

TEST REPORT

Applicant Name : Address :

Report Number : FCC ID: IC: Shenzhen VanTop Technology & Innovation Co., Ltd. 502, 5th Flr. BLDG 4, MinQi Technology Park, No. 65 Lishan Road, Taoyuan Street, Nanshan District, Shenzhen, China SZNS210428-54815E-RFB 2AQ3A-E10 24268-E10

Test Standard (s)

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247, ISSUE 2, FEBRUARY 2017

Sample Description

Product Type: Model No.: Multiple Model(s) No.:	Tablet PC E10 S31,S10,TB-JS101A,TB-VS100A,TB-JS100A(model difference see product declaration letter of similarity)
Trade Mark:	N/A
Date Received:	2021/04/28
Date of Test:	2021/05/13~2021/12/22
Report Date:	2022/01/05

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Ting Lü EMC Engineer

Approved By:

Candy . Cr

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 22: 2021-11-09

Page 1 of 77

FCC&RSS- BLE&2.4G Wi-Fi

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology	
Measurement Uncertainty	
SYSTEM TEST CONFIGURATION	
Equipment Modifications	
EUT EXERCISE SOFTWARE	
DUTY CYCLE	
SUMMARY OF TEST RESULTS	10
TEST EQUIPMENT LIST	11
FCC§15.247 (I), §1.1307 (B) (1) & §2.1093 – RF EXPOSURE	13
APPLICABLE STANDARD	13
RSS-102 – RF EXPOSURE	
Applicable Standard	
§15.203 & RSS-GEN §6.8 ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
§15.207 (A) & RSS-GEN §8.8 AC LINE CONDUCTED EMISSIONS	17
APPLICABLE STANDARD	
EUT SETUP	-
EMI TEST RECEIVER SETUP	
TEST PROCEDURE Corrected Factor & Margin Calculation	
CORRECTED FACTOR & MARGIN CALCULATION TEST DATA	
\$15.205, \$15.209, \$15.247(D) & RSS-GEN \$ 8.10 & RSS-247 \$ 5.5 SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	23
TEST PROCEDURE	
CORRECTED FACTOR & MARGIN CALCULATION	
§15.247 (A)(2) & RSS-GEN§6.7 RSS-247 § 5.2 (A) 99% OCCUPIED BANDWIDTH & 6 DB EMISS BANDWIDTH	ION 35
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
§15.247(B)(3) & RSS-247 § 5.4(D) MAXIMUM CONDUCTED OUTPUT POWER	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	

Version 22: 2021-11-09

FCC&RSS- BLE&2.4G Wi-Fi

§15.247(D) & RSS-247 § 5.5 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
§15.247(E) & RSS-247 § 5.2 (B) POWER SPECTRAL DENSITY	40
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
APPENDIX WI-FI	42
APPENDIX A: DTS BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	53
Appendix E:Band edge measurements	
Appendix F: Duty Cycle	61
APPENDIX BLE	64
PPENDIX A: DTS BANDWIDTH	64
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	67
APPENDIX C: MAXIMUM CONDUCTED PEAK OUTPUT POWER	
APPENDIX D: MAXIMUM POWER SPECTRAL DENSITY	71
APPENDIX E:BAND EDGE MEASUREMENTS	
APPENDIX F: DUTY CYCLE	76

GENERAL INFORMATION

HVIN	PC005
FVIN	E10_V1.0_20210701
Frequency Range	BLE: 2402-2480MHz Wi-Fi: 2412-2472MHz
Maximum Conducted Peak Output Power	BLE: -7.11dBm Wi-Fi: 12.3dBm(802.11b), 15.15dBm(802.11g) 15.19dBm(802.11n20), 14.91dBm(802.11n40)
Modulation Technique	BLE: GFSK Wi-Fi: DSSS, OFDM
Antenna Specification*	BLE: 1.2dBi Wi-Fi: 1.2dBi (provided by the applicant)
Voltage Range	DC 3.8V from battery or DC5.0V from adapter
Sample serial number	SZNS210428-54815E-RF-S2 for Conducted and Radiated Emissions SZNS210428-54815E-RF S_4C2 for RF Conducted Test (Assigned by ATC)
Sample/EUT Status	Good condition
Adapter information	Model:FX2U-050200U Input: AC 100-240V, 50/60Hz,0.4A Output: DC5.0V, 2.0A

Product Description for Equipment under Test (EUT)

Objective

This report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules and RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247, Issue 2, February 2017 of the Innovation, Science and Economic Development Canada rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209, 15.247 rules, RSS-GEN and RSS-247.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliant Testing of Unlicensed Wireless Devices and RSS-GEN Issue 5, February 2021 Amendment 2 and RSS-247, Issue 2, February 2017.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		Uncertainty	
Occupied Cha	nnel Bandwidth	5%	
RF Fre	equency	$0.082*10^{-7}$	
RF output por	wer, conducted	0.73dB	
Unwanted Emi	ssion, conducted	1.6dB	
AC Power Lines C	onducted Emissions	2.72dB	
	9kHz - 30MHz	2.66dB	
_	30MHz - 1GHz	4.28dB	
Emissions, Radiated	1GHz - 18GHz	4.98dB	
Radiated	18GHz - 26.5GHz	5.06dB	
	26.5GHz - 40GHz	4.72dB	
Temperature		1 °C	
Hun	nidity	6%	
Supply	voltages	0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	12	2467
6	2437	13	2472
7	2442	/	/

For 2.4G Wi-Fi mode, total 13 channels are provided to testing:

802.11b, 802.11g and 802.11n-HT20 mode was tested with Channel 1, 7 and 13. 802.11n-HT40 mode was tested with Channel 3, 7 and 11.

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

The EUT was tested under Engineer mode, which provided by manufacturer and power level as below:

Mode	Data rate	Power Level*			
Ivioue	Data Tate	Low Channel	High Channel		
802.11b	1Mbps	13	13	13	
802.11g	6Mbps	13	13	13	
802.11n-HT20	MCS0	13	13	13	
802.11n-HT40	MCS0	13	13	13	
BLE	1M	Default	Default	Default	
DLE	2M	Default	Default	Default	

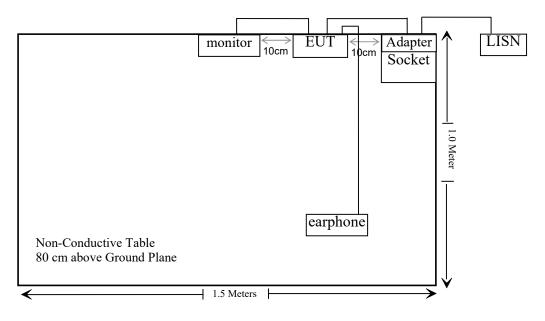
The worse-case data rates are determined to be as follows for each mode based upon investigations by measuring the output power and PSD across all data rates, bandwidths, and modulations.

Duty cycle

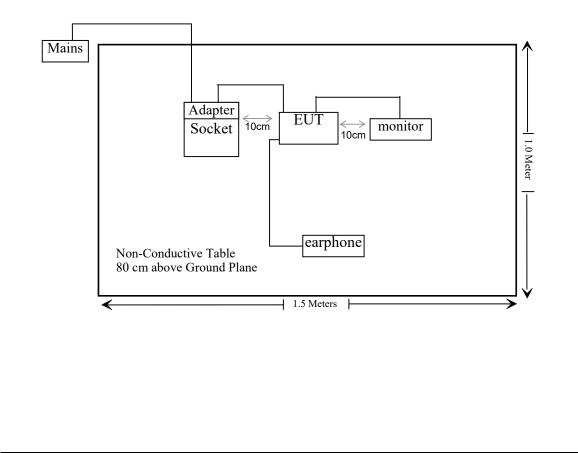
For BLE mode, please refer to the Appendix 2.4G WI-FI& Appendix BLE

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
SAMSUNG	Monitor	S24E390HL	ZZFRH4ZN303357K


External I/O Cable

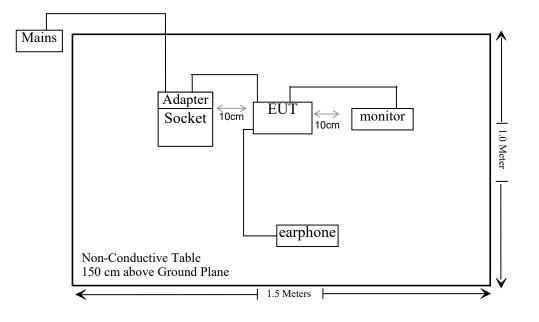
Cable Description	Length (m)	From/Port	То
Un-shielded Un-detachable AC Cable	1.2	Socket	Mains
Shielded detachable USB Cable	1.0	EUT	Adapter
Un-shielded detachable HDMI Cable	1.5	EUT	Monitor
Shielded Un-detachable Earphone Cable	1.2	EUT	Earphone


Report No.: SZNS210428-54815E-RFB

Block Diagram of Test Setup

For conducted emission :

For RE below 1 GHz



Version 22: 2021-11-09

FCC&RSS- BLE&2.4G Wi-Fi

Report No.: SZNS210428-54815E-RFB

For RE above 1GHz:

SUMMARY OF TEST RESULTS

FCC Rules	RSS Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1) & §2.1093	RSS-102	RF Exposure	Compliant
§15.203	RSS-Gen §6.8	Antenna Requirement	Compliant
§15.207 (a)	RSS-Gen §8.8	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	RSS-GEN § 8.10 & RSS-247 § 5.5	Spurious Emissions	Compliant
§15.247 (a)(2)	RSS- Gen§6.7 RSS-247 § 5.2 (a)	99% Occupied Bandwidth & 6 dB Emission Bandwidth	Compliant
§15.247(b)(3)	RSS-247 § 5.4(d)	Maximum Conducted Output Power	Compliant
§15.247(d)	RSS-247 § 5.5	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	RSS-247 § 5.2 (b)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	Conducted Emissions Test						
Rohde& Schwarz	EMI Test Receiver	ESCI	100784	2021/02/03	2022/02/02		
R & S	L.I.S.N.	ENV216	101314	2020/12/25	2021/12/24		
Anritsu Corp	50ΩCoaxial Switch	MP59B	6200506474	2020/12/25	2021/12/24		
Unknown	RF Coaxial Cable	N-2m	No.2	2020/12/25	2021/12/24		
Conducted Emission	Test Software: e3 19821	b (V9)					
		Radiated Emissi	ons Test				
Rohde& Schwarz	Test Receiver	ESR	102725	2020/12/25	2021/12/24		
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/5/18	2022/5/17		
SONOMA INSTRUMENT	Amplifier	310 N	186131	2020/12/25	2021/12/24		
A.H. Systems, inc.	Preamplifier	PAM-0118P	531	2021/11/09	2022/11/08		
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2020/12/25	2021/12/24		
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2021/11/11	2022/11/10		
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2020/01/05	2023/01/04		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04		
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04		
Unknown	RF Coaxial Cable	N-5m	No.3	2020/12/25	2021/12/24		
Unknown	RF Coaxial Cable	N-1m	No.5	2020/12/25	2021/12/24		
Unknown	RF Coaxial Cable	N-10m	No.7	2021/11/09	2022/11/08		
Unknown	RF Coaxial Cable	N-2m	No.8	2021/11/09	2022/11/08		
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2020/12/25	2021/12/24		
Radiated Emission Test Software: e3 19821b (V9)							

Report No.: SZNS210428-54815E-RFB

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
RF Conducted Test						
Tonscend	RF Control Unit	JS0806-2	19G8060182	2020/07/06	2021/07/05	
Tonscend	RF Control Unit	JS0806-2	19G8060182	2021/07/06	2022/07/05	
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2020/12/24	2021/12/23	
WEINSCHEL	10dB Attenuator	5324	AU 3842	Each	time	

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 - RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

a) According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

For worst case:

For BLE mode:

Frequency	Maximum Tune-up Power		Calculated Distance	Calculated	Threshold	SAR Test
(MHz)	(dBm)	(mW)	(mm)	Value	(1-g SAR)	Exclusion
2402-2480	-7.0	0.2	5	0.06	3.0	Yes

For Wi-Fi mode, Please refer to SAR report: CR21110006-SA.

Result: Compliant.

RSS-102 – RF EXPOSURE

Applicable Standard

According to RSS-102, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

Result: Compliance.

Please refer to SAR Report Number: CR21110006-SA.

§ 15.203 & RSS-Gen §6.8 ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

b. Antenna must be permanently attached to the unit.

c. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached and the maximum antenna gain is 1.2dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Antenna Type	Antenna Gain	Impedance	Frequency Range	
FPC	1.2dBi	50 Ω	2.4~2.5GHz	

Result: Compliant.

§ 15.207 (a) & RSS-GEN §8.8 AC LINE CONDUCTED EMISSIONS

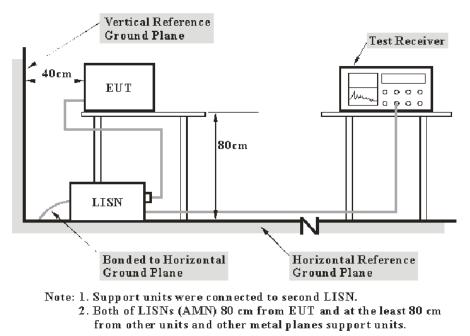
Applicable Standard

FCC § 15.207 (a) & RSS-GEN §8.8

Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a 50 μ H / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT.

For an EUT that connects to the AC power lines indirectly, through another device, the requirement for compliance with the limits in table 4 shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications.

Table 4 - AC Power Lines Conducted Emission Limits					
Frequency range	Conducted limit (dBµV)				
(MHz)	Quasi-Peak	Average			
0.15 - 0.5	66 to 56 ¹	56 to 46 ¹			
0.5 - 5	56	46			
5 - 30	60	50			


Note 1: The level decreases linearly with the logarithm of the frequency.

For an EUT with a permanent or detachable antenna operating between 150 kHz and 30 MHz, the AC power-line conducted emissions must be measured using the following configurations:

(a) Perform the AC power-line conducted emissions test with the antenna connected to determine compliance with the limits of table 4 outside the transmitter's fundamental emission band.

(b) Retest with a dummy load instead of the antenna to determine compliance with the limits of table 4 within the transmitter's fundamental emission band. For a detachable antenna, remove the antenna and connect a suitable dummy load to the antenna connector. For a permanent antenna, remove the antenna and terminate the RF output with a dummy load or network that simulates the antenna in the fundamental frequency band.

EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 & RSS-247/RSS-Gen limits.

The spacing between the peripherals was 10 cm.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

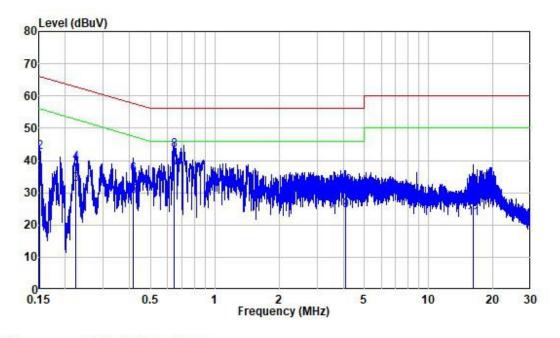
The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "**Over limit**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

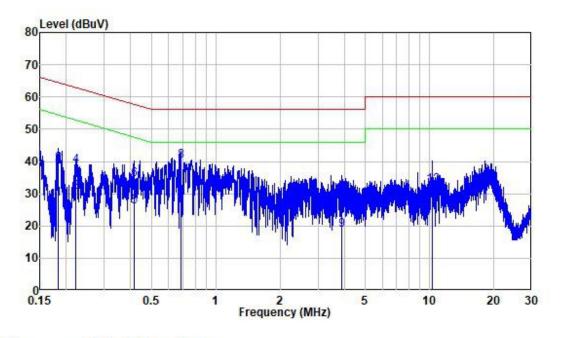
Test Data


Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	64 %
ATM Pressure:	101.0 kPa

The testing was performed by Bin Duan on 2021-11-27.

EUT operation mode: Transmitting (worst case is 802.11g mode, high channel)


AC 120V/60 Hz, Line

Site :	Shielding Room
Condition:	Line
Mode :	2.4G WIFI
Model :	E10

			Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
33 .	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.151	9.90	23.84	33.74	55.93	-22.19	Average
2	0.151	9.90	32.81	42.71	65.93	-23.22	QP
з	0.223	9.80	22.76	32.56	52.69	-20.13	Average
4	0.223	9.80	29.40	39.20	62.69	-23.49	QP
5	0.413	9.80	19.14	28.94	47.58	-18.64	Average
6	0.413	9.80	25.73	35.53	57.58	-22.05	QP
7	0.643	9.81	26.33	36.14	46.00	-9.86	Average
8	0.643	9.81	33.33	43.14	56.00	-12.86	QP
9	4.068	9.94	14.53	24.47	46.00	-21.53	Average
10	4.068	9.94	22.13	32.07	56.00	-23.93	QP
11	16.097	10.08	11.88	21.96	50.00	-28.04	Average
12	16.097	10.08	19.05	29.13	60.00	-30.87	QP

AC 120V/60 Hz, Neutral

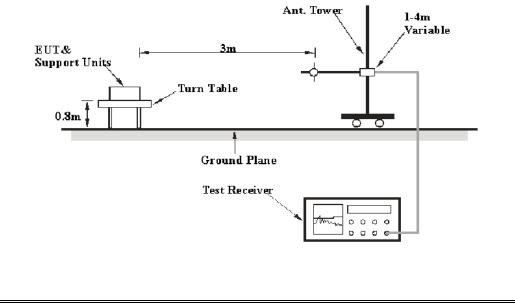
Site	:	Shielding Room
Condition	:	Neutral
Mode	:	2.4G WIFI
Model	:	E10

			Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
18-	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.183	9.97	18.55	28.52	54.34	-25.82	Average
2	0.183	9.97	29.30	39.27	64.34	-25.07	QP
з	0.222	9.99	20.53	30.52	52.74	-22.22	Average
4	0.222	9.99	28.74	38.73	62.74	-24.01	QP
5	0.413	9.92	16.17	26.09	47.58	-21.49	Average
6	0.413	9.92	24.41	34.33	57.58	-23.25	QP
7	0.684	9.91	16.26	26.17	46.00	-19.83	Average
8	0.684	9.91	30.38	40.29	56.00	-15.71	QP
9	3.871	10.04	8.77	18.81	46.00	-27.19	Average
10	3.871	10.04	20.00	30.04	56.00	-25.96	QP
11	10.288	10.09	16.67	26.76	50.00	-23.24	Average
12	10.288	10.09	22.49	32.58	60.00	-27.42	QP

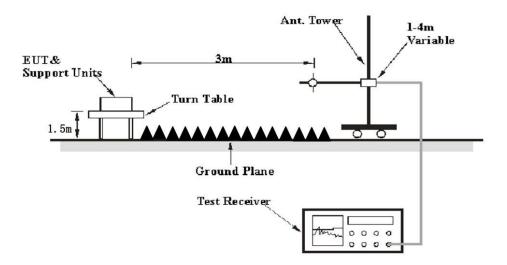
§ 15.205, §15.209, § 15.247(d) & RSS-GEN § 8.10 & RSS-247 § 5.5 Spurious Emissions

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;


According to RSS-GEN § 8.10 & RSS-247 § 5.5

Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:(a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).(b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.(c) Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in table 5 and table 6.


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013 & RSS-Gen. The specification used was the FCC 15.209, and FCC 15.247 & RSS-Gen limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	РК
Above 1 GHz	1MHz	10 Hz ^{Note 1}	/	Average
	1MHz	$> 1/T^{Note 2}$	/	Average

Note 1: when duty cycle is no less than 98% Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

If the maximized peak measured value complies with the limit, then it is unnecessary to perform QP/Average measurement.

Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

Corrected Factor & Margin Calculation

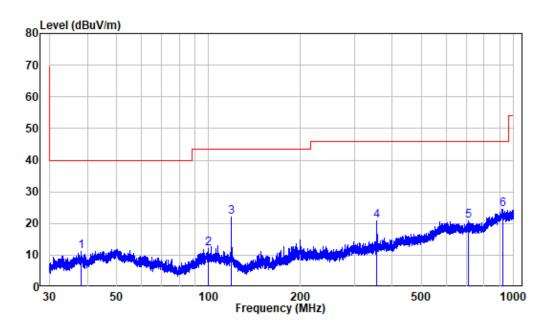
The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit/Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

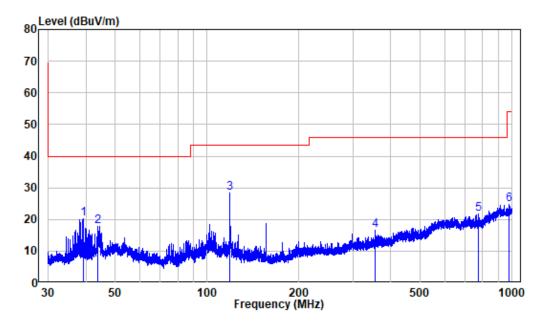
Environmental Conditions


Temperature:	25~26.8°C
Relative Humidity:	51~64%
ATM Pressure:	101.0~101.2 kPa

The testing was performed by Bin Deng on 2021-11-17.

EUT operation mode: Transmitting (Pre-scan in the X, Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

30MHz-1GHz: (the worst case is 802.11b mode, Middle channel)


Horizontal

chamber
3m HORIZONTAL
SZNS210428-54815E-RF
2.4GWIFI

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	38.246	-18.93	30.24	11.31	40.00	-28.69	Peak
2	99.572	-19.25	31.20	11.95	43.50	-31.55	Peak
3	118.757	-20.26	42.42	22.16	43.50	-21.34	Peak
4	356.363	-15.99	36.76	20.77	46.00	-25.23	Peak
5	712.298	-11.37	32.13	20.76	46.00	-25.24	Peak
6	922.516	-7.86	32.44	24.58	46.00	-21.42	Peak

Site :	chamber					
Condition:	3m VERTICAL					
Job NO. :	SZNS210428-54815E-RF					
Mode :	2.4GWIFI					

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	39.368	-18.75	38.92	20.17	40.00	-19.83	Peak
2	43.850	-17.72	35.62	17.90	40.00	-22.10	Peak
3	118.757	-20.26	48.53	28.27	43.50	-15.23	Peak
4	356.520	-15.99	32.63	16.64	46.00	-29.36	Peak
5	775.177	-11.18	32.94	21.76	46.00	-24.24	Peak
6	979.610	-7.79	32.53	24.74	54.00	-29.26	Peak

Report No.: SZNS210428-54815E-RFB

1-25 GHz:

BLE 1MHz:

Frequency	Re	eceiver	Turntable	Rx An	tenna	Corrected	Corrected	Limit	Margin
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)
			BLE 1	M, Low	Chann	el			
2310	70.90	PK	139	1.4	Н	-10.64	60.26	74	-13.74
2310	57.27	Ave,	139	1.4	Н	-10.64	46.63	54	-7.37
2310	70.12	РК	256	2	V	-10.64	59.48	74	-14.52
2310	55.40	Ave,	256	2	V	-10.64	44.76	54	-9.24
2390	70.95	PK	190	1.2	Н	-10.37	60.58	74	-13.42
2390	57.27	Ave,	190	1.2	Н	-10.37	46.90	54	-7.1
2390	69.70	PK	169	1.3	V	-10.37	59.33	74	-14.67
2390	55.15	Ave,	169	1.3	V	-10.37	44.78	54	-9.22
4804	54.06	PK	303	1.6	Н	-4.65	49.41	74	-24.59
4804	52.72	РК	51	2.3	V	-4.65	48.07	74	-25.93
			BLE 1N	A, Midd	le Chan	nel			
4880	54.48	РК	232	2	Н	-4.47	50.01	74	-23.99
4880	53.2	РК	24	2.2	V	-4.47	48.73	74	-25.27
			BLE 1	M, Higł	n Chann	el			
2483.5	70.70	РК	322	2.2	Н	-10.08	60.62	74	-13.38
2483.5	56.65	Ave,	322	2.2	Н	-10.08	46.57	54	-7.43
2483.5	69.39	РК	50	1.5	V	-10.08	59.31	74	-14.69
2483.5	55.03	Ave.	50	1.5	V	-10.08	44.95	54	-9.05
2500	71.08	РК	273	1.1	Н	-10.04	61.04	74	-12.96
2500	57.06	Ave,	273	1.1	Н	-10.04	47.02	54	-6.98
2500	70.28	PK	276	2.4	V	-10.04	60.24	74	-13.76
2500	55.79	Ave,	276	2.4	V	-10.04	45.75	54	-8.25
4960	54.23	РК	0	1.4	Н	-4.24	49.99	74	-24.01
4960	52.38	РК	34	1.9	V	-4.24	48.14	74	-25.86

Report No.: SZNS210428-54815E-RFB

BLE 2MHz:

Engagement	Re	eceiver	Turntable	Rx Ar	tenna		Corrected	Limit	Margin
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)
			BLE 2	2M, Low	Channe	el			
2310	71.26	PK	104	1.9	Н	-10.64	60.62	74	-13.38
2310	57.21	Ave.	104	1.9	Н	-10.64	46.57	54	-7.43
2310	69.96	PK	248	1.5	V	-10.64	59.32	74	-14.68
2310	55.39	Ave.	248	1.5	V	-10.64	44.75	54	-9.25
2390	71.41	PK	266	2.2	Н	-10.37	61.04	74	-12.96
2390	57.39	Ave.	266	2.2	Н	-10.37	47.02	54	-6.98
2390	70.55	РК	276	1.9	V	-10.37	60.18	74	-13.82
2390	56.45	Ave.	276	1.9	V	-10.37	46.08	54	-7.92
4804	53.79	РК	244	1.4	Н	-4.65	49.14	74	-24.86
4804	53.52	РК	42	1.7	V	-4.65	48.87	74	-25.13
			BLE 2N	A, Midd	le Chan	nel			
4880	54.39	РК	274	1.3	Н	-4.47	49.92	74	-24.08
4880	52.91	РК	102	1.2	V	-4.47	48.44	74	-25.56
			BLE 2	M, Higł	n Chann	el			
2483.5	70.94	РК	49	1.4	Н	-10.08	60.86	74	-13.14
2483.5	56.67	Ave.	49	1.4	Н	-10.08	46.59	54	-7.41
2483.5	69.82	РК	267	1.7	V	-10.08	59.74	74	-14.26
2483.5	55.14	Ave.	267	1.7	V	-10.08	45.06	54	-8.94
2500	71.31	РК	173	2.1	Н	-10.04	61.27	74	-12.73
2500	57.04	Ave.	173	2.1	Н	-10.04	47	54	-7
2500	69.91	РК	52	1.2	V	-10.04	59.87	74	-14.13
2500	55.37	Ave.	52	1.2	V	-10.04	45.33	54	-8.67
4960	54.3	РК	222	1.8	Н	-4.24	50.06	74	-23.94
4960	53.1	РК	349	2.3	V	-4.24	48.86	74	-25.14

Report No.: SZNS210428-54815E-RFB

Wi-Fi:

F			Rec	eiver		т		Rx An	tenna	Corre	cted Cor	rected	I :	Manaia
Frequenc (MHz)	:y	Reading (dBµV) PK/Q		QP/Ave.		ntable gree	Height (m)	Polar (H/V)	Fact (dB/1	or Am n) (dB	plitude µV/m)	Limit (dBµV/m	Margin) (dB)	
					802.	11b, 1	Low Ch	annel(24	412MH	z)				
2310	71.0	53	Pl	K	180		1.6	Н	-1	0.64	60.99		74	-13.01
2310	56.5	52	Av	e.	180		1.6	Н	-1	0.64	45.88		54	-8.12
2310	70.3	38	Pl	K	176		1.2	V	-1	0.64	59.74		74	-14.26
2310	55.	12	Av	e.	176		1.2	V	-1	0.64	44.48		54	-9.52
2390	71.′	77	PI	ζ	183		2.1	Н	-1	0.37	61.40)	74	-12.6
2390	56.	71	Av	e.	183		2.1	Н	-1	0.37	46.34		54	-7.66
2390	70.0	59	Pl	ζ	13		2.3	V	-1	0.37	60.32		74	-13.68
2390	55.9	91	Av	e.	13		2.3	V	-1	0.37	45.54		54	-8.46
4824	60.0	04	Pl	ζ	88		1.3	Н	-4	4.51	55.53		74	-18.47
4824	54.2	23	Av	e.	88		1.3	Н	-4	4.51	49.72		54	-4.28
4824	58.	38	РК		123		2.2	V	_4	4.51	53.87	,	74	-20.13
802.1					802.1	1b, N	fiddle C	hannel(2	2442MI	Hz)				
4884	61.	39	Pl	Κ	313		1.9	Н	_4	1.48	56.91		74	-17.09
4884	56.9	99	Av	e.	313		1.9	Н	-4	1.48	52.51		54	-1.49
4884	58.9	93	Pl	ζ	95		2.2	V	-4	1.48	54.45		74	-19.55
4884	55.0	06	Av	e.	95		2.2	V	_4	1.48	50.58		54	-3.42
					802.1	1b, I	High Ch	annel(24	472 ME	lz)				
2483.5	71.	19	Pl	ζ	163		1	Н	-1	0.08	61.11		74	-12.89
2483.5	55.9	96	Av	e.	163		1	Н	-1	0.08	45.88		54	-8.12
2483.5	70.8	82	PI	ζ	189		1.6	V	-1	0.08	60.74		74	-13.26
2483.5	54.0	50	Av	e.	189		1.6	V	-1	0.08	44.52		54	-9.48
2500	75.4	41	Pl	Κ	322		1.3	Н	-1	0.04	65.37	·	74	-8.63
2500	62.9	90	Av	e.	322		1.3	Н	-1	0.04	52.86	,	54	-1.14
2500	73.8	81	Pl	Κ	304		1.9	V	-1	0.04	63.77	'	74	-10.23
2500	51.	15	Av	e.	304		1.9	V	-1	0.04	41.11		54	-12.89
4944	59.3	36	Pl	Κ	215		1.4	Н	_4	4.32	55.04		74	-18.96
4944	54.	33	Av	e.	215		1.4	Н	_4	4.32	50.01		54	-3.99
4944	57.0	58	Pl	Κ	336		1.3	V	_4	4.32	53.36		74	-20.64

Report No.: SZNS210428-54815E-RFB

Encarronov	Rec	eiver	Turntable	Rx An	tenna	Corrected	Corrected	Limit	Mangin
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	Margin (dB)
			802.11G, L	low Char	nnel	-		-	
2310	72.30	PK	86	2.2	Н	-10.64	61.66	74	-12.34
2310	57.36	Ave.	86	2.2	Н	-10.64	46.72	54	-7.28
2310	70.48	PK	327	1.5	V	-10.64	59.84	74	-14.16
2310	55.18	Ave.	327	1.5	V	-10.64	44.54	54	-9.46
2390	71.77	PK	175	2.1	Н	-10.37	61.40	74	-12.6
2390	57.25	Ave.	175	2.1	Н	-10.37	46.88	54	-7.12
2390	70.13	PK	287	1.9	V	-10.37	59.76	74	-14.24
2390	55.90	Ave.	287	1.9	V	-10.37	45.53	54	-8.47
4824	53.95	PK	174	2.1	Н	-4.51	49.44	74	-24.56
4824	52.87	PK	212	2.1	V	-4.51	48.36	74	-25.64
			802.11G, M	iddle Cha	annel				
4884	54.77	PK	358	1.3	Н	-4.48	50.29	74	-23.71
4884	53.96	PK	110	1.3	V	-4.48	49.48	74	-24.52
			802.11G, H	ligh Cha	nnel				
2483.5	71.18	PK	232	2.1	Н	-10.08	61.1	74	-12.9
2483.5	55.96	Ave.	232	2.1	Н	-10.08	45.88	54	-8.12
2483.5	70.50	PK	248	1.9	V	-10.08	60.42	74	-13.58
2483.5	54.91	Ave.	248	1.9	V	-10.08	44.83	54	-9.17
2500	82.96	PK	244	2.3	Н	-10.04	72.92	74	-1.08
2500	63.00	Ave.	244	2.3	Н	-10.04	52.96	54	-1.04
2500	80.48	PK	360	2.4	V	-10.04	70.44	74	-3.56
2500	60.90	Ave.	360	2.4	V	-10.04	50.86	54	-3.14
4944	54.75	РК	140	1.7	Н	-4.32	50.43	74	-23.57
4944	53.50	РК	85	1.7	V	-4.32	49.18	74	-24.82

Report No.: SZNS210428-54815E-RFB

E	Rec	eiver	T	Rx An	tenna	Corrected	Corrected	T • •		
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
	802.11N20, Low Channel									
2310	73.19	PK	224	2	Н	-10.64	62.55	74	-11.45	
2310	57.34	Ave.	224	2	Н	-10.64	46.70	54	-7.3	
2310	71.49	PK	70	1.7	V	-10.64	60.85	74	-13.15	
2310	55.18	Ave.	70	1.7	V	-10.64	44.54	54	-9.46	
2390	72.08	PK	341	1.5	Н	-10.37	61.71	74	-12.29	
2390	57.80	Ave.	341	1.5	Н	-10.37	47.43	54	-6.57	
2390	70.83	PK	46	2.3	V	-10.37	60.46	74	-13.54	
2390	56.45	Ave.	46	2.3	V	-10.37	46.08	54	-7.92	
4824	54.47	PK	140	1.5	Н	-4.51	49.96	74	-24.04	
4824	52.83	PK	193	1.5	V	-4.51	48.32	74	-25.68	
		8	02.11N20, N	/iddle Cl	hannel					
4884	55.18	PK	302	1.2	Н	-4.48	50.7	74	-23.3	
4884	53.66	PK	115	1.2	V	-4.48	49.18	74	-24.82	
			802.11N20,	High Ch	annel					
2483.5	70.62	PK	57	2	Н	-10.08	60.54	74	-13.46	
2483.5	56.60	Ave.	57	2	Н	-10.08	46.52	54	-7.48	
2483.5	69.21	PK	66	1.1	V	-10.08	59.13	74	-14.87	
2483.5	54.62	Ave.	66	1.1	V	-10.08	44.54	54	-9.46	
2500	79.98	PK	157	1.9	Н	-10.04	69.94	74	-4.06	
2500	62.43	Ave.	157	1.9	Н	-10.04	52.39	54	-1.61	
2500	77.11	РК	95	1.4	V	-10.04	67.07	74	-6.93	
2500	60.22	Ave.	95	1.4	V	-10.04	50.18	54	-3.82	
4944	54.95	РК	355	1.7	Н	-4.32	50.63	74	-23.37	
4944	53.71	РК	30	1.7	V	-4.32	49.39	74	-24.61	

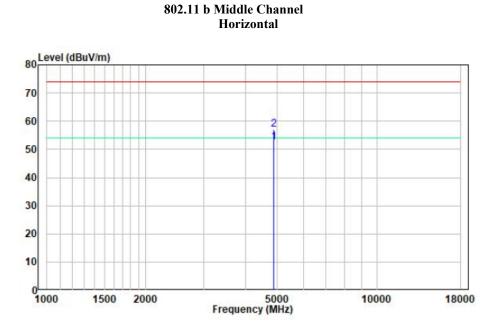
Report No.: SZNS210428-54815E-RFB

F	Rec	eiver	T	Rx An	tenna	Corrected	Corrected	T • •	M
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			802.11N40,	Low Cha	annel				
2310	78.68	PK	193	2.1	Н	-10.64	68.04	74	-5.96
2310	60.15	Ave.	193	2.1	Н	-10.64	49.51	54	-4.49
2310	76.72	PK	344	1.2	V	-10.64	66.08	74	-7.92
2310	58.96	Ave.	344	1.2	V	-10.64	48.32	54	-5.68
2390	72.77	PK	104	1.7	Н	-10.37	62.40	74	-11.6
2390	57.95	Ave.	104	1.7	Н	-10.37	47.58	54	-6.42
2390	71.50	PK	240	1.4	V	-10.37	61.13	74	-12.87
2390	56.98	Ave.	240	1.4	V	-10.37	46.61	54	-7.39
4844	54.70	РК	242	1.4	Н	-4.51	50.19	74	-23.81
4844	53.84	РК	153	1.4	V	-4.51	49.33	74	-24.67
		8	02.11N40, N	/iddle Cl	hannel				
4884	55.80	РК	339	1.5	Н	-4.48	51.32	74	-22.68
4884	54.56	РК	74	1.5	V	-4.48	50.08	74	-23.92
			802.11N40,	High Ch	annel				
2483.5	71.28	РК	249	1.4	Н	-10.08	61.2	74	-12.8
2483.5	57.15	Ave.	249	1.4	Н	-10.08	47.07	54	-6.93
2483.5	69.80	РК	306	1.8	V	-10.08	59.72	74	-14.28
2483.5	55.81	Ave.	306	1.8	V	-10.08	45.73	54	-8.27
2500	82.53	РК	225	1.8	Н	-10.04	72.49	74	-1.51
2500	62.18	Ave.	225	1.8	Н	-10.04	52.14	54	-1.86
2500	80.79	PK	65	2.1	V	-10.04	70.75	74	-3.25
2500	59.76	Ave.	65	2.1	V	-10.04	49.72	54	-4.28
4924	54.73	РК	333	1.7	Н	-4.32	50.41	74	-23.59
4924	53.46	РК	220	1.7	V	-4.32	49.14	74	-24.86

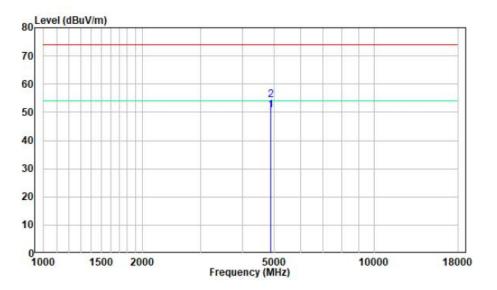
Note:

Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor

Absolute Level (Corrected Amplitude) = Factor + Reading

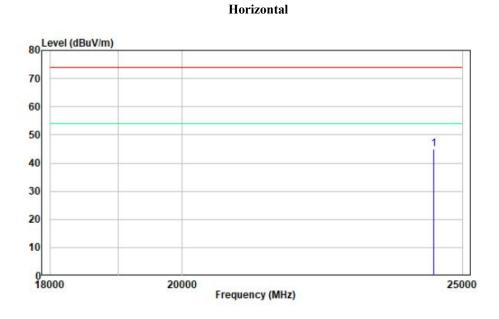

Margin = Absolute Level (Corrected Amplitude) – Limit

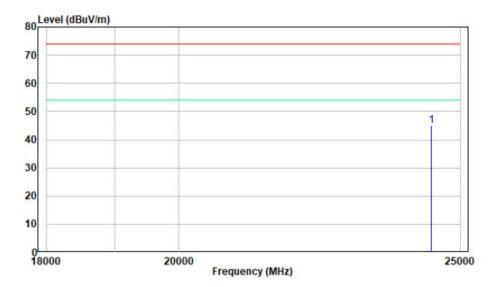
The other spurious emission which is in the noise floor level was not recorded.


The test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, so just peak value was recorded.

1-18 GHz:

Pre-scan plots:




18 -25GHz:

Pre-scan plots:

802.11 b Middle Channel

Vertical

§15.247 (a)(2) & RSS-Gen§6.7 RSS-247 § 5.2 (a) 99% OCCUPIED BANDWIDTH & 6 dB EMISSION BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "6 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 6 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

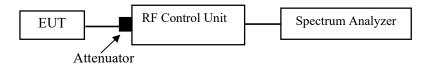
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

The following conditions shall be observed for measuring the occupied bandwidth and 6 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.

• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 6 dB bandwidth if the device is not transmitting continuously.


• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 6 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

Version 22: 2021-11-09

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed

in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

Temperature:	28.2 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

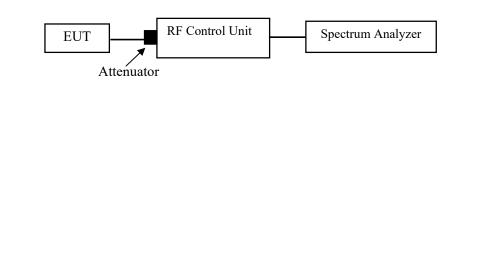
The testing was performed by Paul Liu on 2021-05-13 for BLE and 2021-05-13 for WIFI.

EUT operation mode: Transmitting

Test Result Compliant. Please refer to the Appendix BLE & Appendix Wi-Fi.

§15.247(b)(3) & RSS-247 § 5.4(d) MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard


According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- d. Place the EUT on a bench and set it in transmitting mode.
- e. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- f. Add a correction factor to the display.

Test Data

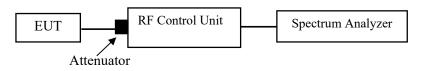
Environmental Conditions

Temperature:	28.2 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul Liu on 2021-05-13 for BLE and 2021-05-13 for WIFI.

EUT operation mode: Transmitting

Test Result Compliant. Please refer to the Appendix BLE & Appendix Wi-Fi.


§ 15.247(d) & RSS-247 § 5.5 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- g. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- h. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- i. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- j. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- k. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

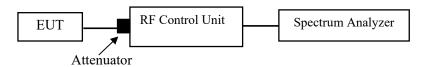
Temperature:	28.2 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul Liu on 2021-05-13 for BLE and 2021-05-13 for WIFI.

EUT operation mode: Transmitting

Test Result Compliant. Please refer to the Appendix BLE & Appendix Wi-Fi.

§15.247(e) & RSS-247 § 5.2 (b) POWER SPECTRAL DENSITY


Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

Test Procedure

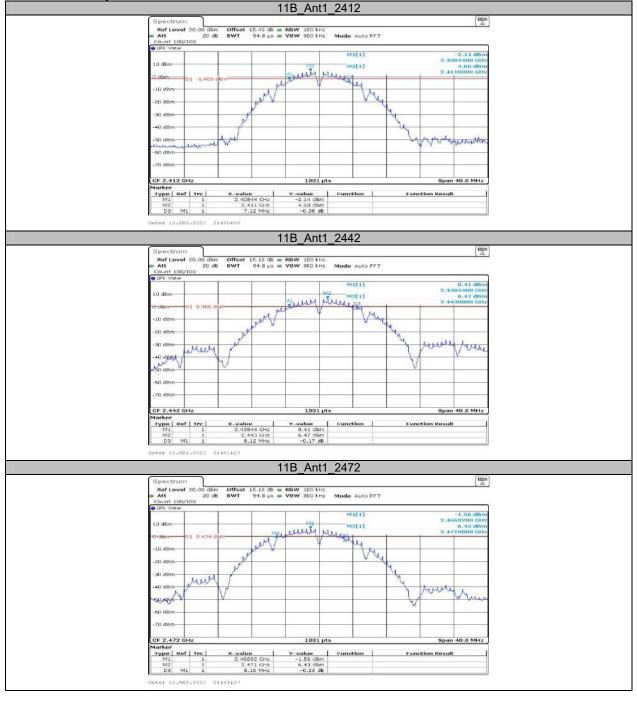
- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- m. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- n. Set the VBW $\geq 3 \times RBW$.
- o. Set the span to 1.5 times the DTS bandwidth.
- p. Detector = peak.
- q. Sweep time = auto couple.
- r. Trace mode = max hold.
- s. Allow trace to fully stabilize.
- t. Use the peak marker function to determine the maximum amplitude level within the RBW.
- u. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

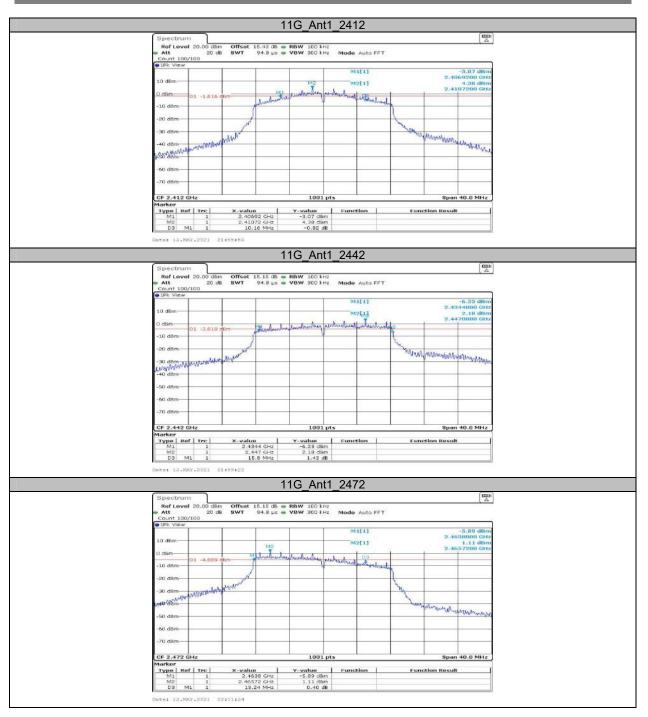
Environmental Conditions

Temperature:	28.2 °C
Relative Humidity:	52 %
ATM Pressure:	101.0 kPa

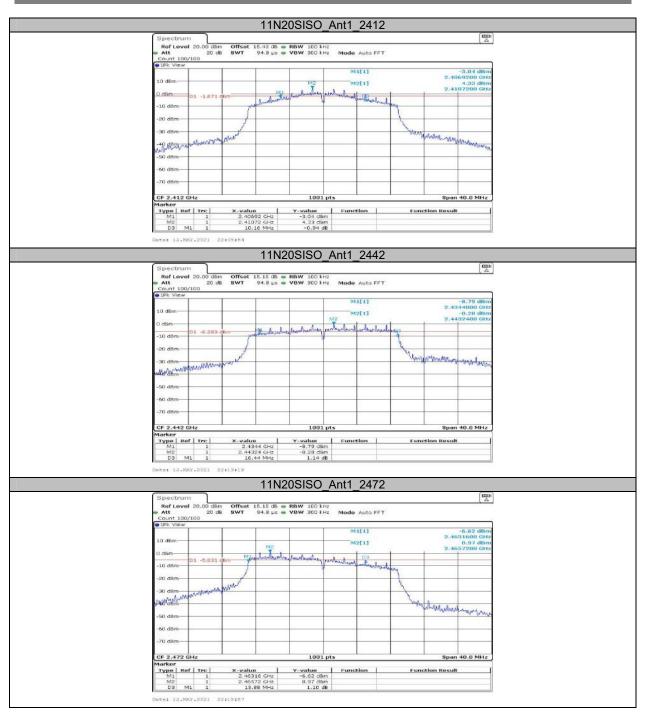
The testing was performed by Paul Liu on 2021-05-13 for BLE and 2021-12-22 for WIFI.

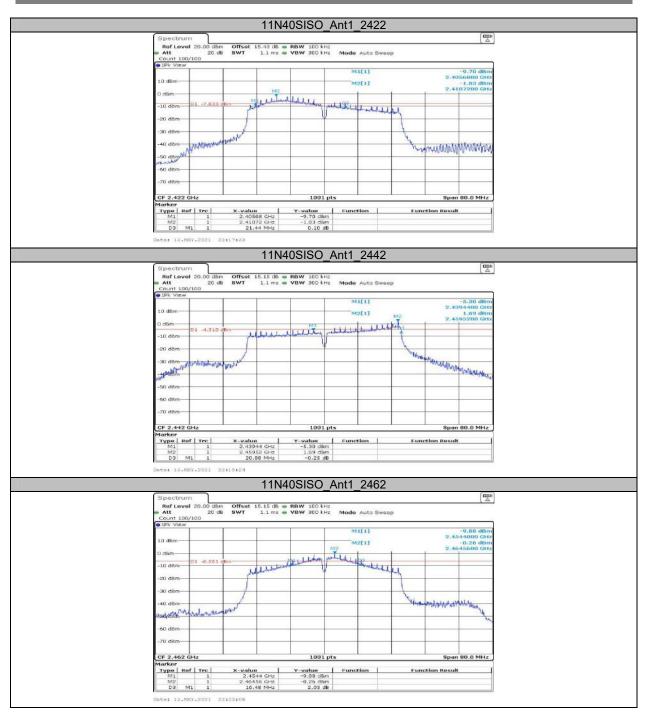

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix Wi-Fi and Appendix BLE.

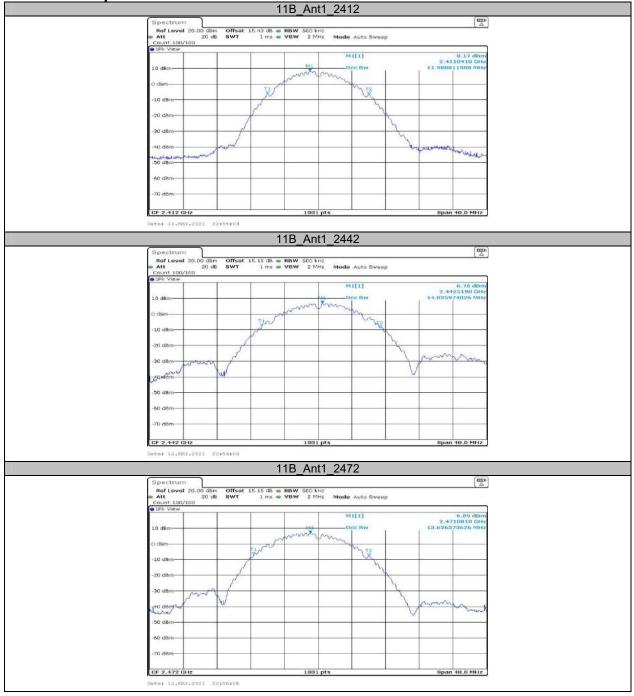

APPENDIX Wi-Fi

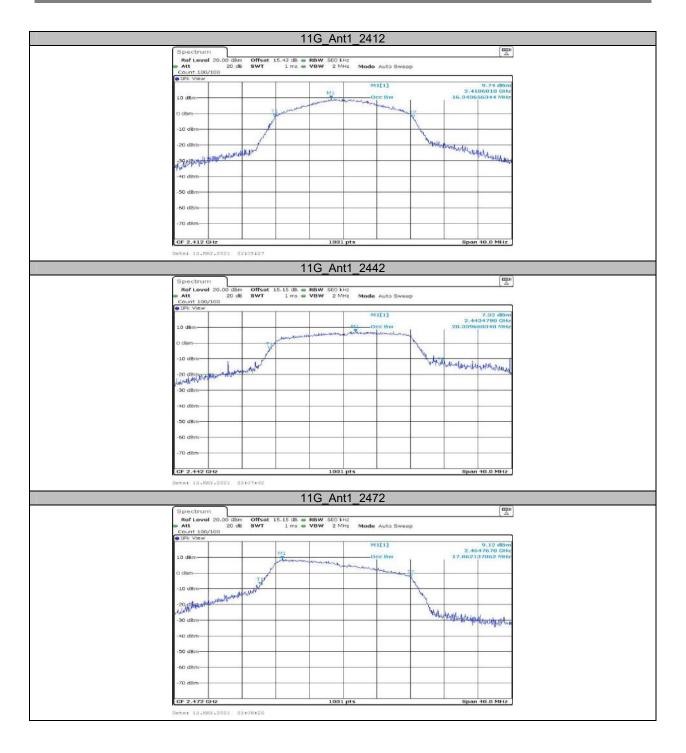
Appendix A: DTS Bandwidth Test Result

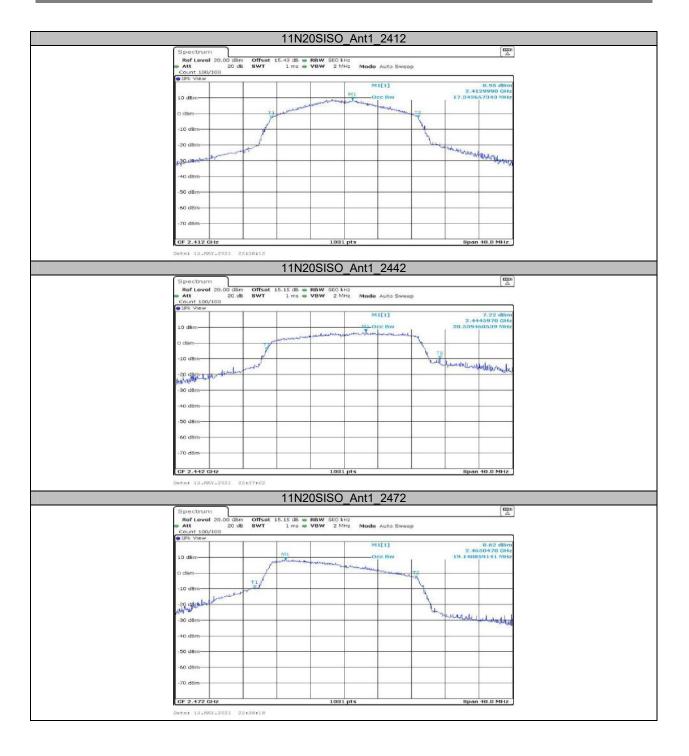

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
		2412	7.120	0.5	PASS
11B	Ant1	2442	8.120	0.5	PASS
		2472	8.160	0.5	PASS
		2412	10.160	0.5	PASS
11G	Ant1	2442	15.800	0.5	PASS
		2472	13.240	0.5	PASS
		2412	10.160	0.5	PASS
11N20SISO	Ant1	2442	16.440	0.5	PASS
		2472	13.880	0.5	PASS
		2422	21.440	0.5	PASS
11N40SISO	Ant1	2442	20.880	0.5	PASS
		2462	16.480	0.5	PASS

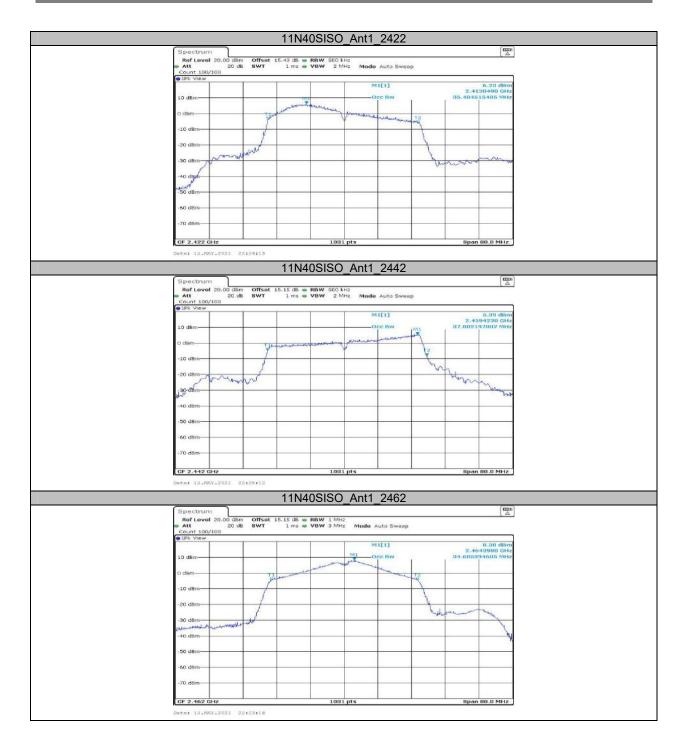

Report No.: SZNS210428-54815E-RFB

Report No.: SZNS210428-54815E-RFB


Report No.: SZNS210428-54815E-RFB




Report No.: SZNS210428-54815E-RFB


Appendix B: Occupied Channel Bandwidth Test Result

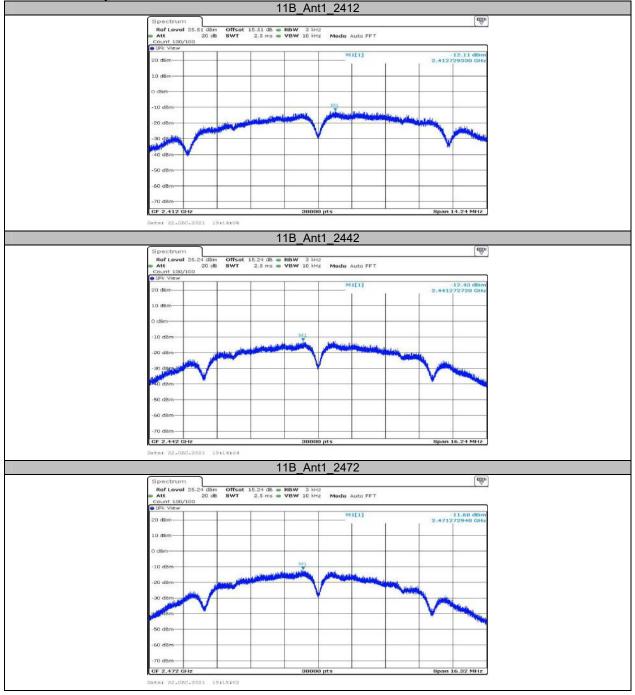
Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict				
		2412	11.988		PASS				
11B	Ant1	2442	14.026		PASS				
		2472	13.626		PASS				
		2412	16.344		PASS				
11G	Ant1	2442	20.34		PASS				
		2472	17.862		PASS				
		2412	17.343		PASS				
11N20SISO	Ant1	2442	20.539		PASS				
		2472	19.141		PASS				
		2422	35.485		PASS				
11N40SISO	Ant1	2442	37.802		PASS				
		2462	34.605		PASS				

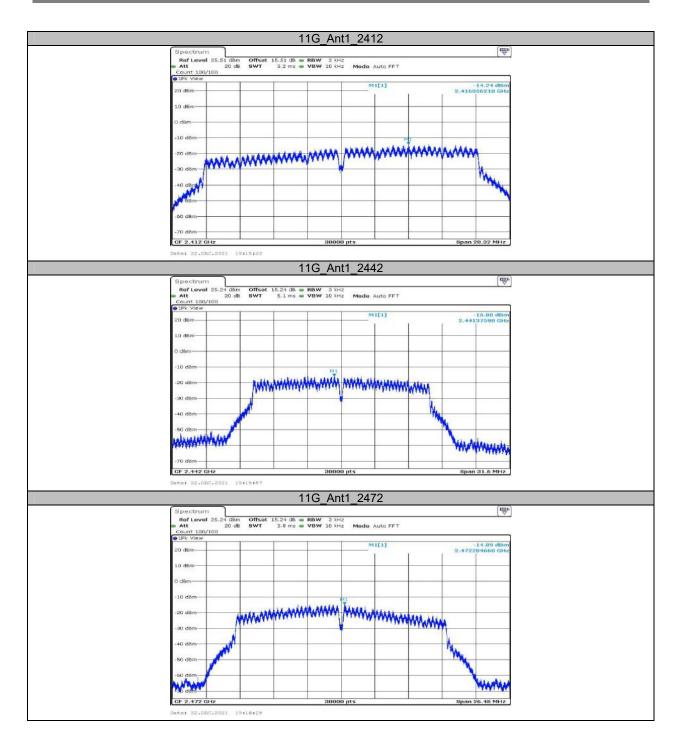
Report No.: SZNS210428-54815E-RFB

Appendix C: Maximum conducted output power

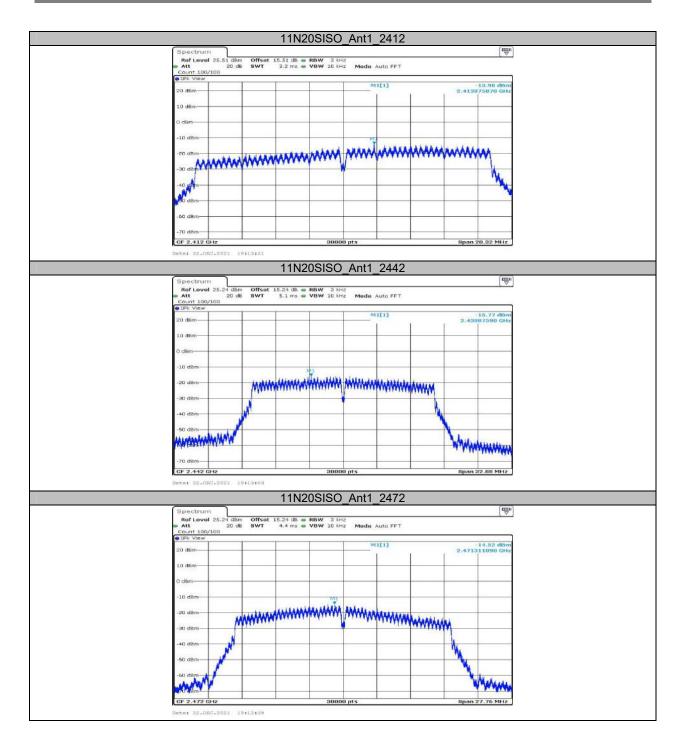
Test Result(PK)

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2412	12.30	≤30	PASS
11B	Ant1	2442	11.41	≤30	PASS
		2472	12.00	≤30	PASS
		2412	15.15	≤30	PASS
11G	Ant1	2442	14.68	≤30	PASS
		2472	15.02	≤30	PASS
		2412	14.45	≤30	PASS
11N20SISO	Ant1	2442	14.21	≤30	PASS
		2472	15.19	≤30	PASS
		2422	14.91	≤30	PASS
11N40SISO	Ant1	2442	12.83	≤30	PASS
		2462	14.37	≤30	PASS

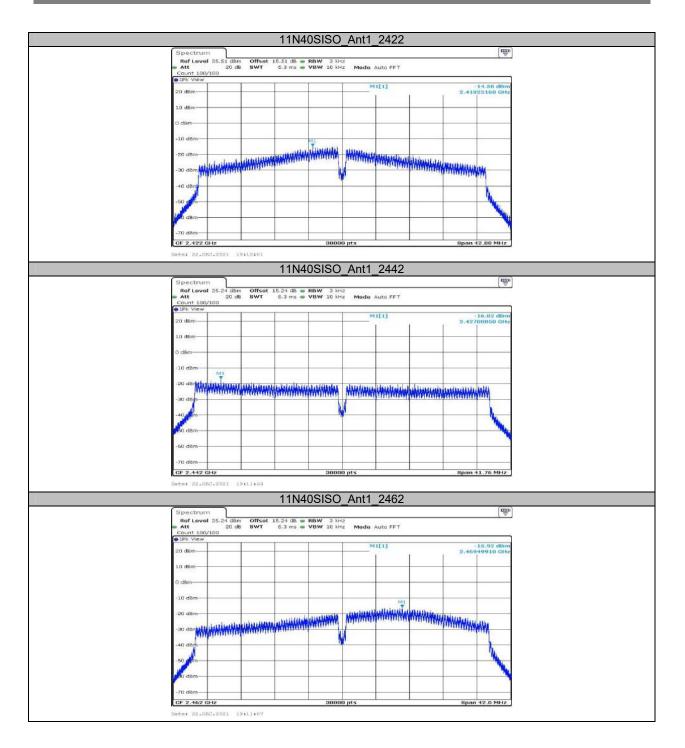

Test Result(Ave.)

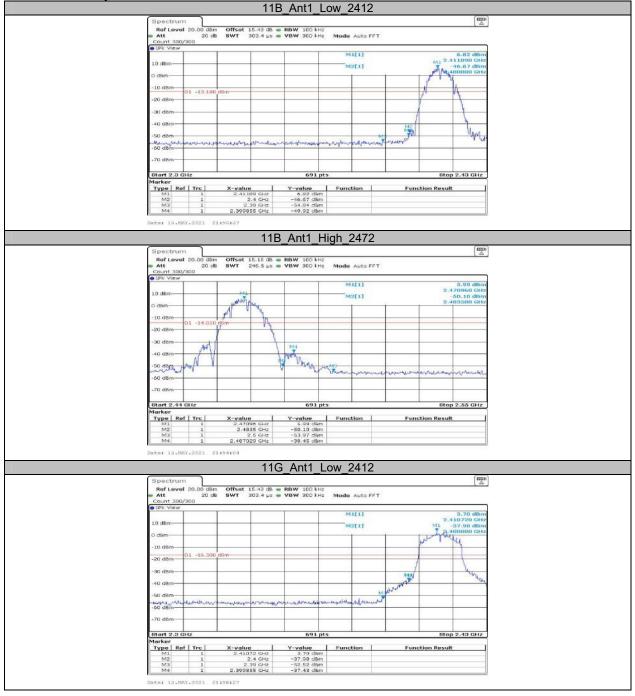

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
		2412	10.09	≤30	PASS
11B	Ant1	2442	9.80	≤30	PASS
		2472	9.82	≤30	PASS
		2412	9.84	≤30	PASS
11G	Ant1	2442	9.67	≤30	PASS
		2472	9.08	≤30	PASS
		2412	9.73	≤30	PASS
11N20SISO	Ant1	2442	9.62	≤30	PASS
		2472	8.88	≤30	PASS
		2422	10.09	≤30	PASS
11N40SISO	Ant1	2442	10.01	≤30	PASS
		2462	9.65	≤30	PASS

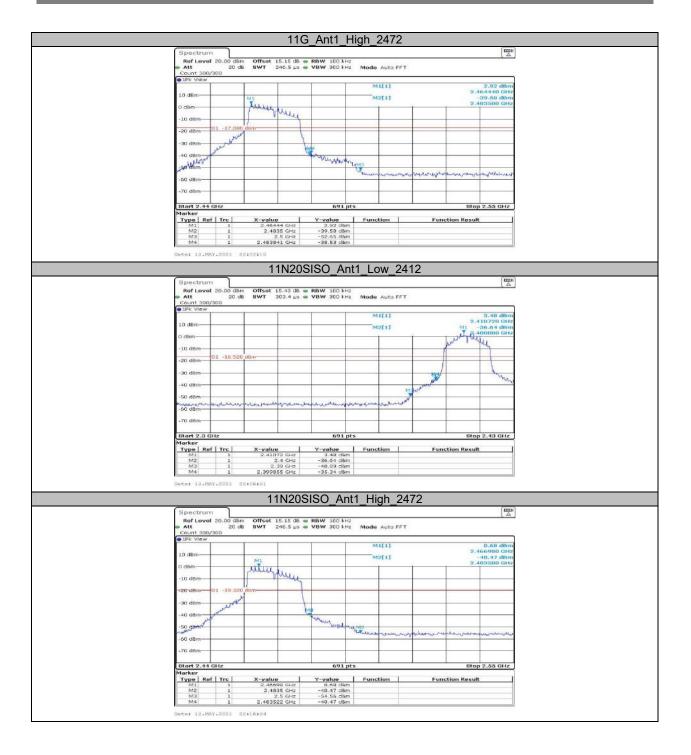
Note: The maximum EIRP is 15.19dBm+1.2dBi=16.39dBm<36dBm, so it's compliance with ISEDC EIRP limit.


Appendix D: Maximum power spectral density Test Result

Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2412	-12.11	≤8	PASS
11B	Ant1	2442	-12.43	≤8	PASS
		2472	-11.68	≤8	PASS
		2412	-14.24	≤8	PASS
11G	Ant1	2442	-15.88	≤8	PASS
		2472	-14.89	≤8	PASS
		2412	-13.98	≤8	PASS
11N20SISO	Ant1	2442	-15.77	≤8	PASS
		2472	-14.52	≤8	PASS
		2422	-14.58	≤8	PASS
11N40SISO	Ant1	2442	-16.82	≤8	PASS
		2462	-15.92	≤8	PASS




FCC&RSS- BLE&2.4G Wi-Fi



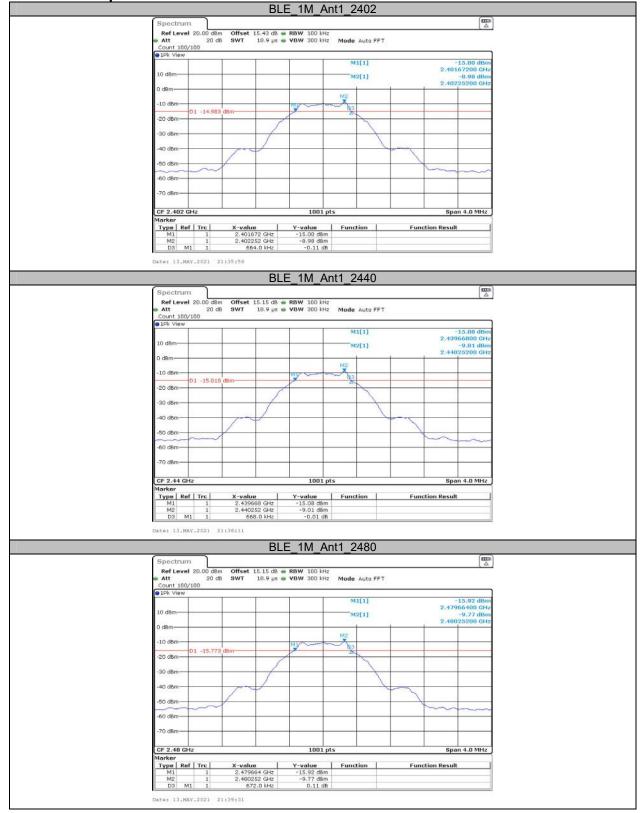
FCC&RSS- BLE&2.4G Wi-Fi

Appendix E:Band edge measurements Test Graphs

Appendix F: Duty Cycle Test Result

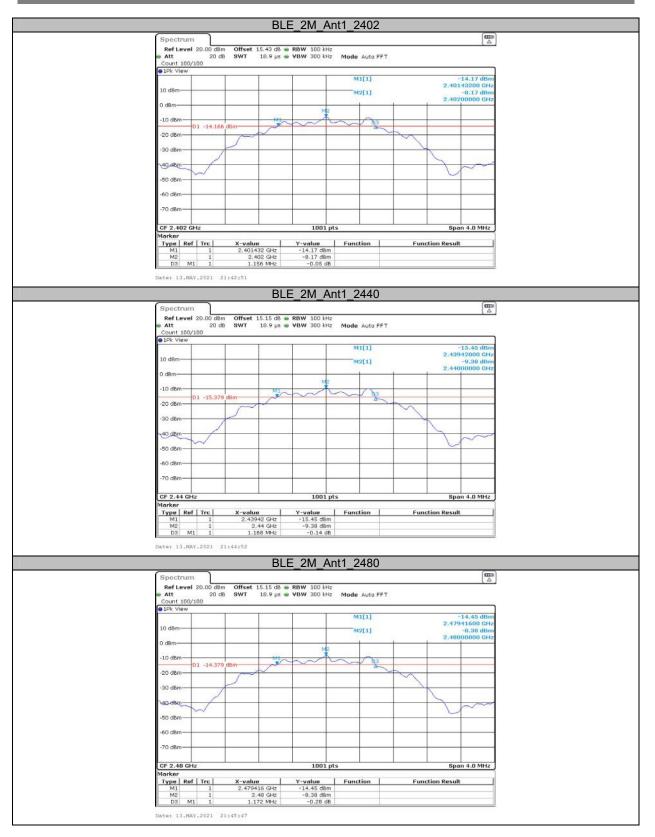
Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
11B	Ant1	2442	8.34	8.42	99.05
11G	Ant1	2442	1.37	1.43	95.80
11N20SISO	Ant1	2442	1.28	1.35	94.81
11N40SISO	Ant1	2442	0.63	0.69	91.30

Test Oraphs				0		
		11	B_Ant1_244	-2		
	Spectrum					
	Ref Level 20.00 dBm Att 20 dB	Offset 15.15 dB - R SWT 20 ms - Y	BW 10 MH2 BW 10 MH2		(1967 - Sa	
	SGL TRG: VID		1997 - 212 Mar 1975			
	e 1Pk Clrw		T 1112 M	1[1]	16 Z3 dBm	
	10 dBm TRG 10.800 dB	STT:		u(1)	-0.00 dB	
	0 dBm-				8+3400 ms	
	-10 dBm-					
	-20 dBm					
	-30 d8m					
	-40 dBm-					
	-50 d8m					
	-60 dBm					
	-70 dBm					
	CF 2.442 GHz		1001 pts		2.0 ms/	
	Marker Type Ref Trc	x-value Y	-value Fund	tion Euncti	on Result	
	M1 1 D1 M1 1	9.0 ms 8.34 ms	16.73 dBm -0.08 dB			
	D2 M1 1	8.42 ms	0.00 dB			
	Date: 13.MAY.3021 21:	1:18				
		11/	G_Ant1_244	2		
		110	5_AII(1_244	12	(mm)	
	Spectrum	0H				
	Ref Level 20.00 dBm Att 20 dB	SWT 10 ms - Y	BW 10 MHz BW 10 MHz			
	SGL TRG: VID	and a second of				
	mon and approver and a	Warder and Barton and Barton	wanter and a state of the second state of the	Warmay an an anteren of p		
	10 dBm	0	D	u(1)	2,75 dB 1.37000 ms	
	0 dBm-				1.37000 ms	
	-10 dBm					
	-20 dBm-					
	-30 d8m					
	-40 dBm		1			
	-50 dBm					
	-60 dBm					
	-70 dBm					
	CF 2.442 GHz Marker		1001 pts		1.0 ms/	
	Type Ref Trc M1 1	x-value y 630.0 µs	-value Fund 13.80 dBm	tion Functi	on Result	
	D1 M1 1	1.37 ms	2.75 dB			
	Construction and a second second	1.43 ms	-3.05 dB			
	Date: 13.MAY.2021 21:					
		11N20	SISO Ant1	2442		
	Spectrum					
	Ref Level 20.00 dBm	Offset 15.15 dB - R	BW 10 MHz			
	SGL TRG: VID	10 ms 🖷 V	BW 10 MHz			
	• 1Pk Cirw	Numu in an and in	Designed of the section of the State	Libble new polyania and	hanna bill 3 of 2,41000	
	10 d8m TRG 22 800 d8	m.		lfolddiagant printerwardiosta 1[1]	0.00000000 s 1.99 dB	
	OldBm-				1,99 db 1,28000 ms	
	-10 dBm					
	-20 dBm					
	-30 d8m					
	-40 dBm-	4	N N			
	-50 dBm					
	-60 dBm					
	-70 dBm					
			the second se	S / /	1.0 ms/	
	CF 2.442 GHz		1001 pts			
	CF 2.442 GHz Marker	v uslue 1 -	1001 pts	tion (
	Marker Type Ref Trc	x-value 1	-value Fund 13.57 dBm	tion Functi	on Result	
	Marker Type Ref Trc	X-value 9 0.0 s 1.28 ms 1.35 ms	-value Fund	tion Functi		


Spect	านกา										
	vel 20.	DO dam	Offee	15 15 db	- RBW 10 MH	12					ĮΔ
- Att	YOI 20.		. SWT		- VBW 10 MH						
SGL TR	G: VID										
O 1Pk Clr	w										a no carronite
Sector Sector	Sector Sector	Sec. 18 and	A REPORT OF	0 00000	de commences	M3	[1]				8.17 dBm
L Ger Hours	TRG	10,500	dBm Di un	she ar madeliky	dimension procession	Marthanty m	where has	areading mindel	have been a	well the the	FIREB-BUNH
	1			1			1.13				610.00 µ
O 3Bm-								1	1		
-10 dBm											
-20 dBm											
-30 dBm							-				
						U					
-40 dBm		-						-	-		
-50 dBm				_							
- de dens	2 P										
-60 dBm	-			-				-	-		
-70 dBm	-			-				-	-		
1											
CF 2.44	2 GHz				1001	pts					1.0 ms/
Marker											
Mi	Ref Ti	1	x-val	80.0 µs	Y-value 8.17 dBn	Funct	ion		Function	Result	
DI		1		630.0 µs	3,34 di						
D2	M1	1		590.0 µs	-0.00 di						

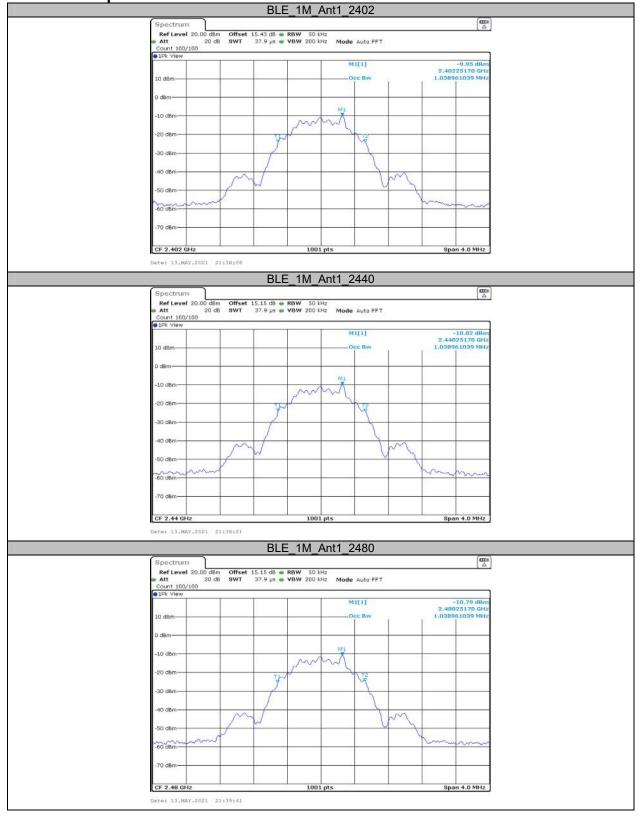
APPENDIX BLE

ppendix A: DTS Bandwidth

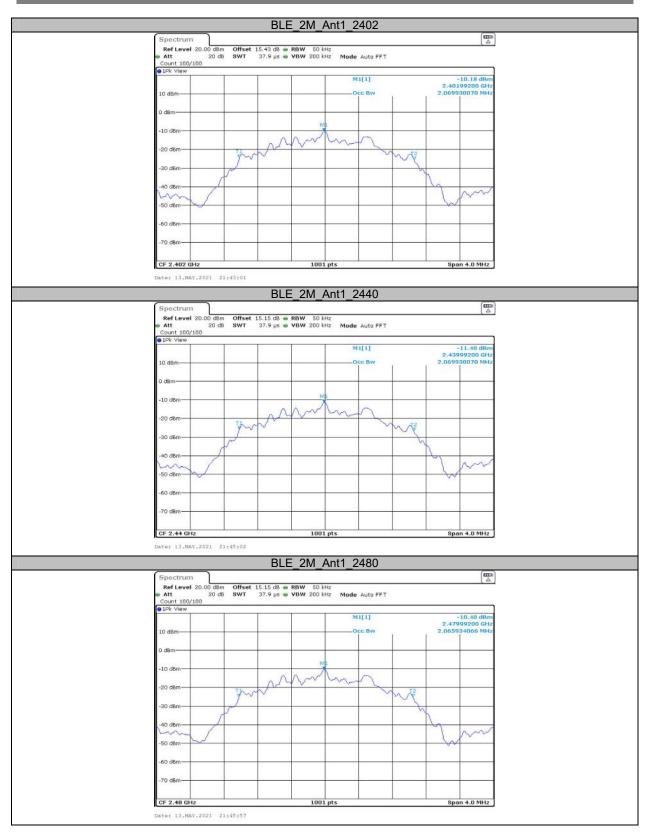

Test Result

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
		2402	0.664	0.5	PASS
BLE_1M	Ant1	2440	0.668	0.5	PASS
		2480	0.672	0.5	PASS
		2402	1.156	0.5	PASS
BLE_2M	Ant1	2440	1.168	0.5	PASS
		2480	1.172	0.5	PASS

Version 22: 2021-11-09


Report No.: SZNS210428-54815E-RFB

Report No.: SZNS210428-54815E-RFB

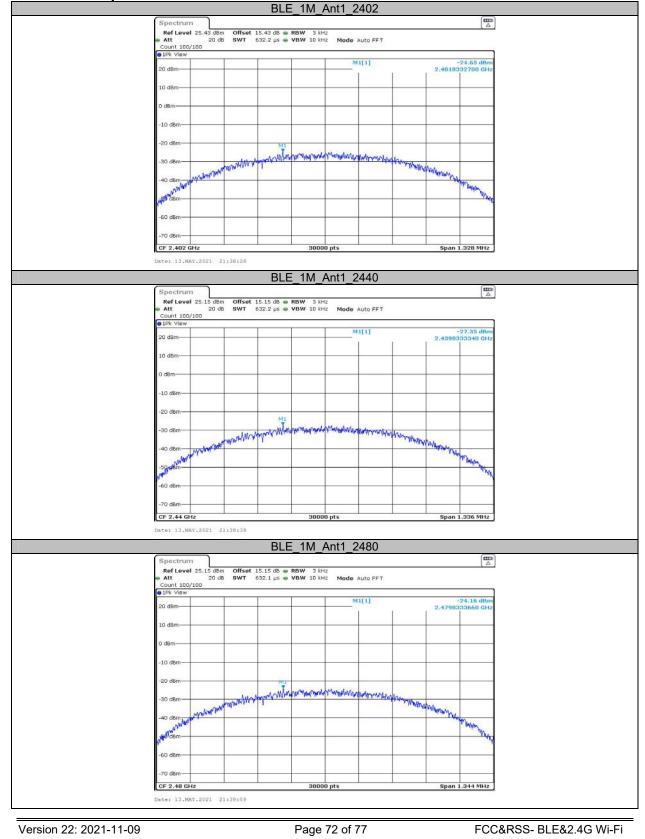

Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
BLE_1M	Ant1	2402	1.039		PASS
		2440	1.039		PASS
		2480	1.039		PASS
BLE_2M	Ant1	2402	2.07		PASS
		1 2440 2.07			PASS
		2480	2.066		PASS

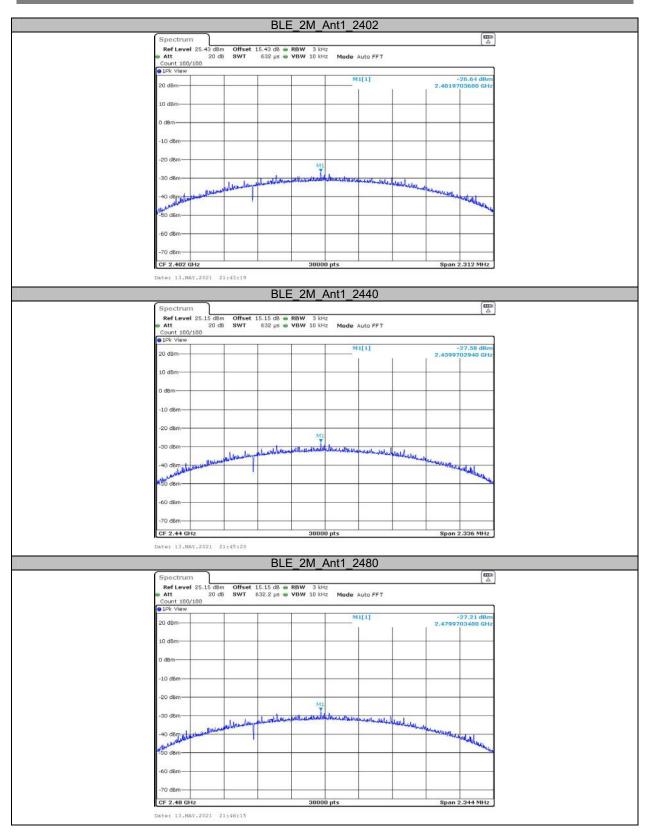
Version 22: 2021-11-09

Report No.: SZNS210428-54815E-RFB

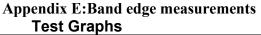
Report No.: SZNS210428-54815E-RFB

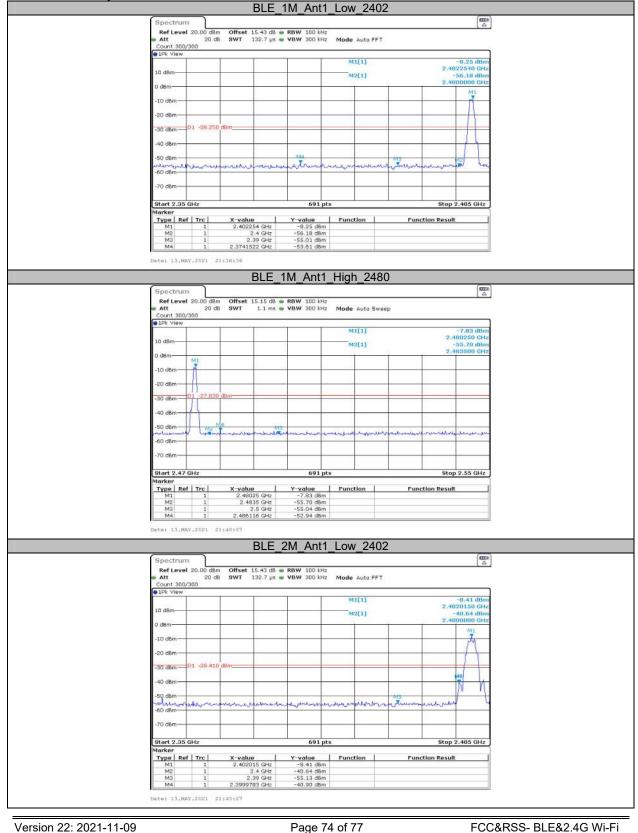

Appendix C: Maximum conducted Peak output power Test Result

Test Mode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict			
BLE_1M		2402	-7.11	<=30	PASS			
	Ant1	2440	-8.30	<=30	PASS			
		2480	-8.31	<=30	PASS			
BLE_2M	Ant1	2402	-7.11	<=30	PASS			
		2440	-8.30	<=30	PASS			
		2480	-7.11	<=30	PASS			


Note: The maximum EIRP is -7.11dBm+1.2dBi=-5.91dBm<36dBm, so it's compliance with ISEDC EIRP limit.

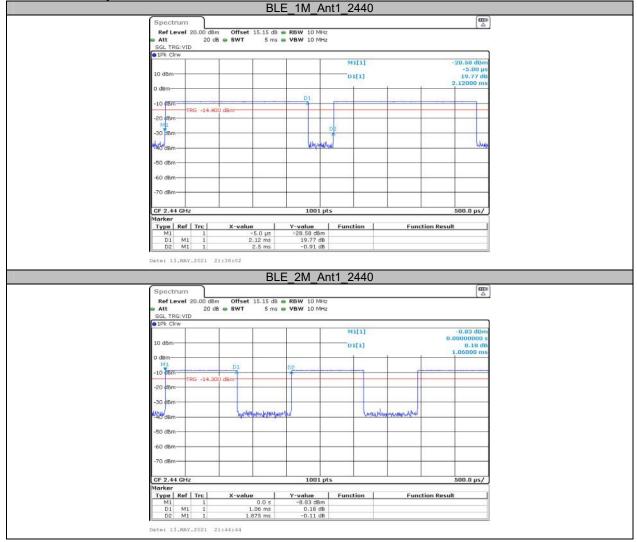
Appendix D: Maximum power spectral density Test Result


Test Mode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-24.65	<=8	PASS
BLE_1M	Ant1	2440	-27.35	<=8	PASS
		2480	-24.16	<=8	PASS
BLE_2M	Ant1	2402	-26.64	<=8	PASS
		2440	-27.58	<=8	PASS
		2480	-27.21	<=8	PASS



Report No.: SZNS210428-54815E-RFB

Report No.: SZNS210428-54815E-RFB



Report No.: SZNS210428-54815E-RFB

	_		2M_Ant1_	- <u>v</u> _			(m)
Spectrum	E						
Ref Level	20.00 dBn	Offset 15.15 dB	RBW 100 kHz				
Att	20 di	SWT 1.1 ms	VBW 300 kHz	Mode Auto	Sweep		
Count 300/	300				12 (CR252		
IPk View							
				M1[1]			-8.98 dBm
10 dBm						2	480010 GHz
10 dBm	1			M2[1]			-55.35 dBm
0 dBm				- sector of	12	2	483500 GHz
0 dBm	MI						
-10 dBm-	T						
-10 000	M						
-20 dBm-	A						
-20 00111	(1						
-30 dBm	01 -28.980	dem	_				_
		1 N					
-40 dBm-	1						
	1 9						
-50 dBm-	1000	11	-			M4	1
mund	an	10 marsharen have	amounderman	annenan	monon	muchant	merendere
-60 dBm-		a second a second period of the second		and the second		and the second second	
-70 dBm							-
Start 2.47	GHz		691 pts	8 8	-	Ste	p 2.55 GHz
Marker							
Type Ref	Tre	X-value	Y-value	Function	1	Function Resu	it l
M1	1	2.48001 GHz	-8.98 dBm				2029 J.C.
M2	1	2.4835 GHz	-55.35 dBm				
MB	1	2.5 GHz	-55.03 dBm				
M4	1	2.535739 GHz	~52.88 dBm				

Appendix F: Duty Cycle Test Result

Test Mode	Antenna	Channel	TransmissionDuration [ms]	Transmission Period [ms]	Duty Cycle [%]
BLE_1M	Ant1	2440	2.12	2.50	84.80
BLE_2M	Ant1	2440	1.06	1.88	56.38

***** END OF REPORT *****