode.

4.2. Configuration and Peripherals

The EUT was tested in the following configuration(s):

• EUT Power Supply:

- For all conducted measurements the EUT was powered using lab DC power supply supplying 3.3 V DC to EUT.
- o For all radiated measurements the EUT was powered via the non-rechargeable internal battery.

• Test Mode Activation:

- With help of customer supplied a Gateway "Cloud Connector US" supporting 902-928 MHz RF-Technology test modes were activated wirelessly.
- o This Gateway was powered via PoE injector & connected to the internet via a LAN cable.
- o A wireless connection was established between this Gateway & EUT.
- o The Test mode configuration files were installed on MacBook supplied by customer.
- This Test mode configuration were activated using a test setup instructions "2019-07-24 Instructions for UL to operate CCONs.pdf" supplied by customer.

o Conducted Measurements:

- o RF Output Power, Power Spectral Density & Duty Cycles were measured with conducted sample.
- The conducted sample was transmitting with 99.39% duty cycle therefore no duty cycle correction was required.
- All Conducted measurements were carried out by using conducted samples with SMA (Female) RF Cable soldered on PCB by the customer. The RF cable's attenuation (maximum 5.0 dB at the tested frequencies) of which 0.5 dB was already added to a reference level offset to each of the conducted plots & additional 4.5 dB attenuation has been corrected from plot values.
- The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values takes into consideration the external attenuation correction factors. The RF cable attenuation (maximum 0.4 dB at the tested frequencies) from the EUT to Analyzer including the 10 dB attenuation at the Spectrum Analyzer input and 0.5 dB for the SMA RF-cable attenuation was added as a reference level offset (10.9 dB) to each of the conducted plots.

o Radiated Measurements:

- The radiated samples were transmitting with 7.04% duty cycle therefore duty cycle correction are required for average measurements.
- Before starting final radiated measurements "worst case verification" with the EUT in Standingposition & Laying-position was performed by Lab.
- The EUT in Laying position was found to be the worst case therefore this report includes relevant results.
- Radiated spurious emissions were performed with the EUT positioned on the turn table and rotating 360 degrees while the antenna height varies from 1 to 4 m over the measurement frequency range.
- o EMC32 V10.1.0 Software was used for the Radiated spurious emission measurement.

5. Measurements, Examinations and Derived Results

5.1. General Comments

Measurement uncertainties are evaluated in accordance with current best practice. Our reported expanded uncertainties are based on standard uncertainties, which are multiplied by an appropriate coverage factor to provide a statistical confidence level of approximately 95%. Please refer to Section 6 *Measurement Uncertainty* for details.

In accordance with DAkkS requirements all the measurement equipment is on a calibration schedule. All equipment was within the calibration period on the date of testing.

5.2. Test Results

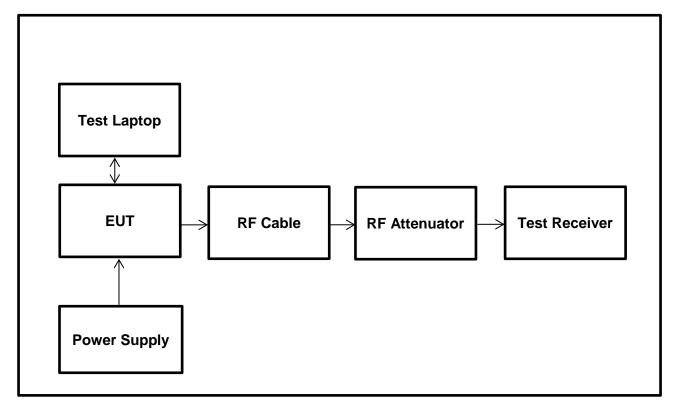
5.2.1. Transmitter Minimum 6 dB Bandwidth

Test Summary:

Test Engineer:	Abdoufataou Salifou Test Date: 02 September 2019				
Test Sample Serial Number:	T1				
Test Site Identification	SR 9				

FCC Reference:	Part 15.247(a)(2)	
Test Method Used:	FCC KDB 558074 Section 8.2 referring ANSI C63.10:2013 Section 11.8.1 Option 1	

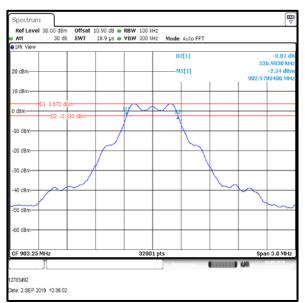
Environmental Conditions:

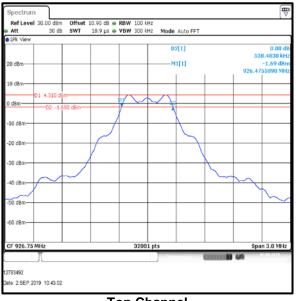

Temperature (°C):	22.9
Relative Humidity (%):	32

Notes:

- 6 dB DTS bandwidth tests were performed using a spectrum analyser in accordance with FCC KDB 558074 Section 8.2 referring ANSI C63.10 Section 11.8 (11.8.1 Option 1 measurement procedure). The spectrum analyser resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and the trace mode was Max Hold. The DTS bandwidth was measured at 6 dB down from the peak of the signal.
- 2. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values takes into consideration the external attenuation correction factors.
- 3. The SMA (Female) RF Cable soldered on PCB with maximum attenuation 5.0 dB@ tested frequencies of which 0.5 dB was already added to a reference level offset to each of the conducted plots & additional 4.5 dB attenuation has been corrected from plot values.
- 4. The RF cable attenuation (maximum 0.4 dB at the tested frequencies) from the EUT to Analyzer including the 10 dB attenuation at the Spectrum Analyzer input and 0.5 dB for the SMA RF-cable attenuation was added as a reference level offset (10.9 dB) to each of the conducted plots.

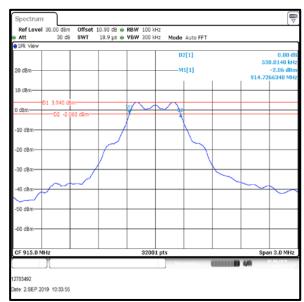
Test setup:




Transmitter Minimum 6 dB Bandwidth (continued)

Results:

Channel	6 dB Bandwidth (kHz)	Limit (kHz)	Margin (kHz)	Result
Bottom	536.983	≥500	36.983	Complied
Middle	538.014	≥500	38.014	Complied
Тор	538.483	≥500	38.483	Complied



Bottom Channel

Top Channel

[Plots indicate 6 dB Bandwidth without 4.5 dB Attenuation correction for SMA (Female) RF Cable soldered on PCB; this does make any difference to the measurement]

Middle Channel

5.2.2.Transmitter Duty Cycle

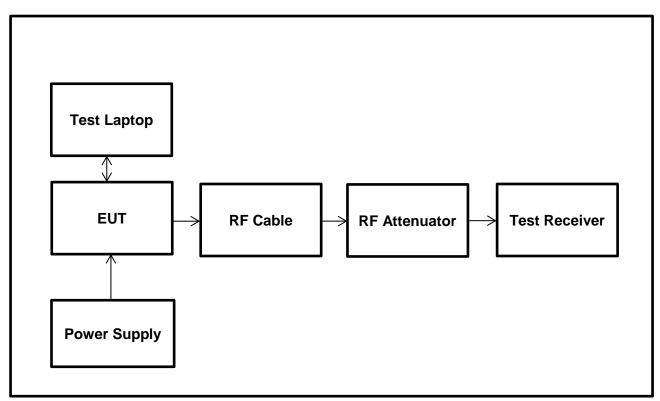
Test Summary:

Test Engineers:	Abdoufataou Salifou & Krume Ivanov	Test Dates:	02 September & 05 December 2019		
Test Sample Serial Number:	T1 & U10				
Test Site Identification SR 9					

FCC Reference:	Part 15.35(c)
Test Method Used:	FCC KDB 558074 Section 6.0

Environmental Conditions:

Temperature (°C):	23.8 & 22.3
Relative Humidity (%):	40 & 38


Note(s):

1.Since conducted & radiated EUT samples were transmitting with different duty cycle values; both of duty cycles are recorded.

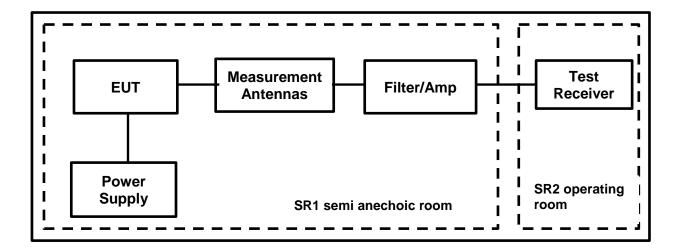
2. The transmitter duty cycle was measured using a spectrum analyser in the time domain and calculated by using the following calculation:

10 log (1 / (On Time / [Period or 100 ms whichever is the lesser])).

Test Setup for the conducted sample:

Transmitter Duty Cycle (continued)

Results: Conducted EUT


Pulse On Time (T _{ON})	Pulse Period (T _{ON} +T _{OFF})	Duty Cycle	Duty Cycle Correction Factor
(ms)	(ms)	(%)	(dB)
449.921	452.671	99.39	0.0

SGL						
1Pk View	·					
				D3[1]		0.03 d 452.7188 m
20 d8m—			+ +	M1[1]		4.04 dBi
						5.5313 m
10 dBm—						1029
dBm						4
10 dBm—	+		+			
20 dBm-						
30 dBm-						
00 00						
40 dBm-						-
!-						
-50 dBm—						
-60 dBm—						
00 00.00						
CF 915.0	MHz		32001 pt	s		50.0 ms/
larker						
Type R	ef Trc	X-value	Y-value	Function	Function Re	esult
M1	1	5.5313 ms	4.04 dBm			
	M1 1	449.9219 ms	-0.00 dB			
D3	M1 1	452.7188 ms	0.03 dB			
				Ready		02.09.2019

Transmitter Duty Cycle (continued)

Test Setup for the radiated Sample:

Transmitter Duty Cycle (continued)

Results: Radiated EUT

Pulse On Time (T _{ON})	Pulse Period (T _{ON} +T _{OFF})	Duty Cycle	Duty Cycle Correction Factor
(ms)	(ms)	(%)	(dB)
5.758	81.729	7.04	11.52

10 kWiew MI[1] -11.39 dt 10 dBm 02[1] 0.06 0 dBm 02[1] 0.06 0 dBm 02[1] 0.06 0 dBm 02[1] 0.06 20 dBm 03 03 20 dBm 03 03 30 dBm 03 03 40 dBm 03 04 50 dBm 03 04 50 dBm 03 04 60 dBm 04 04 04 04 04 60 dBm 04 04 60 dBm 04 04 61 04 04 61 04 04 61 04 04 1 <td< th=""><th>Dectrim Image: Second sec</th><th>D3</th><th>M1 1</th><th>81.72995 ms</th><th>-0.14 dB</th><th></th><th></th><th></th></td<>	Dectrim Image: Second sec	D3	M1 1	81.72995 ms	-0.14 dB			
10 kWiew MI[1] -11.39 dt 10 dBm 02[1] 0.06 0 dBm 02[1] 0.06 0 dBm 02[1] 0.06 20 dBm 02 02 30 dBm 02 02 40 dBm 02 02 50 dBm 02 02 40 dBm 02 02 50 dBm 02 02 60 dBm 02 02 -60 dBm 02 02 -70 dBm 02 02 CF 915.0 MHz 32000 pts 10.0 ms Araker 72 72 value Y-value	Ref Level 20.00 dbm Offset 10.90 db RBW 3 MHz Att 20 db SWT 100 ms VBW 10 MHz IGL Interview Interview Interview Interview 0 dbm 02[1] 0.06 S.758971 00 dbm 00 dbm 0.01 S.758971 S.758971 00 dbm 0.02 0.02 S.758971 S.758971 00 dbm 0.02 0.02 S.758971 S.758971 00 dbm 0.02 0.02 S.758971 S.758971 00 dbm 0.02 0.	D2	M1 1	5.75897 ms	0.06 dB			
10 kW M1[1] -11.39 dt 10 dBm 02[1] 0.06 0 dBm 02[1] 0.06 20 dBm 02 02 30 dBm 02 02 30 dBm 02 02 30 dBm 02 02 -0 dBm 02 02	Ref Level 20.00 dbm Offset 10.90 db RBW 3 MHz Att 20 db SWT 100 ms VBW 10 MHz IGL IDA IDA IDA IDA 0 dbm D2[1] 0.06 S.758971 10 dbm D2[1] D2[1] D2[1] 10 dbm D2[1] D2[1] D2[1] D2[1] 10 dbm D2[1]					Function	Function R	esult
10 kW MI[1] -11.39 dt 10 dBm D2[1] 0.06 0 dBm D2[1] 0.06 10 dBm D2[1] 0.06 20 dBm D3 D3 10 dBm D3 D3 20 dBm D3 D3 30 dBm D3 D3 40 dBm D3 D3 50 dBm or prophysic dependence of particle or prophysic dependence or particle or prophysic dependence or prophysic depend	Ref Level 20.00 dBm Offset 10.90 dB RBW 3 MHz Att 20 dB SWT 100 ms VBW 10 MHz IGL Image: State in the second s		Dof Turi	M unlug	Mushin	Europhian (Function P	
10 km	Mail Mail <th< td=""><td></td><td>0 MHz</td><td></td><td>32000 pt</td><td>s</td><td></td><td>10.0 ms</td></th<>		0 MHz		32000 pt	s		10.0 ms
1Pk View MI[1] -11.39 dt 10 d8m D2[1] 0.06i 0 d8m D2[1] 0.06i 0 d8m D2[1] 0.06i 20 d8m D2 D2 10 d8m D2 D2 20 d8m D2 D2 30 d8m D2 D2 40 d8m D2 D2 50 d8m D2 D2 60 d8m D2 D2	Image: Constraint of the second sec							
1Pk View MI[1] -11.39 db 10 dBm 02[1] 0.06 i 0 dBm 02[1] 0.06 i 0 dBm 02[1] 0.06 i 20 dBm 02 0 30 dBm 02 0 30 dBm 02 0 50 dBm 02 0 60 dBm 02 0	Image: Constraint of the second sec	-70 dBm-						
10 kW MI[1] -11.39 db 10 dbm	Ref Level 20.00 dBm Offset 10.90 dB RBW 3 MHz Att 20 dB SWT 100 ms VBW 10 MHz IGL Image: State in the s							
10 kWiew MI[1] -11.39 db 10 dBm D2[1] 0.06 0 dBm D2[1] 0.06 10 dBm D2[1] 0.06 20 dBm 030 dBm 030 dBm 30 dBm 11 db db db db db db db b out (db db out (db out (db db out (db out	M1[1] 11.39 df Att 20 dB SWT 100 ms VBW 10 MHz GL Interview M1[1] 11.39 df 11.39 df 0 dBm 02[1] 0.06 S.75897 f 0 dBm 02[1] 0.06 S.75897 f 10 dBm 02[1] 0.06 S.75897 f 0 dBm 02[1] 0.06 S.75897 f 10 dBm 0.02 0.02 S.75897 f S.75897 f	-60 dBm-						
10 kWiew M1[1] -11.39 db 10 dBm D2[1] 0.064 0 dBm D2[1] 0.064 10 dBm2 D2[1] 0.064 20 dBm3 D3 D3 30 dBm3 D3 D3 40 dBm3 D3 D3	M1[1] 11.39 df Att 20 dB SWT 100 ms VBW 10 MHz GL Interview M1[1] 11.39 df 11.39 df 0 dBm 02[1] 0.06 S.75897 f 0 dBm 02[1] 0.06 S.75897 f 10 dBm 02[1] 0.06 S.75897 f 0 dBm 02[1] 0.06 S.75897 f 10 dBm 0.02 0.02 S.75897 f S.75897 f	50 dBm	appopulation	and simplify should be added to be	-	an and a state of the production	paul - databa - sus-stational	The main section of the section of t
10 k View MI[1] -11.39 db 10 dbm D2[1] 0.06 r 0 dbm 5.75897 m 10 dbm2 0.02 m	M1[1] -11.39 dB Ref Level 20.00 dBm Offset 10.90 dB RBW 3 MHz Att 20 dB SWT 100 ms VBW 10 MHz IGL 0 dBm 02[1] 0.06 0 dBm 02[1] 0.06 5.758971 02 02 0 dBm 02 02 0 dBm 02 02		مامش إمشاليهم	والعلامية ويعتم ويطاق العام	والمعادية والمتناوين والمعادية	ومستوصعا مالمالم والدمي	and planning sets have	والعالة ويتمعلوا
11% View MI[1] -11.39 dB 10 dBm D2[1] 0.06 d 0 dBm D2[1] 0.06 d 10 dBm 0.2 0.06 d 20 dBm 0.2 0.2	Mill Mill	40 dBm-	_					
11% View MI[1] -11.39 dB 10 dBm D2[1] 0.06 d 0 dBm D2[1] 0.06 d 10 dBm 0.2 0.06 d 20 dBm 0.2 0.2	Mill Mill	30 dBm-						
10 dBm MI[1] -11.39 db 10 dBm D2[1] 0.06 r 0 dBm 0.06 r 5.75897 r	M1[1] -11.39 df Bd Bm 0 dBm 0 dBm 02[1] 0.00 dBm 03							
10 d8m MI[1] -11.39 d8m 10 d8m D2[1] 0.06 0 d8m 5.75897 r	Att 20 dB SWT 10.90 dB RBW 3 MHz Att 20 dB SWT 100 ms VBW 10 MHz Ipk Viaw	20 dBm-						
10 k View M1[1] -11.39 db 10 dbm D2[1] 0.06 0 dbm 5.75897 r	Att 20 dB SWT 10.90 dB RBW 3 MHz Att 20 dB SWT 100 ms VBW 10 MHz Ipk Viaw	4					1	
10 kView M1[1] -11.39 dE 10 dBm D2[1] 0.06 5 25692 t 5 25692 t	Ref Level 20.00 dBm Offset 10.90 dB RBW 3 MHz Att 20 dB SWT 100 ms VBW 10 MHz iGL 100 ms VBW 10 MHz 11.160141 0 dBm 0.06[1] 5.750921 5.750921		2				03	
10 dBm M1[1] -11.39 db 10 dBm D2[1] 0.06	Att 20 dB SWT 100 ms VBW 10 MHz IGL Intervention Intervention Intervention Intervention 0 dBm Intervention Intervention Intervention Intervention	0 dBm—	_					5.758971
10 dgm 10.16014 m	Pectrum Ref Level 20.00 dBm Offset 10.90 dB ● RBW 3 MHz Att 20 dB ● SWT 100 ms ● VBW 10 MHz GL IPk View M1[1] -11.39 df 1.16014	10 0011				D2[1]		
1Pk View	pecturn RefLevel 20.00 dBm Offset 10.90 dB ● RBW 3 MHz Att 20 dB ● SWT 100 ms ● VBW 10 MHz GL 1Pk View	10 d8m-						
	Pecturn Ref Level 20.00 dBm Offset 10.90 dB ● RBW 3 MHz Att 20 dB ● SWT 100 ms ● VBW 10 MHz IGL					M1[1]		-11.39 df
	RefLevel 20.00 dBm Offset 10.90 dB							
	pectrum							
		Spectri	um					('
RefLevel 20.00 dBm Offset 10.90 dB RBW 3 MHz								c.

5.2.3. Transmitter Power Spectral Density

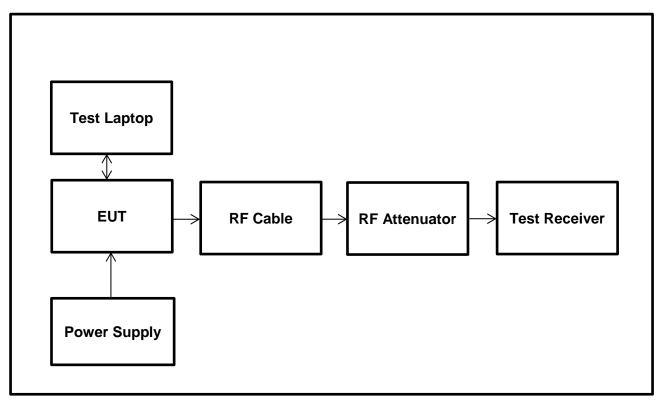
Test Summary:

Test Engineer:	Krume Ivanov	Test Date:	05 December 2019	
Test Sample Serial Number:	T1			
Test Site Identification	SR 9			

FCC Reference:	Part 15.247(e)
Test Method Used:	FCC KDB 558074 Sections 8.4 referencing ANSI C63.10 Sections 11.10.2

Environmental Conditions:

Temperature (°C):	22.3
Relative Humidity (%):	38

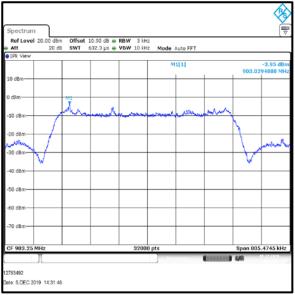

Note(s):

- 1. Final measurements were performed using the above configurations on the bottom, middle and top channels.
- 2. The EUT was transmitting at 99.38 % duty cycle and testing was performed in accordance with KDB 558074 Section 11.10.2 Method PKPSD (peak PSD). The signal analyser resolution bandwidth was set to 3 kHz,video bandwidth 10 kHz and span 1.5 times the DTS bandwidth. A peak detector was used, sweep time was set to auto and the trace was allowed to fully stabilize. A marker was placed at the highest peak of the measured signal and was recorded.
- 3. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values takes into consideration the external attenuation correction factors.
- 4. The SMA (Female) RF Cable soldered on PCB with maximum attenuation 5.0 dB@ tested frequencies of which 0.5 dB was already added to a reference level offset to each of the conducted plots.
- 5. The RF cable attenuation (maximum 0.4 dB at the tested frequencies) from the EUT to Analyzer including the 10 dB attenuation at the Spectrum Analyzer input and 0.5 dB for the SMA RF-cable attenuation was added as a reference level offset (10.9 dB) to each of the conducted plots.
- 6. Therefore an additional 4.5 dB attenuation correction for SMA (Female) RF Cable soldered on PCB has been performed from measured plot values.

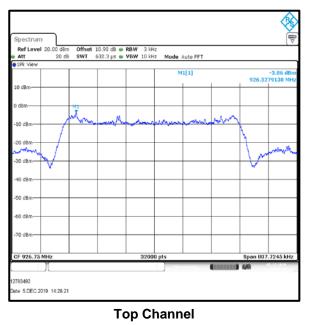
Transmitter Power Spectral Density (continued)

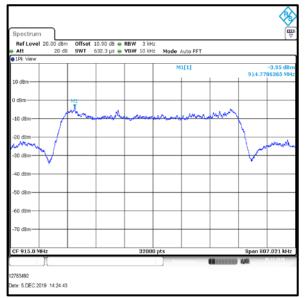
Test Setup:

Transmitter Power Spectral Density (continued)


Results: Standard Mode

Channel	Plot Power Spectral Density Power (dBm/3 kHz)	SMA (Female) RF Cable Attenuation Correction (dB)	Corrected Power Spectral Density Power (dBm/3 kHz)	Limit (dBm/3kHz)	Margin (dB)	Result
Bottom	-3.95	4.50	0.55	8.0	7.45	Complied
Middle	-3.95	4.50	0.55	8.0	7.45	Complied
Тор	-3.86	4.50	0.64	8.0	7.36	Complied




Transmitter Power Spectral Density (continued)

Results: Standard Mode

Bottom Channel

Middle Channel

[Plots indicate Power Spectral Density without 4.5 dB Attenuation correction fror SMA (Female) RF Cable soldered on PCB. Refer result tables for final corrected values.]

5.2.4. Transmitter Maximum Peak Output Power

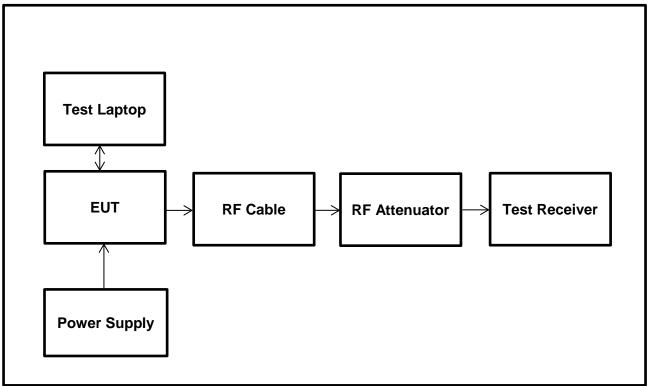
Test Summary:

Test Engineer:	Abdoufataou Salifou	Test Date:	02 September 2019	
Test Sample Serial Number:	T1			
Test Site Identification	SR 9			

FCC Reference:	Part 15.247(b)(3)
Test Method Used:	FCC KDB 558074 Section 8.3.1.1 referring ANSI C63.10 Section 11.9.1.1

Environmental Conditions:

Temperature (°C):	22.7
Relative Humidity (%):	32


Notes:

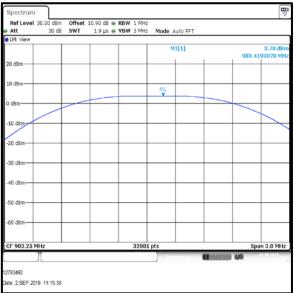
- 1. Conducted power tests were performed using a spectrum analyser in accordance with FCC KDB 558074 Section 8.3.1.1 with the RBW ≥ *DTS* bandwidth referring ANSI C63.10 Section 11.9.1.1.
- 2. The signal analyser resolution bandwidth was set to 1 MHz and video bandwidth of 3 MHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The span was set to 3 MHz. A marker was placed at the peak of the signal and the results recorded in the table below.
- 3. The RF port on the EUT was connected to the spectrum analyser using suitable attenuation and RF cable. The measured values takes into consideration the external attenuation correction factors.
- 4. The SMA (Female) RF Cable soldered on PCB with maximum attenuation 5.0 dB@ tested frequencies of which 0.5 dB was already added to a reference level offset to each of the conducted plots.
- 5. The RF cable attenuation (maximum 0.4 dB at the tested frequencies) from the EUT to Analyzer including the 10 dB attenuation at the Spectrum Analyzer input and 0.5 dB for the SMA RF-cable attenuation was added as a reference level offset (10.9 dB) to each of the conducted plots.
- 6. Therefore an additional 4.5 dB attenuation correction for SMA (Female) RF Cable soldered on PCB has been performed from measured plot values.
- 7. The declared antenna gain was added to conducted power to obtain the EIRP.

Transmitter Maximum Peak Output Power (continued)

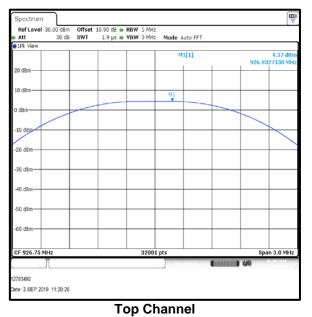
Test setup:

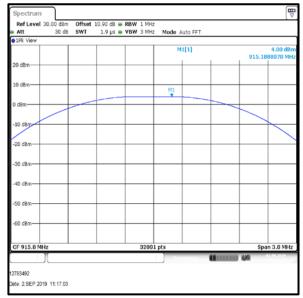
Transmitter Maximum Peak Output Power (continued)

Results: Standard Mode


Channel	Plot Conducted Peak Power (dBm)	SMA (Female) RF Cable Attenuation Correction (dB)	Corrected Conducted Peak Power (dBm)	Conducted Peak Power Limit (dBm)	Margin (dB)	Result
Bottom	3.70	4.50	8.20	30.0	21.80	Complied
Middle	4.00	4.50	8.50	30.0	21.50	Complied
Тор	4.37	4.50	8.87	30.0	21.13	Complied

Channel	Corrected Conducted Peak Power (dBm)	Declared Antenna Gain (dBi)	EIRP (dBm)	De Facto EIRP Limit (dBm)	Margin (dB)	Result
Bottom	8.20	-27.0	-18.80	36.0	54.80	Complied
Middle	8.50	-27.0	-18.50	36.0	54.50	Complied
Тор	8.87	-27.0	-18.13	36.0	54.13	Complied




Transmitter Maximum Peak Output Power (continued)

Plots:

Bottom Channel

Middle Channel

[Plots indicate Conducted Peak Power (dBm) without 4.5 dB Attenuation correction fror SMA (Female) RF Cable soldered on PCB. Refer result tables for final corrected values.]

5.2.5. Transmitter Radiated Emissions

Test Summary:

Test Engineer:	Krume Ivanov	Test Date:	03 September 2019
Test Sample Serial Number:	U7		
Test Site Identification	SR 1/2		

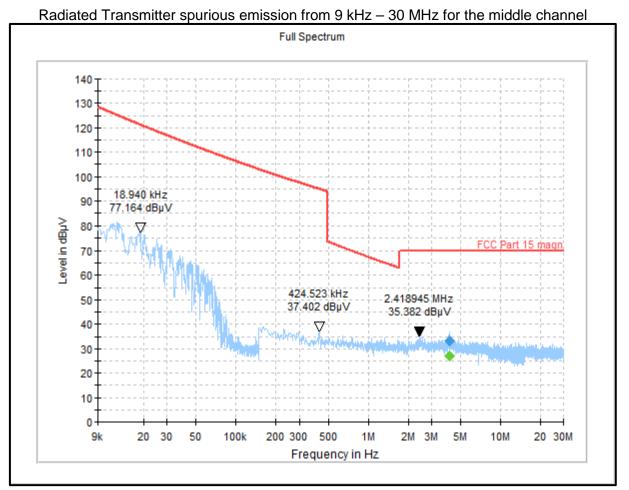
FCC Reference:	Parts 15.247(d) & 15.209(a)
Test Method Used:	FCC KDB 558074 Sections 8.5 & 8.6 referring ANSI C63.10 Sections 11.11 and 11.12 ANSI C63.10:2013 Sections 6.3 and 6.4
Frequency Range	9 kHz to 30 MHz

Environmental Conditions:

Temperature (°C):	23
Relative Humidity (%):	28

Note(s):

- 1. In accordance with FCC KDB 414788, an alternative test site may be used for the measurement below 30 MHz (The OATS / SAC comparison data is available upon request). Therefore the result from the semi-anechoic chamber tests is shown in this section of the test report.
- 2. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 3. The preliminary scans showed similar emission levels below 30 MHz, for each channel of operation. Therefore final radiated emissions measurements were performed with the EUT set to the middle channel only.
- 4. Measurements below 30 MHz were performed in a semi-anechoic chamber SR1/2 (Asset Number 1603665) at a distance of 3 meters. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable.
- 5. Pre-scans were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 10 kHz and video bandwidth 30 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.
- 6. Final measurements were performed on the marker frequencies and the results entered into the table below. The test receiver resolution bandwidth was set to 9 kHz, using a CISPR quasi-peak detector and span big enough to see the whole emission.


Test Setup:

EUT	Measurement Antennas Filter/Amp	I Test I Receiver
Power Supply	SR1 semi anechoic chamber	SR2 operating room

<u>Transmitter Radiated Emissions (continued)</u> <u>Results: Standard Mode / Middle Channel</u>

Frequency	Antenna	Peak Level	Peak Limit	Margin	Result
(MHz)	Polarization	(dBμV/m)	(dBμV/m)	(dB)	
4.082618	Horizontal	32.99	70.00	37.01	Complied

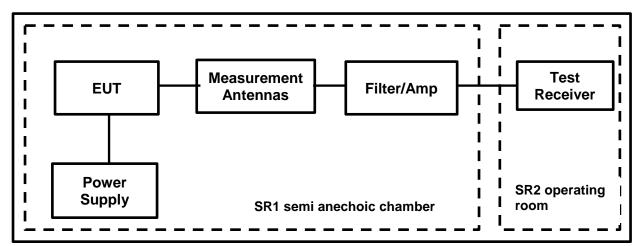
Note: This plot is a pre-scan and for indication purposes only. For final measurements, see accompanying table.

Test Summary:

Test Engineer:	Krume Ivanov	Test Date:	03 September 2019
Test Sample Serial Number:	U5		
Test Site Identification	SR 1/2		

FCC Reference:	Parts 15.247(d) & 15.209(a)	
	FCC KDB 558074 Sections 8.5 & 8.6 referring	
Test Method Used:	ANSI C63.10 Sections 11.11 and 11.12	
	ANSI C63.10:2013 Sections 6.3 and 6.5	
Frequency Range	30 MHz to 1000 MHz	

Environmental Conditions:


Temperature (°C):	21
Relative Humidity (%):	28

Note(s):

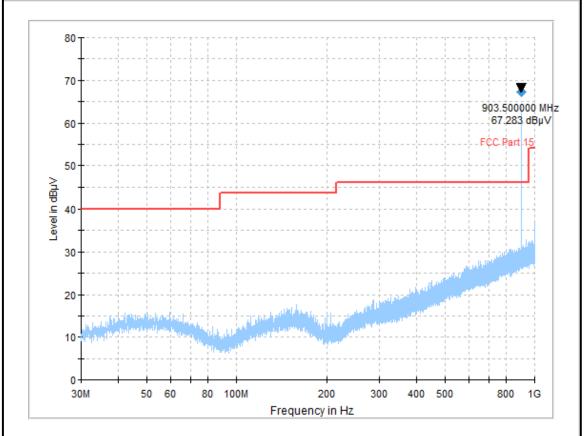
- 1. The emissions shown at frequencies between approximately 903 to 927 MHz on the 30 MHz to 1 GHz plots are the EUT fundamental for the given channel.
- 2. No spurious emissions were detected.
- 3. Measurements below 1 GHz were performed in a semi anechoic chamber SR1/2 (Asset Number 1603665) at a distance of 3 meters. The EUT was placed at a height of 80 cm above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 meter to 4 meters.
- 4. Pre-scans were performed and markers placed on the highest measured levels. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold.

Test Setup:

Results: Standard Mode / Bottom Channel

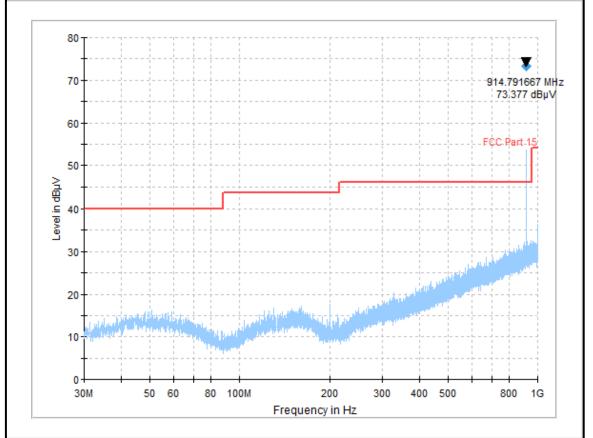
Frequency (MHz)	Antenna Polarization	Quasi Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
No spurious emissions were detected					

Results: Standard Mode / Middle Channel

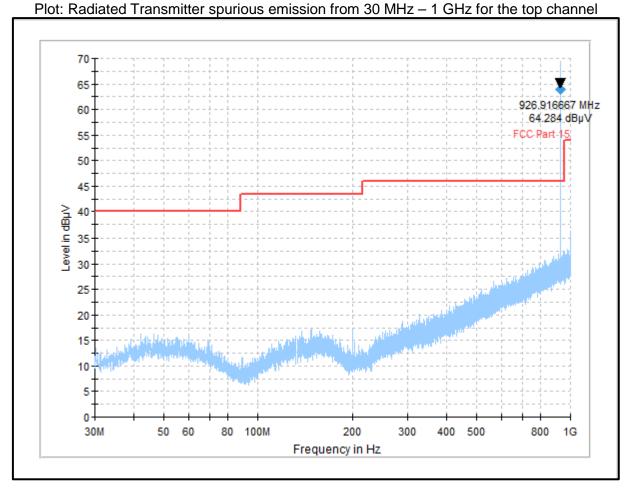

Frequency (MHz)	Antenna Polarization	Quasi Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
No spurious emissions were detected					

Results: Standard Mode / Top Channel

Frequency (MHz)	Antenna Polarization	Quasi Peak Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Result
No spurious emissions were detected					


Standard Mode

Radiated Transmitter spurious emission from 30 MHz – 1 GHz for the bottom channel


Standard Mode

Plot: Radiated Transmitter spurious emission from 30 MHz - 1 GHz for the middle channel

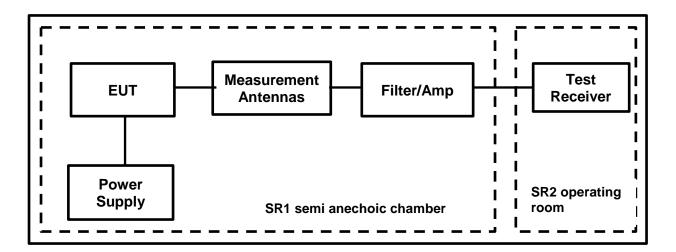
Standard Mode

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying table.

Test Summary:

Test Engineer:	Krume Ivanov	Test Date:	04 & 27 September 2019
Test Sample Serial Number:	U9		
Test Site Identification	SR 1/2		

FCC Reference:	Parts 15.247(d) & 15.209(a)	
	FCC KDB 558074 Sections 8.5 & 8.6 referring	
Test Method Used:	ANSI C63.10 Sections 11.11 and 11.12	
	ANSI C63.10:2013 Sections 6.3 and 6.6	
Frequency Range	1 GHz to 10 GHz	


Environmental Conditions:

Temperature (°C):	23 & 22
Relative Humidity (%):	28 & 32

Note(s):

- 1. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 2. Pre-scans above 1 GHz were performed in a semi anechoic chamber SR1/2 (Asset Number 1603665) with absorbers on the ground at a distance of 3 meters. The EUT was placed at a height of 1.5 meters above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 meters above the test chamber floor, in line with the EUT. Final measurements above 1 GHz were performed in a semi anechoic chamber SR1/2 (Asset Number 1603665) with absorbers on the ground at a distance of 3 meters. The EUT was placed at a height of 1.5 meters above the test chamber floor, in line with the EUT. Final measurements above 1 GHz were performed in a semi anechoic chamber SR1/2 (Asset Number 1603665) with absorbers on the ground at a distance of 3 meters. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 meter to 4 meters.
- 3. Pre-scans were performed and a marker placed on the highest measured level of the appropriate plot. The test receiver resolution bandwidth was set to 1 MHz and video bandwidth 3 MHz. The sweep time was set to auto.
- 4. *In accordance with ANSI C63.10 Section 6.6.4.3 (Note 1), if the peak measured value complies with the average limit, it is unnecessary to perform an average measurement.
- 5. The EUT was transmitting continuously with 7.04% duty cycle therefore duty cycle correction are required for average measurements.

Test Setup:

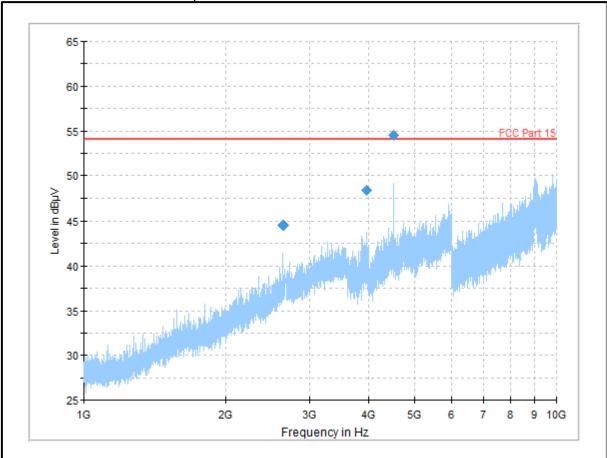
Results: Standard Mode / Peak Detector/ Bottom Channel

Frequency (MHz)	Antenna Polarization	Peak Level (dBμV/m)	Average Limit (dBµV/m)	Margin (dB)	Result
2642.125	Vertical	44.59	54.00	9.41	Complied
3949.850	Vertical	48.37	54.00	5.63	Complied
			•		

	Frequency (MHz)	Antenna Polarization	Peak Level (dBμV/m)	Peak Limit (dBμV/m)	Margin (dB)	Result
	4515.350	Vertical	60.12	74.00	13.88	Complied

Results: Standard Mode / RMS Detector / Bottom Channel

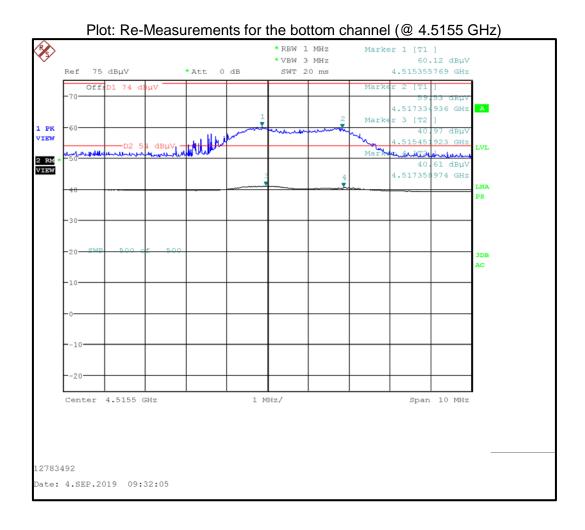
Frequency (MHz)	Antenna Polarization	RMS Level (dBμV/m)	Duty Cycle Correction (dB)	RMS Corrected Level(dBμV/m)	Average Limit (dBμV/m)	Margin (dB)	Result
4515.451	Horizontal	40.97	11.52	52.49	54.00	1.51	Complied


Results: Standard Mode / Peak Detector/ Middle Channel

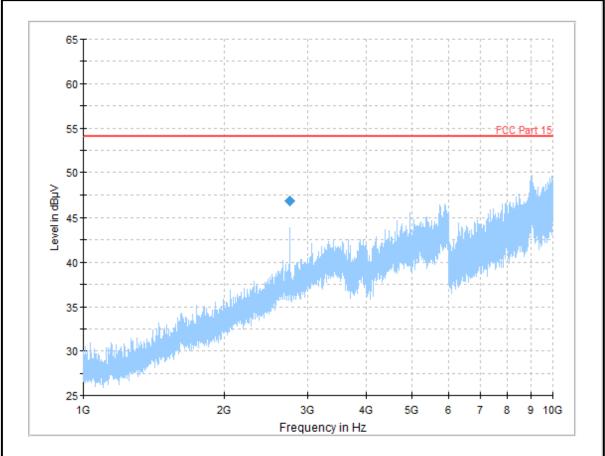
Frequency (MHz)	Antenna Polarization	Peak Level (dBμV/m)	Average Limit (dBµV/m)	Margin (dB)	Result
2744.125	Vertical	46.75	54.00	7.25	Complied

Results: Standard Mode / Peak Detector/ Top Channel

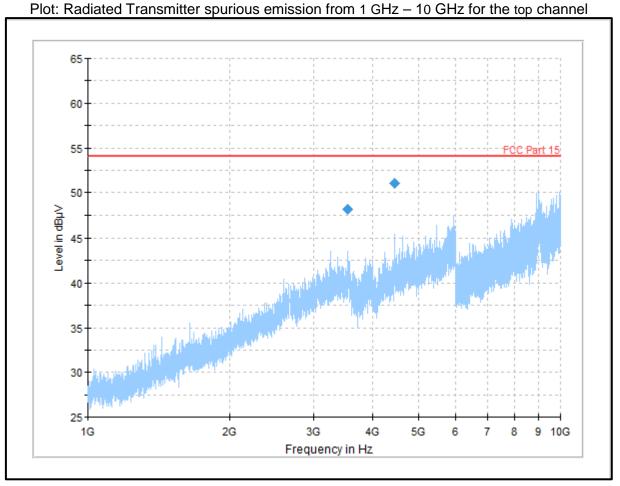
Frequency (MHz)	Antenna Polarization	Peak Level (dBμV/m)	Average Limit (dBµV/m)	Margin (dB)	Result
3546.100	Vertical	48.13	54.00	5.87	Complied
4443.000	Horizontal	51.00	54.00	3.00	Complied


Transmitter Radiated Emissions (continued) Standard Mode

Plot: Radiated Transmitter spurious emission from 1 GHz – 10 GHz for the bottom channel



Standard Mode


Transmitter Radiated Emissions (continued) Standard Mode

Plot: Radiated Transmitter spurious emission from 1 GHz – 10 GHz for the middle channel

Standard Mode

Note: These plots are pre-scans and for indication purposes only. For final measurements, see accompanying table.

5.2.6. Transmitter Band Edge Radiated Emissions

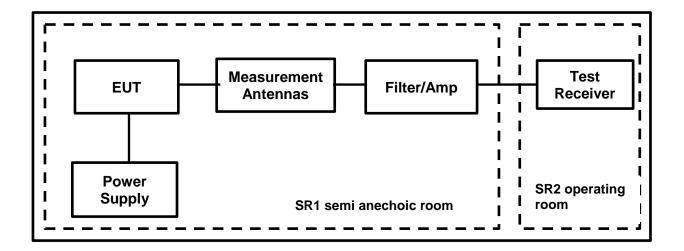
Test Summary:

Test Engineer:	Krume Ivanov Test Date: 03 September 201			
Test Sample Serial Number:	U1, U2			
Test Site Identification	SR 1/2			

FCC Reference: Part 15.247(d) & 15.209(a)	
Test Method Used:	FCC KDB 558074 Sections 8.7 referring ANSI C63.10:2013 Section 6.10.4, 6.10.5 & Section 11.11, 11.2 ,11.13

Environmental Conditions:

Temperature (°C):	25
Relative Humidity (%):	31


Note(s):

- 1. The tests were performed in a semi anechoic chamber SR1/2 (Asset Number 1603665) at a distance of 3 metres. The EUT was placed at a height of 1.5 metres above the test chamber floor in the centre of the chamber turntable. All measurement antennas were placed at a fixed height of 1.5 metres above the test chamber floor, in line with the EUT. Final measurements were performed in a semi-anechoic chamber SR1/2 (Asset Number 1603665) at a distance of 3 metres. The EUT was placed at a height of 1.5 m above the reference ground plane in the centre of the chamber turntable. Maximum emission levels were determined by height searching the measurement antenna over the range 1 metre to 4 metres.
- 2. The final measured value, for the given emission, in the table below incorporates the calibrated antenna factor and cable loss.
- 3. In accordance with FCC KDB 558074 Section 8.7; as both band edges are adjacent to non-restricted bands, only -20 dBc peak measurements are required.
- 4. The test receiver resolution bandwidth was set to 100 kHz and video bandwidth 300 kHz. A peak detector was used, sweep time was set to auto and trace mode was Max Hold. The test receiver was left to sweep for a sufficient length of time in order to maximise the carrier level and out-of-band emissions. A marker and corresponding reference level line were placed on the peak of the carrier. Marker frequencies and levels were recorded.

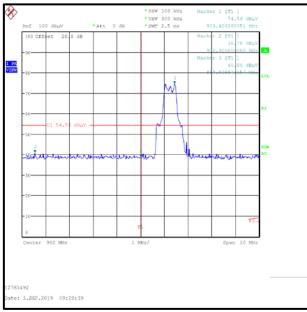
Transmitter Band Edge Radiated Emissions (Continued)

Test Setup:

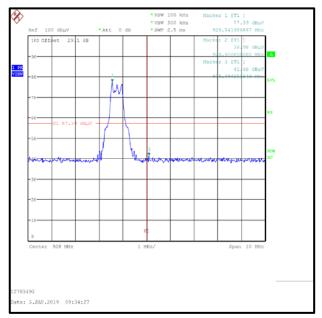
Transmitter Band Edge Radiated Emissions (Continued)

Results: Standard Mode / Lower Band Edge / Peak

Frequency (MHz)	Antenna Polarization	Peak Level (dBμV/m)	-20 dBc Limit (dBμV/m)	Margin (dB)	Result
897.528	Horizontal	40.86	54.56	13.70	Complied
902.000	Horizontal	38.70	54.56	15.86	Complied


Results: Standard Mode / Upper Band Edge / Peak

Frequency (MHz)	Antenna Polarization	Peak Level (dBμV/m)	-20 dBc Limit (dBμV/m)	Margin (dB)	Result
928.000	Horizontal	38.98	57.39	18.41	Complied
928.096	Horizontal	41.48	57.39	15.91	Complied



Transmitter Band Edge Radiated Emissions (Continued)

Results: Standard Mode

Lower Band Edge Peak Measurement

Upper Band Edge Peak Measurement

6. Measurement Uncertainty

The expression of uncertainty of a measurement result allows realistic comparison of results with reference values and limits given in specifications and standards.

The uncertainty of the result may need to be taken into account when interpreting the measurement results.

The reported expanded uncertainties below are based on a standard uncertainty multiplied by an appropriate coverage factor such that a confidence level of approximately 95% is maintained. For the purposes of this document "approximately" is interpreted as meaning "effectively" or "for most practical purposes".

Measurement Type	Confidence Level (%)	Calculated Uncertainty
Minimum 6 dB Bandwidth	95%	±0.87 %
Transmitter Duty Cycle (conducted)	95%	±3.4%
Transmitter Duty Cycle (radiated)	95%	±3.4%
Power Spectral Density	95%	±0.59 dB
Conducted Maximum Peak Output Power	95%	±0.59 dB
Radiated Spurious Emissions	95%	±3.10 dB
Band Edge Radiated Emissions	95%	±3.10 dB

The methods used to calculate the above uncertainties are in line with those recommended within the various measurement specifications. Where measurement specifications do not include guidelines for the evaluation of measurement uncertainty the published guidance of the appropriate accreditation body is followed.

7. Used equipment

Test site: SR 1/2

ID	Manufacturer	Туре	Model	Serial	Calibration Date	Cal. Cycle (months)
1	Rohde & Schwarz	Antenna, Loop	HFH2-Z2	831247/012	7/11/2019	36
377	BONN Elektronik	Amplifier, Low Noise Pre	BLMA 0118-1A	025294B	7/10/2019	12
423	Bonn Elektronik	Amplifier, Low Noise Pre	BLMA 1840-1A	55929	7/16/2019	12
460	Deisl	Turntable	DT 4250 S	n/a	n/a	n/a
465	Schwarzbeck	Antenna, Trilog Broadband	VULB 9168	9168-240	3/20/2019	24
496	Rohde & Schwarz	Antenna, log periodical	HL050	100297	2/19/2019	36
587	Maturo	antenna mast, tilting	TAM 4.0-E	011/7180311	n/a	n/a
588	Maturo	Controller	NCD	029/7180311	n/a	n/a
591	Rohde & Schwarz	Receiver	ESU 40	100244/040	7/9/2019	12
608	Rohde & Schwarz	Switch Matrix	OSP 120	101227	lab verification	n/a
628	Maturo	Antenna mast	CAM 4.0-P	224/19590716	n/a	n/a
629	Maturo	Kippeinrichtung	KE 2.5-R-M	MAT002	n/a	n/a
-/-	Testo	Thermo-Hygrometer	608-H1	01	lab verification	n/a

Test site: SR 9

ID	Manufacturer	Туре	Model	Serial	Calibration Date	Cal. Cycle (months)
423	Bonn Elektronik	Amplifier, Low Noise Pre	BLMA 1840-1A	55929	7/16/2019	12
445	Huber & Suhner	RF Attenuator (10dB)	6810.17.AC		Cal Before Use	12
621	Ahlborn-Almemo	Temperatur-/ Feuchtemessgerät	MA2470-S2	H16080099	3/15/2019	12
634	Rohde & Schwarz	Wireless Devices Test System	TS8997		lab verification	12
636	Rohde & Schwarz	switching unit	OSP120	101698	7/19/2019	12
637	Rohde & Schwarz	Spectrum Analyzer	FSV40	101587	7/11/2019	12
-/-	Testo	Thermo-Hygrometer	608-H1	07	lab verification	n/a

8. Report Revision History

Version	Revision Details				
Number	Page No(s)	Clause	Details		
1.0	-	-	Initial Version		

--- END OF REPORT ---