FCC Test Report Report No.: RWAZ202300129B Applicant: Shenzhen Youmi Intelligent Technology Co., Ltd. Address: 406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China Product Name: Smart phone Product Model: PG2311GBA Multiple Models: N/A Trade Mark: UMIDIGI FCC ID: 2ATZ4-G6 Standards: FCC CFR Title 47 Part 15C (§15.247) Test Date: 2023/12/22~2024/01/26 Test Result: Complied **Report Date:** 2024/02/27 Reviewed by: Approved by: Abel Chen **Project Engineer** Jacob Kong Jacob Gong Manager #### Prepared by: World Alliance Testing and Certification (Shenzhen) Co., Ltd No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China This report may contain data that are not covered by the NVLAP accreditation and shall be marked with an asterisk "★" Report Template: TR-4-E-008/V1 Page 1 of 32 ### **Announcement** - 1. This test report shall not be reproduced in full or partial, without the written approval of World Alliance Testing and Certification (Shenzhen) Co., Ltd - 2. The results in this report apply only to the sample tested. - 3. This sample tested is in compliance with the limits of the above regulation. - 4. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. - 5. The information marked "#" is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included. ## **Revision History** | Version No. | Issued Date | Description | |-------------|--------------|-------------| | 00 | 27, Feb,2024 | Original | Report Template: TR-4-E-008/V1 Page 2 of 32 ## Contents | 1 | Gene | erai into | ormation | 4 | |---|------|-----------|--|----| | | 1.1 | Clien | t Information | 4 | | | 1.2 | Produ | uct Description of EUT | 4 | | | 1.3 | Anter | nna information | 4 | | | 1.4 | Relat | red Submittal(s)/Grant(s) | 5 | | | 1.5 | Meas | surement Uncertainty | 5 | | | 1.6 | Labo | ratory Location | 5 | | | 1.7 | Test I | Methodology | 5 | | 2 | Desc | ription | of Measurement | 6 | | | 2.1 | Test (| Configuration | 6 | | | 2.2 | Test A | Auxiliary Equipment | 6 | | | 2.3 | Test S | Setup | 7 | | | 2.4 | Test F | Procedure | 9 | | | 2.5 | Meas | surement Method | 10 | | | 2.6 | Meas | surement Equipment | 11 | | 3 | Test | Results | S | 12 | | | 3.1 | Test S | Summary | 12 | | | 3.2 | Limit | | 13 | | | 3.3 | AC Li | ine Conducted Emissions Test Data | 14 | | | 3.4 | Radia | ated emission Test Data | 16 | | | 3.5 | RF C | onducted Test Data | 24 | | | ; | 3.5.1 | 6 dB Emission Bandwidth and 99% Occupied Bandwidth | 24 | | | ; | 3.5.2 | Maximum Conducted Peak Output Power | 24 | | | ; | 3.5.3 | Power Spectral Density | 24 | | | ; | 3.5.4 | 100 kHz Bandwidth of Frequency Band Edge | 25 | | | ; | 3.5.5 | Duty Cycle | 25 | | 4 | Test | Setup I | Photo | 31 | | 5 | FUT | Photo | | 32 | ### 1 General Information ### 1.1 Client Information | Applicant: | Shenzhen Youmi Intelligent Technology Co., Ltd. | |---------------|--| | Address: | 406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China | | Manufacturer: | Shenzhen Youmi Intelligent Technology Co., Ltd. | | Address: | 406-407 Jinqi Zhigu Building, 4/F, 1 Tangling Road, Nanshan District, Shenzhen City, China | ### 1.2 Product Description of EUT The EUT is Smart phone that contains classic Bluetooth (BDR/EDR), BLE, 2.4G/5G WLAN, NFC and GSM/GPRS/EGPRS/WCDMA/LTE radios, this report covers the full testing of the BLE radio. | | vir vere radios, this report covers the rail testing of the BEE radio. | |---------------------------|--| | Sample Serial Number | 2X-5 for CE&RE test, 2X-1 for RF test conducted test | | | (assigned by WATC) | | Sample Received Date | 2023-12-05 | | Sample Status | Good Condition | | Frequency Range | 2402MHz - 2480MHz(BLE 1M) | | | 2404MHz - 2478MHz(BLE 2M) | | Maximum Conducted | -4.25dBm | | Peak Output Power | -4.25dDIII | | Modulation Technology | GFSK | | Spatial Streams | 1TX, 1RX | | Antenna Gain [#] | 1.1dBi | | Power Supply | DC 3.87V from battery or DC 5V from USB Port | | Adapter Information | Adapter 1 | | | Model: HF-0502000U | | | Input: AC100-240V, 50/60Hz, 0.3A | | | Output: DC 5.0V, 2A | | | Adapter 2 | | | Model: HJ-0502000W2-US | | | Input: AC100-240V, 50/60Hz, 0.3A | | | Output: DC 5V, 2A | | Modification | Sample No Modification by the test lab | ### 1.3 Antenna information ### 15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. #### **Device Antenna information:** The BLE antenna is an internal antenna which cannot replace by end-user, please see product internal photos for details. Report Template: TR-4-E-008/V1 Page 4 of 32 ### 1.4 Related Submittal(s)/Grant(s) FCC Part 15, Subpart C, Equipment Class: DSS, FCC ID: 2ATZ4-G6 FCC Part 15, Subpart C, Equipment Class: DXX, FCC ID: 2ATZ4-G6 FCC Part 15, Subpart E, Equipment Class: NII, FCC ID: 2ATZ4-G6 FCC Part 22, Subpart H/Part 24, Subpart E/Part 27, Equipment Class: PCE, FCC ID: 2ATZ4-G6 ### 1.5 Measurement Uncertainty | Parameter | | Expanded Uncertainty (Confidence of 95%(U = 2Uc(y))) | |------------------------|---------------|--| | AC Power Lines Conduc | ted Emissions | ±3.14dB | | | Below 30MHz | ±2.78dB | | Emissions, Radiated | Below 1GHz | ±4.84dB | | | Above 1GHz | ±5.44dB | | Conducted Power | | 0.74dB | | Frequency Error | | 150Hz | | Bandwidth | | 0.34% | | Power Spectral Density | | 0.74dB | **Note:** The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty. ## 1.6 Laboratory Location World Alliance Testing and Certification (Shenzhen) Co., Ltd No. 1002, East Block, Laobing Building, Xingye Road 3012, Xixiang street, Bao'an District, Shenzhen, Guangdong, People's Republic of China Tel: +86-755-29691511, Email: qa@watc.com.cn The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No. : 463912, the FCC Designation No. : CN5040. The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0160. ## 1.7 Test Methodology FCC CFR 47 Part 2 FCC CFR 47 Part 15 KDB 558074 D01 DTS Meas Guidance v05r02 ANSI C63.10-2020 Report Template: TR-4-E-008/V1 Page 5 of 32 ## 2 Description of Measurement ### 2.1 Test Configuration | Operating channels: | | | | | | |---------------------|--------------------|-------------|--------------------|----------------|--------------------| | Channel No. | Frequency
(MHz) | Channel No. | Frequency
(MHz) | Channel
No. | Frequency
(MHz) | | 0 | 2402 | 19 | 2440 | 38 | 2478 | | 1 | 2404 | 20 | 2442 | 39 | 2480 | | | | | | / | / | | 18 | 2438 | | | 1 | 1 | For BLE 2M, channel 0 and channel 39 was disabled. According to ANSI C63.10-2020 chapter 5.6.1 Table 11 requirement, select lowest channel, middle channel, and highest channel in the frequency range in which device operates for testing. The detailed frequency points are as follows: | Lowest channel | | Middle channel | | Highest channel | | |----------------|--------------------|----------------|--------------------|-----------------|--------------------| | Channel No. | Frequency
(MHz) | Channel No. | Frequency
(MHz) | Channel
No. | Frequency
(MHz) | | 0 | 2402(for BLE 1M) | 19 | 2440 | 39 | 2480(for BLE 1M) | | 1 | 2404(for BLE 2M) | 19 | 2440 | 38 | 2478(for BLE 2M) | | Test Mode: | | | | | | | |--|-----------------|---|----------------|--------------|--|--| | Transmitting mode: | Keep the EUT in | Keep the EUT in continuous transmitting with modulation | | | | | | Exercise software [#] : | Engineering mod | del | | | | | | | | Powel Level Setting [#] | | | | | | Mode | Data rate | Low Channel | Middle Channel | High Channel | | | | BLE 1M | 1Mbps | 9 | 9 | 9 | | | | BLE 2M | 2Mbps | 9 | 9 | 9 | | | | The exercise software and the maximum power setting that provided by manufacturer. | | | | | | | ### **Worst-Case Configuration:** For radiated emissions, EUT was investigated in three orthogonal orientation, the worst-case orientation was recorded in report For the adapter 1 and adapter 2, the adapter 1 was the worse one of radiated spurious emission below 1GHz in the DSS report. So only adapter 1 was chosen for the full test in this report. For AC power line conducted emission and radiated emission 9kHz-1GHz and above 18GHz were performed with the EUT transmits at the channel with highest output power as worst-case scenario. ### 2.2 Test Auxiliary Equipment | Manufacturer | Description | Model | Serial Number | |--------------|-------------|-------|---------------| | / | / | / | / | Report Template: TR-4-E-008/V1 Page 6 of 32 ## 2.3 Test Setup #### 1) Conducted emission
measurement: **Note:** The 0.8 m distance specified between EUT/AE/PSU and AMN/AAN, is applicable only to the EUT being measured. If the device is AE then it shall be >0.8 m. #### 2) Radiated emission measurement: Below 30MHz (3m SAC) ### 2.4 Test Procedure #### Conducted emission: - 1. The E.U.T is placed on a non-conducting table 40cm from the vertical ground plane and 80cm above the horizontal ground plane (Please refer to the block diagram of the test setup and photographs). - Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement. - 3. Line conducted data is recorded for both Line and Neutral #### **Radiated Emission Procedure:** #### a) For below 30MHz - 1. All measurements were made at a test distance of 3 m. The measured data was extrapolated from the test distance (3m) to the specification distance (300 m from 9-490 kHz and 30 m from 490 kHz- 30 MHz) to clearly show the relative levels of fundamental and spurious emissions and demonstrate compliance with the requirement that the level of any spurious emissions be below the level of the intentionally transmitted signal. The extrapolation factor for the limits were 40*Log (test distance / specification distance). - 2. Loop antenna use, investigation was done on the three antenna orientations (parallel, perpendicular, gound-parallel) #### b) For 30MHz-1GHz: - 1. The EUT was placed on the tabletop of a rotating table 0.8 m the ground at a 3 m semi anechoic chamber. The measurement distance from the EUT to the receiving antenna is 3 m. - 2. EUT works in each mode of operation that needs to be tested. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. #### c) For above 1GHz: - 1. The EUT was placed on the tabletop of a rotating table 1.5 m the ground at a 3 m fully anechoic room. The measurement distance from the EUT to the receiving antenna is 3 m (1-18GHz) and 1.5m (above 18GHz). - 2. EUT works in each mode of operation that needs to be tested, and having the EUT continuously working. The highest signal levels relative to the limit shall be determined by rotating the EUT from 0° to 360° and with varying the measurement antenna height between 1 m and 4 m in vertical and horizontal polarizations. - 3. Open the test software to control the test antenna and test turntable. Perform the test, save the test results, and export the test data. - 4. Base on FCC 15.31 (f) (2): measurements may be performed at a distance closer than that specified in the regulations; however, an attempt should be made to avoid making measurements in the near field. #### **RF Conducted Test:** 1. The antenna port of EUT was connected to the RF port of the test equipment (Power Meter or Report Template: TR-4-E-008/V1 Page 9 of 32 Spectrum analyzer) through Attenuator and RF cable. - 2. The cable assembly insertion loss of 11dB (including 10 dB Attenuator and 1.0 dB cable) was entered as an offset in the power meter. Note: Actual cable loss was unavailable at the time of testing, therefore a loss of 1.0dB was assumed as worst case. This was later verified to be true by laboratory. (if the RF cable provided by client, the cable loss declared by client) - 3. The EUT is keeping in continuous transmission mode and tested in all modulation modes. ### 2.5 Measurement Method | Description of Test | Measurement Method | |---|--| | AC Line Conducted Emissions | ANSI C63.10-2020 Section 6.2 | | Maximum Conducted Output Power | ANSI C63.10-2020 Section 11.9.1.1 | | Power Spectral Density | ANSI C63.10-2020 Section 11.10.2 | | 6 dB Emission Bandwidth | ANSI C63.10-2020 Section 11.8.1 | | 99% Occupied Bandwidth | ANSI C63.10-2020 Section 6.9.3 | | 100kHz Bandwidth of Frequency Band Edge | ANSI C63.10-2020 Section 6.10 | | Radiated emission | ANSI C63.10-2020 Section 11.11&11.12.1 | | Duty Cycle | ANSI C63.10-2020 Section 11.6 | Report Template: TR-4-E-008/V1 Page 10 of 32 ## 2.6 Measurement Equipment | Manufacturer | Description | Model | Management
No. | Calibration
Date | Calibration Due Date | |---------------------------------|---------------------------------|--------------------------|-------------------|---------------------|----------------------| | AC Line Conducted Emission Test | | | | | | | ROHDE&
SCHWARZ | EMI TEST RECEIVER | ESR | 101817 | 2023/7/3 | 2024/7/2 | | R&S | LISN | ENV216 | 101748 | 2023/8/1 | 2024/7/30 | | N/A | Coaxial Cable | NO.12 | N/A | 2023/7/3 | 2024/7/2 | | Farad | Test Software | EZ-EMC | Ver.
EMEC-3A1 | / | / | | | T | Radiated Emissio | n Test | | <u> </u> | | R&S | EMI test receiver | ESR3 | 102758 | 2023/7/3 | 2024/7/2 | | ROHDE&
SCHWARZ | SPECTRUM
ANALYZER | FSV40-N | 101608 | 2023/7/3 | 2024/7/2 | | SONOMA
INSTRUMENT | Low frequency amplifier | 310 | 186014 | 2023/7/12 | 2024/7/11 | | COM-POWER | preamplifier | PAM-118A | 18040152 | 2023/8/21 | 2024/8/20 | | COM-POWER | Amplifier | PAM-840A | 461306 | 2023/8/8 | 2024/8/7 | | ETS | Passive Loop
Antenna | 6512 | 29604 | 2023/7/7 | 2024/7/6 | | SCHWARZBECK | Log - periodic wideband antenna | VULB 9163 | 9163-872 | 2023/7/7 | 2024/7/6 | | Astro Antenna Ltd | Horn antenna | AHA-118S | 3015 | 2023/7/6 | 2024/7/5 | | Ducommun
technologies | Horn Antenna | ARH-4223-02 | 1007726-03 | 2023/7/10 | 2024/7/9 | | Ducommun
technologies | Horn Antenna | ARH-2823-02 | 1007726-03 | 2023/7/10 | 2024/7/9 | | Oulitong | Band Reject Filter | OBSF-2400-248
3.5-50N | OE02103119 | 2023/9/15 | 2024/9/14 | | N/A | Coaxial Cable | N/A | NO.9 | 2023/8/8 | 2024/8/7 | | N/A | Coaxial Cable | N/A | NO.10 | 2023/8/8 | 2024/8/7 | | N/A | Coaxial Cable | N/A | NO.11 | 2023/8/8 | 2024/8/7 | | Audix | Test Software | E3 | 191218 V9 | / | / | | | | RF Conducted | Test | | | | R&S | Spectrum Analyzer | FSV40 | 101590 | 2023/11/16 | 2024/11/15 | | MARCONI | 10dB Attenuator | 1692595 | 2942 | 2023/10/25 | 2024/10/24 | | ANRITSU | USB Power Sensor | MA24418A | 12620 | 2023/7/12 | 2024/7/11 | Note: All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or International standards. ## 3 Test Results ## 3.1 Test Summary | FCC Rules | Description of Test | Result | |------------------------------|--|------------| | §15.203 | Antenna Requirement | Compliance | | §15.207 (a) | AC Line Conducted Emissions | Compliance | | §15.247(b)(3) | Maximum Conducted Output Power | Compliance | | §15.247(e) | Power Spectral Density | Compliance | | §15.247 (a)(2) | §15.247 (a)(2) 6 dB Emission Bandwidth | | | - | 99% Occupied Bandwidth | Compliance | | §15.247(d) | 100kHz Bandwidth of Frequency Band Edge | Compliance | | §15.205, §15.209, §15.247(d) | §15.205, §15.209, §15.247(d) Radiated emission | | | - | Duty Cycle | Compliance | ## 3.2 Limit | Test items | Limit | |--|---| | AC Line Conducted Emissions | See details §15.207 (a) | | Conducted Output Power | For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. | | 6dB Emission Bandwidth | The minimum 6 dB bandwidth shall be at least 500 kHz. | | Power Spectral Density | For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. | | | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a | | Spurious Emissions, 100kHz Bandwidth of Frequency Band Edge | radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). | ### 3.3 AC Line Conducted Emissions Test Data | Test Date: | 2024-01-26 | Test By: | Lirou Li | |------------------------|-------------------------------|----------------------|------------------| | Environment condition: | Temperature: 21.8°C; Relative | Humidity:31%; ATM Pr | essure: 101.4kPa | #### Remark: Measurement (dBuV)= Reading Level (dBuV) + Correct Factor(dB) Correct Factor(dB)= LISN Voltage Division Factor (dB)+ Cable loss(dB) Over = Measurement - Limit ## 3.4 Radiated emission Test Data ### 9 kHz-30MHz: |
Test Date: | 2024-01-25 | Test By: | Bard Huang | |------------------------|------------------------------|-----------------------|------------------| | Environment condition: | Temperature: 22.1℃; Relative | Humidity:27%; ATM Pro | essure: 102.3kPa | For radiated emissions below 30MHz, there were no emissions found within 20dB of limit. Report Template: TR-4-E-008/V1 Page 16 of 32 #### 30MHz-1GHz: | Test Date: | 2024-01-25 | Test By: | Bard Huang | |------------------------|------------------------------|----------------------|------------------| | Environment condition: | Temperature: 22.1℃; Relative | Humidity:27%; ATM Pr | essure: 102.3kPa | Project No. : RWAZ202300129 Test Mode : Transmitting Test Voltage : AC 120V/60Hz Environment : 22.1℃/27%R.H./102.3kPa Tested by : Bard Huang Polarization : horizontal Remark : BLE | No. | Frequency
(MHz) | Reading
(dBμV) | Factor
(dB/m) | Result
(dBμV/m) | Limit
(dBμV/m) | Over Limit
(dB) | Detector | |-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------| | | | | | | | | | | 1 | 67.645 | 33.98 | -15.28 | 18.70 | 40.00 | -21.30 | Peak | | 2 | 109.604 | 34.14 | -14.19 | 19.95 | 43.50 | -23.55 | Peak | | 3 | 176.346 | 42.84 | -16.00 | 26.84 | 43.50 | -16.66 | Peak | | 4 | 189.822 | 44.26 | -14.66 | 29.60 | 43.50 | -13.90 | Peak | | 5 | 209.497 | 47.25 | -13.91 | 33.34 | 43.50 | -10.16 | Peak | | 6 | 323.462 | 45.89 | -10.69 | 35.20 | 46.00 | -10.80 | Peak | | _ | | | | | | | | Remarks: Factor = Antenna factor + Cable loss - Preamp gain Project No. : RWAZ202300129 Test Mode : Transmitting Test Voltage : AC 120V/60Hz Environment : 22.1℃/27%R.H./102.3kPa Tested by : Bard Huang Polarization : vertical Remark : BLE | No. | Frequency
(MHz) | Reading
(dBμV) | Factor
(dB/m) | Result
(dBμV/m) | Limit
(dBμV/m) | Over Limit (dB) | Detector | | |-----|--------------------|-------------------|------------------|--------------------|-------------------|-----------------|----------|--| | | | | | | | | | | | 1 | 30.092 | 50.30 | -15.03 | 35.27 | 40.00 | -4.73 | QP | | | 2 | 31.234 | 48.60 | -15.32 | 33.28 | 40.00 | -6.72 | QP | | | 3 | 96.648 | 36.07 | -14.63 | 21.44 | 43.50 | -22.06 | Peak | | | 4 | 173.814 | 39.18 | -16.15 | 23.03 | 43.50 | -20.47 | Peak | | | 5 | 209.313 | 42.90 | -13.91 | 28.99 | 43.50 | -14.51 | Peak | | | 6 | 337.068 | 40.23 | -10.16 | 30.07 | 46.00 | -15.93 | Peak | | Remarks: Factor = Antenna factor + Cable loss - Preamp gain #### Remark: Result= Reading + Factor Factor = Antenna factor + Cable loss – Amplifier gain Over Limit = Result - Limit ### Above 1GHz: | Test Date: | 2024-01-24 | Test By: | Luke Li | |------------------------|-------------------------------|-----------------------|------------------| | Environment condition: | Temperature: 22.4°C; Relative | Humidity:28%; ATM Pro | essure: 102.0kPa | | Frequency
(MHz) | Reading
level
(dBµV) | Polar | Corrected
Factor
(dB/m) | Corrected
Amplitude
(dBµV/m) | Limit
(dBµV/m) | Margin
(dB) | Remark | | | | |--------------------|----------------------------|------------|-------------------------------|------------------------------------|-------------------|----------------|---------|--|--|--| | BLE 1M | | | | | | | | | | | | Low Channel | | | | | | | | | | | | 2390 | 51.47 | Horizontal | 8.25 | 59.72 | 74 | -14.28 | Peak | | | | | 2390 | 41.84 | Horizontal | 8.25 | 50.09 | 54 | -3.91 | Average | | | | | 2390 | 49.16 | Vertical | 8.25 | 57.41 | 74 | -16.59 | Peak | | | | | 2390 | 42.13 | Vertical | 8.25 | 50.38 | 54 | -3.62 | Average | | | | | 4804 | 51.65 | Horizontal | 0.21 | 51.86 | 74 | -22.14 | Peak | | | | | 4804 | 44.46 | Horizontal | 0.21 | 44.67 | 54 | -9.33 | Average | | | | | 4804 | 49.02 | Vertical | 0.21 | 49.23 | 74 | -24.77 | Peak | | | | | 4804 | 42.11 | Vertical | 0.21 | 42.32 | 54 | -11.68 | Average | | | | | 7206 | 48.97 | Horizontal | 3.4 | 52.37 | 74 | -21.63 | Peak | | | | | 7206 | 36.63 | Horizontal | 3.4 | 40.03 | 54 | -13.97 | Average | | | | | 7206 | 48.56 | Vertical | 3.4 | 51.96 | 74 | -22.04 | Peak | | | | | 7206 | 37.29 | Vertical | 3.4 | 40.69 | 54 | -13.31 | Average | | | | | | | | Middle C | hannel | | | | | | | | 4880 | 47.82 | Horizontal | 0.44 | 48.26 | 74 | -25.74 | Peak | | | | | 4880 | 40.82 | Horizontal | 0.44 | 41.26 | 54 | -12.74 | Average | | | | | 4880 | 47.95 | Vertical | 0.44 | 48.39 | 74 | -25.61 | Peak | | | | | 4880 | 39.64 | Vertical | 0.44 | 40.08 | 54 | -13.92 | Average | | | | | 7320 | 48.93 | Horizontal | 3.04 | 51.97 | 74 | -22.03 | Peak | | | | | 7320 | 35.52 | Horizontal | 3.04 | 38.56 | 54 | -15.44 | Average | | | | | 7320 | 49.89 | Vertical | 3.04 | 52.93 | 74 | -21.07 | Peak | | | | | 7320 | 35.83 | Vertical | 3.04 | 38.87 | 54 | -15.13 | Average | | | | | | | | High Ch | annel | | | | | | | | 2483.5 | 54.01 | Horizontal | 8.25 | 62.26 | 74 | -11.74 | Peak | | | | | 2483.5 | 42.63 | Horizontal | 8.25 | 50.88 | 54 | -3.12 | Average | | | | | 2483.5 | 53.49 | Vertical | 8.25 | 61.74 | 74 | -12.26 | Peak | | | | | 2483.5 | 42.00 | Vertical | 8.25 | 50.25 | 54 | -3.75 | Average | | | | | 4960 | 46.62 | Horizontal | 0.93 | 47.55 | 74 | -26.45 | Peak | | | | | 4960 | 40.42 | Horizontal | 0.93 | 41.35 | 54 | -12.65 | Average | | | | | 4960 | 47.51 | Vertical | 0.93 | 48.44 | 74 | -25.56 | Peak | | | | | 4960 39.54 Vertical 0.93 39.47 54 -14.53 Average 7440 48.73 Horizontal 3.11 51.84 74 -22.16 Peak 7440 49.04 Vertical 3.11 52.15 74 -21.85 Peak TVA40 49.04 Vertical 3.11 38.93 54 -15.07 Average BLE 2M Low Channel 2390 54.1 Horizontal 8.25 62.35 74 -11.65 Peak 2390 42.31 Horizontal 8.25 50.56 54 -3.44 Average 2390 41.77 Vertical 8.25 50.02 54 -3.44 Average 4808 50.92 Horizontal 0.21 51.13 74 -22.87 Peak 4808 46.38 Vertical 0.21 42.65 54 -11.35 Average 7212 47.46 Horizonta | | | 1 | | | | | 1 _ | |---|--------|-------|------------|----------|--------|----|--------|---------| | 7440 36.58 Horizontal 3.11 39.69 54 -14.31 Average 7440 49.04 Vertical 3.11 52.15 74 -21.85 Peak 7440 35.82 Vertical 3.11 38.93 54 -15.07 Average BLE 2M Low Channel 2390 54.1 Horizontal 8.25 62.35 74 -11.65 Peak 2390 54.21 Horizontal 8.25 50.56 54 -3.44 Average 2390 52.82 Vertical 8.25 50.02 54 -3.98 Average 4808 50.92 Horizontal 0.21 51.13 74 -22.87 Peak 4808 42.44 Horizontal 0.21 42.65 54 -11.35 Average 4808 46.38 Vertical 0.21 46.59 74 -27.41 Peak 4808 38.18 Vertical 3.4 <td>4960</td> <td>38.54</td> <td>Vertical</td> <td>0.93</td> <td>39.47</td> <td>54</td> <td>-14.53</td> <td>Average</td> | 4960 | 38.54 | Vertical | 0.93 | 39.47 | 54 | -14.53 | Average | | 7440 49.04 Vertical 3.11 52.15 74 -21.85 Peak 7440 35.82 Vertical 3.11 38.93 54 -15.07 Average BLE 2M Low Channel 2390 54.1 Horizontal 8.25 62.35 74 -11.65 Peak 2390 42.31 Horizontal 8.25 50.56 54 -3.44 Average 2390 52.82 Vertical 8.25 50.02 54 -3.98 Average 4808 50.92 Horizontal 0.21 51.13 74 -22.87 Peak 4808 42.44 Horizontal 0.21 42.65 54 -11.36 Average 4808 38.18 Vertical 0.21 46.59 74 -27.41 Peak 4808 38.18 Vertical 0.21 38.39 54 -15.61 Average 7212 47.46 Horizontal 3.4 <td>7440</td> <td>48.73</td> <td>Horizontal</td> <td>3.11</td> <td>51.84</td> <td>74</td> <td>-22.16</td> <td>Peak</td> | 7440 | 48.73 | Horizontal | 3.11 | 51.84 | 74 | -22.16 | Peak | | New York State | 7440 | 36.58 | Horizontal | 3.11 | 39.69 | 54 | -14.31 | Average | | BILE 2M | 7440 | 49.04 | Vertical | 3.11 | 52.15 | 74 | -21.85 | Peak | | Low Channel | 7440 | 35.82 | Vertical | 3.11 | 38.93 | 54 | -15.07 | Average | | 2390 54.1 Horizontal 8.25 62.35 74 -11.65 Peak 2390 42.31 Horizontal 8.25 50.56 54 -3.44 Average 2390 52.82 Vertical 8.25 61.07 74 -12.93 Peak 2390 41.77 Vertical 8.25 50.02 54 -3.98 Average 4808 50.92 Horizontal 0.21 51.13 74 -22.87 Peak 4808 42.44 Horizontal 0.21 42.65 54 -11.35 Average 4808 46.38 Vertical 0.21 46.59 74 -27.41 Peak 4808 38.18 Vertical 0.21 38.39 54 -15.61 Average 7212 47.46
Horizontal 3.4 50.86 74 -23.14 Peak 7212 35.55 Horizontal 3.4 38.95 54 -15.05 Average 7212 48.86 Vertical 3.4 52.26 74 -21.74 Peak 7212 35.38 Vertical 3.4 38.78 54 -15.22 Average Middle Channel 4880 47.82 Horizontal 0.44 48.26 74 -25.74 Peak 4880 37.24 Horizontal 0.44 49.57 74 -24.43 Peak 4880 49.13 Vertical 0.44 49.57 74 -24.43 Peak 4880 36.12 Vertical 0.44 37.68 54 -17.44 Average 7320 48.49 Horizontal 3.04 51.53 74 -22.47 Peak 7320 36.18 Horizontal 3.04 39.22 54 -14.78 Average 7320 49.18 Vertical 3.04 39.22 54 -14.78 Average 7320 49.18 Vertical 3.04 38.04 54 -15.96 Average 7320 49.18 Vertical 3.04 38.04 54 -15.96 Average 7320 49.18 Vertical 3.04 38.04 54 -15.96 Average 7320 35.00 Vertical 3.04 38.04 54 -15.96 Average 7320 49.18 Vertical 3.04 38.04 54 -15.96 Average 7320 49.18 Vertical 3.04 38.04 54 -15.96 Average 7320 49.18 Vertical 3.04 39.22 54 -14.78 Average 7320 49.18 Vertical 3.04 35.02 74 -21.78 Peak 7320 35.00 Vertical 3.04 35.02 74 -21.78 Peak 7320 36.08 Horizontal 8.25 60.28 74 -13.72 Peak 7320 36.08 Horizontal 8.25 60.28 74 -13.72 Peak 7320 49.18 Vertical 3.04 30.04 51.53 74 -26.77 Peak 74.96 74.96 74.96 74.96 | | | | BLE 2 | 2M | | | | | 2390 42.31 Horizontal 8.25 50.56 54 -3.44 Average 2390 52.82 Vertical 8.25 61.07 74 -12.93 Peak 2390 41.77 Vertical 8.25 50.02 54 -3.98 Average 4808 50.92 Horizontal 0.21 51.13 74 -22.87 Peak 4808 42.44 Horizontal 0.21 42.65 54 -11.35 Average 4808 46.38 Vertical 0.21 46.59 74 -27.41 Peak 4808 38.18 Vertical 0.21 38.39 54 -15.61 Average 7212 47.46 Horizontal 3.4 50.86 74 -23.14 Peak 7212 48.86 Vertical 3.4 38.95 54 -15.05 Average 7212 48.86 Vertical 3.4 38.78 54 -15.22 Average | | T | | Low Ch | annel | · | | | | 2390 52.82 Vertical 8.25 61.07 74 -12.93 Peak 2390 41.77 Vertical 8.25 50.02 54 -3.98 Average 4808 50.92 Horizontal 0.21 51.13 74 -22.87 Peak 4808 42.44 Horizontal 0.21 42.65 54 -11.35 Average 4808 46.38 Vertical 0.21 46.59 74 -27.41 Peak 4808 38.18 Vertical 0.21 38.39 54 -15.61 Average 7212 47.46 Horizontal 3.4 50.86 74 -23.14 Peak 7212 48.86 Vertical 3.4 38.95 54 -15.05 Average 7212 48.86 Vertical 3.4 38.78 54 -15.22 Average 7212 48.86 Vertical 3.4 48.26 74 -25.74 Peak < | 2390 | 54.1 | Horizontal | 8.25 | 62.35 | 74 | -11.65 | Peak | | 2390 | 2390 | 42.31 | Horizontal | 8.25 | 50.56 | 54 | -3.44 | Average | | Horizontal 0.21 51.13 74 -22.87 Peak | 2390 | 52.82 | Vertical | 8.25 | 61.07 | 74 | -12.93 | Peak | | 4808 42.44 Horizontal 0.21 42.65 54 -11.35 Average 4808 46.38 Vertical 0.21 46.59 74 -27.41 Peak 4808 38.18 Vertical 0.21 38.39 54 -15.61 Average 7212 47.46 Horizontal 3.4 50.86 74 -23.14 Peak 7212 35.55 Horizontal 3.4 38.95 54 -15.05 Average 7212 48.86 Vertical 3.4 52.26 74 -21.74 Peak 7212 35.38 Vertical 3.4 38.78 54 -15.22 Average Middle Channel 4880 47.82 Horizontal 0.44 48.26 74 -25.74 Peak 4880 37.24 Horizontal 0.44 37.68 54 -16.32 Average 4880 36.12 Vertical 0.44 36.56 54 | 2390 | 41.77 | Vertical | 8.25 | 50.02 | 54 | -3.98 | Average | | 4808 46.38 Vertical 0.21 46.59 74 -27.41 Peak 4808 38.18 Vertical 0.21 38.39 54 -15.61 Average 7212 47.46 Horizontal 3.4 50.86 74 -23.14 Peak 7212 35.55 Horizontal 3.4 38.95 54 -15.05 Average 7212 48.86 Vertical 3.4 52.26 74 -21.74 Peak Middle Channel Middle Channel 4880 47.82 Horizontal 0.44 48.26 74 -25.74 Peak 4880 37.24 Horizontal 0.44 48.26 74 -25.74 Peak 4880 36.12 Vertical 0.44 49.57 74 -24.43 Peak 4880 36.12 Vertical 0.44 36.56 54 -17.44 Average 7320 48.49 Horizontal 3 | 4808 | 50.92 | Horizontal | 0.21 | 51.13 | 74 | -22.87 | Peak | | 4808 38.18 Vertical 0.21 38.39 54 -15.61 Average 7212 47.46 Horizontal 3.4 50.86 74 -23.14 Peak 7212 35.55 Horizontal 3.4 38.95 54 -15.05 Average 7212 48.86 Vertical 3.4 52.26 74 -21.74 Peak 7212 35.38 Vertical 3.4 38.78 54 -15.22 Average Middle Channel 4880 47.82 Horizontal 0.44 48.26 74 -25.74 Peak 4880 37.24 Horizontal 0.44 37.68 54 -16.32 Average 4880 36.12 Vertical 0.44 49.57 74 -24.43 Peak 4880 36.12 Vertical 3.04 51.53 74 -22.47 Peak 7320 48.49 Horizontal 3.04 39.22 54 <td>4808</td> <td>42.44</td> <td>Horizontal</td> <td>0.21</td> <td>42.65</td> <td>54</td> <td>-11.35</td> <td>Average</td> | 4808 | 42.44 | Horizontal | 0.21 | 42.65 | 54 | -11.35 | Average | | 7212 47.46 Horizontal 3.4 50.86 74 -23.14 Peak 7212 35.55 Horizontal 3.4 38.95 54 -15.05 Average 7212 48.86 Vertical 3.4 52.26 74 -21.74 Peak Middle Channel Middle Channel 4880 47.82 Horizontal 0.44 48.26 74 -25.74 Peak 4880 37.24 Horizontal 0.44 37.68 54 -16.32 Average 4880 36.12 Vertical 0.44 49.57 74 -24.43 Peak 4880 36.12 Vertical 0.44 36.56 54 -17.44 Average 7320 48.49 Horizontal 3.04 51.53 74 -22.47 Peak 7320 36.18 Horizontal 3.04 52.22 74 -21.78 Peak 7320 35.00 Vertical <td< td=""><td>4808</td><td>46.38</td><td>Vertical</td><td>0.21</td><td>46.59</td><td>74</td><td>-27.41</td><td>Peak</td></td<> | 4808 | 46.38 | Vertical | 0.21 | 46.59 | 74 | -27.41 | Peak | | 7212 35.55 Horizontal 3.4 38.95 54 -15.05 Average 7212 48.86 Vertical 3.4 52.26 74 -21.74 Peak 7212 35.38 Vertical 3.4 38.78 54 -15.22 Average Middle Channel 4880 47.82 Horizontal 0.44 48.26 74 -25.74 Peak 4880 37.24 Horizontal 0.44 37.68 54 -16.32 Average 4880 36.12 Vertical 0.44 49.57 74 -24.43 Peak 4880 36.12 Vertical 0.44 36.56 54 -17.44 Average 7320 48.49 Horizontal 3.04 51.53 74 -22.47 Peak 7320 36.18 Horizontal 3.04 39.22 54 -14.78 Average 7320 35.00 Vertical 3.04 38.04 54 | 4808 | 38.18 | Vertical | 0.21 | 38.39 | 54 | -15.61 | Average | | 7212 48.86 Vertical 3.4 52.26 74 -21.74 Peak 7212 35.38 Vertical 3.4 38.78 54 -15.22 Average Middle Channel 4880 47.82 Horizontal 0.44 48.26 74 -25.74 Peak 4880 37.24 Horizontal 0.44 37.68 54 -16.32 Average 4880 49.13 Vertical 0.44 49.57 74 -24.43 Peak 4880 36.12 Vertical 0.44 36.56 54 -17.44 Average 7320 48.49 Horizontal 3.04 39.22 54 -14.78 Average 7320 36.18 Horizontal 3.04 32.22 74 -21.78 Peak 7320 49.18 Vertical 3.04 38.04 54 -15.96 Average 7320 35.00 Vertical 8.25 62.42 74 | 7212 | 47.46 | Horizontal | 3.4 | 50.86 | 74 | -23.14 | Peak | | 7212 35.38 Vertical 3.4 38.78 54 -15.22 Average Middle Channel 4880 47.82 Horizontal 0.44 48.26 74 -25.74 Peak 4880 37.24 Horizontal 0.44 49.57 74 -24.43 Peak 4880 36.12 Vertical 0.44 36.56 54 -17.44 Average 7320 48.49 Horizontal 3.04 51.53 74 -22.47 Peak 7320 36.18 Horizontal 3.04 39.22 54 -14.78 Average 7320 49.18 Vertical 3.04 52.22 74 -21.78 Peak 7320 49.18 Vertical 3.04 38.04 54 -15.96 Average High Channel 2483.5 54.17 Horizontal 8.25 62.42 74 -11.58 Peak | 7212 | 35.55 | Horizontal | 3.4 | 38.95 | 54 | -15.05 | Average | | Middle Channel 4880 47.82 Horizontal 0.44 48.26 74 -25.74 Peak 4880 37.24 Horizontal 0.44 37.68 54 -16.32 Average 4880 49.13 Vertical 0.44 49.57 74 -24.43 Peak 4880 36.12 Vertical 0.44 36.56 54 -17.44 Average 7320 48.49 Horizontal 3.04 51.53 74 -22.47 Peak 7320 36.18 Horizontal 3.04 39.22 54 -14.78 Average 7320 49.18 Vertical 3.04 52.22 74 -21.78 Peak 7320 35.00 Vertical 3.04 38.04 54 -15.96 Average High Channel 2483.5 54.17 Horizontal 8.25 62.42 74 -11.58 Peak 2483.5 42.08 Horizontal | 7212 | 48.86 | Vertical | 3.4 | 52.26 | 74 | -21.74 | Peak | | 4880 47.82 Horizontal 0.44 48.26 74 -25.74 Peak 4880 37.24 Horizontal 0.44 37.68 54 -16.32 Average 4880 49.13 Vertical 0.44 49.57 74 -24.43 Peak 4880 36.12 Vertical 0.44 36.56 54 -17.44 Average 7320 48.49 Horizontal 3.04 51.53 74 -22.47 Peak 7320 36.18 Horizontal 3.04 39.22 54 -14.78 Average 7320 49.18 Vertical 3.04 52.22 74 -21.78 Peak 7320 35.00 Vertical 3.04 38.04 54 -15.96 Average High Channel 2483.5 54.17 Horizontal 8.25 62.42 74 -11.58 Peak 2483.5 42.08 Horizontal 8.25 50.33 54 | 7212 | 35.38 | Vertical | 3.4 | 38.78 | 54 | -15.22 | Average | | 4880 37.24 Horizontal 0.44 37.68 54 -16.32 Average 4880 49.13 Vertical 0.44 49.57 74 -24.43 Peak 4880 36.12 Vertical 0.44 36.56 54 -17.44 Average 7320 48.49 Horizontal 3.04 51.53 74 -22.47 Peak 7320 36.18 Horizontal 3.04 39.22 54 -14.78 Average 7320 49.18 Vertical 3.04 52.22 74 -21.78 Peak 7320 35.00 Vertical 3.04 38.04 54 -15.96 Average High Channel 2483.5 54.17 Horizontal 8.25 62.42 74 -11.58 Peak 2483.5 52.03 Vertical 8.25 50.33 54 -3.67 Average 2483.5 42.68 Vertical 8.25 50.93 54 | | | | Middle C | hannel | | | | | 4880 49.13 Vertical 0.44 49.57 74 -24.43 Peak 4880 36.12 Vertical 0.44 36.56 54 -17.44 Average 7320 48.49 Horizontal 3.04 51.53 74 -22.47 Peak 7320 36.18 Horizontal 3.04 39.22 54 -14.78 Average 7320 49.18 Vertical 3.04 52.22 74 -21.78 Peak 7320 35.00 Vertical 3.04 38.04 54 -15.96 Average High Channel 2483.5 54.17 Horizontal 8.25 62.42 74 -11.58 Peak 2483.5 52.03 Vertical 8.25 50.33 54 -3.67 Average 2483.5 52.03 Vertical 8.25 50.93 54 -3.07 Average 2483.5 42.68 Vertical 8.25 50.93 54 | 4880 | 47.82 | Horizontal | 0.44 | 48.26 | 74 | -25.74 | Peak | | 4880 36.12 Vertical 0.44 36.56 54 -17.44 Average 7320 48.49 Horizontal 3.04 51.53 74 -22.47 Peak 7320 36.18 Horizontal 3.04 39.22 54 -14.78 Average 7320 49.18 Vertical 3.04 52.22 74 -21.78 Peak 7320 35.00 Vertical 3.04 38.04 54 -15.96 Average High Channel 2483.5 54.17 Horizontal 8.25 62.42 74 -11.58 Peak 2483.5 42.08 Horizontal 8.25 50.33 54 -3.67 Average 2483.5 52.03 Vertical 8.25 60.28 74 -13.72 Peak 2483.5 42.68 Vertical 8.25 50.93 54 -3.07 Average 4956 46.3 Horizontal 0.93 37.16 54 | 4880 | 37.24 | Horizontal | 0.44 | 37.68 | 54 | -16.32 | Average | | 7320 48.49 Horizontal 3.04 51.53 74 -22.47 Peak 7320 36.18 Horizontal 3.04 39.22 54 -14.78 Average 7320 49.18 Vertical 3.04 52.22 74 -21.78 Peak 7320 35.00 Vertical 3.04 38.04 54 -15.96 Average High Channel 2483.5 54.17 Horizontal 8.25 62.42 74 -11.58 Peak 2483.5 42.08 Horizontal 8.25 50.33 54 -3.67 Average 2483.5 52.03 Vertical 8.25 60.28 74 -13.72 Peak 2483.5 42.68 Vertical 8.25 50.93 54 -3.07 Average 4956 46.3 Horizontal 0.93 47.23 74 -26.77 Peak 4956 49.09 Vertical 0.93 50.02 74 | 4880 | 49.13 | Vertical | 0.44 | 49.57 | 74 | -24.43 | Peak | | 7320 36.18 Horizontal 3.04 39.22 54 -14.78 Average 7320 49.18 Vertical 3.04 52.22 74 -21.78 Peak 7320 35.00 Vertical 3.04 38.04 54 -15.96 Average High Channel 2483.5 54.17 Horizontal 8.25
62.42 74 -11.58 Peak 2483.5 42.08 Horizontal 8.25 50.33 54 -3.67 Average 2483.5 52.03 Vertical 8.25 60.28 74 -13.72 Peak 2483.5 42.68 Vertical 8.25 50.93 54 -3.07 Average 4956 46.3 Horizontal 0.93 47.23 74 -26.77 Peak 4956 36.23 Horizontal 0.93 37.16 54 -16.84 Average 4956 49.09 Vertical 0.93 50.02 74 | 4880 | 36.12 | Vertical | 0.44 | 36.56 | 54 | -17.44 | Average | | 7320 49.18 Vertical 3.04 52.22 74 -21.78 Peak 7320 35.00 Vertical 3.04 38.04 54 -15.96 Average High Channel 2483.5 54.17 Horizontal 8.25 62.42 74 -11.58 Peak 2483.5 42.08 Horizontal 8.25 50.33 54 -3.67 Average 2483.5 52.03 Vertical 8.25 60.28 74 -13.72 Peak 2483.5 42.68 Vertical 8.25 50.93 54 -3.07 Average 4956 46.3 Horizontal 0.93 47.23 74 -26.77 Peak 4956 36.23 Horizontal 0.93 37.16 54 -16.84 Average 4956 49.09 Vertical 0.93 50.02 74 -23.98 Peak 4956 36.31 Vertical 0.93 37.24 54 | 7320 | 48.49 | Horizontal | 3.04 | 51.53 | 74 | -22.47 | Peak | | 7320 35.00 Vertical 3.04 38.04 54 -15.96 Average High Channel 2483.5 54.17 Horizontal 8.25 62.42 74 -11.58 Peak 2483.5 42.08 Horizontal 8.25 50.33 54 -3.67 Average 2483.5 52.03 Vertical 8.25 60.28 74 -13.72 Peak 2483.5 42.68 Vertical 8.25 50.93 54 -3.07 Average 4956 46.3 Horizontal 0.93 47.23 74 -26.77 Peak 4956 36.23 Horizontal 0.93 37.16 54 -16.84 Average 4956 49.09 Vertical 0.93 50.02 74 -23.98 Peak 4956 36.31 Vertical 0.93 37.24 54 -16.76 Average | 7320 | 36.18 | Horizontal | 3.04 | 39.22 | 54 | -14.78 | Average | | High Channel 2483.5 54.17 Horizontal 8.25 62.42 74 -11.58 Peak 2483.5 42.08 Horizontal 8.25 50.33 54 -3.67 Average 2483.5 52.03 Vertical 8.25 60.28 74 -13.72 Peak 2483.5 42.68 Vertical 8.25 50.93 54 -3.07 Average 4956 46.3 Horizontal 0.93 47.23 74 -26.77 Peak 4956 36.23 Horizontal 0.93 37.16 54 -16.84 Average 4956 49.09 Vertical 0.93 50.02 74 -23.98 Peak 4956 36.31 Vertical 0.93 37.24 54 -16.76 Average | 7320 | 49.18 | Vertical | 3.04 | 52.22 | 74 | -21.78 | Peak | | 2483.5 54.17 Horizontal 8.25 62.42 74 -11.58 Peak 2483.5 42.08 Horizontal 8.25 50.33 54 -3.67 Average 2483.5 52.03 Vertical 8.25 60.28 74 -13.72 Peak 2483.5 42.68 Vertical 8.25 50.93 54 -3.07 Average 4956 46.3 Horizontal 0.93 47.23 74 -26.77 Peak 4956 36.23 Horizontal 0.93 37.16 54 -16.84 Average 4956 49.09 Vertical 0.93 50.02 74 -23.98 Peak 4956 36.31 Vertical 0.93 37.24 54 -16.76 Average | 7320 | 35.00 | Vertical | 3.04 | 38.04 | 54 | -15.96 | Average | | 2483.5 42.08 Horizontal 8.25 50.33 54 -3.67 Average 2483.5 52.03 Vertical 8.25 60.28 74 -13.72 Peak 2483.5 42.68 Vertical 8.25 50.93 54 -3.07 Average 4956 46.3 Horizontal 0.93 47.23 74 -26.77 Peak 4956 36.23 Horizontal 0.93 37.16 54 -16.84 Average 4956 49.09 Vertical 0.93 50.02 74 -23.98 Peak 4956 36.31 Vertical 0.93 37.24 54 -16.76 Average | | | <u> </u> | High Ch | annel | | | | | 2483.5 52.03 Vertical 8.25 60.28 74 -13.72 Peak 2483.5 42.68 Vertical 8.25 50.93 54 -3.07 Average 4956 46.3 Horizontal 0.93 47.23 74 -26.77 Peak 4956 36.23 Horizontal 0.93 37.16 54 -16.84 Average 4956 49.09 Vertical 0.93 50.02 74 -23.98 Peak 4956 36.31 Vertical 0.93 37.24 54 -16.76 Average | 2483.5 | 54.17 | Horizontal | 8.25 | 62.42 | 74 | -11.58 | Peak | | 2483.5 42.68 Vertical 8.25 50.93 54 -3.07 Average 4956 46.3 Horizontal 0.93 47.23 74 -26.77 Peak 4956 36.23 Horizontal 0.93 37.16 54 -16.84 Average 4956 49.09 Vertical 0.93 50.02 74 -23.98 Peak 4956 36.31 Vertical 0.93 37.24 54 -16.76 Average | 2483.5 | 42.08 | Horizontal | 8.25 | 50.33 | 54 | -3.67 | Average | | 4956 46.3 Horizontal 0.93 47.23 74 -26.77 Peak 4956 36.23 Horizontal 0.93 37.16 54 -16.84 Average 4956 49.09 Vertical 0.93 50.02 74 -23.98 Peak 4956 36.31 Vertical 0.93 37.24 54 -16.76 Average | 2483.5 | 52.03 | Vertical | 8.25 | 60.28 | 74 | -13.72 | Peak | | 4956 36.23 Horizontal 0.93 37.16 54 -16.84 Average 4956 49.09 Vertical 0.93 50.02 74 -23.98 Peak 4956 36.31 Vertical 0.93 37.24 54 -16.76 Average | 2483.5 | 42.68 | Vertical | 8.25 | 50.93 | 54 | -3.07 | Average | | 4956 49.09 Vertical 0.93 50.02 74 -23.98 Peak 4956 36.31 Vertical 0.93 37.24 54 -16.76 Average | 4956 | 46.3 | Horizontal | 0.93 | 47.23 | 74 | -26.77 | Peak | | 4956 36.31 Vertical 0.93 37.24 54 -16.76 Average | 4956 | 36.23 | Horizontal | 0.93 | 37.16 | 54 | -16.84 | Average | | | 4956 | 49.09 | Vertical | 0.93 | 50.02 | 74 | -23.98 | Peak | | 7434 48.14 Horizontal 3.11 51.25 74 -22.75 Peak | 4956 | 36.31 | Vertical | 0.93 | 37.24 | 54 | -16.76 | Average | | | 7434 | 48.14 | Horizontal | 3.11 | 51.25 | 74 | -22.75 | Peak | Report No.: RWAZ202300129-00B | 7434 | 36.25 | Horizontal | 3.11 | 39.36 | 54 | -14.64 | Average | |------|-------|------------|------|-------|----|--------|---------| | 7434 | 48.13 | Vertical | 3.11 | 51.24 | 74 | -22.76 | Peak | | 7434 | 36.26 | Vertical | 3.11 | 39.37 | 54 | -14.63 | Average | #### Remark: Corrected Amplitude= Reading level + corrected Factor Corrected Factor = Antenna factor + Cable loss – Amplifier gain Margin = Corrected Amplitude – Limit The emission levels of other frequencies that were lower than the limit 20dB, not show in test report. For emissions in 18GHz-25GHz range, all emissions were investigated and in the noise floor level. Report Template: TR-4-E-008/V1 Page 21 of 32 ### Test plot for example as below: Project No. : RWAZ202300129 Test Mode : Transmitting Test Voltage : AC 120V/60Hz Environment : $22.4^{\circ}C/28\%R.H./102.0kPa$ Tested by : Luke Li Polarization : horizontal Remark : BLE 1M Low channal | No. | Frequency
(MHz) | Reading
(dBμV) | Factor
(dB/m) | Result
(dBμV/m) | Limit
(dBμV/m) | Over Limit
(dB) | Detector | | |-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------|---| | | | | | | | | | _ | | 1 | 4804.000 | 44.46 | 0.21 | 44.67 | 54.00 | -9.33 | Average | | | 2 | 4804.000 | 51.65 | 0.21 | 51.86 | 74.00 | -22.14 | Peak | | | 3 | 7206.000 | 36.63 | 3.40 | 40.03 | 54.00 | -13.97 | Average | | | 4 | 7206.000 | 48.97 | 3.40 | 52.37 | 74.00 | -21.63 | Peak | | | 5 | 15601.800 | 37.10 | 8.09 | 45.19 | 54.00 | -8.81 | Average | | | 6 | 15601.800 | 49.61 | 8.09 | 57.70 | 74.00 | -16.30 | Peak | | Remarks: Factor = Antenna factor + Cable loss - Preamp gain 2402MHz Mode: Channel: Project No. : RWAZ202300129 Test Mode : Transmitting Test Voltage : AC 120V/60Hz Environment : $22.4\,^{\circ}\text{C}/28\%\text{R.H.}/102.0\text{kPa}$ BLE 1M Tested by : Luke Li Polarization : vertical Remark : BLE 1M Low channal | No. | Frequency
(MHz) | Reading
(dBµV) | Factor
(dB/m) | Result
(dBμV/m) | Limit
(dBμV/m) | Over Limit
(dB) | Detector | |-----|--------------------|-------------------|------------------|--------------------|-------------------|--------------------|----------| | | | | | | | | | | 1 | 4804.000 | 42.11 | 0.21 | 42.32 | 54.00 | -11.68 | Average | | 2 | 4804.000 | 49.02 | 0.21 | 49.23 | 74.00 | -24.77 | Peak | | 3 | 7206.000 | 37.29 | 3.40 | 40.69 | 54.00 | -13.31 | Average | | 4 | 7206.000 | 48.56 | 3.40 | 51.96 | 74.00 | -22.04 | Peak | | 5 | 15584.790 | 36.78 | 8.10 | 44.88 | 54.00 | -9.12 | Average | | 6 | 15584.790 | 48.97 | 8.10 | 57.07 | 74.00 | -16.93 | Peak | Remarks: Factor = Antenna factor + Cable loss - Preamp gain ### 3.5 RF Conducted Test Data | Test Date: | 2023-12-22 | Test By: | Ryan Zhang | | |------------------------|--|----------|------------|--| | Environment condition: | Temperature: 24°C; Relative Humidity:34%; ATM Pressure:101.54kPa | | | | ## 3.5.1 6 dB Emission Bandwidth and 99% Occupied Bandwidth | Test Mode | Channel | 99%
OBW[MHz] | 6dB BW [MHz] | 6dB BW
Limit[MHz] | Verdict | |-----------|---------|-----------------|--------------|----------------------|---------| | | 2402 | 1.037 | 0.672 | 0.5 | Pass | | BLE 1M | 2440 | 1.037 | 0.669 | 0.5 | Pass | | | 2480 | 1.040 | 0.672 | 0.5 | Pass | | | 2404 | 2.086 | 1.170 | 0.5 | Pass | | BLE 2M | 2440 | 2.080 | 1.176 | 0.5 | Pass | | | 2478 | 2.080 | 1.176 | 0.5 | Pass | ## 3.5.2 Maximum Conducted Peak Output Power | Test Mode | Channel
[MHz] | Conducted output power [dBm] | Limit
[dBm] | Verdict | |-----------|------------------|------------------------------|----------------|---------| | BLE 1M | 2402 | -6.74 | 30 | Pass | | | 2440 | -4.63 | 30 | Pass | | | 2480 | -4.41 | 30 | Pass | | BLE 2M | 2404 | -6.66 | 30 | Pass | | | 2440 | -4.71 | 30 | Pass | | | 2478 | -4.25 | 30 | Pass | ## 3.5.3 Power Spectral Density | Test Mode | Channel
[MHz] | Result
[dBm/3kHz] | Limit
[dBm/3kHz] | Verdict | |-----------|------------------|----------------------|---------------------|---------| | BLE 1M | 2402 | -23.86 | 8 | Pass | | | 2440 | -21.86 | 8 | Pass | | | 2480 | -21.42 | 8 | Pass | | BLE 2M | 2404 | -26.27 | 8 | Pass | | | 2440 | -23.89 | 8 | Pass | | | 2478 | -23.44 | 8 | Pass | Report Template: TR-4-E-008/V1 Page 24 of 32 ## 3.5.4 100 kHz Bandwidth of Frequency Band Edge | Test Mode | Channel | Result | Limit | Verdict | |-----------|---------|-----------------|-----------------|---------| | BLE 1M | 2402 | Refer test plot | Refer test plot | Pass | | | 2480 | Refer test plot | Refer test plot | Pass | | BLE 2M | 2404 | Refer test plot | Refer test plot | Pass | | | 2478 | Refer test plot | Refer test plot | Pass | ## 3.5.5 Duty Cycle | Test Mode | Channel | Transmission Duration [ms] | Transmission
Period [ms] | Duty Cycle
[%] | 1/T
[kHz] | VBW Setting* | |-----------|---------|----------------------------|-----------------------------|-------------------|--------------|--------------| | BLE 1M | 2440 | 2.125 | 2.505 | 84.83 | 470.59 | 500 | | BLE 2M | 2440 | 1.070 | 1.880 | 56.91 | 934.58 | 1000 | Note*: Radiated emission test with average value, the Spectrum analyzer VBW setting information. Report Template: TR-4-E-008/V1 Page 25 of 32 #### **Test Plots:** #### 6 dB Emission Bandwidth: #### 99% Occupied Bandwidth: ### **Power Spectral Density:** #### 100kHz Bandwidth of Frequency Band Edge: ### **Duty cycle:** ## 4
Test Setup Photo Please refer to the attachment RWAZ202300129 Test Setup photo. ## 5 E.U.T Photo Please refer to the attachment RWAZ202300129 External photo and RWAZ202300129 Internal photo. ---End of Report---