

Test Report

Report No.:	MTi241125022-21E1
Date of issue:	2025-01-06
Applicant:	MAXAM INTERNATIONAL LIMITED
Product name:	JellieMons JELLIE O-K Karaoke Speaker
Model(s):	JLOK02
FCC ID:	2BM9WJLOK02

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	ral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sumn	nary of Test Result	8
3	Test F	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List o	f test equipment	10
5	Evalu	ation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radio	o Spectrum Matter Test Results (RF)	12
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10	Conducted Emission at AC power line	
	-	phs of the test setup	
	•	phs of the EUT	
		A: 20dB Emission Bandwidth	
		B: Maximum conducted output power	
		C: Carrier frequency separation	
Ар	pendix	CD: Time of occupancy	59
Ар	pendix	E: Number of hopping channels	68
Ар	pendix	F: Band edge measurements	71
Ар	pendix	G: Conducted Spurious Emission	77

Test Result Certification				
Applicant: MAXAM INTERNATIONAL LIMITED				
Address:	1/F Mau Lam Comm Bldg, 16-18 Mau Lam St, Jordan, Kowloon, Hong Kong			
Manufacturer:	JellieMons Co., Ltd.			
Address:	Rm606, 6/F, Building #3, COFCO Business Park, Liuxian 2nd Road, Baoan District, Shenzhen, Guangdong, China			
Product description				
Product name:	JellieMons JELLIE O-K Karaoke Speaker			
Trade mark:	JellieMons			
Model name:	JLOK02			
Series Model(s):	N/A			
Standards:	47 CFR Part 15.247			
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013			
Date of Test				
Date of test:	2024-11-16 to 2025-01-03			
Test result:	Pass			

Test Engineer	:	James Qin		
		(James Qin)		
Reviewed By	:	David. Cee		
		(David Lee)		
Approved By	:	leon chen		
		(Leon Chen)		

1 General Description

1.1 Description of the EUT

Product name:	JellieMons JELLIE O-K Karaoke Speaker			
Model name:	JLOK02			
Series Model(s):	N/A			
Model difference:	N/A			
Electrical rating:	Input: DC 5V/ 1A Battery: DC 3.7V 1200mAh			
Accessories:	Cable: USB-A to Type-C cable (0.5m)*1 Microphone*1			
Hardware version:	PCBA_A: HCJ-1899BS-2-1_VB PCBA_B: HCJ-1899BS-2-2_VB			
AC6956C: CR-X161MS-mic_gain5-TONE5_HCJ-1899_AC6956C4 Software version: K)_3c32 AD6976D: CRX 1T1-RX AD6976D (AC697N) 9350-9E52B8C4				
Test sample(s) number:	ber: MTi241125022-21S1001			
RF specification				
Bluetooth version:	V5.3			
Operating frequency range:	2402-2480 MHz			
Channel number:	79			
Modulation type:	GFSK, π/4-DQPSK			
Antenna(s) type:	PCB			
Antenna(s) gain:	-0.58dBi			
	- ·			

1.2 Description of test modes

No.	Emission test modes
Mode1	TX-GFSK(AC6956C)
Mode2	TX-π/4-DQPSK(AC6956C)
Mode3	TX-GFSK(AD6976D)
Mode4	TX-π/4-DQPSK(AD6976D)

ANT1 is AC6956C, ANT2 is AD6976D

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.Tel: 0755-88850135-1439Mobile: 131-4343-1439 (Wechat same number)Web: http://www.mtitest.cnE-mail: mti@51mti.com

Page 6 of 88

Report No.: MTi241125022-21E1

6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

Test Channel List Operation Band: 2400-2483.5 MHz

Bandwidth	Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)	(MHz)
1	2402	2441	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software: FCC Assist 1.0.2.2

For power setting, refer to below table.

Mode	2402MHz	2441MHz	2480MHz	
GFSK 10		10	10	
π/4-DQPSK	10	10	10	

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list						
Description Model Serial No. Manufacturer						
Adapter EP-TA200 / SAMSUNG						
Support cable list						
Description	Length (m)	From	То			
1	1	1	/			

1.5 Measurement uncertainty

Measurement	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	±3.1dB
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Time	±1 %
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Standard	Requirement	Result
1	Antenna requirement	47 CFR Part 15.247	47 CFR 15.203	Pass
2	Conducted Emission at AC power line	47 CFR Part 15.247	47 CFR 15.207(a)	Pass
3	20dB Bandwidth	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
4	Maximum Conducted Output Power	47 CFR Part 15.247	47 CFR 15.247(b)(1)	Pass
5	Channel Separation	47 CFR Part 15.247	47 CFR 15.247(a)(1)	Pass
6	Number of Hopping Frequencies	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
7	Dwell Time	47 CFR Part 15.247	47 CFR 15.247(a)(1)(iii)	Pass
8	RF conducted spurious emissions and band edge measurement	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Band edge emissions (Radiated)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (below 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass
11	Radiated emissions (above 1GHz)	47 CFR Part 15.247	47 CFR 15.247(d), 15.209, 15.205	Pass

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due		
	Conducted Emission at AC power line							
1	EMI Test Receiver	Rohde&schwarz	ESCI3	101368	2024-03-20	2025-03-19		
2	Artificial mains network	Schwarzbeck	NSLK 8127	183	2024-03-21	2025-03-20		
3	Artificial Mains Network	Rohde & Schwarz	ESH2-Z5	100263	2024-03-20	2025-03-19		
		Number of I [Emissions in non- 200	nel Separation Hopping Freque Owell Time -restricted freque IB Bandwidth onducted Output	ency bands				
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19		
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20		
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20		
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20		
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20		
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20		
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20		
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19		
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20		
		Band edge Emissions in frequ	emissions (Radi uency bands (ab					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19		
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16		
3	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19		
4	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20		
5	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20		
6	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16		
7	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20		
	Emissions in frequency bands (below 1GHz)							
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19		
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10		
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22		
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19		

5 Evaluation Results (Evaluation)

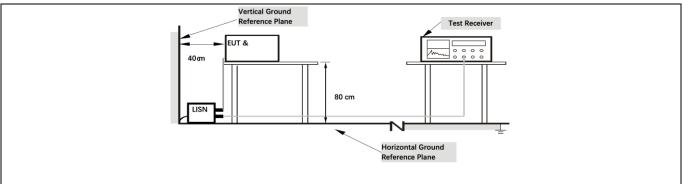
5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be
	considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

The antenna of the EUT is permanently attached. The EUT complies with the requirement of FCC PART 15.203.

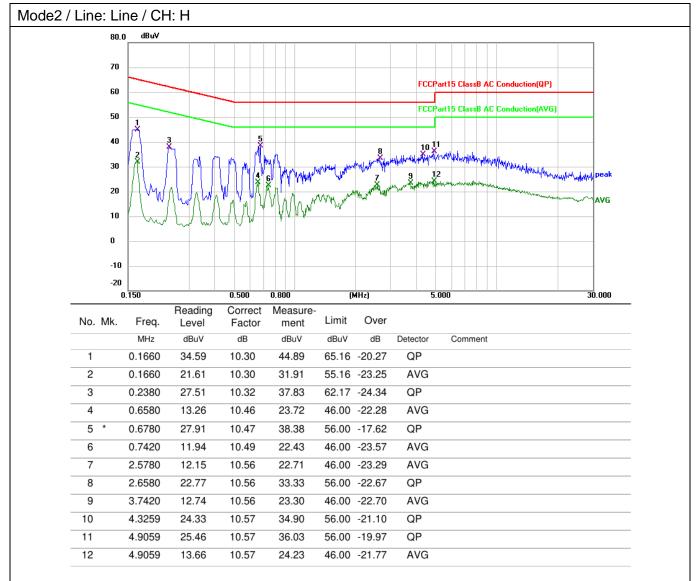
6 Radio Spectrum Matter Test Results (RF)

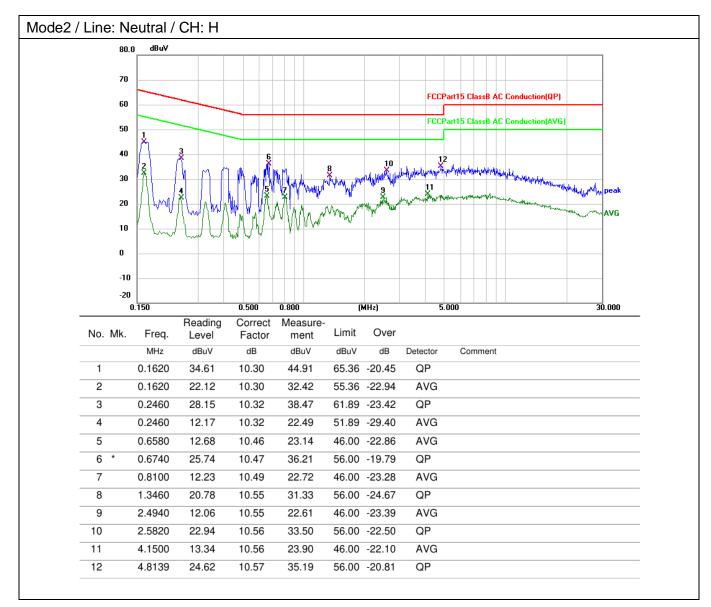

6.1 Conducted Emission at AC power line

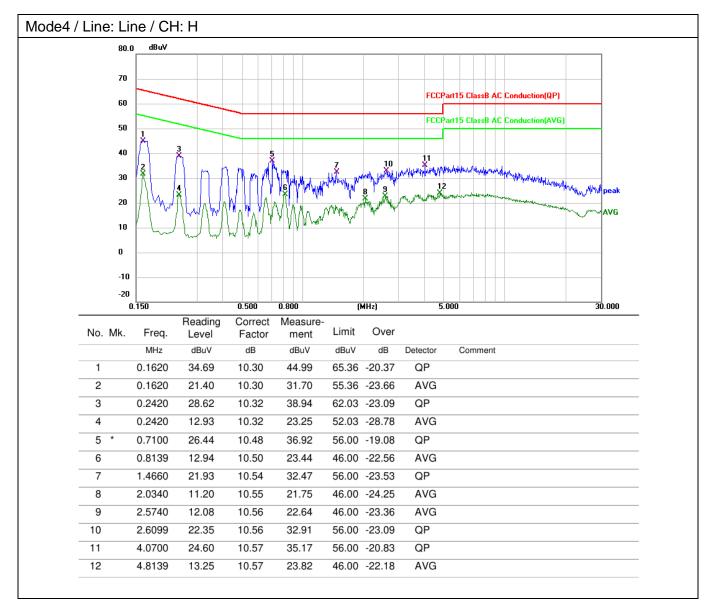
Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).					
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)					
		Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of the frequency.					
Test Method:	ANSI C63.10-2013 section 6.2					
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power- line conducted emissions from unlicensed wireless devices					

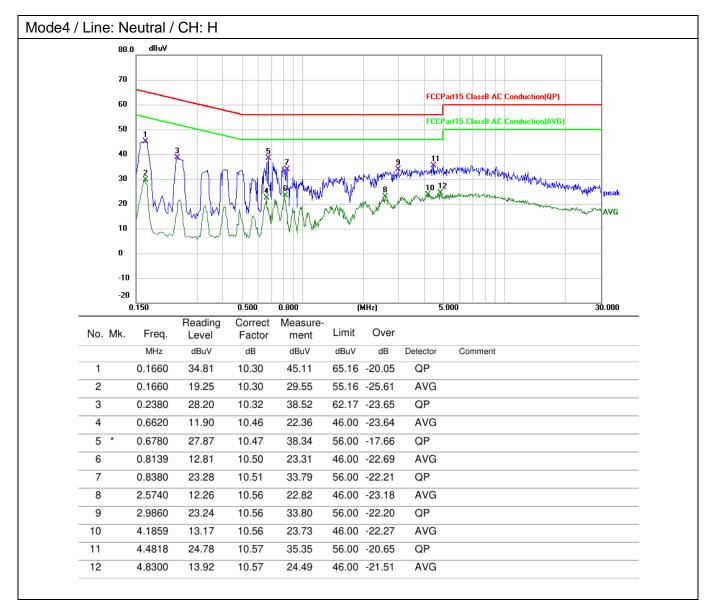
6.1.1 E.U.T. Operation:

Operating Environment:						
Temperature:	erature: 25 °C Humidity: 59 % Atmospheric Pressure: 101 kPa				101 kPa	
Pre test mode:	Mode	e1, Mode2, I	Mode3, Mode4			
Elbal test mode.			•	re-test mode w is recorded in	ere tested, only the data on the report	of the worst mode


6.1.2 Test Setup Diagram:

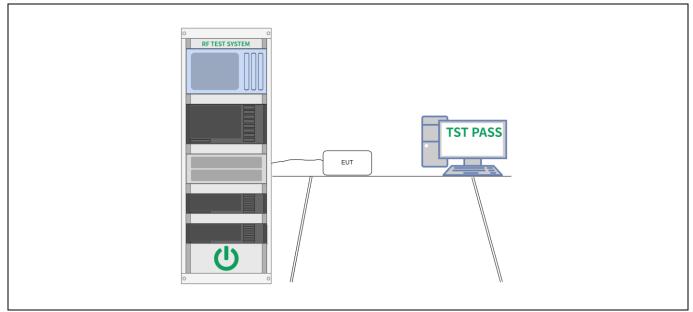



6.1.3 Test Data:



6.2 20dB Bandwidth

Test Limit: Refer to a alternativ	5.247(a)(1) 47 CFR 15.215(c), intentional radiators operating under the
alternativ	
ensure th otherwise operates section u	e provisions to the general emission limits, as contained in §§ rough 15.257 and in subpart E of this part, must be designed to at the 20 dB bandwidth of the emission, or whatever bandwidth may be specified in the specific rule section under which the equipment is contained within the frequency band designated in the rule nder which the equipment is operated.
Test Method: use the p	3.10-2013, section 7.8.7, For occupied bandwidth measurements, rocedure in 6.9.2. 074 D01 15.247 Meas Guidance v05r02
Procedure:a) The specenter free shall be to b) The no 5% of the times RB c) Set the from excor general, ti (OBW/RE d) Steps tolerance e) The dy than 10 or requirem at the set reference f) Set det g) Determ carrier or spectrum the refered h) Determ Alternativ of the ins i) If the ref the EUT trace on to Otherwiss j) Place to frequence or slightly 	ectrum analyzer center frequency is set to the nominal EUT channel equency. The span range for the EMI receiver or spectrum analyzer between two times and five times the OBW. Iminal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to e OBW and video bandwidth (VBW) shall be approximately three W, unless otherwise specified by the applicable requirement. In the peak of the instrument as required, keeping the signal beding the maximum input mixer level for linear operation. In the peak of the spectral envelope shall be more than [10 log BW)] below the reference level. Specific guidance is given in 4.1.5.2. (a) through c) might require iteration to adjust within the specified s. Inamic range of the instrument at the selected RBW shall be more B below the target "-xx dB down" requirement; that is, if the ent calls for measuring the -20 dB OBW, the instrument noise floor ected RBW shall be at least 30 dB below the a value. ection mode to peak and trace mode to max hold. nine the reference value: Set the EUT to transmit an unmodulated modulated signal, as applicable. Allow the trace to stabilize. Set the analyzer marker to the highest level of the displayed trace (this is ence value). nine the "-xx dB down amplitude" using [(reference value) – xx]. ely, this calculation may be made by using the marker-delta function


Page 18 of 88

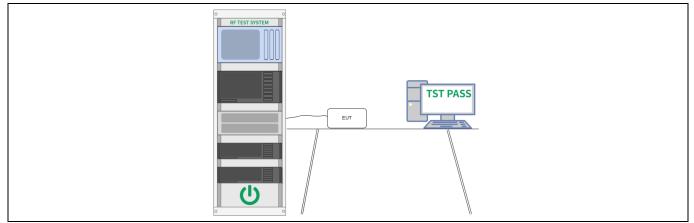
plot(s).

6.2.1 E.U.T. Operation:

Operating Envi	Operating Environment:						
Temperature:	25 °C		Humidity:	59 %		Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3,	Mode4		
Final test mode:		Mode	e1, Mode2,	Mode3,	Mode4		

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Maximum Conducted Output Power

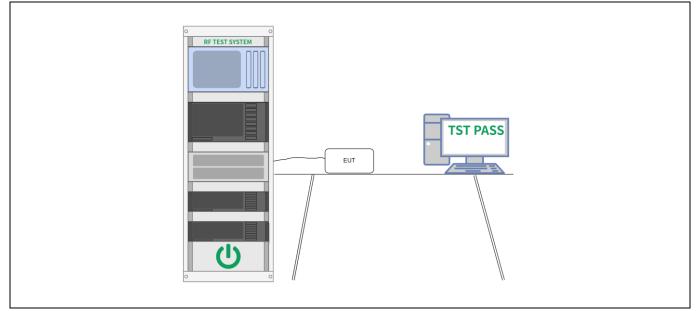
Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

6.3.1 E.U.T. Operation:

Operating Environment:						
Temperature:	25 °C Humidity: 59 % Atmospheric Pressure: 101 kPa				101 kPa	
Pre test mode:		Mode	e1, Mode2, I	Mode3, Mode4		
Final test mode: Mod		Mode	e1, Mode2,	Mode3, Mode4		

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Channel Separation

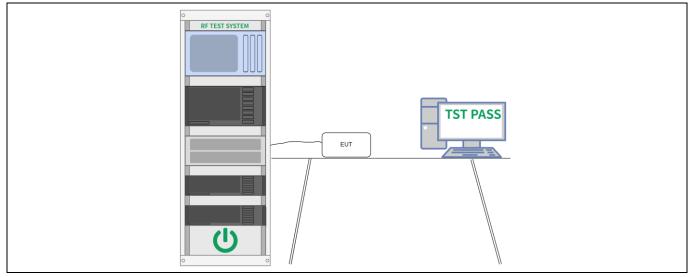
Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.4.1 E.U.T. Operation:

Operating Environment:										
Temperature: 25 °C Humidity: 59 % Atmospheric Pressure: 101 kPa										
Pre test mode:	Mode1, Mode2,	Mode3, Mode4								
Final test mode:	Mode1, Mode2,	Mode3, Mode4								

6.4.2 Test Setup Diagram:

6.4.3 Test Data:


6.5 Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

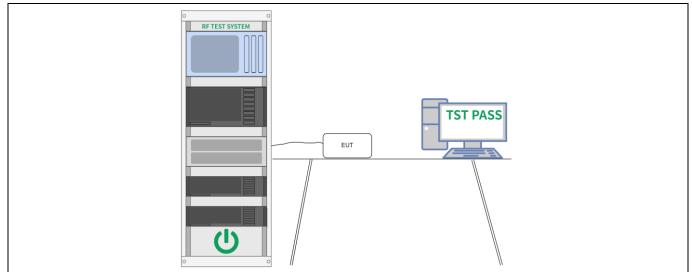
6.5.1 E.U.T. Operation:

Operating Environment:									
Temperature:	25 °C		Humidity:	59 %	At	tmospheric Pressure:	101 kPa		
Pre test mode:		Mode	e1, Mode2,	Mode3, N	lode4				
Final test mode	e:	Mode	e1, Mode2,	Mode3, N	lode4				

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

6.6 Dwell Time

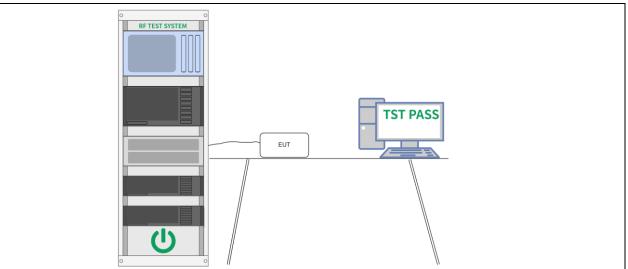

Test Requirement: Test Limit:	47 CFR 15.247(a)(1)(iii) Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400- 2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels
	are used.
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops in the period specified in the requirements, analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transm

6.6.1 E.U.T. Operation:

Operating Envi	ronment:					
Temperature:	25 °C		Humidity:	59 %	Atmospheric Pressure:	101 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3, Mode4		
Final test mode	e:	Mode	e1, Mode2,	Mode3, Mode4		

6.6.2 Test Setup Diagram:

6.6.3 Test Data:


6.7 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

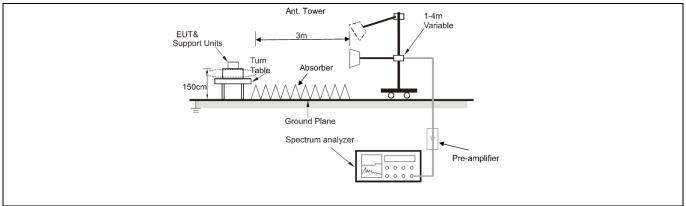
6.7.1 E.U.T. Operation:

Operating Environment:										
Temperature:	25 °C		Humidity:	59 %		Atmospheric Pressure:	101 kPa			
Pre test mode:		Mode	e1, Mode2,	Mode3, N	lode4					
Final test mode	e:	Mode	e1, Mode2,	Mode3, N	lode4					

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

6.8 Band edge emissions (Radiated)


Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(see	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamenta erating under this section sh 2 MHz, 76-88 MHz, 174-216 thin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employing	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	tion 6.10 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	ction 6.10.5.2	

6.8.1 E.U.T. Operation:

Operating Env	Operating Environment:									
Temperature:26 °CHumidity:56 %Atmospheric Pressure:101 kPa										
Pre test mode:		Mod	e1, Mode2,	Mode3, Mode4						
Final test mode	e:			re-test mode w is recorded in	ere tested, only the data the report	of the worst mode				
Note:										

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.8.2 Test Setup Diagram:

6.8.3 Test Data:

Mode2 / Polarization: Horizontal / CH: L										
	No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_	
	1	2310.000	46.69	-4.83	41.86	74.00	-32.14	peak	_	
	2	2310.000	37.80	-4.83	32.97	54.00	-21.03	AVG	_	
	3	2390.000	48.70	-4.31	44.39	74.00	-29.61	peak	-	
	4 *	2390.000	39.17	-4.31	34.86	54.00	-19.14	AVG	-	

Mode2 / Polarization: Vertical / CH: L

<u>z</u> /	FUIAITZ	alion							
	No. M	٧k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	2	310.000	47.13	-4.83	42.30	74.00	-31.70	peak
	2	2	310.000	37.91	-4.83	33.08	54.00	-20.92	AVG
	3	2	390.000	47.80	-4.31	43.49	74.00	-30.51	peak
	4 '	* 2	390.000	38.10	-4.31	33.79	54.00	-20.21	AVG

Mode2	Mode2 / Polarization: Horizontal / CH: H											
	No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over					
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector				
	1	2483.500	48.07	-4.21	43.86	74.00	-30.14	peak				
	2	2483.500	38.99	-4.21	34.78	54.00	-19.22	AVG				
	3	2500.000	49.33	-4.10	45.23	74.00	-28.77	peak				
	4 *	2500.000	39.77	-4.10	35.67	54.00	-18.33	AVG				

Mode2 /	Polari	izatio	on: Vertical /	CH: H						
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_
	1		2483.500	47.19	-4.21	42.98	74.00	-31.02	peak	_
	2		2483.500	38.01	-4.21	33.80	54.00	-20.20	AVG	-
	3		2500.000	50.27	-4.10	46.17	74.00	-27.83	peak	-
	4	*	2500.000	38.44	-4.10	34.34	54.00	-19.66	AVG	_

dB

-31.91

-20.95

-30.88

54.00 -20.11

Detector

peak

AVG

peak

AVG

dBuV/m

74.00

54.00

74.00

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector		
1	2310.000	46.86	-4.83	42.03	74.00	-31.97	peak		
2	2310.000	37.53	-4.83	32.70	54.00	-21.30	AVG		
3	2390.000	47.94	-4.31	43.63	74.00	-30.37	peak		
4 *	2390.000	38.70	-4.31	34.39	54.00	-19.61	AVG		
	I / Polarization: Vertical / CH: L								

dB

-4.83

-4.83

-4.31

-4.31

dBuV/m

42.09

33.05

43.12

33.89

dBuV

46.92

37.88

47.43

38.20

MHz

2310.000

2310.000

2390.000

2390.000

1

2

3

4

*

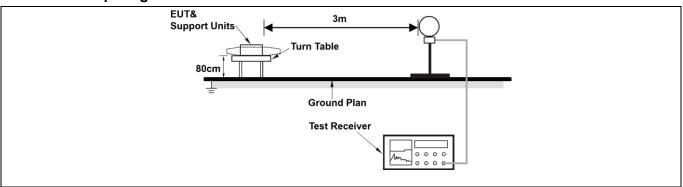
Mode4 / Polarization: Horizontal / CH: H										
	No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector		
	1	2483.500	48.11	-4.21	43.90	74.00	-30.10	peak		
	2	2483.500	38.33	-4.21	34.12	54.00	-19.88	AVG		
	3	2500.000	48.23	-4.10	44.13	74.00	-29.87	peak		
	4 *	2500.000	38.56	-4.10	34.46	54.00	-19.54	AVG		

Mode4 /	Polari	zatio	n: Vertical /	CH: H						
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	-
	1		2483.500	48.03	-4.21	43.82	74.00	-30.18	peak	-
	2		2483.500	37.86	-4.21	33.65	54.00	-20.35	AVG	-
	3		2500.000	47.33	-4.10	43.23	74.00	-30.77	peak	-
	4	*	2500.000	37.83	-4.10	33.73	54.00	-20.27	AVG	-

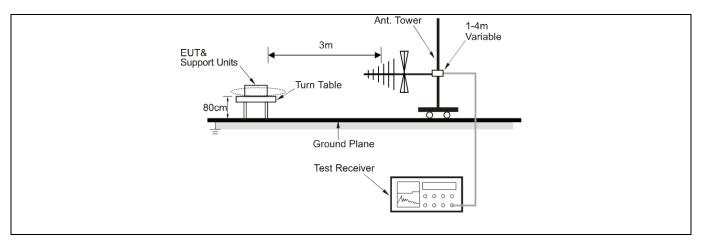
6.9 Radiated emissions (below 1GHz)

Test Requirement:	Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).`						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 						
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02						
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4					

6.9.1 E.U.T. Operation:

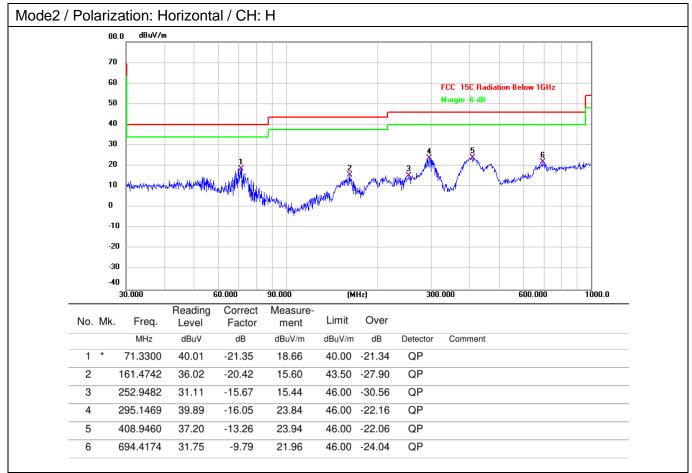

Operating Environment:									
Temperature:	26 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa			
Pre test mode:	Pre test mode:			Mode1, Mode2, Mode3, Mode4					
Final test mode:		All of the listed pre-test mode were tested, only the data of the worst mode (Mode2, Mode4) is recorded in the report							
Noto:									

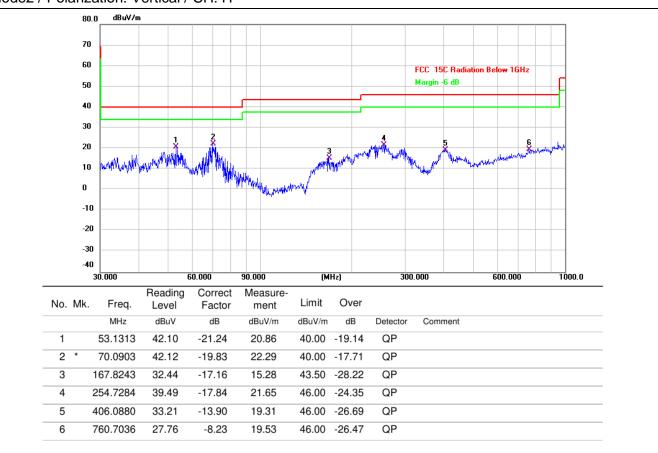
Note:


The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

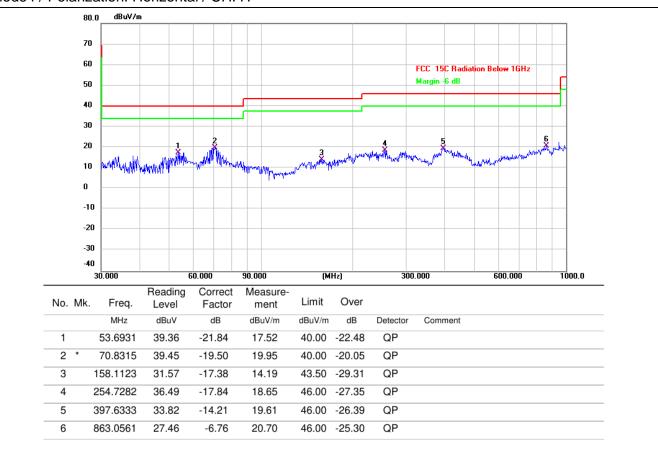
All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

6.9.2 Test Setup Diagram:

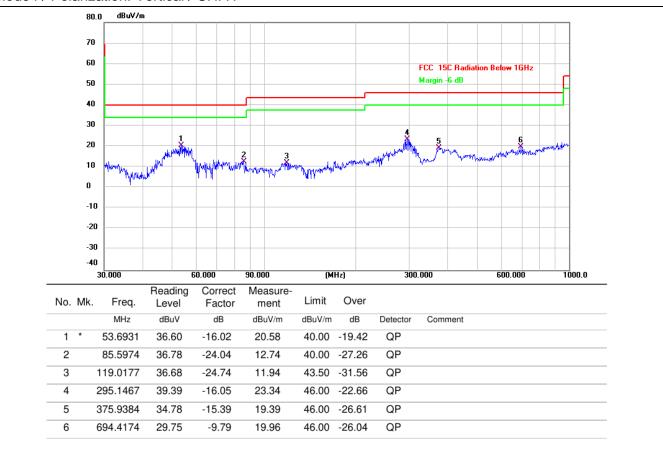




6.9.3 Test Data:



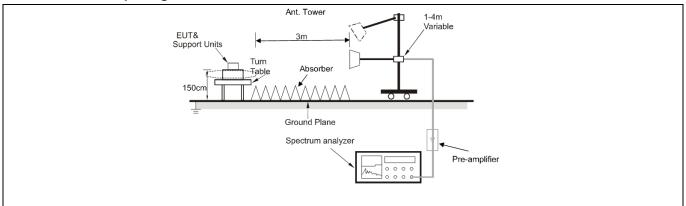
Mode2 / Polarization: Vertical / CH: H



Mode4 / Polarization: Horizontal / CH: H

Mode4 / Polarization: Vertical / CH: H

6.10 Radiated emissions (above 1GHz)


Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30	1				
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. 							
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02							
Procedure:	ANSI C63.10-2013 see	ction 6.6.4						

6.10.1 E.U.T. Operation:

Operating Environment:							
Temperature:	26 °C		Humidity:	56 %	Atmospheric Pressure:	101 kPa	
Pre test mode:		Mode	e1, Mode2, I	Mode3, Mode4			
Final test mode:		All of the listed pre-test mode were tested, only the data of the worst mode (Mode2, Mode4) is recorded in the report					
Note: Test frequency are from 1GHz to 25GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.							

All modes of operation of the EUT were investigated, and only the worst-case results are reported.

6.10.2 Test Setup Diagram:

6.10.3 Test Data:

Mode2 /	Polari	zatio	n: Horizonta	al / CH: L						
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_
	1		4804.000	45.02	0.53	45.55	74.00	-28.45	peak	-
-	2		4804.000	39.12	0.53	39.65	54.00	-14.35	AVG	-
	3		7206.000	43.30	7.90	51.20	74.00	-22.80	peak	-
	4		7206.000	37.57	7.90	45.47	54.00	-8.53	AVG	-
	5		9608.000	44.95	8.85	53.80	74.00	-20.20	peak	
	6	*	9608.000	38.77	8.85	47.62	54.00	-6.38	AVG	

Mada2 /	Delerization	Vartical /	<u>сц. і</u>
wodez /	Polarization:	ventical /	CH: L

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	45.20	0.53	45.73	74.00	-28.27	peak
2		4804.000	39.01	0.53	39.54	54.00	-14.46	AVG
3		7206.000	42.79	7.90	50.69	74.00	-23.31	peak
4	,	7206.000	36.84	7.90	44.74	54.00	-9.26	AVG
5		9608.000	44.75	8.85	53.60	74.00	-20.40	peak
6	*	9608.000	38.80	8.85	47.65	54.00	-6.35	AVG

Mada2 / Dalar	izotio	n. Harizant							
Mode2 / Polar	Izatic								
No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	_
1		4882.000	45.73	0.57	46.30	74.00	-27.70	peak	-
2		4882.000	39.79	0.57	40.36	54.00	-13.64	AVG	-
3		7323.000	43.91	7.57	51.48	74.00	-22.52	peak	-
4		7323.000	38.12	7.57	45.69	54.00	-8.31	AVG	-
5		9764.000	44.13	9.33	53.46	74.00	-20.54	peak	-
6	*	9764.000	38.24	9.33	47.57	54.00	-6.43	AVG	-

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detecto
1		4882.000	45.62	0.57	46.19	74.00	-27.81	peak
2		4882.000	39.75	0.57	40.32	54.00	-13.68	AVG
3		7323.000	42.40	7.57	49.97	74.00	-24.03	peak
4		7323.000	35.64	7.57	43.21	54.00	-10.79	AVG
5		9764.000	44.38	9.33	53.71	74.00	-20.29	peak
6	*	9764.000	38.23	9.33	47.56	54.00	-6.44	AVG

Mode2 / F	Polari	zatio	n: Horizonta	al / CH: H						
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		4960.000	47.47	0.66	48.13	74.00	-25.87	peak	
	2		4960.000	41.70	0.66	42.36	54.00	-11.64	AVG	_
	3		7440.000	43.17	7.94	51.11	74.00	-22.89	peak	
	4		7440.000	37.53	7.94	45.47	54.00	-8.53	AVG	
_	5		9920.000	44.45	9.69	54.14	74.00	-19.86	peak	
	6	*	9920.000	38.93	9.69	48.62	54.00	-5.38	AVG	

No. N	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	4960.000	46.27	0.66	46.93	74.00	-27.07	peak
2	4960.000	39.70	0.66	40.36	54.00	-13.64	AVG
3	7440.000	42.82	7.94	50.76	74.00	-23.24	peak
4	7440.000	36.64	7.94	44.58	54.00	-9.42	AVG
5	9920.000	43.41	9.69	53.10	74.00	-20.90	peak
6 *	9920.000	37.57	9.69	47.26	54.00	-6.74	AVG

Mode4 /	Polari	zatic	on: Horizonta	al / CH: L						
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1		4804.000	44.72	0.53	45.25	74.00	-28.75	peak	
	2		4804.000	39.09	0.53	39.62	54.00	-14.38	AVG	
	3		7206.000	42.63	7.90	50.53	74.00	-23.47	peak	
	4		7206.000	36.67	7.90	44.57	54.00	-9.43	AVG	
	5		9608.000	44.16	8.85	53.01	74.00	-20.99	peak	
	6	*	9608.000	38.41	8.85	47.26	54.00	-6.74	AVG	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	45.87	0.53	46.40	74.00	-27.60	peak
2		4804.000	39.83	0.53	40.36	54.00	-13.64	AVG
3		7206.000	43.11	7.90	51.01	74.00	-22.99	peak
4		7206.000	37.57	7.90	45.47	54.00	-8.53	AVG
5		9608.000	45.60	8.85	54.45	74.00	-19.55	peak
6	*	9608.000	39.77	8.85	48.62	54.00	-5.38	AVG

No.	Mk.	Freq.	al / CH: M Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	43.09	0.57	43.66	74.00	-30.34	peak
2		4882.000	36.99	0.57	37.56	54.00	-16.44	AVG
3		7323.000	42.91	7.57	50.48	74.00	-23.52	peak
4		7323.000	36.90	7.57	44.47	54.00	-9.53	AVG
5		9764.000	43.65	9.33	52.98	74.00	-21.02	peak
6	*	9764.000	37.26	9.33	46.59	54.00	-7.41	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4882.000	45.13	0.57	45.70	74.00	-28.30	peak
2		4882.000	39.05	0.57	39.62	54.00	-14.38	AVG
3		7323.000	43.54	7.57	51.11	74.00	-22.89	peak
4		7323.000	37.90	7.57	45.47	54.00	-8.53	AVG
5		9764.000	43.97	9.33	53.30	74.00	-20.70	peak
6	*	9764.000	38.26	9.33	47.59	54.00	-6.41	AVG

Mode4 / Pola	rizatio	on: Horizonta	al / CH: H					
No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	43.63	0.66	44.29	74.00	-29.71	peak
2		4960.000	37.81	0.66	38.47	54.00	-15.53	AVG
3		7440.000	43.27	7.94	51.21	74.00	-22.79	peak
4		7440.000	37.52	7.94	45.46	54.00	-8.54	AVG
5		9920.000	44.38	9.69	54.07	74.00	-19.93	peak
6	*	9920.000	38.93	9.69	48.62	54.00	-5.38	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	47.39	0.66	48.05	74.00	-25.95	peak
2		4960.000	41.66	0.66	42.32	54.00	-11.68	AVG
3		7440.000	43.25	7.94	51.19	74.00	-22.81	peak
4		7440.000	37.53	7.94	45.47	54.00	-8.53	AVG
5		9920.000	44.18	9.69	53.87	74.00	-20.13	peak
6	*	9920.000	37.90	9.69	47.59	54.00	-6.41	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Page 44 of 88

Photographs of the EUT

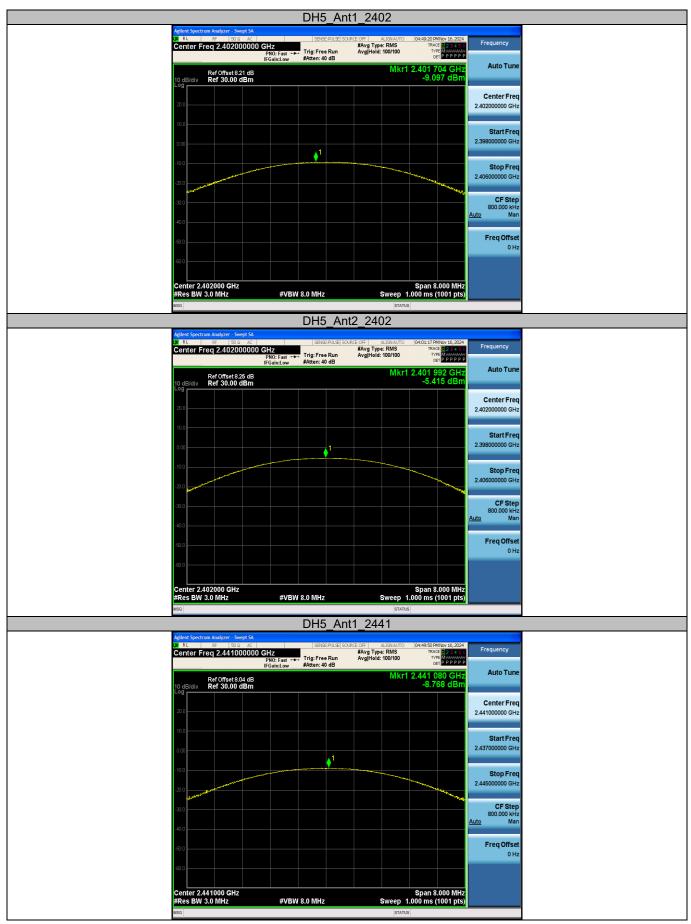
Refer to Appendix - EUT Photos

Appendix

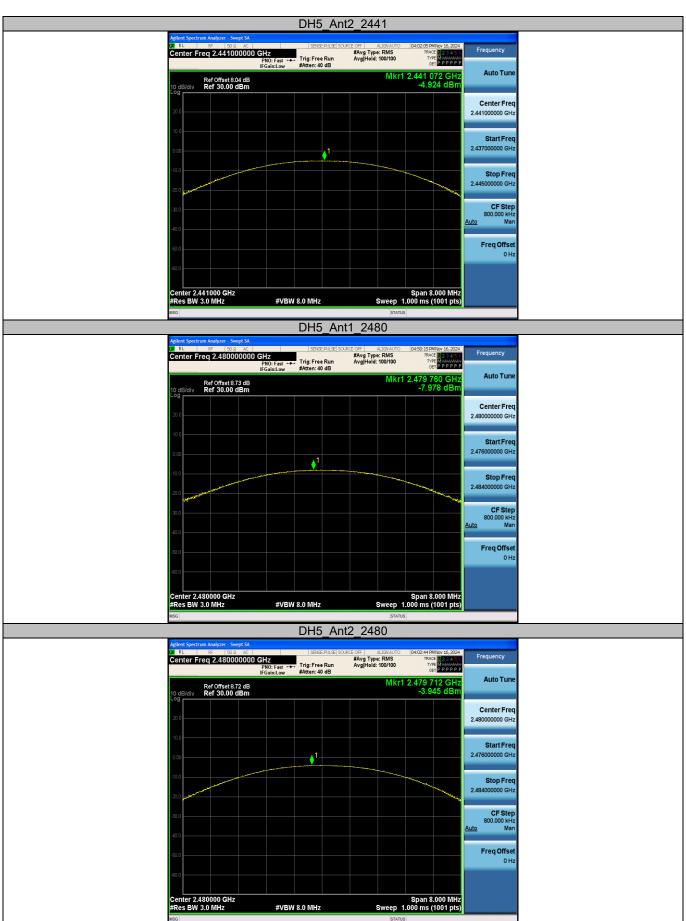
Appendix A: 20dB Emission Bandwidth

Test Result

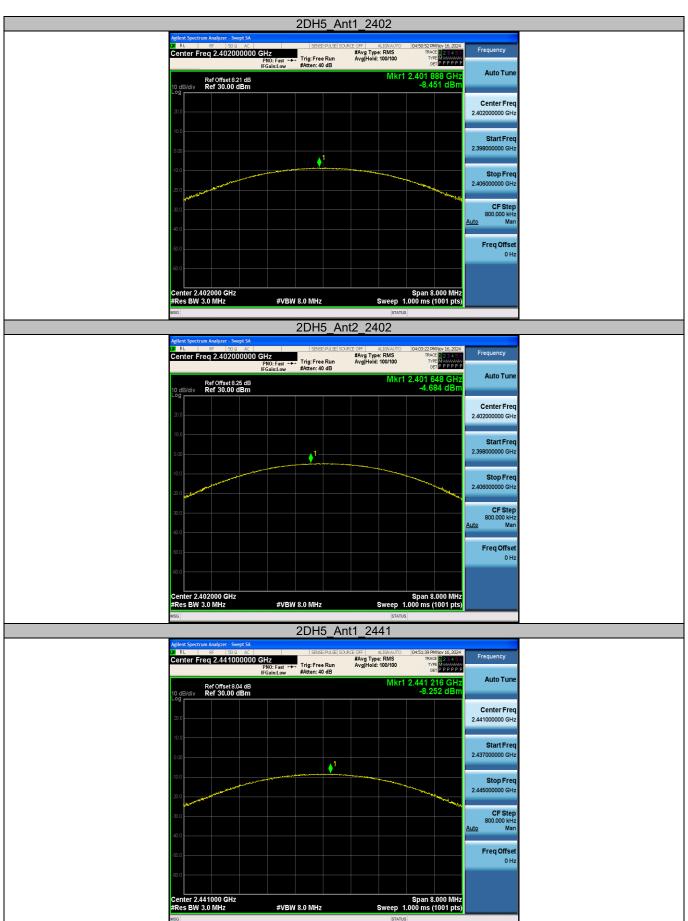
Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]
	Ant1	2402	0.942
	Ant2	2402	0.936
DH5	Ant1	2441	0.966
DHS	Ant2	2441	0.954
	Ant1	2480	0.957
	Ant2	2480	0.942
	Ant1	2402	1.314
	Ant2	2402	1.284
	Ant1	2441	1.314
2DH5	Ant2	2441	1.287
	Ant1	2480	1.290
	Ant2	2480	1.317

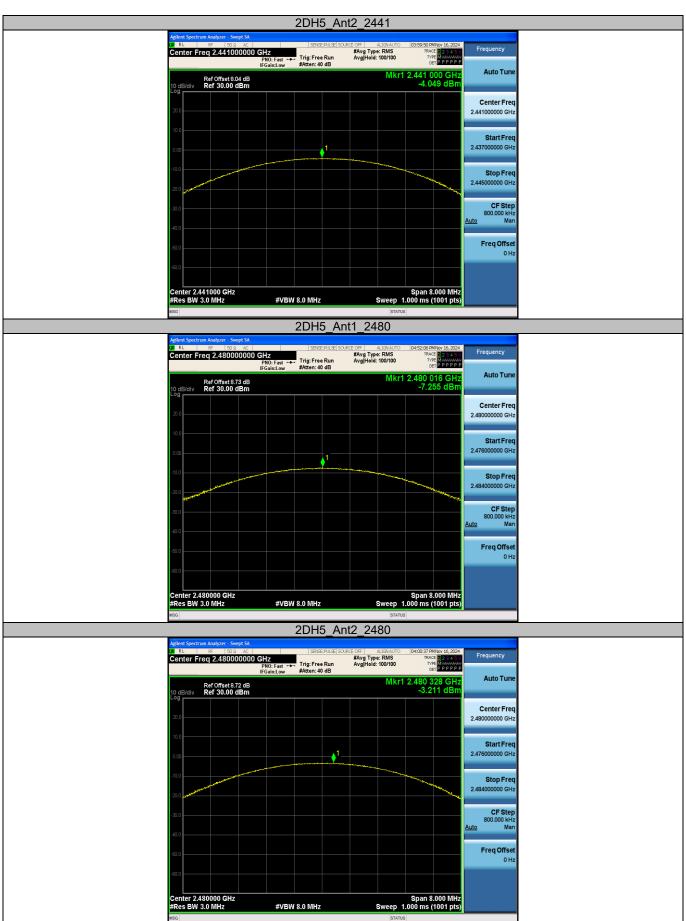


Appendix B: Maximum conducted output power


Test Result Peak

Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
	Ant1	2402	-9.10	≤20.97	PASS
	Ant2	2402	-5.42	≤20.97	PASS
DH5	Ant1	2441	-8.77	≤20.97	PASS
DHO	Ant2	2441	-4.92	≤20.97	PASS
	Ant1	2480	-7.98	≤20.97	PASS
	Ant2	2480	-3.95	≤20.97	PASS
	Ant1	2402	-8.45	≤20.97	PASS
	Ant2	2402	-4.68	≤20.97	PASS
	Ant1	2441	-8.25	≤20.97	PASS
2DH5	Ant2	2441	-4.05	≤20.97	PASS
	Ant1	2480	-7.26	≤20.97	PASS
	Ant2	2480	-3.21	≤20.97	PASS





Appendix C: Carrier frequency separation

Test Result

Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
DH5	Ant1	Нор	1.006	≥0.966	PASS
DHO	Ant2	Нор	1.328	≥0.954	PASS
2DH5	Ant1	Нор	1	≥0.876	PASS
ZDHQ	Ant2	Нор	1.33	≥1.317	PASS

			2DH5_	Ant2_I	Нор		
Agilent Spect	trum Analyzer - Swept SA						
LXI RL	RF 50 Q AC		SENSE:PULSE	SOURCE OFF	ALIGNAUTO	03:17:22 PMNov 16, 2024	-
Start Fre	g 2.440500000 G	Hz			Type: RMS	TRACE 1 2 3 4 5 6	Freq
		PNO: Fast +++ IFGain:Low	Trig: Free Run #Atten: 40 dB	Avg H	old: 5000/5000	DET PPPPP	
	Ref Offset 8.04 dB				ΔN	1kr2 1.330 MHz	A

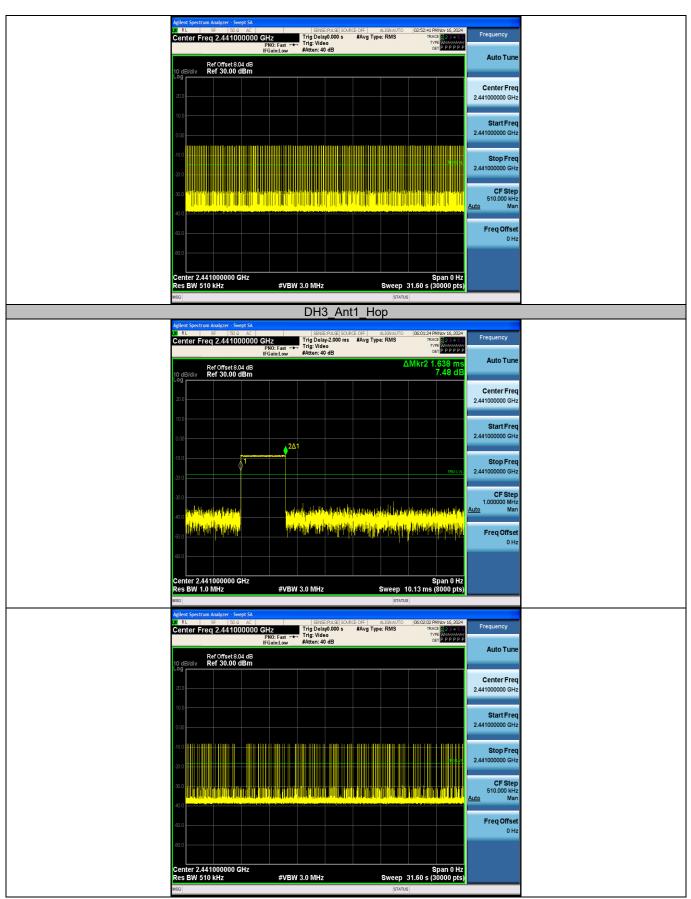
Start I I S	q 2.44000		PNO: Fast 🔸 FGain:Low	Trig: Fre #Atten: 4	e Run 0 dB	Avg Hold	5000/5000	TYP	E MWWWWW T P P P P P P	
10 dB/div Log	Ref Offset Ref 30.00	8.04 dB) dBm					ΔN	1kr2 1.3 0.	30 MHz .030 dB	Auto Tune
20.0										Center Freq 2.441500000 GHz
10.0										Start Freq
0.00		Σ1						●2∆1		2.440500000 GHz
-10.0										Stop Freq 2.442500000 GHz
-30.0										CF Step 200.000 kHz
-40.0										<u>Auto</u> Man
-50.0										Freq Offset 0 Hz
-60.0										
Start 2.44 #Res BW			#VBW	/ 300 kHz			Sweep 1	top 2.442 .000 ms (1	2500 GHz 1001 pts)	
MSG							STATUS			

Appendix D: Time of occupancy

Test Result

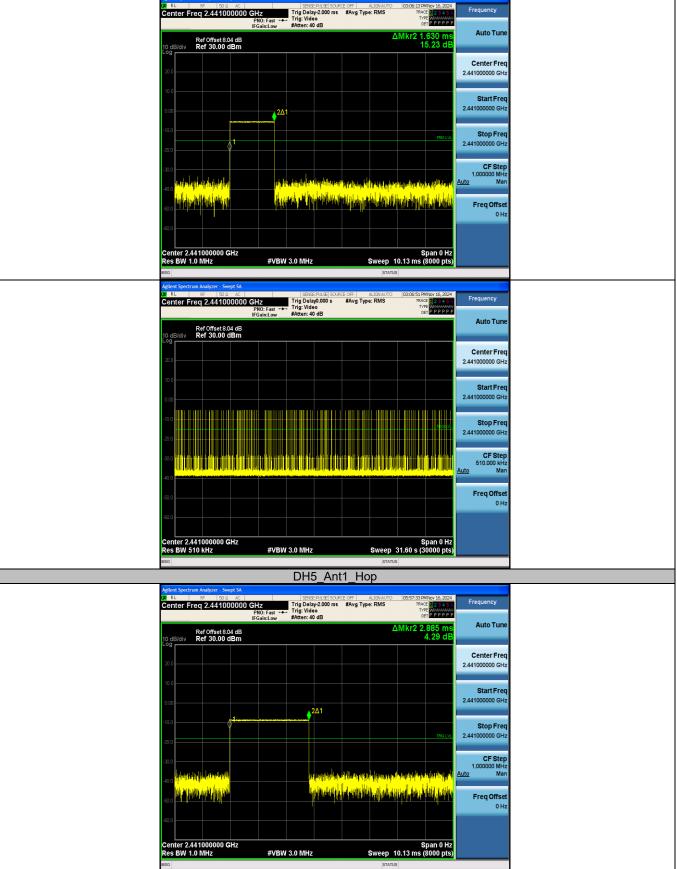
Test Mode	Antenna	Frequency [MHz]	BurstWidth [ms]	Hops in 31.6s [Num]	Result [s]	Limit [s]	Verdict
DH1	Ant1	Нор	0.381	319	0.122	≤0.4	PASS
UNI	Ant2	Нор	0.375	319	0.12	≤0.4	PASS
DH3	Ant1	Нор	1.638	163	0.267	≤0.4	PASS
DHS	Ant2	Нор	1.630	153	0.249	≤0.4	PASS
DH5	Ant1	Нор	2.885	114	0.329	≤0.4	PASS
DHO	Ant2	Нор	2.878	106	0.305	≤0.4	PASS
2DH1	Ant1	Нор	0.391	319	0.125	≤0.4	PASS
2001	Ant2	Нор	0.384	318	0.122	≤0.4	PASS
2DH3	Ant1	Нор	1.643	163	0.268	≤0.4	PASS
ZDH3	Ant2	Нор	1.637	156	0.255	≤0.4	PASS
2DH5	Ant1	Нор	2.891	107	0.309	≤0.4	PASS
ZDHO	Ant2	Нор	2.888	121	0.349	≤0.4	PASS

Notes:

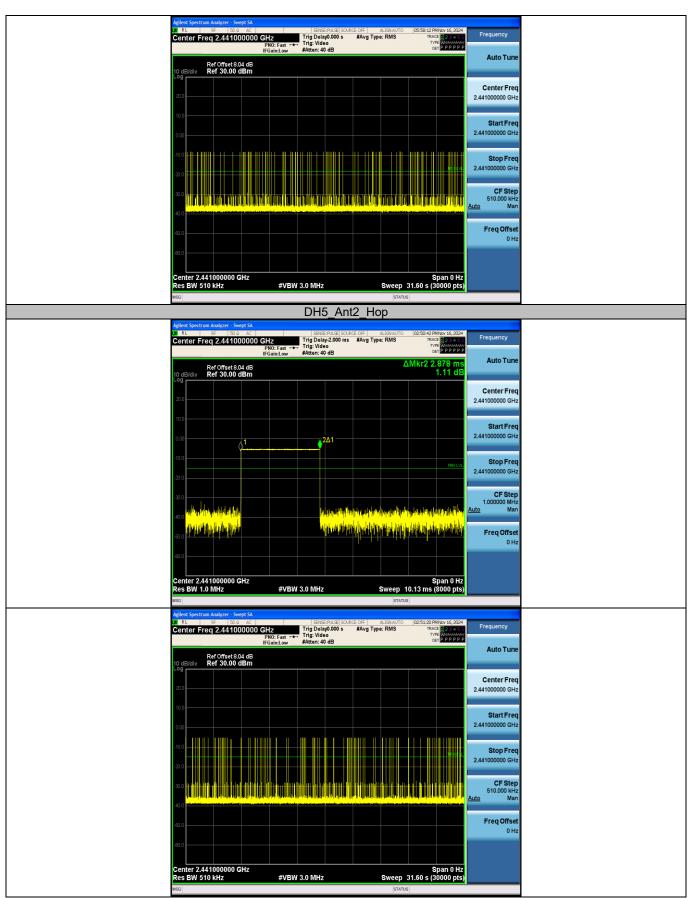

1. Period time = 0.4s * 79 = 31.6s

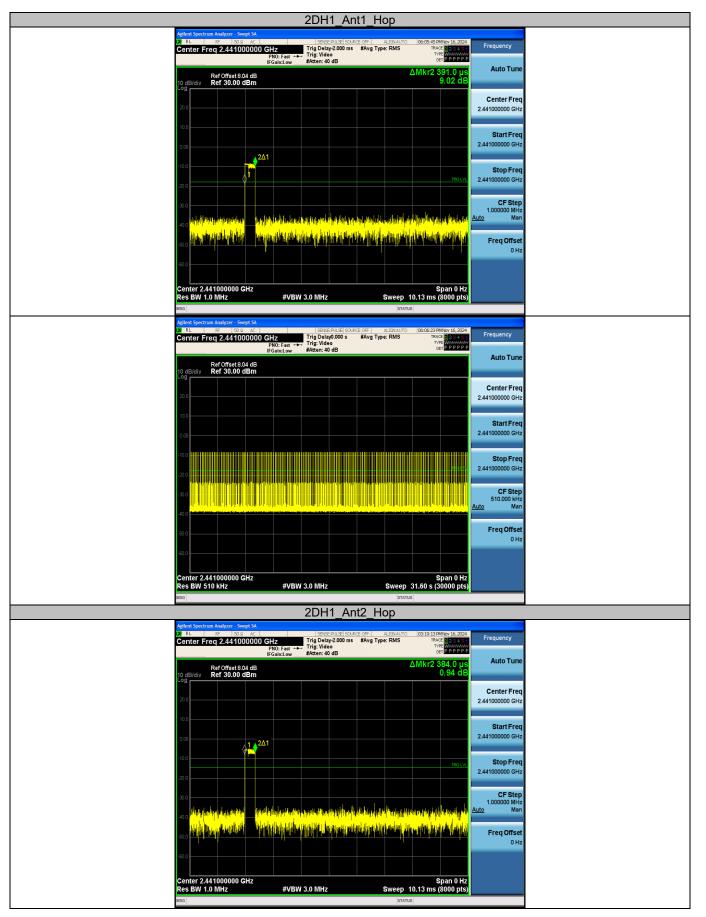
2. Result (Time of occupancy) = BurstWidth[ms] * Hops in 31.6s [Num]

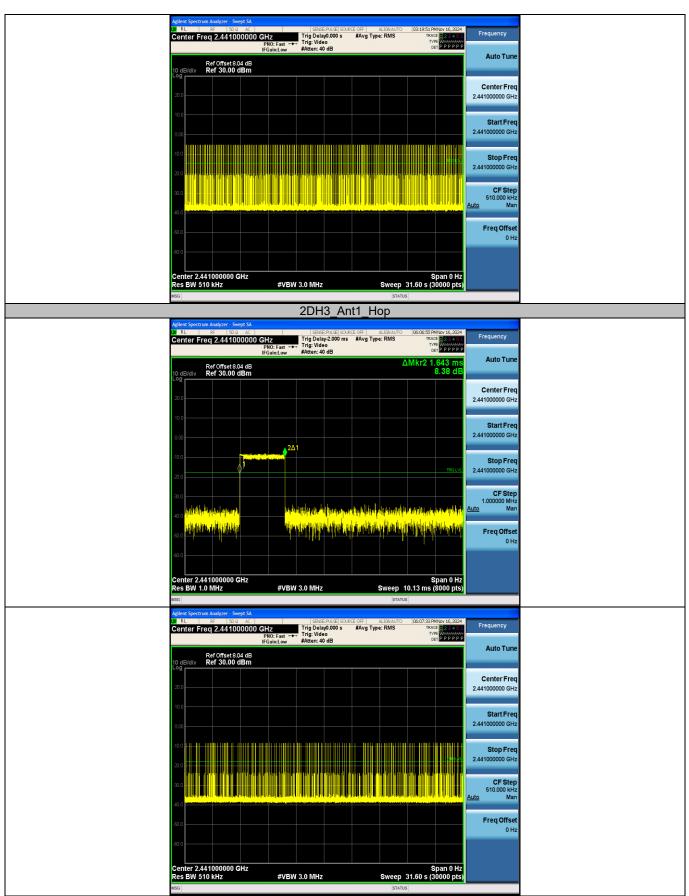
	DH1_An	t1_Hop		
00		RCE OFF ALIGNAUTO 05:59:32 PMNov 16, 2024	Frequency	
Ce	nter Freq 2.441000000 GHz PN0: Fast +++ IFGain:Low #Atten: 40 dB	#Avg Type: RMS TRACE 12345 G TYPE TYPE TRACE 12345 G TYPE TYPE TRACE 12345 G		
	Ref Offset 8.04 dB	∆Mkr2 381.0 µs 3.36 dB	Auto Tune	
	dB/div Ref 30.00 dBm	0.00 02	Center Freq	
20			2.441000000 GHz	
10.	0		Start Freq	
0.0			2.441000000 GHz	
-10.0	ο ο2Δ1		Stop Frag	
		TRIG LVL	Stop Freq 2.441000000 GHz	
			CF Step	
	Adapatha dara ar gala alar da ang ang ala katika ang ang ang ang ang ang ang ang ang an	ela kenom ilo den dala kan h	1.000000 MHz Auto Man	
-40.0	Here Sheetsald - Arbienthington United	and a second	5	
-50.0		ond discussion and the second s	Freq Offset 0 Hz	
-60.0	o			
Ce	nter 2.441000000 GHz	Span 0 Hz		
	s BW 1.0 MHz #VBW 3.0 MHz	Sweep 10.13 ms (8000 pts)		
	ent Spectrum Analyzer - Swept SA			
	Tria Delav0.000 cl In Tria Delav0.000 c	RCE OFF ALIGNAUTO 06:00:10 PMNov 16, 2024 #Avg Type: RMS TRACE 23456 TYPE	Frequency	
	PN0: Fast	DETPPPP	Auto Tune	
10 d Log	Ref Offset 8.04 dB dB/div Ref 30.00 dBm			
20	0		Center Freq 2.441000000 GHz	
			2.44100000 GH2	
10.			Start Freq 2.441000000 GHz	
0.0	0		2.44100000 GH2	
-10.0			Stop Freq	
-20.0	0		2.441000000 GHz	
-30.0		a na ang ang ang ang ang ang ang ang ang	CF Step 510.000 kHz	
-40.0	Construction of the second se second second sec		<u>Auto</u> Man	
-60.0	o		FreqOffset	
-80			0 Hz	
Ce Res	nter 2.441000000 GHz s BW 510 kHz #VBW 3.0 MHz	Span 0 Hz Sweep 31.60 s (30000 pts)		
MSG		STATUS		
	DH1_An	t2_Hop		
	ent Spectrum Analyzer - Swept SA RL RF 50 Q AC SENSE-PULSE SOU nter Freq 2.441000000 GHz Trig Delay-2.000 ms	#Avg Type: RMS TRACE 123456	Frequency	
	PN0: Fast + Trig: Video IFGain:Low #Atten: 40 dB	DETPPPP	Auto Tune	
10 0	Ref Offset 8.04 dB dB/div Ref 30.00 dBm	ΔMkr2 375.0 μs 5.22 dB	Auto Tune	
Log			Center Freq	
20.			2.441000000 GHz	
10			Start Freq	
0.0	2Δ1		2.441000000 GHz	
-10.0		TRIG LVL	Stop Freq	
-20.0			2.441000000 GHz	
-30.0			CF Step	
	, <mark>to a second develop to the subscripted of the balance of the second second second second second second second</mark>	an phane dimension in particular de la constante	1.000000 MHz <u>Auto</u> Man	
-40.0	wolland line Independent of the letter of the second	A Addressed Arnesia or Address and the SA Underney Andresia be at	Freq Offset	
-50.0			0 Hz	
-60.0				
	nter 2.441000000 GHz	Span 0 Hz		
Ret	s BW 1.0 MHz #VBW 3.0 MHz	Sweep 10.13 ms (8000 pts) STATUS		


Page 62 of 88

Frequency







Page 64 of 88

