	之 入 J					
	TEST RI	EPOR	Т			
FCC ID :	2AXCX-D5					
Test Report No:	TCT210702E017	4)				
Date of issue:	Aug. 02, 2021					
Testing laboratory::	SHENZHEN TONG	CE TESTINC	S LAB			
Testing location/ address:			ao 5th Industrial Zone, , Guangdong, 518103			
Applicant's name::	Shenzhen Foxwell	0.		$\langle \mathcal{C} \rangle$		
Address:	5/F, Plant C, Baoch District, Shenzhen,		ie, Xin'an Street a	, Baoan		
Manufacturer's name :	Shenzhen Foxwell	Technology C	Co., Ltd			
Address:		5/F, Plant C, Baocheng 71st Zone, Xin'an Street, Baoan District, Shenzhen, 518106 China				
Standard(s):	FCC CFR Title 47 F	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02				
Test item description :	Automotive Diagnos	stic Tool				
Trade Mark:	FOXWELL					
Model/Type reference :		716, NT726,	0TS, i50BT, i50BTS, T NT726BT, NT650 Plus 860			
Rating(s):	Rechargeable Li-ior	Battery DC	3.7V	S.		
Date of receipt of test item	Jul. 02, 2021					
Date (s) of performance of test:	See dates for each test case					
Tested by (+signature) :	Aaron Mo	Aaron Mo				
Check by (+signature) :	Beryl Zhao		Bury 200 TCT	STING		
Approved by (+signature):	Tomsin	(C)	Tomsin			

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information
1.1. EUT description
1.2. Model(s) list
1.3. Operation Frequency
2. Test Result Summary
3. General Information
3.1. Test environment and mode6
3.2. Description of Support Units
4. Facilities and Accreditations
4.1. Facilities
4.2. Location
4.3. Measurement Uncertainty7
5. Test Results and Measurement Data 8
5.1. Antenna requirement8
5.2. Conducted Emission
5.3. Conducted Output Power13
5.4. 20dB Occupy Bandwidth14
5.5. Carrier Frequencies Separation
5.6. Hopping Channel Number16
5.7. Dwell Time17
5.8. Pseudorandom Frequency Hopping Sequence
5.9. Conducted Band Edge Measurement19
5.10.Conducted Spurious Emission Measurement
5.11.Radiated Spurious Emission Measurement
Appendix A: Test Result of Conducted Test
Appendix B: Photographs of Test Setup
Appendix C: Photographs of EUT

1. General Product Information

1.1. EUT description

Test item description:	Automotive Diagnostic Tool
Model/Type reference:	i50pro
Sample Number:	TCT210702E017-0101
Bluetooth Version:	V4.0
Operation Frequency:	2402MHz~2480MHz
Transfer Rate:	1/2/3 Mbits/s
Number of Channel:	79
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology:	FHSS
Antenna Type:	Internal Antenna
Antenna Gain:	OdBi
Rating(s):	Rechargeable Li-ion Battery DC 3.7V

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.		Tested with						
1		i50	Opro		\square			
Other models	s i68, N	i50, i50 Lite, i53, i53S, i50TS, i50BT, i50BTS, T5000, i60, i65, i68, NT706, NT716, NT726, NT726BT, NT650 Plus, NT510 Plus, BT790, BT980, RS840, RS860						
circuit a	Note: i50pro is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of i50pro can represent the remaining models.							
Holling	400-6611-140 Te	l: 86-755-2767333	9 Fax: 86-755-	27672222 http://	Page 3 of 88 www.tct-lab.com			

Report No.: TCT210702E017

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
G)1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
U		·		·		<u> </u>	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
			S				<u> </u>
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		-

Remark: Channel 0, 39 & 78 have been tested for GFSK, $\pi/4$ -DQPSK, 8DPSK modulation mode.

Page 4 of 88

Tel: 86-755-27673339 Hotline: 400-6611-140 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

Requirement	CFR 47 Section		Result	
Antenna Requirement	§15.203/§15.247 (c)	Y	PASS	S.
AC Power Line Conducted Emission	§15.207		PASS	
Conducted Peak Output Power	§15.247 (b)(1)		PASS	
20dB Occupied Bandwidth	§15.247 (a)(1)		PASS	
Carrier Frequencies Separation	§15.247 (a)(1)		PASS	
Hopping Channel Number	§15.247 (a)(1)		PASS	
Dwell Time	§15.247 (a)(1)		PASS	
Radiated Emission	§15.205/§15.209		PASS	
Band Edge	§15.247(d)		PASS	

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Report No.: TCT210702E017

3. General Information

3.1. Test environment and mode

Operating Environment:						
Conducted Emission	Radiated Emission					
25.9 °C	25.6 °C					
51 % RH	44 % RH					
1010 mbar	1010 mbar					
Test Software: Software Information: Engineering Order						
						Power Level: Default
	25.9 °C 51 % RH 1010 mbar Engineering Order					

Conducted Emission:	Charging
U U	Keep the EUT in continuous transmitting by select channel and modulations with Fully-charged battery

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	JD-050200	2012010907576735	/	1
Nata				

Note:

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

^{1.} All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

^{2.} Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Facilities and Accreditations 4.

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

 FCC - Registration No.: 645098 SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

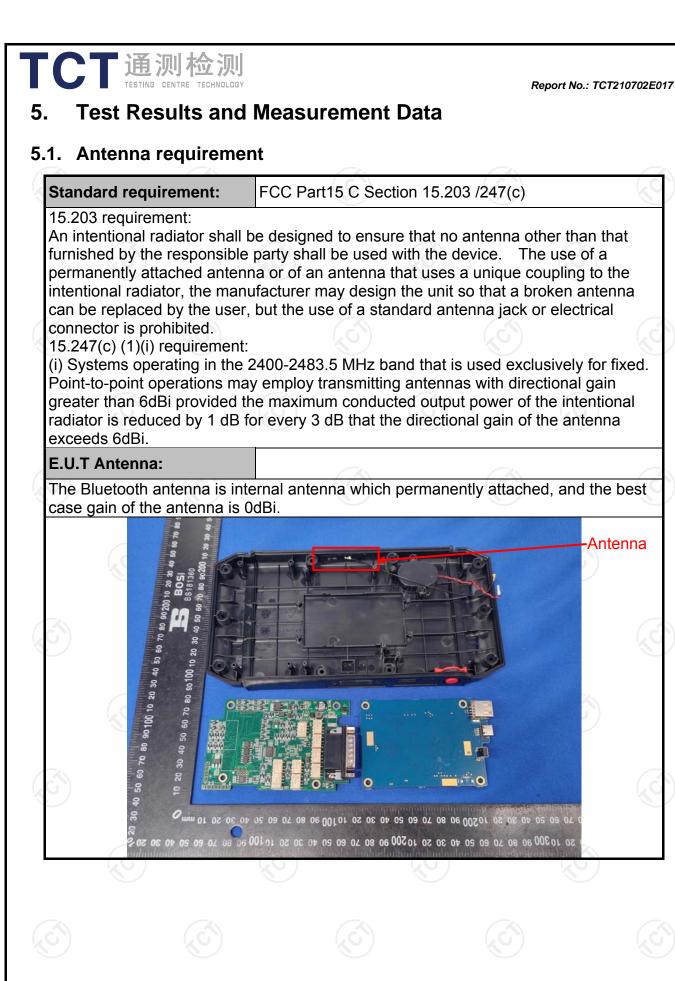
- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB


Address: TCT Testing Industrial Park Fugiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Page 8 of 88

5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz				
Receiver setup:	RBW=9 kHz, VBW=30	e=auto				
	Frequency range	Frequency range Limit (dBu				
	(MHz)	Quasi-peak	Áverage 🔨			
Limits:	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	Reference	e Plane				
Test Setup:	E.U.T AC power Test table/Insulation plane Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization No Test table height=0.8m	EMI Receiver]— AC power			
Test Mode:	Charging		0			
	 The E.U.T is connected to an adapter through a lining edance stabilization network (L.I.S.N.). The provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the material power through a LISN that provides a 50ohm/50u coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Procedure:	 impedance stabiliz provides a 50ohm/s measuring equipme 2. The peripheral device power through a L coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interference emission, the relative the interface cables 	zation network 50uH coupling in ont. ces are also conne ISN that provides with 50ohm terr diagram of the line are checked nce. In order to fi re positions of equ must be changed	(L.I.S.N.). This pedance for the ected to the main a 50ohm/50uh nination. (Please test setup and ed for maximum nd the maximum ipment and all co l according to			
Test Procedure: Test Result:	 impedance stabiliz provides a 50ohm/s measuring equipme 2. The peripheral device power through a L coupling impedance refer to the block photographs). 3. Both sides of A.C. conducted interference emission, the relative the interface cables 	zation network 50uH coupling in ont. ces are also conne ISN that provides with 50ohm terr diagram of the line are checked nce. In order to fi re positions of equ must be changed	(L.I.S.N.). This pedance for the ected to the main s a 50ohm/50ut nination. (Please test setup and ed for maximum nd the maximum ipment and all of l according to			

Page 9 of 88

Page 10 of 88

http://www.tct-lab.com

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)								
Equipment	Manufacturer	Model	Serial Number	Calibration Due				
EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022				
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Mar. 11, 2022				
Line-5	ТСТ	CE-05	N/A	Jul. 07, 2022				
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A				

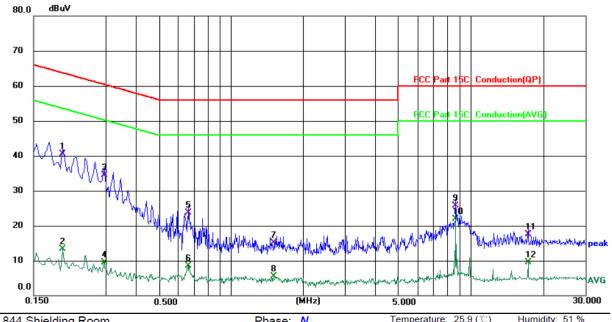
Tel: 86-755-27673339

Hotline: 400-6611-140

Fax: 86-755-27673332

5.2.3. Test data

CT通测检测 TESTING CENTRE TECHNOLOGY



Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 11 of 88

Report No.: TCT210702E017

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

TCT通测检测 TCT通测检测

Temperature: 25.9 (°C) Phase: N

Lim	Limit: FCC Part 15C Conduction(QP)				Power:	DC 5 V(/	Adapter In	put AC 120 V/60 Hz)	
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1980	31.16	9.33	40.49	63.69	-23.20	QP	
2		0.1980	3.88	9.33	13.21	53.69	-40.48	AVG	
3		0.2939	25.16	9.39	34.55	60.41	-25.86	QP	
4		0.2939	0.08	9.39	9.47	50.41	-40.94	AVG	
5		0.6660	14.42	9.27	23.69	56.00	-32.31	QP	
6		0.6660	-0.79	9.27	8.48	46.00	-37.52	AVG	
7		1.5060	5.68	9.42	15.10	56.00	-40.90	QP	
8		1.5060	-3.82	9.42	5.60	46.00	-40.40	AVG	
9		8.6500	15.97	9.66	25.63	60.00	-34.37	QP	
10		8.6500	12.29	9.66	21.95	50.00	-28.05	AVG	
11		17.3060	7.47	9.95	17.42	60.00	-42.58	QP	
12		17.3060	-0.51	9.95	9.44	50.00	-40.56	AVG	

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$ Limit $(dB\mu V) = Limit$ stated in standard Margin (dB) = Measurement (dB μ V) – Limits (dB μ V) Q.P. =Quasi-Peak AVG =average * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and GFSK) was submitted only.

Page 12 of 88

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)	No.		
Test Method:	KDB 558074 D01 v05r02			
Limit:	Section 15.247 (b) The maximum pea power of the intentional radiator shall following: (1) For frequency hopping s in the 2400-2483.5 MHz band employ non-overlapping hopping channels, at hopping systems in the 5725-5850 M For all other frequency hopping syste 2400-2483.5 MHz band 0.125 watts.	not exceed the systems operating ving at least 75 nd all frequency Hz band: 1 watt.		
Test Setup:				
Test Mode:	spectrum Analyzer			
Test Mode.	Transmitting mode with modulation			
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.			
Test Result:	PASS			

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	S N/A	Jul. 07, 2022

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	N/A
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Hopping mode			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. 			
Test Result:	PASS (

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

Page 15 of 88

5.6. Hopping Channel Number

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.			
Test Setup:				
	Spectrum Analyzer EUT			
Test Mode:	Hopping mode			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 			
Test Result:	PASS			
5.6.2 Tost Instruments				

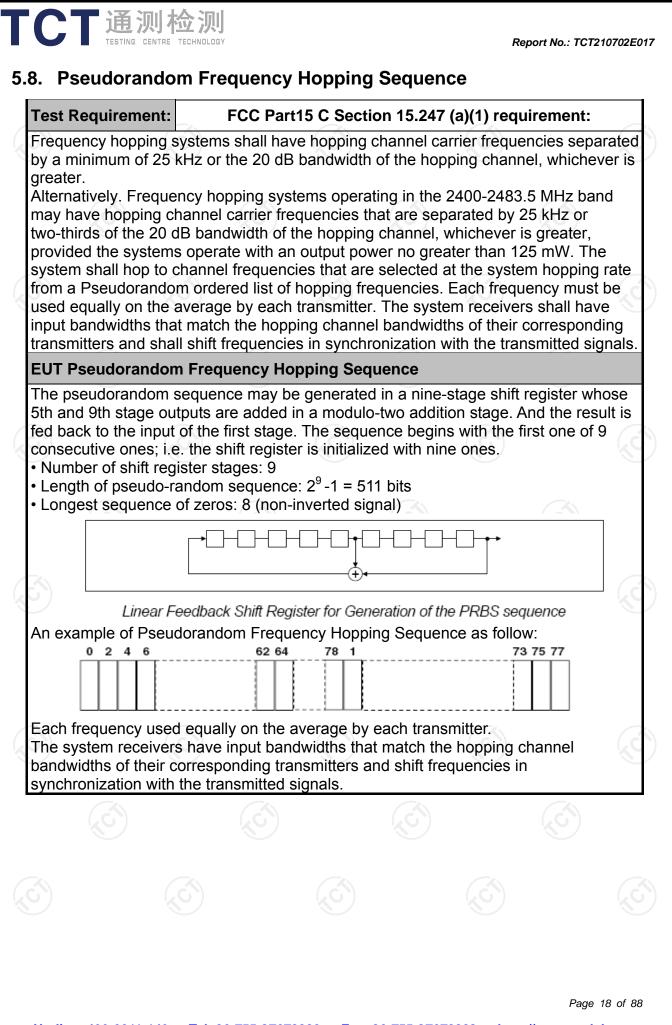
5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.7. Dwell Time

5.7.1. Test Specification


TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	KDB 558074 D01 v05r02		
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Hopping mode		
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 		
Test Result:	PASS		

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

Report No.: TCT210702E017

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

FCC Part15 C Section 15.247 (d)
KDB 558074 D01 v05r02
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Spectrum Analyzer EUT
Transmitting mode with modulation
 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
PASS

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.10. Conducted Spurious Emission Measurement

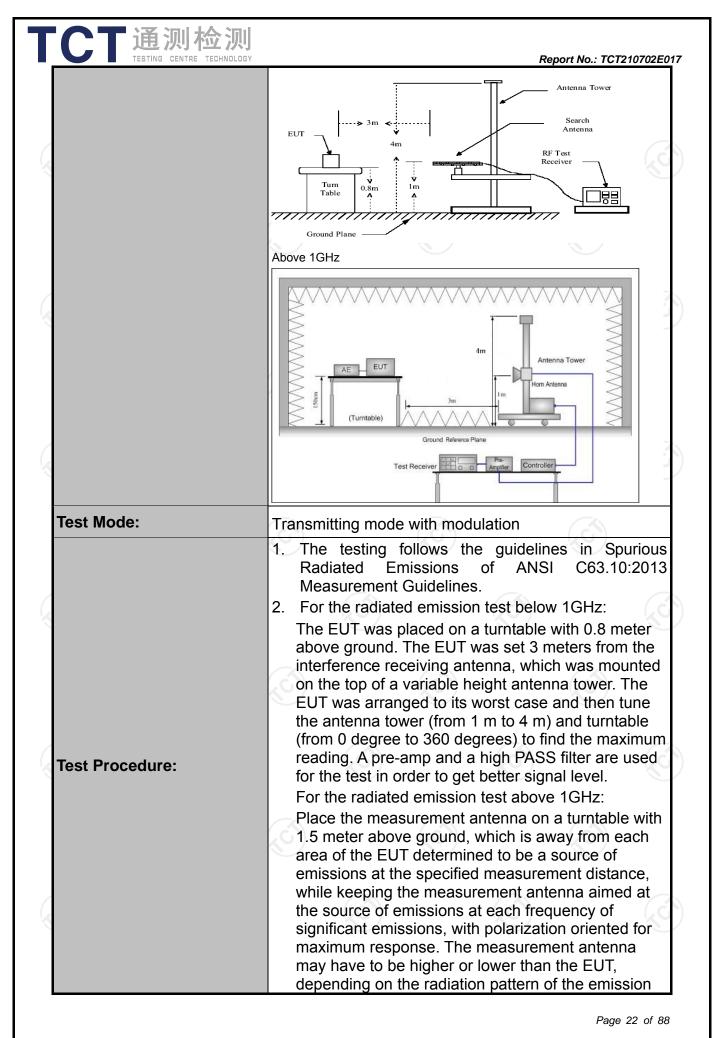
5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Spootrum	
Spectrum Agilent N9020A MY49100619	Jul. 18, 2022
Combiner Box Ascentest AT890-RFB N/A	Jul. 07, 2022

Page 20 of 88



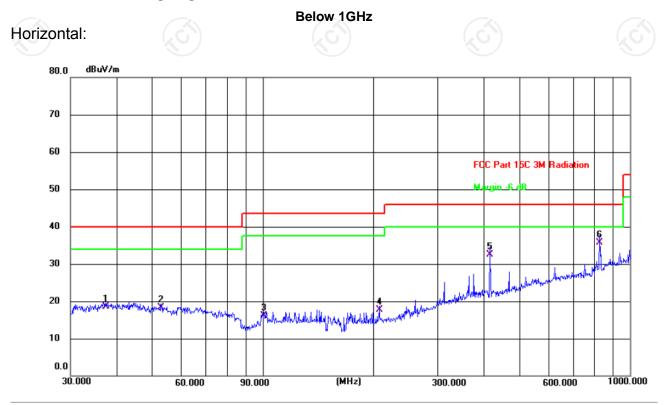
5.11. Radiated Spurious Emission Measurement

5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

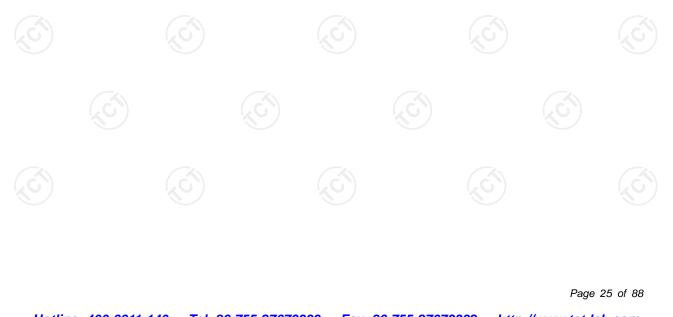
Test Requirement:	FCC Part15	C Section	15.209	S S		K
Test Method:	ANSI C63.10):2013				
Frequency Range:	9 kHz to 25 (GHz				
Measurement Distance:	3 m	X	9		S)
Antenna Polarization:	Horizontal &	Vertical				
	Frequency	Detector	RBW	VBW	Remark	
Receiver Setup:	<u>9kHz- 150kHz</u> 150kHz- 30MHz	Quasi-peak Quasi-peak		1kHz 30kHz		peak Value peak Value
	30MHz-1GHz	Quasi-peak	120KHz	300KHz		peak Value
	Above 1GHz Peak Peak		1MHz 1MHz	3MHz 10Hz		
	Frequen	ю	Field Stro (microvolts	-	Measurement Distance (meters)	
	0.009-0.4	2400/F(300		
	0.490-1.7		24000/F	(KHz)	30	
	1.705-3	30		30		
	30-88	1	100		3	
Limit:	216-96	200		3		
	Above 960		500		3	
	Above 1GHz		500 5000	(meter 3 3	rs)	Average Peak
Test setup:	EUT	ssions below stance = 3m Turn table Ground			Computer Amplifier	
S) (S)			(Ś		
					F	Page 21 of 8

	rece mea max ante restr abov 3. Set EU ⁻ 4. Use (1) (2)	= max hole For average correction 15.35(c). D	aximum sig ntenna ele emissions. on for maxi ange of hei nd or refere imum pow ontinuously ng spectrur wide enoug eing measu 120 kHz for ; VBW≥RE auto; Detect d for peak ge measure factor met uty cycle =	mission s nal. The f vation sha The meas mum emi ghts of from er setting // m analyze gh to fully ured; r f < 1 GH 3W; ctor function ement: us hod per On time/	final all be that surement ssions sha om 1 m to nd plane. and enat er settings: capture th z, RBW=1 on = peak; e duty cyc	which all be 4 m ole the ne MHz Trace le
	Ś	Where N1 length of t Average E Level + 20 Corrected F	is number ype 1 pulse mission Le)*log(Duty Reading: A	r of type 1 es, etc. evel = Pea cycle) ntenna Fa	ak Emissio actor + Cal	1 is n ole
Test results:	PASS	Where N1 length of t Average E Level + 20	is number ype 1 pulse mission Le)*log(Duty Reading: A	r of type 1 es, etc. evel = Pea cycle) ntenna Fa	ak Emissio actor + Cal	1 is n ole
Test results:	PASS	Where N1 length of t Average E Level + 20 Corrected F	is number ype 1 pulse mission Le)*log(Duty Reading: A	r of type 1 es, etc. evel = Pea cycle) ntenna Fa	ak Emissio actor + Cal	1 is n ole
Test results:	PASS	Where N1 length of t Average E Level + 20 Corrected F	is number ype 1 pulse mission Le)*log(Duty Reading: A	r of type 1 es, etc. evel = Pea cycle) ntenna Fa	ak Emissio actor + Cal	1 is n ole
Test results:	PASS	Where N1 length of t Average E Level + 20 Corrected F	is number ype 1 pulse mission Le)*log(Duty Reading: A	r of type 1 es, etc. evel = Pea cycle) ntenna Fa	ak Emissio actor + Cal	1 is n ole

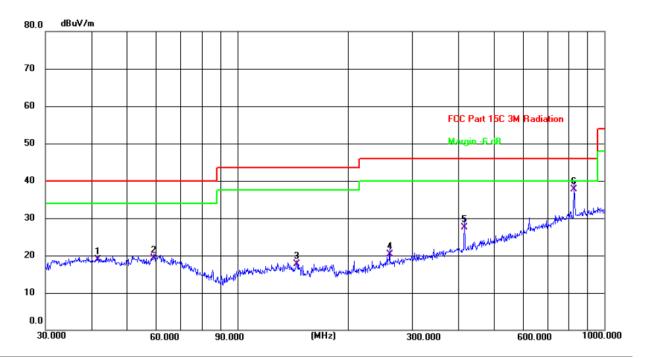

5.11.2. Test Instruments

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Mar. 11, 2022
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Apr. 08, 2022
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023
Antenna Mast	Keleto	RE-AM	N/A	N/A
Coaxial cable	SKET	RC_DC18G-N	N/A	Apr. 08, 2022
Coaxial cable	SKET	RC-DC18G-N	N/A	Apr. 08, 2022
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


5.11.3. Test Data

Please refer to following diagram for individual


Report No.: TCT210702E017

Site					Polar	ization:	Horiz	ontal	Temperature: 25.6(C)
Limit:	FCC Part 150	C 3M Radi	ation		Powe	r: DC	3.7 V	Humidity: 44 %	
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	37.4164	5.16	13.34	18.50	40.00	-21.50	QP	Р	
2	52.9453	5.44	12.96	18.40	40.00	-21.60	QP	Р	
3	100.9338	6.30	9.80	16.10	43.50	-27.40	QP	Р	
4	207.8500	7.49	10.31	17.80	43.50	-25.70	QP	Р	
5	416.1791	16.32	16.18	32.50	46.00	-13.50	QP	Р	
6 *	827.4932	12.29	23.41	35.70	46.00	-10.30	QP	Р	

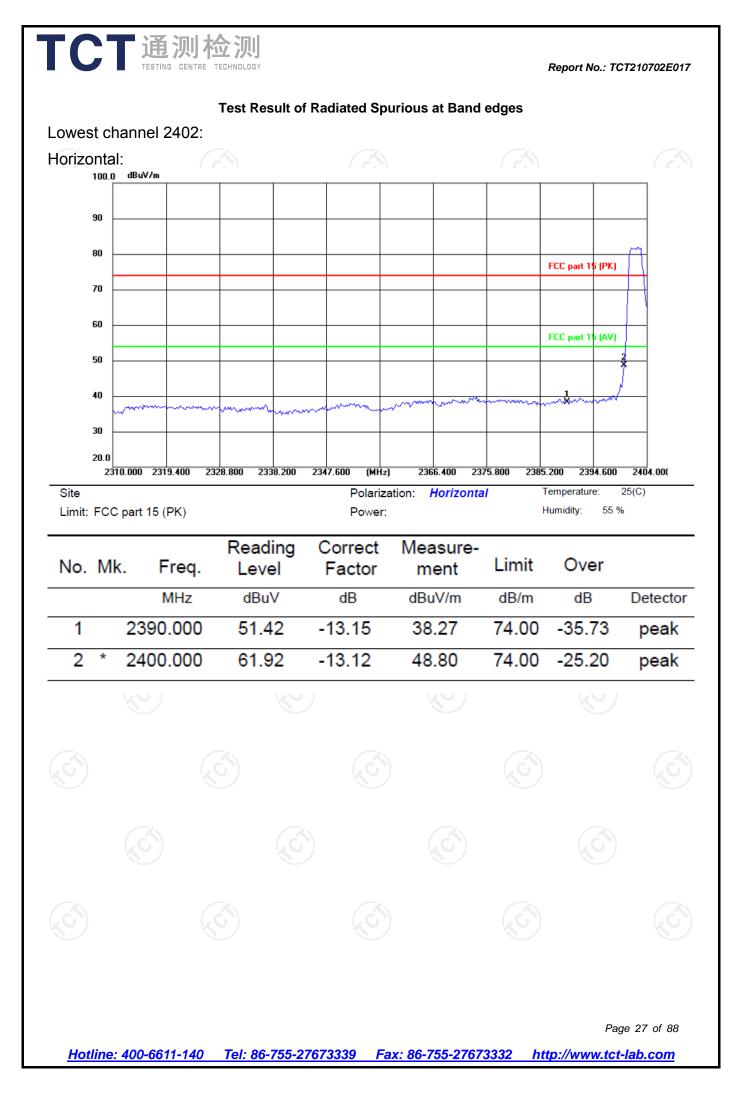
Vertical:

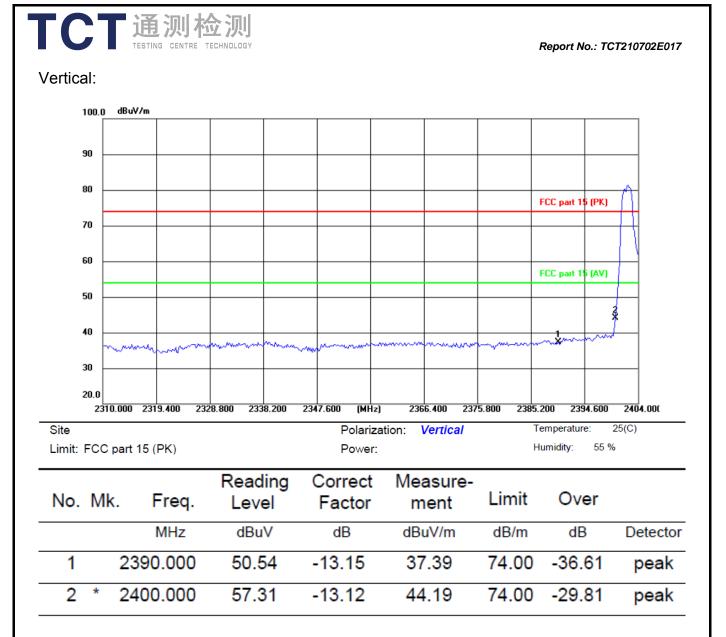
TCT通测检测 TESTING CENTRE TECHNOLOGY

Site					Polar	ization:	Vertic	al		Temperature	25.6(C)
Limit:	FCC Part 15	C 3M Radi	ation		Power: DC 3.7 V					Humidity:	44 %
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	[
1	41.7129	5.34	13.56	18.90	40.00	-21.10	QP	Р			
2	59.2323	7.23	12.17	19.40	40.00	-20.60	QP	Р			
3	145.3505	4.99	12.71	17.70	43.50	-25.80	QP	Р			
4	260.1444	8.21	12.19	20.40	46.00	-25.60	QP	Р			
5	416.1791	11.42	16.18	27.60	46.00	-18.40	QP	Р			
6 *	827.4932	14.29	23.41	37.70	46.00	-8.30	QP	Р			

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

 Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Lowest channel and GFSK) was submitted only.
 Freq. = Emission frequency in MHz


Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$ Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

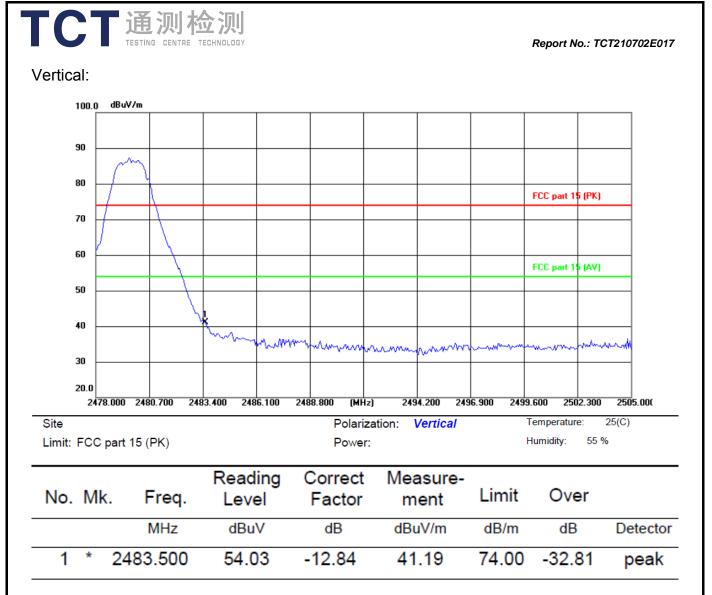

 $Limit (dB\mu V/m) = Limit stated in standard$

 $Over (dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$

* is meaning the worst frequency has been tested in the test frequency range.

Report No.: TCT210702E017

Page 28 of 88


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT210702E017 Highest channel 2480: Horizontal: 100.0 dBuV/m 90 80 FCC part 15 (PK) 70 60 FCC part 15 (AV) 50 40 30 20.0 2478.000 2480.700 2483.400 2486.100 2488.800 (MHz) 2494.200 2496.900 2499.600 2502.300 2505.000 Site Polarization: Horizontal Temperature: 25(C) Humidity: 55 % Limit: FCC part 15 (PK) Power: Reading Correct Measure-No. Mk. Limit Over Freq. Level Factor ment MHz dBuV dB dBuV/m dB/m dB Detector 2483.500 55.69 -12.84 42.85 74.00 -31.15 1 * peak

Page 29 of 88

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Note: Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

Image: Set of the set

Above 1GHz

Modulation	Type: GF	SK									
Low channel: 2402 MHz											
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)		
4804	Н	46.70		0.66	47.36		74	54	-6.64		
7206	Н	35.49		9.50	44.99		74	54	-9.01		
	Н										
(G		J.J			·C`)		(\mathcal{O})			
4804	V	46.58		0.66	47.24		74	54	-6.76		
7206	V	36.14		9.50	45.64		74	54	-8.36		
	V										

Middle cha	nnel: 2441	MHz			(د				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4882	H	43.42		0.99	44.41		74	54	-9.59
7323	X ^O H	33.96	N N	9.87	43.83		74	54	-10.17
	Ĥ					<u> </u>			
4882	V	46.29		0.99	47.28		74	54	-6.72
7323	V	36.88		9.87	46.75		74	54	-7.25
	V			\)		×		

High channel: 2480 MHz

CT 通测检测 TESTING CENTRE TECHNOLOGY

Frequency A (MHz) 4960	Ant. Pol. H/V H	Peak reading (dBµV) 43.52	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBuV/m)		Margin
(MHz)	H/V	(dBµV)				AV			
4960	Н	43 52				(arhn/w)	() (dBµV/m)	(dB)
		10.02		1.33	44.85	-	74	54	-9.15
7440	Н	33.97		10.22	44.19		74	54	-9.81
	Н								
G)		$(\dot{\mathbf{O}})$		(.0			(.G)		Ĵ.)
4960	V	45.88		1.33 🔪	47.21		74	54	-6.79
7440	V	35.02		10.22	45.24		74	54	-8.76
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "----"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (GFSK) was submitted only.

7. All the restriction bands are compliance with the limit of 15.209.

Page 31 of 88

Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	4.713	0	4.713	30	Pass
NVNT	1-DH1	2441	4.343	0	4.343	30	Pass
NVNT	1-DH1	2480	4.287	0	4.287	30	Pass
NVNT	2-DH1	2402	4.118	0	4.118	21	Pass
NVNT	2-DH1	2441	3.712	0	3.712	21	Pass
NVNT	2-DH1	2480	3.627	0	3.627	21	Pass
NVNT	3-DH1	2402	4.170	0	4.170	21	Pass
NVNT	3-DH1	2441	3.794	0	3.794	21	Pass
NVNT	3-DH1	2480	3.728	0	3.728	21	Pass
-	(.G.)		.G`)			(.G)	

Power NVNT 1-DH1 2402MHz

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

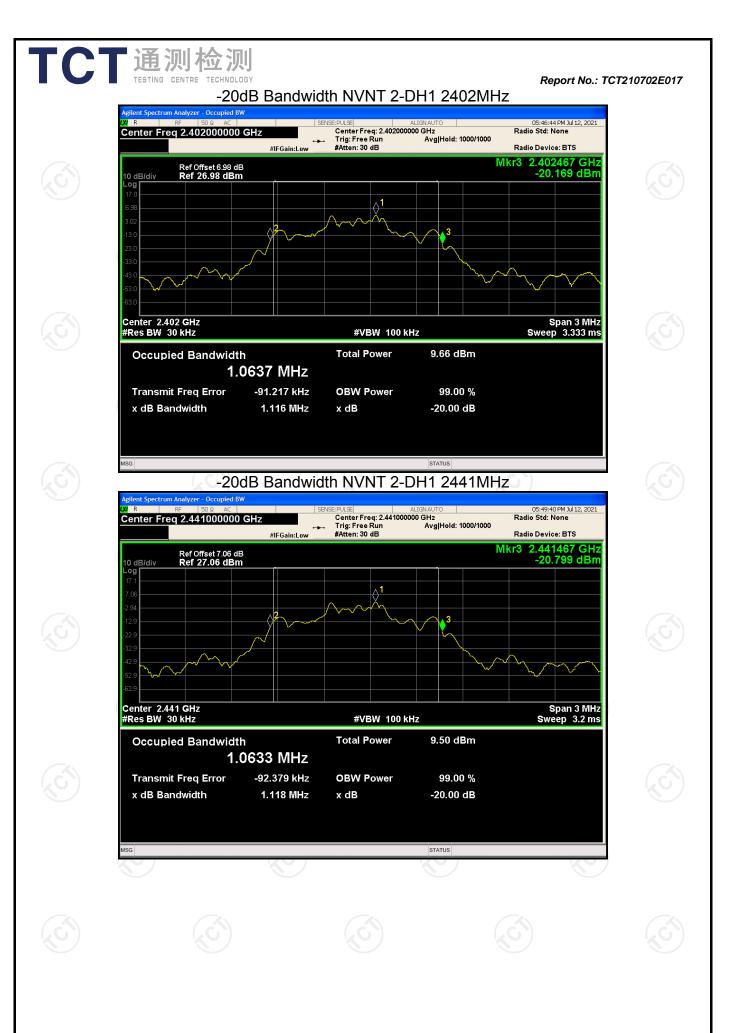
	Center Freq 2.441000000 GH	PNO: Fast IFGain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 200/200	10:13:33 AM Aug 01, 2021 TRACE 1 2 3 4 5 6 TYPE M MANAMANA DET P N N N N N	
	Ref Offset 7.06 dB 10 dB/div Ref 20.00 dBm Log		Mkr	1 2.440 730 GHz 4.343 dBm	
)	10.0	1			
	0.00				
	-10.0				
	-20.0				
	-30.0				
)	-40.0				
	-60.0				
	-70.0				
	Center 2.441000 GHz			Span 6.000 MHz	
	#Res BW 2.0 MHz	#VBW 6.0 MHz	#Sweep	Span 6.000 MHz 100.0 ms (1001 pts)	
	Agilent Spectrum Analyzer - Swept SA	Power NVNT 1-DH1	2480MHz		
	Agreent speech off Analyzer + Swept Sa Car RF 50 Ω AC Center Freq 2.480000000 GH	SENSE:PULSE PN0: Fast →→ Trig: Free Run	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 200/200	10:12:32 AM Aug 01, 2021 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
	Ref Offset 7.03 dB	IFGain:Low #Atten: 30 dB		2.479 994 0 GHz 4.287 dBm	
	10 dB/div Ref 20.00 dBm			4.207 dBill	
	10.0	1			
	-10.0				
	-20.0				
	-30.0				
(-40.0				
	-50.0				
	-60.0				
	-70.0				
)					
	Center 2.480000 GHz #Res BW 2.0 MHz	#VBW 6.0 MHz	· · · · · ·	Span 6.000 MHz 00.0 ms (10001 pts)	
	Center 2.480000 GHz #Res BW 2.0 MHz	#VBW 6.0 MHz	#Sweep 1	Span 6.000 MHz 00.0 ms (10001 pts)	
	#Res BW 2.0 MHz	#VBW 6.0 MHz	· · · · · ·	Span 6.000 MHz 00.0 ms (10001 pts)	
	#Res BW 2.0 MHz	#VBW 6.0 MHz	· · · · · ·	Span 6.000 MHz 00.0 ms (10001 pts)	

	R RF 50Ω AC Center Freq 2.402000000 GH	Z PNO: Fast →→ Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 200/200	10:10:12 AM Aug 01, 2021 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
	Ref Offset 6.98 dB 10 dB/div Ref 20.00 dBm		Mkr	l 2.401 682 GHz 4.118 dBm	
	10.0	1			
	0.00	A CONTRACTOR AND AND A CONTRACTOR AND AND A CONTRACTOR AN			
	-10.0 -20.0 Wds. Re. Market Market Company -20.0			with the state of	
	-30.0			- The	
5)	-40.0				
	-50.0				
	-60.0				
	Center 2.402000 GHz			Span 6.000 MHz	
2	#Res BW 2.0 MHz	#VBW 6.0 MHz	STATUS	1.000 ms (1001 pts)	
5)	Agilent Spectrum Analyzer - Swept SA	Power NVNT 2-DH1			
	XX R RF 50 Ω AC Center Freq 2.441000000 GH	PNO: Fast ++ Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 200/200	10:10:39 AM Aug 01, 2021 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	
	Ref Offset 7.06 dB 10 dB/div Ref 20.00 dBm Log		Mkr	l 2.440 712 GHz 3.712 dBm	
	10.0	1			
	0.00	And the second sec			
	-10.0			Walner Marken	
	-30.0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
(-40.0				
	-50.0				
<i>S</i>)	-60.0				
	Center 2.441000 GHz			Span 6.000 MHz	
	#Res BW 2.0 MHz	#VBW 6.0 MHz	Sweep status	1.000 ms (1001 pts)	

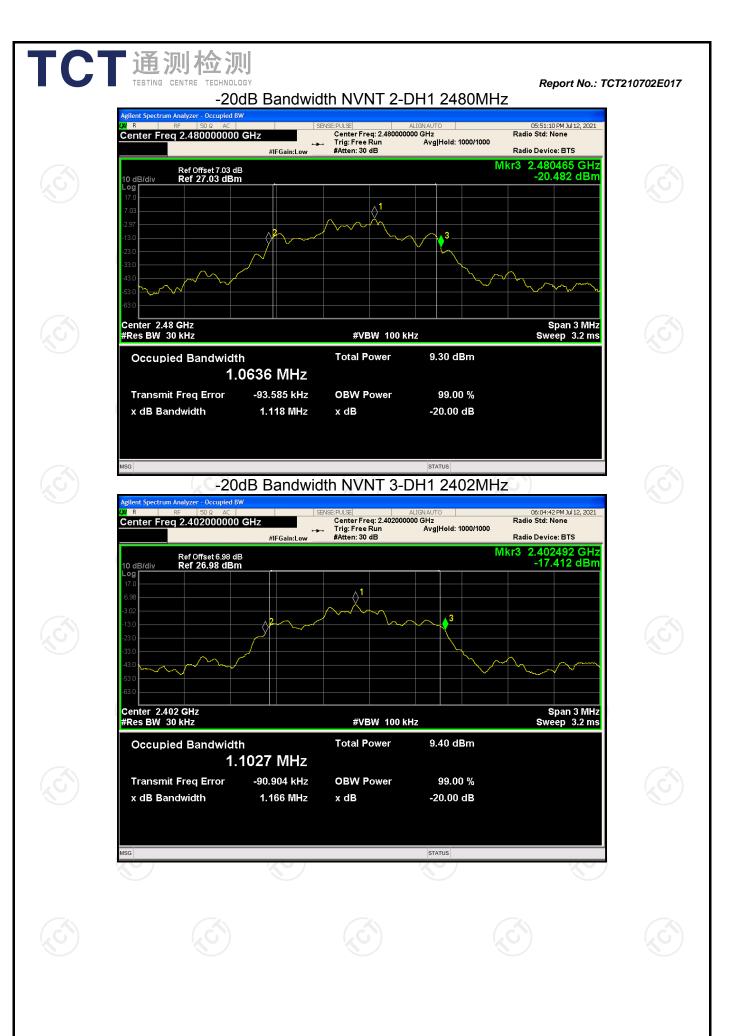
TC.	通测检测	Power NVNT 2-DH1	2480MHz	Report No.: TCT2	210702E017
	Agilent Spectrum Analyzer - Swept SA XX R RE SO Q AC Center Freq 2.480000000 GH2	SENSE:PULSE PNO: Fast →→ Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 200/200	10:11:04 AM Aug 01, 2021 TRACE 12 3 4 5 6 TYPE MWWWWW DET P N N N N	
Ś	Ref Offset 7.03 dB 10 dB/div Ref 20.00 dBm 10.0	1	Mki	1 2.479 730 GHz 3.627 dBm	
	-10.0 -20.0			MANGUN IN MANNAN	
	-40.0 -50.0 -60.0 -70.0				
	Center 2.480000 GHz #Res BW 2.0 MHz MSG	#VBW 6.0 MHz Power NVNT 3-DH1	STATUS	Span 6.000 MHz 1.000 ms (1001 pts)	
	Agilent Spectrum Analyzer - Swept SA VI R RF 50 Ω AC Center Freq 2.402000000 GH2 Ref Offset 6.98 dB 10 dB/div Ref 20.00 dBm	SENSE:PULSE	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 200/200	10:09:30 AM Aug 01, 2021 TRACE 12:23 45 6 TYPE MANAGEMENT DET P. NINN N 11 2.401 856 GHz 4.170 dBm	
	10.0 0.00 -10.0 -20.0 -30.0 -40.0			and a for a for the form of th	
S	-50.0 -60.0 -70.0 Center 2.402000 GHz #Res BW 2.0 MHz MSG	#VBW 6.0 MHz	Sweep	Span 6.000 MHz 1.000 ms (1001 pts)	
Ś					
<u>Hotline</u>	: 400-6611-140 Tel: 86-	-755-27673339 Fax: 8	36-755-27673332	Page http://www.tct-la	35 of 88 ab.com

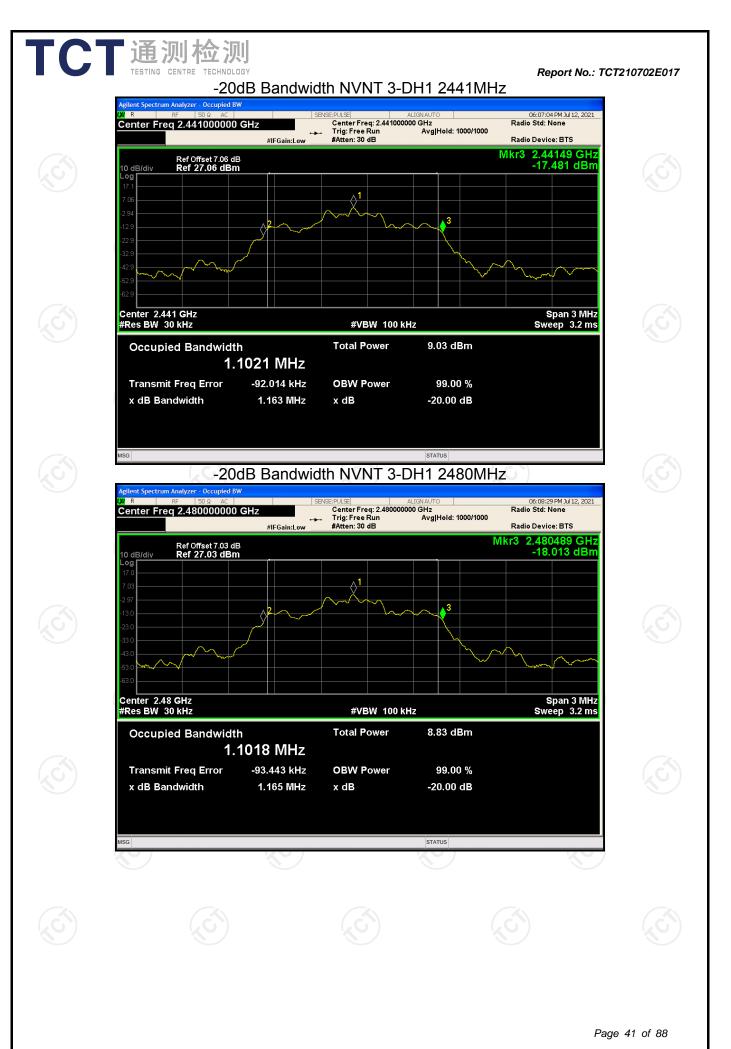
TC		Power NVNT 3-DH1 2	2441MHz	Report No.: TCT2	10702E017
	Agilent Spectrum Analyzer - Swept SA W R RF 50 Ω AC Center Freq 2.441000000 GHz	SENSE:PULSE PNO: Fast →→ Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 200/200	10:08:36 AM Aug01, 2021 TRACE 1 2 3 4 5 6 TYPE M WWWW DET P N N N N N	
(C)	Ref Offset 7.06 dB 10 dB/div Ref 20.00 dBm 100 0.00		Mkr	1 2.440 892 GHz 3.794 dBm	
S	-10 0 -20 0 -30 0 -40 0			All Montand	
	-500 -500 -700 Center 2.441000 GHz #Res BW 2.0 MHz	#VBW 6.0 MHz	Sweep	Span 6.000 MHz 1.000 ms (1001 pts)	
	MSG Agilent Spectrum Analyzer - Swept SA				
	R SP SO Q AC Center Freq 2.480000000 GHz Ref Offset 7.03 dB Ref Offset 7.03 dB Ref 20.00 dBm	SENSE:PULSE PNO: Fast →→ Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pwr Avg Hold: 200/200 Mkr	10:09:12 AM Aug01, 2021 TRACE 12:3 4 5 6 TYPE MWWWWW DET PNNNNN 1 2.479 892 GHz 3.728 dBm	
	10.0 0.00 -10.0 -20.0 -30.0 -40.0			in a construction of the c	
Ś	-50 0 -50 0 -60 0 -70 0 -70 -70 0 -70 0 -70 -70 0 -70	#VBW 6.0 MHz	Sweep	Span 6.000 MHz 1.000 ms (1001 pts)	
		NO NO		NC I	
Ś					
<u>Hotline:</u>	400-6611-140 Tel: 86-	-755-27673339 Fax: 8	6-755-27673332	Page http://www.tct-la	36 of 88 <u>b.com</u>

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.831	Pass
NVNT	1-DH1	2441	0.829	Pass
NVNT	1-DH1	2480	0.829	Pass
NVNT	2-DH1	2402	1.116	Pass
NVNT	2-DH1	2441	1.118	Pass
NVNT	2-DH1	2480	1.118	Pass
NVNT	3-DH1	2402	1.166	Pass
NVNT	3-DH1	2441	1.163	Pass
NVNT	3-DH1	2480	1.165	Pass
•				•


-20dB Bandwidth

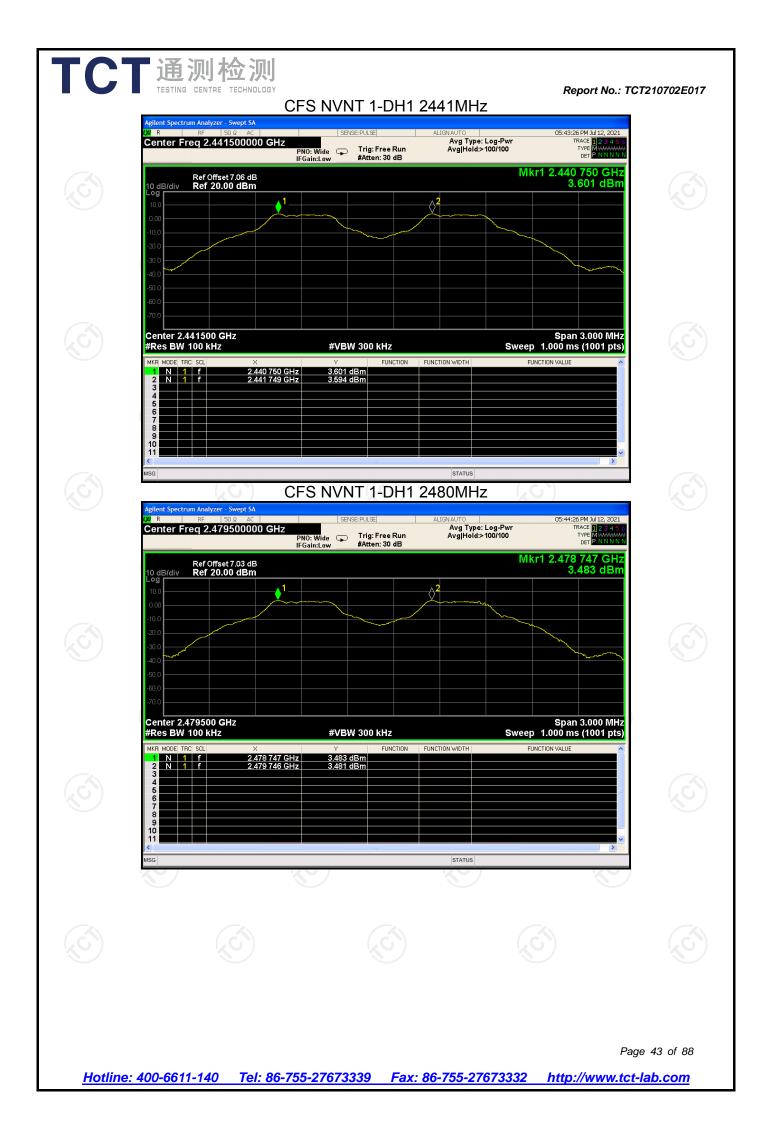
-20dB Bandwidth NVNT 1-DH1 2402MHz




Page 38 of 88

Page 39 of 88


Page 40 of 88


Condition	Mode	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
					· · /	
NVNT	1-DH1	2401.75	2402.749	0.999	0.831	Pass
NVNT	1-DH1	2440.75	2441.749	0.999	0.831	Pass
NVNT	1-DH1	2478.747	2479.746	0.999	0.831	Pass
NVNT	2-DH1	2401.75	2402.752	1.002	0.745	Pass
NVNT	2-DH1	2440.75	2441.752	1.002	0.745	Pass
NVNT	2-DH1	2478.747	2479.749	1.002	0.745	Pass
NVNT	3-DH1	2401.753	2402.749	0.996	0.777	Pass
NVNT	3-DH1	2440.75	2441.755	1.005	0.777	Pass
NVNT	3-DH1	2478.747	2479.752	1.005	0.777	Pass

Carrier Frequencies Separation

CFS NVNT 1-DH1 2402MHz

Page 42 of 88

3	Ref Offset 6.98 dB 10 dB/div Ref 20.00 dBm				
· //	10 dB/div Ref 20.00 dBm			r1 2.401 750 GHz 3.118 dBm	
	10.0		2	×	
	-20.0				
	-60.0				
	-70.0 Center 2.402500 GHz #Res BW 100 kHz	#VBW 300 kHz	Swoon	Span 3.000 MHz 1.000 ms (1001 pts)	
	MKR MODE TRC SCL X 1 N 1 f 2.401 750 GH 2 N 1 f 2.402 752 GH	Y FUNCTION			
	2 N 1 1 2402 102 SI				
	7 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10				
	11 MSG		STATUS		
\mathbf{S}	Agilent Spectrum Analyzer - Swept SA	CFS NVNT 2-DH			
	X R RF 50.0 AC Center Freq 2.441500000 GHz	PNO: Wide IFGain:Low	ALIGNAUTO Avg Type: Log-Pwr Avg Hold:>100/100	05:54:30 PM Jul 12, 2021 TRACE 2 3 4 5 6 TYPE MWWWW DET P N N N N N	
	Ref Offset 7.06 dB 10 dB/div Ref 20.00 dBm		Mk	r1 2.440 750 GHz 2.718 dBm	
<u>(</u> ()	-20.0				
	-40.0				
	-70.0 Center 2.441500 GHz			Span 3.000 MHz	
	#Res BW 100 kHz	#VBW 300 kHz		1.000 ms (1001 pts)	
3	1 N 1 f 2.440 750 GF 2 N 1 f 2.441 752 GF 3	Hz 2.718 dBm Hz 2.704 dBm			
	6 7 8 9 10				
	II ≪ MSG		STATUS		
				S	

Cente	er Freq 2.479500000 GHz	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	05:55:48 PM Juli 12, 2021 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET PNNNNN	
	Ref Offset 7.03 dB div Ref 20.00 dBm			/kr1 2.478 747 GHz 2.533 dBm	
10.0 0.00 -10.0			2		
-20.0					
-40.0 -					
-70.0 Cente	r 2.479500 GHz BW 100 kHz	#VBW 300 kHz	Swa	Span 3.000 MHz ep 1.000 ms (1001 pts)	
MKR MO	DE TRC SCL X 1 f 2.478 747 GH 1 f 2.479 749 GH	Y FUNCTION		FUNCTION VALUE	
3 4 5 6					
8 9 10 11					
MSG		FS NVNT 3-DH1			
LXI R	pectrum Analyzer - Swept SA RF 50 Q AC PF Freq 2.402500000 GHz		ALIGNAUTO Avg Type: Log-Pwr	06:10:23 PM Jul 12, 2021	
Cente	Ref Offset 6.98 dB	PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Hold:>100/100	TRACE 123456 TYPE MUMANANA DET P.NNNNN NKr1 2.401 753 GHz	
10 dB/d Log 10.0			2 2	3.150 dBm	
0.00 - -10.0 - -20.0 -					
-30.0				harman	
-60.0					
#Res	r 2.402500 GHz BW 100 kHz DEI TRC SCL X	#VBW 300 kHz		Span 3.000 MHz ep 1.000 ms (1001 pts)	
	DE TRC SCL × 1 f 2.401753 GH 1 f 2.402749 GH				
5 6 7 8					
9 10 11				~	
MSG	/	S	STATUS	'e	

Cer	nter Freq 2.441500000 GHz	PNO: Wide IFGain:Low	ALIGNAUTO Avg Type: Log-Pwr Avg Hold:>100/100	06:11:18 PM Jul 12, 2021 TRACE 123456 TYPE MWWWWW DET P NNNNN	
Log			Mk	r1 2.440 750 GHz 2.773 dBm	
10.0 0.00 -10.0					
-20.0 -30.0 -40.0					
-50.0					
Cer #Re	nter 2.441500 GHz es BW 100 kHz	#VBW 300 kHz	Sweep	Span 3.000 MHz 1.000 ms (1001 pts)	
MKR 1 2	MODE TRC SCL X N 1 f 2.440 750 G N 1 f 2.441 755 G	Y FUNCTION		NCTION VALUE	
3 4 5 6					
8 9 10 11					
MSG		CFS NVNT 3-DH ²			
LXI R	nt Spectrum Analyzer - Swept SA	SENSE:PULSE	ALIGN AUTO Avg Type: Log-Pwr	06:12:31 PM Jul 12, 2021	
	Ref Offset 7.03 dB	PNO: Wide IFGain:Low #Atten: 30 dB	Avg Hold:>100/100	r1 2.478 747 GHz	
10 c Log 10.0	IB/div Ref 20.00 dBm		<mark>2</mark>	2.578 dBm	
0.00 -10.0 -20.0					
-30.0					
-50.0 -60.0 -70.0)				
	nter 2.479500 GHz es BW 100 kHz	#VBW 300 kHz	Sweep	Span 3.000 MHz 1.000 ms (1001 pts)	
	MODE TRC SCL X N 1 f 2,478 747 G N 1 f 2,479 752 G	Y FUNCTION Hz 2.578 dBm Hz 2.591 dBm	FUNCTION WIDTH FL	NCTION VALUE	
G 4 5 6 7					
8 9 10 11				×	
MSG	, , , , , , , , , , , , , , , , , , ,		STATUS		

TCT 通测检测 TESTING CENTRE TECHNOLOGY

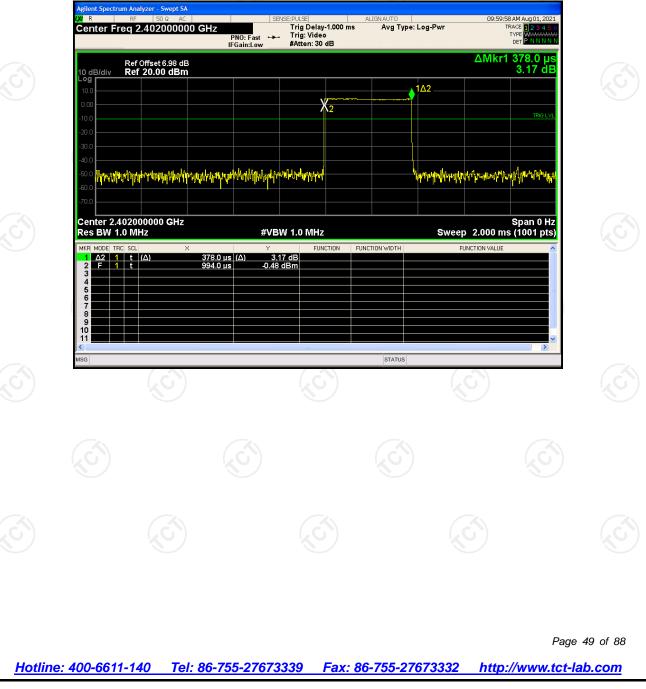
Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH1	79	15	Pass
NVNT	2-DH1	79	15	Pass
NVNT	3-DH1	79	15	Pass

Number of Hopping Channel

Ref Offset 6.98 dB Mkr1 2.401 753 5 GHz 10 dB/div Ref 20.00 dBm 200 1 200 2 </th <th>Норрі</th> <th>ng No. N\</th> <th>/NT 1-DH</th> <th>1 2402MHz</th> <th></th>	Норрі	ng No. N\	/NT 1-DH	1 2402MHz	
Net Diset 0.58 db 3.926 dBm 10 dB/div Ref 20.00 dBm 10 dB/div Ref 20.00 dBm 10 dB/div Ref 20.00 dBm 20 db/div Ref 20.00 dBm </td <td>0/4 R RF 50 Ω AC Center Freq 2.441750000 GHz</td> <td>NO: Fast 🛶 Tr</td> <td>ig: Free Run</td> <td>Avg Type: Log-Pwr</td> <td></td>	0/4 R RF 50 Ω AC Center Freq 2.441750000 GHz	NO: Fast 🛶 Tr	ig: Free Run	Avg Type: Log-Pwr	
100 1	10 dB/div Ref 20.00 dBm			N	1kr1 2.401 753 5 GHz 3.926 dBm
#Res BW 100 kHz #VBW 300 kHz Sweep 8.000 ms (1001 pts) MKR N 0 1 f 2.401 753 5 GHz 3.926 dBm FUNCTION WIDTH FUNCTION VALUE 2 N 1 f 2.401 753 5 GHz 3.926 dBm - 3 - - - - - - 4 - - - - - - 5 - - - - - - 6 - - - - - - 8 - - - - - -	100 1 000 1 -100 1 -200 1 -300 1 -400 1 -600 1				
1 N 1 f 2.4017535 GHz 3.926 dBm 2 N 1 f 2.4797425 GHz 3.385 dBm		#VBW 30)0 kHz	Sv	Stop 2.48350 GHz veep 8.000 ms (1001 pts)
	1 N 1 f 2.4017535 GHz 2 N 1 f 2.4797425 GHz 3 - - - 4 - - - 5 - - - 6 - - - 7 - - - 9 - - - 10 - - -	3.926 dBm			

Hopping No. NVNT 2-DH1 2402MHz

		lyzer - Swept SA											
X/R	RF	50 Ω AC		S	ENSE:PU	.SE		AL	IGN AUTO	. <u> </u>			8 PM Jul 12, 2021
Center Fi	eq 2	.44175000	F	PNO: Fast 🔸 Gain:Low		g: Free ten: 30				oe: Log-Pw d: 8000/800		т	RACE 12345 TYPE MWWWWW DET PNNNN
10 dB/div		Offset 6.98 dE 20.00 dBm									Mkr		53 5 GHz 204 dBm
Log 10.0 -1 - 0.00 -10.0 -10.0 -20.0	ſ₩		hhnn Vyr	<u>Man</u> the) WW	MM	1 M				MM	ATTA A A A A A A A A A A A A A A A A A	
-30.0 -40.0 -50.0													
-60.0													
Start 2.40 #Res BW				#VE	SW 30	0 kHz				5	Swee		.48350 GHz s (1001 pts
MKR MODE TF 1 N 1 2 N 1 3		2.40	< 11 753 5 GHz 10 076 5 GHz		1 dBm 2 dBm	FUN	CTION	FUNCT	ION WIDTH		F	UNCTION VALUE	
4 5 6 7 9 10 11													v
MSG									STATUS				
	-				_	_	-	_			_		


Page 47 of 88

LXI R	Analyzer - Swept SA RF 50 Ω AC q 2.441750000 G	SI	NVNT 3-D	ALIGNAUTO Avg Type: Log-P	06:17 wr	:06 PM Jul 12, 2021 TRACE 1 2 3 4 5 6	
10 dB/div	Ref Offset 6.98 dB Ref 20.00 dBm	PNO: Fast ↔ IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Hold: 10000/	Mkr1 2.401	419 5 GHz 3.101 dBm	
Log 10.0 -0.00 -20.0 -30.0 -40.0 -60.0		n na ann an a	MUMUM WAA		WWWWWW		
-70.0 Start 2.4000 #Res BW 10	00 kHz		300 kHz		Sweep 8.000 n		
MKR MODE TRC 1 N 1 2 N 1 3 4 5 5 6	f 2.401 419	95 GHz	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE		
7 8 9 10 11						×	
MSG	Ś		Ś	STATUS	Ś		

Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2402	0.378	120.960	31600	400	Pass
NVNT	1-DH3	2402	1.634	261.440	31600	400	Pass
NVNT	1-DH5	2402	2.882	307.413	31600	400	Pass
NVNT	2-DH1	2402	0.385	123.200	31600	400	Pass
NVNT	2-DH3	2402	1.637	261.920	31600	400	Pass
NVNT	2-DH5	2402	2.885	307.733	31600	400	Pass
NVNT	3-DH1	2402	0.386	123.520	31600	400	Pass
NVNT	3-DH3	2402	1.636	261.760	31600	400	Pass
NVNT	3-DH5	2402	2.887	307.947	31600	400	Pass

Dwell Time

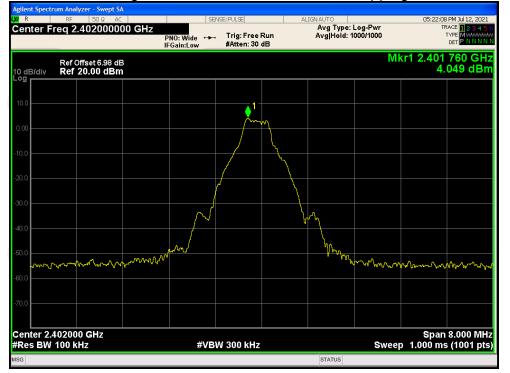
Dwell NVNT 1-DH1 2402MHz

Agitent Spectrum Analyzer - Swept SA Swept SA Off R RF 50 Ω AC SENSE/PULSE ALIGNAUTO 10:01:18 AM Aug01, 2021 Center Freq 2.402000000 GHz Trig Delay-1.000 ms Avg Type: Log-Pwr Trace Delay-1.000 ms PN0: Fast → Trig: Video Trig: Video Trig: Pulse: 30 dB	
Ref Offset 6.98 dB ΔMkr1 1.634 ms 10 dB/div Ref 20.00 dBm -2.06 dB	
-10.0 -20.0 -30.0	
Center 2.40200000 GHz Span 0 Hz Res BW 1.0 MHz #VBW 1.0 MHz Sweep 3.000 ms (10001 pts)	
MKR MODE TRC: Sci. X Y FUNCTION FUNCTION VIDTH FUNCTION VALUE 1 Δ2 1 t (Δ) 1.634 ms (Δ) -2.06 dB -<	
Agilent Spectrum Analyzer - Swept SA Sense:PULSE ALIGNAUTO 10:01:44 AM Aug 01, 2021 VM R RF 50 Q AC SENSE:PULSE ALIGNAUTO 10:01:44 AM Aug 01, 2021	
Center Freq 2.402000000 GHz Trig Delay-1.000 ms Avg Type: Log-Pwr Trackel Deg 4 is g Type PN0: Fast IF Gain:Low Trig: Video Tree Video Type Ref Offset 5 08 dB AMKr1 2.882 ms	
Ref Offset 6.98 dB 10 dB/div Ref 20.00 dBm -1.11 dB 10 0 10 0	
0.00 X2 TRO LVE -10.0 -20.0	
-30.0	
-50.0 High provide pro	
So 0 Mile Tr(strikt) profession 60.0 Mile Tr(strikt) profession 70.0 Span 0 Hz 70.0 Span 0 Hz Center 2.402000000 GHz #VBW 1.0 MHz Res BW 1.0 MHz #VBW 1.0 MHz MKR MODE TRC Sci X Y Function P 1 A2 1 Y Function Span 0 Hz Sweep 4.000 ms (10001 pts)	
Span Huminity Span Huminity 600 Huminity Huminity Huminity Huminity 700 Huminity Huminity Huminity Huminity 700 Huminity Huminity Huminity Huminity 700 Huminity Huminity Huminity Span Hz 700 Huminity Huminity Huminity Hz Span Hz 700 Huminity Huminity Huminity Huminity Hz Hz Huminity </td <td></td>	
500 Mile Inference Mile Inference Mile Inference 600 Mile Inference Mile Inference Mile Inference Mile Inference 700 Mile Inference Span 0 Hz Span 0 Hz Span 0 Hz Center 2.402000000 GHz #VBW 1.0 MHz Sweep 4.000 ms (10001 pts) MKR MODE TRC Set X Y Function 4 4 4 4 5 4 998.8 µs -2.18 dBm 3 4 4 4 6 4 4 4 7 4 4 4	
Span Huminity Y Function Span 0 Hz Center 2.402000000 GHz Span 0 Hz Sweep 4.000 ms (10001 pts) Res BW 1.0 MHz #VBW 1.0 MHz Sweep 4.000 ms (10001 pts) MKR MODE TRC ScL × Y Function Function vidth Function vidth 2 F 1 t 998.8 µs -2.18 dBm 3 - - - - - 9 - - - - - 9 - - - - - -	

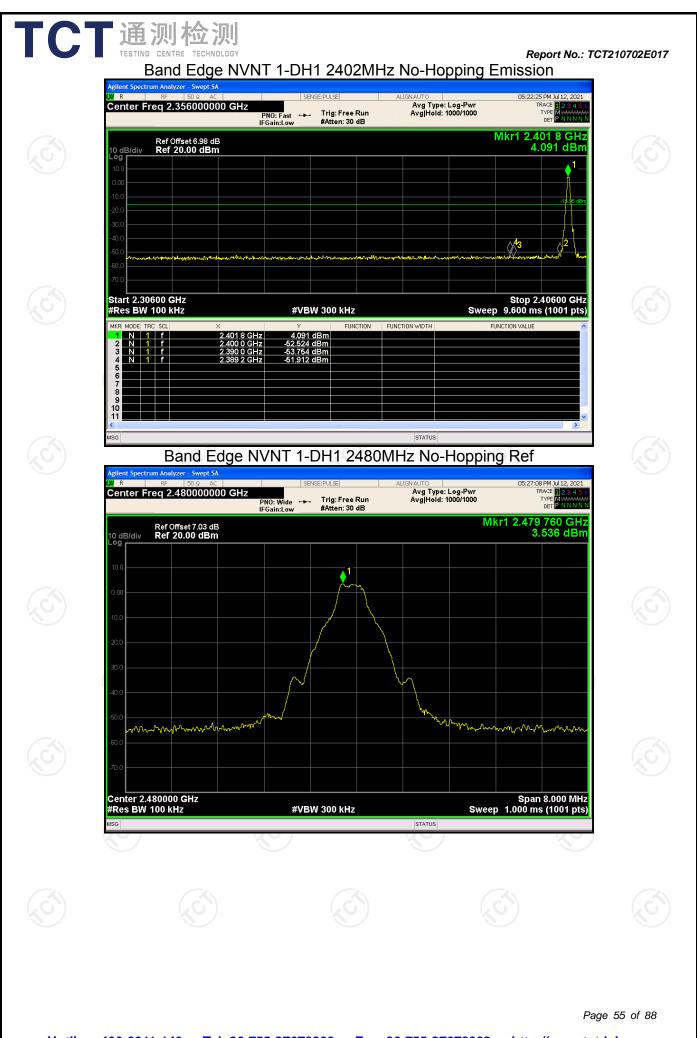
Page 50 of 88

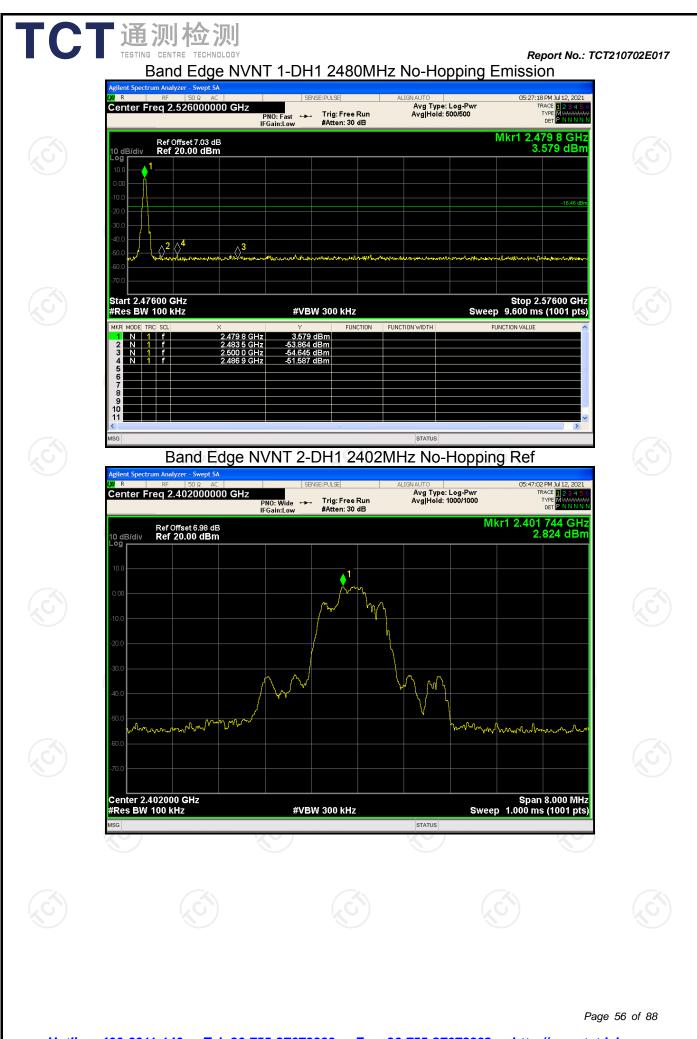
Center Freq 2.40200000		LIGNAUTO 10:02:18AM Aug01, 2021 Avg Type: Log-Pwr TRACE 12:345 TYPE W	
Ref Offset 6.98 dB 10 dB/div Ref 20.00 dBm Log		ΔMkr1 385.0 μs -4.45 dB	
-10.0 -20.0	X2		
Center 2.402000000 GHz Res BW 1.0 MHz		Span 0 Hz Sweep 2.000 ms (10001 pts) TION WIDTH FUNCTION VALUE	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	385.0 µs (Δ) -4.45 dB 999.0 µs -4.68 dBm		
MSG	Dwell NVNT 2-DH3 24	i02MHz	
Agilent Spectrum Analyzer - Swept SA (χ) R RF 50 Ω AC Center Freq 2.40200000	O GHz Trig Delay-1.000 ms PN0: Fast ↔ Trig: Video	LIGNAUTO 10:02:53 AM Aug 01, 2021 Avg Type: Log-Pwr TRACE 12 3 4 5 6 TYPE V	
Ref Offset 6.98 dB 10 dB/div Ref 20.00 dBm		ΔMkr1 1.637 ms 1.84 dB	
10.0	X ₂	1Δ2 TRO LVL	
-20.0			
-30.0			
-40.0 -60.0 -60.0 -70.0		n Martin de Constant Allen de Constant Allen de Constant Allen de Constant	
-40.0 -60.0 -70.0 Center 2.402000000 GHz Res BW 1.0 MHz	#VBW 1.0 MHz	Span 0 Hz Sweep 3.000 ms (10001 pts)	
-40 0 -60 0 -70 0 Center 2.402000000 GHz Res BW 1.0 MHz	#VBW 1.0 MHz	Sweep 3.000 ms (10001 pts)	
$\begin{array}{c} 40 \\ 50 \\ 50 \\ 60 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 70 \\ 7$	#VBW 1.0 MHz	Sweep 3.000 ms (10001 pts)	
$\begin{array}{c} 40.0\\ 60.0\\ 70.0\\ \hline \\ \hline$	#VBW 1.0 MHz	Sweep 3.000 ms (10001 pts)	R.
-40 0 -50 0 -70 0 -70 0 Center 2.402000000 GHz Res BW 1.0 MHz MKR MOE TRC SCL × 1 A2 1 t (Δ) 2 F 1 t (Δ) 3 4 5 6 6 4 7 7 8 8 9 10 11 11 4 5 6	#VBW 1.0 MHz	Sweep 3.000 ms (10001 pts)	Ref.

Agilent Spectrum Analyzer - Swept SA W R RF 50 R SENSE:PULSE ALIGN AUTO 10:03:41AM Aug 01, 2021 Center Freq 2.402000000 GHz Trig Delay-1.000 ms Avg Type: Log-Pwr Trace 12 3 4 5 6 PN0: Fast Trig: Video Trig: Video Trig: Video #Atten: 30 dB Det P NNNNN	
Ref Offset 6.98 dB ΔMkr1 2.885 ms 10 dB/div Ref 20.00 dBm 100 100 100 100 100 100 100 100 100 100 100 100	
300 300 <th></th>	
Krs Model Tacl Scul X Y Function Function width Function value 1 Δ2 1 t (Δ) 2.885 ms (Δ) 0.58 dB 5 2 F 1 t 999.6 μs -3.81 dBm 5 5 5 5 6 - - - - - - - 1 1 - <	
Aglient Spectrum Analyzer - Swept SA MSG MSG MSG MSG MSG MSG MSG MSG	
Ref Offset 6.98 dB ΔMkr1 386.0 μs 10 -1.22 dB 10 -1.22 dB <t< td=""><td></td></t<>	
Krs Sweep 2.000 ms (10001 pt) MKR MODE TRC SCL X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE 1 A2 1 t (A) 386.0 µs (A) -1.22 dB F 2 F 1 t 999.0 µs -5.52 dBm F <td></td>	
MSG	

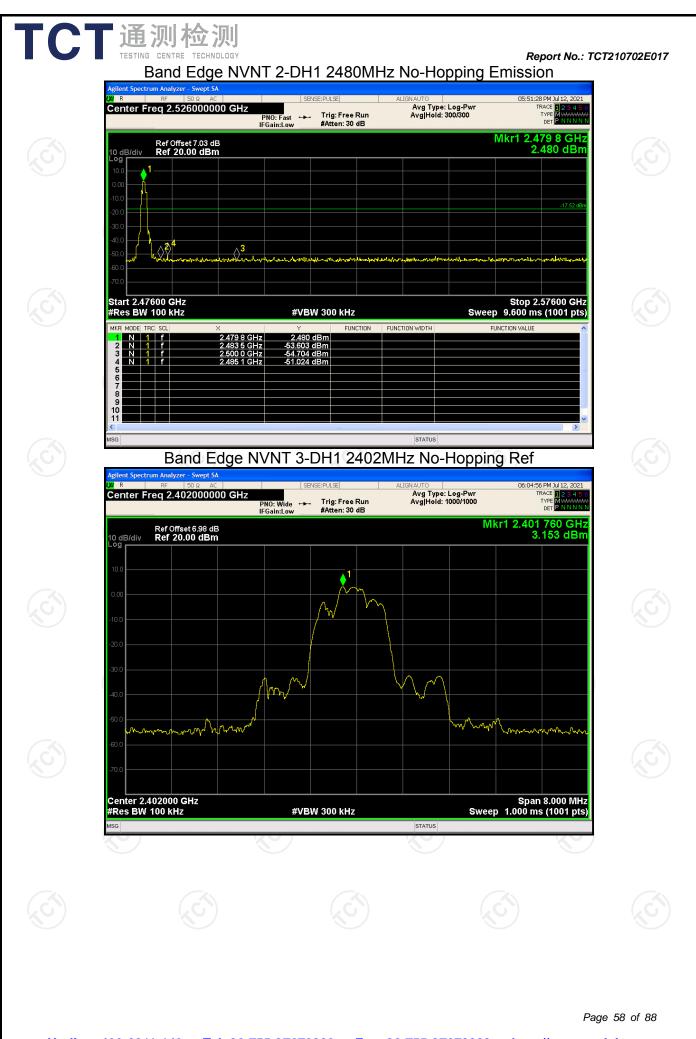

()/// R RF 50 Ω AC Center Freq 2.402000000		ALIGNAUTO 10:05:27 AM Aug 01, 2021 Avg Type: Log-Pwr TRACE 12:04:15:06 TYPE UNIVERSE DET PINNINN	
Ref Offset 6.98 dB 10 dB/div Ref 20.00 dBm Log		ΔMkr1 1.636 ms 2.55 dB	
-10.0	X ₂	1Δ2 TRIO LVL	
-20.0			
-40.0 -50.0 <mark>val nimining to the dwittlet many para- -60.0 <mark>v^{al} him play to the play to the play to the the play to the play</mark></mark>		a dinamakan dan dan dinamakan dan dinamakan dinamakan dinamakan dinamakan dinamakan dinamakan dinamakan dinama Anggan dinamakan dinam	
Center 2.402000000 GHz Res BW 1.0 MHz	#VBW 1.0 MHz	Synan 0 Hz Sweep 3.000 ms (10001 pts) Inction value	
1 Δ2 1 t (Δ) 2 F 1 t 3 4 4 4 4 5 5 6 4 7 7 8 8 9 9 10 11	1.636 ms (Δ) 2.55 dB 998.7 μs -4.88 dBm		
MSG (200)	Dwell NVNT 3-DH5 2	status 2402MHz	
Agilent Spectrum Analyzer - Swept SA M R RF 50 Ω AC Center Freq 2.402000000 C C C	GHz Trig Delay-1.000 ms	ALIGNAUTO 10:06:10 AM Aug 01, 2021 Avg Type: Log-Pwr TRACE 12 2 3 4 5 6 TYPE WAANNAN OET P NINNIN	
Ref Offset 6.98 dB 10 dB/div Ref 20.00 dBm	PNO: Fast →→ Trig: Video IFGain:Low #Atten: 30 dB	ΔMkr1 2.887 ms 0.54 dB	
10 dB/div Ref 20.00 dBm Log 10.0		1/22	
-10.0	X ₂		
-30.0 -40.0 -50.0 Dettiniser from the first state of -60.0 Provide the state of the			
Center 2.402000000 GHz Res BW 1.0 MHz	#VBW 1.0 MHz	Span 0 Hz Sweep 4.000 ms (10001 pts)	
MKR MODE TRC SCL \times 1 $\Delta 2$ 1 t (Δ) 2 F 1 t 3	Υ FUNCTION FU 2.887 ms (Δ) 0.54 dB 998.8 μs -3.77 dBm	NCTION WIDTH FUNCTION VALUE	
4 5 6 7		i -	
8 9 10 11			
MSG	X97	STATUS	

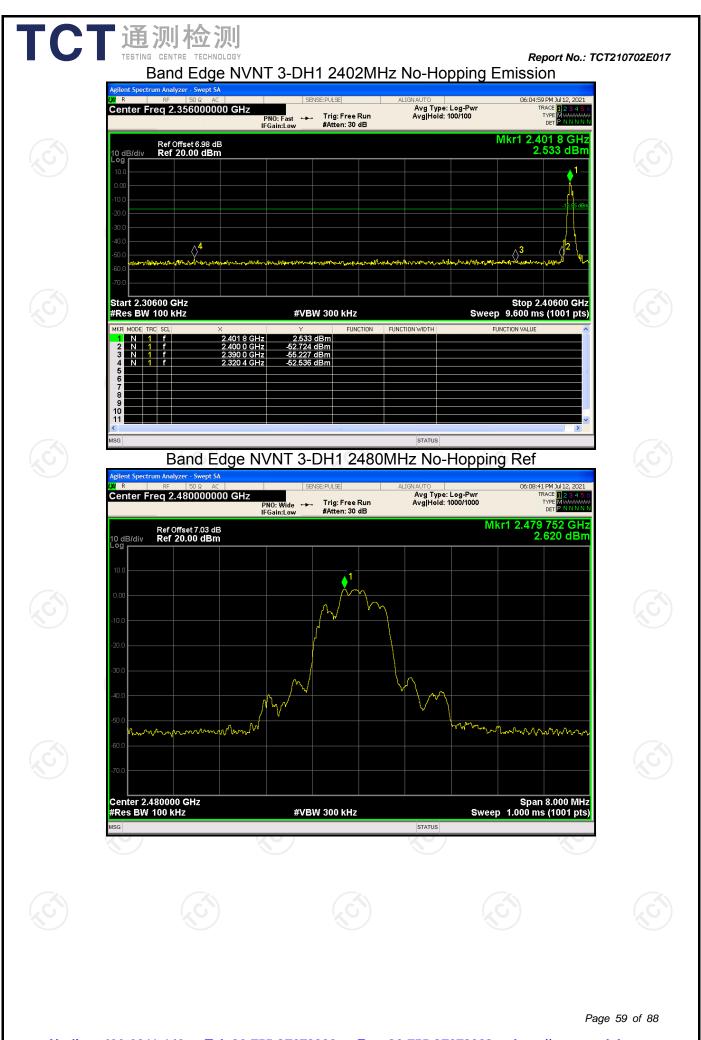
Report No.: TCT210702E017

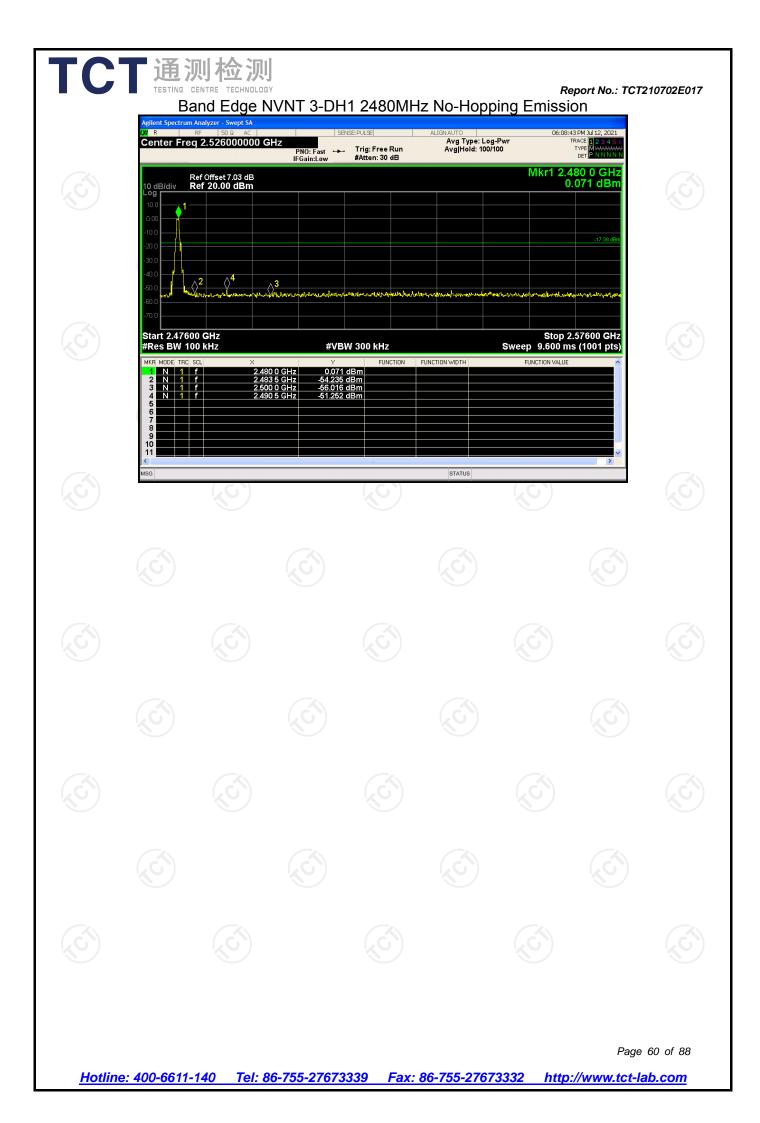

Band Edge


Condition	Mode	Frequency	Hopping	Max Value	Limit	Verdict
		(MHz)	Mode	(dBc)	(dBc)	
NVNT	1-DH1	2402	No-Hopping	-55.96	-20	Pass
NVNT	1-DH1	2480	No-Hopping	-55.12	-20	Pass
NVNT	2-DH1	2402	No-Hopping	-55.64	-20	Pass
NVNT	2-DH1	2480	No-Hopping	-53.50	-20	Pass
NVNT	3-DH1	2402	No-Hopping	-55.68	-20	Pass
NVNT	3-DH1	2480	No-Hopping	-53.87	-20	Pass


Band Edge NVNT 1-DH1 2402MHz No-Hopping Ref




Page 54 of 88

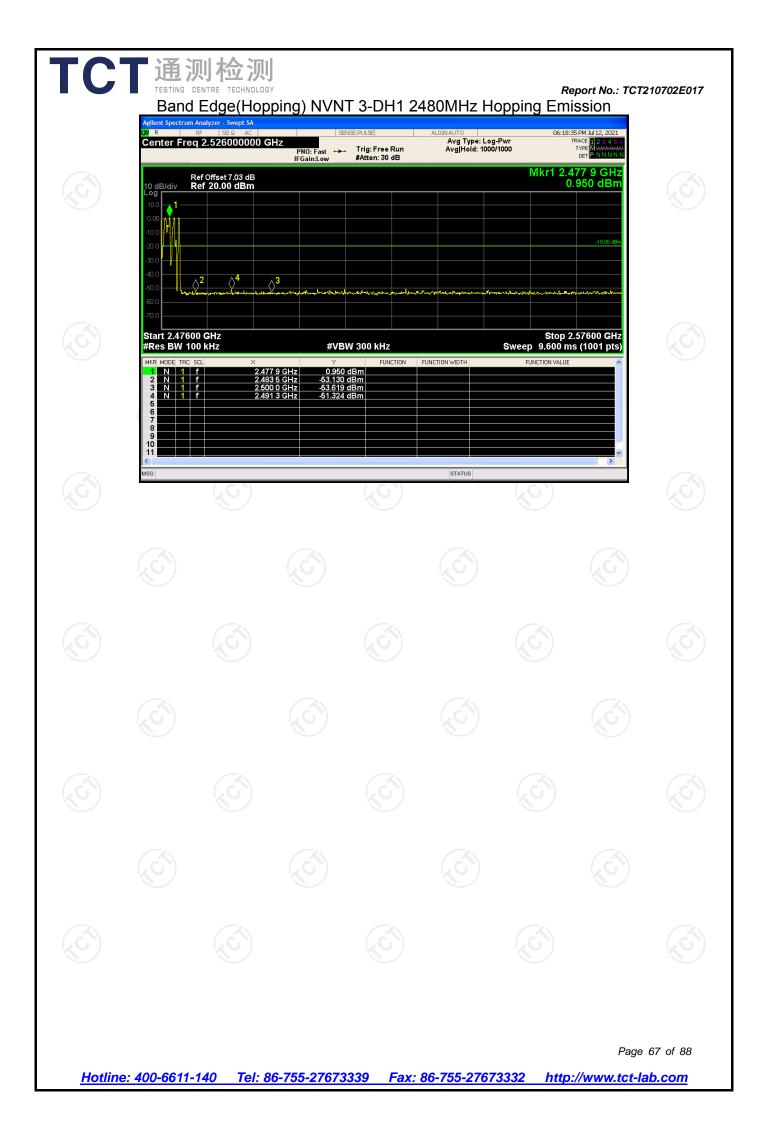


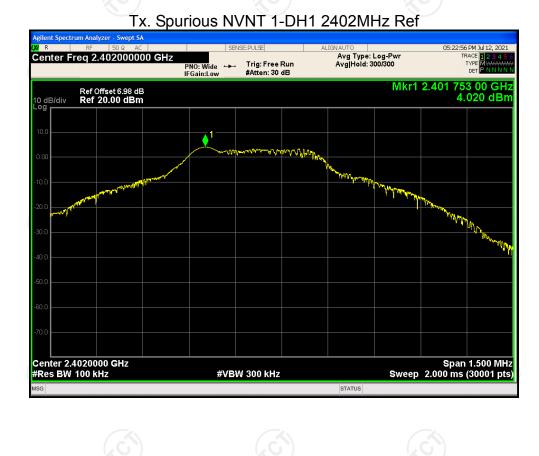
Condition M	Mode	Frequency	Hopping	Max Value	Limit	Verdict
		(MHz)	Mode	(dBc)	(dBc)	Verailet
NVNT	1-DH1	2402	Hopping	-54.71	-20	Pass
NVNT	1-DH1	2480	Hopping	-54.49	-20	Pass
NVNT	2-DH1	2402	Hopping	-54.64	-20	Pass
NVNT	2-DH1	2480	Hopping	-53.80	-20	Pass
NVNT	3-DH1	2402	Hopping	-54.59	-20	Pass
NVNT	3-DH1	2480	Hopping	-52.26	-20	Pass

Band Edge(Hopping)

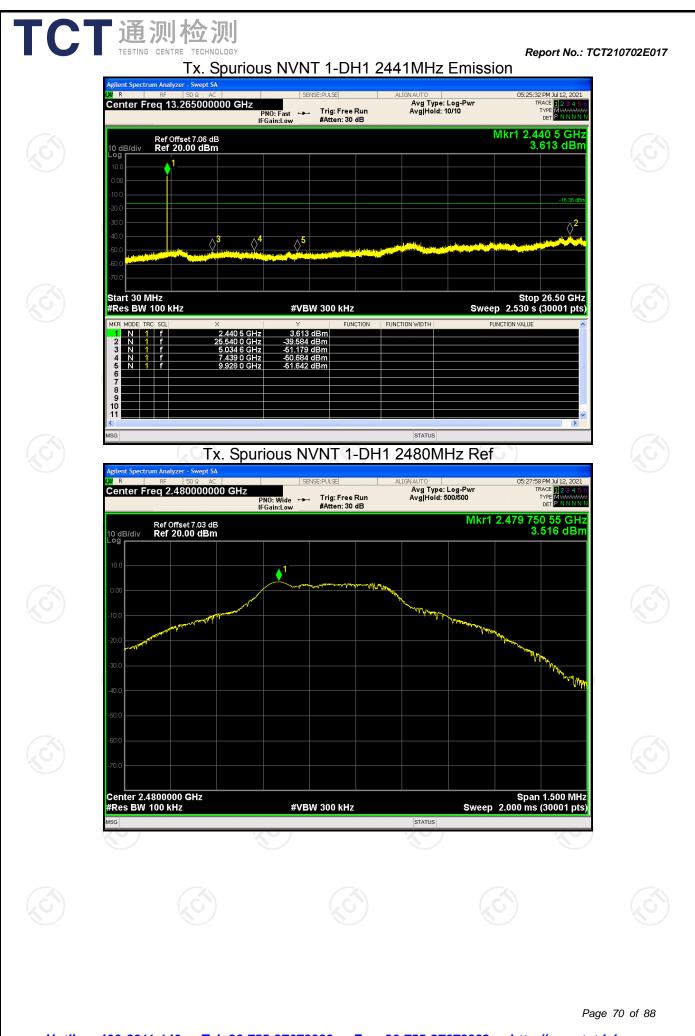
Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Ref







Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH1	2402	-44.74	-20	Pass
NVNT	1-DH1	2441	-43.22	-20	Pass
NVNT	1-DH1	2480	-43.95	-20	Pass
NVNT	2-DH1	2402	-42.96	-20	Pass
NVNT	2-DH1	2441	-42.75	-20	Pass
NVNT	2-DH1	2480	-43.06	-20	Pass
NVNT	3-DH1	2402	-43.36	-20	Pass
NVNT	3-DH1	2441	-42.83	-20	Pass
NVNT	3-DH1	2480	-42.67	-20	Pass

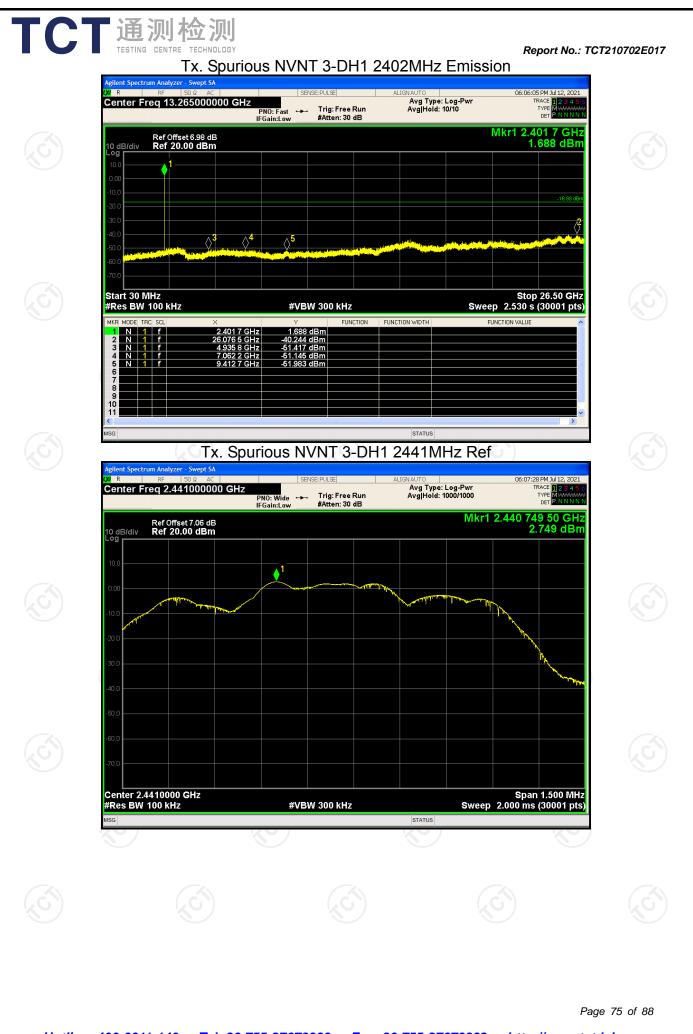

Conducted RF Spurious Emission

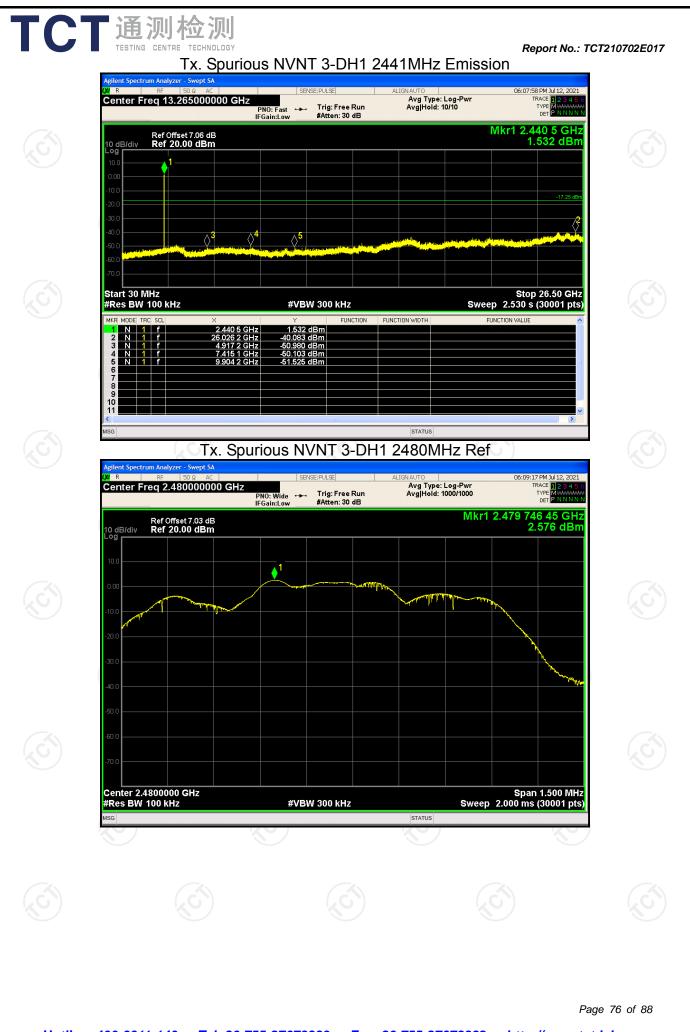
Page 68 of 88

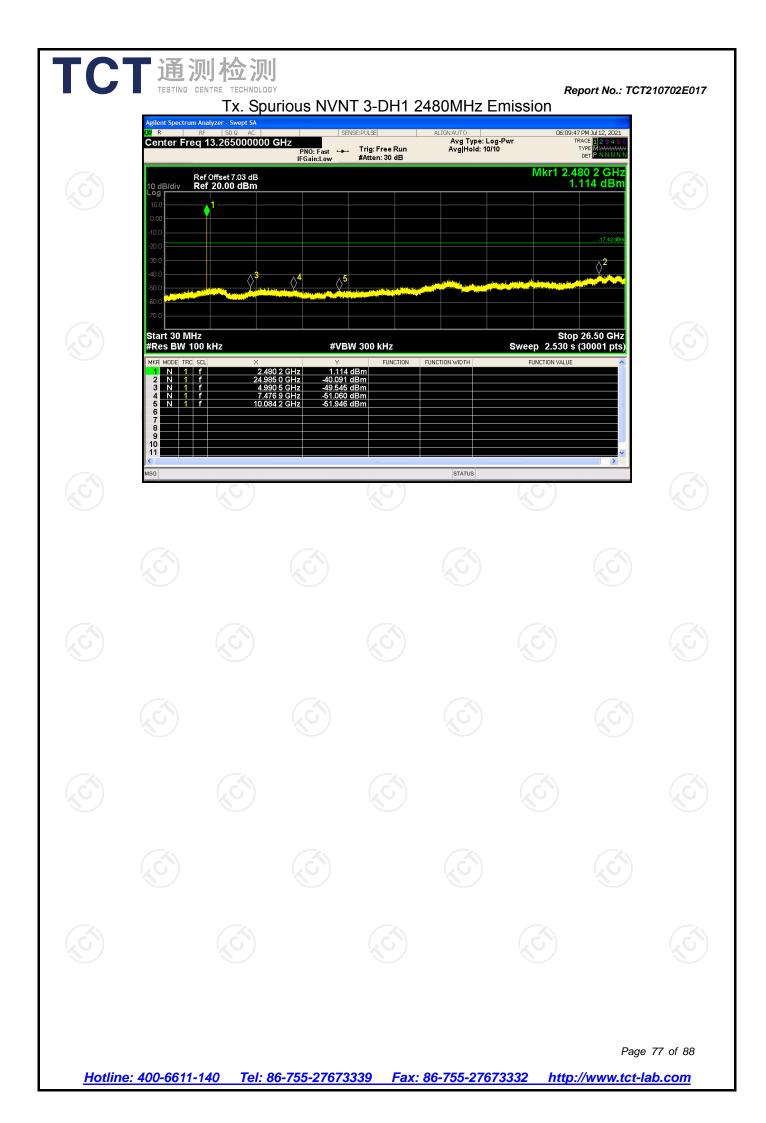


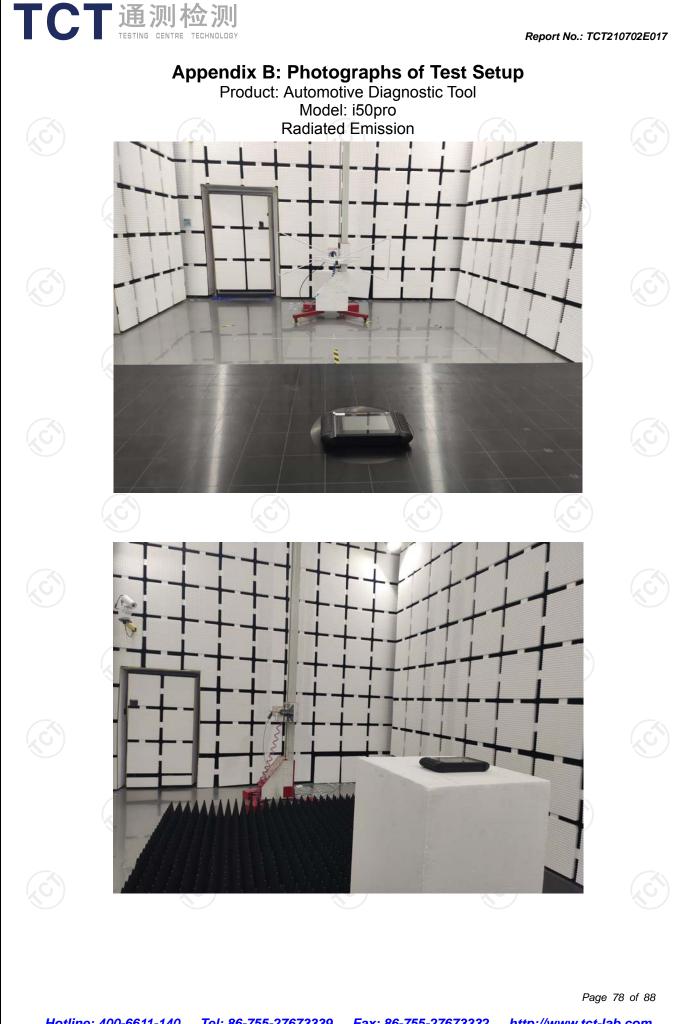
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

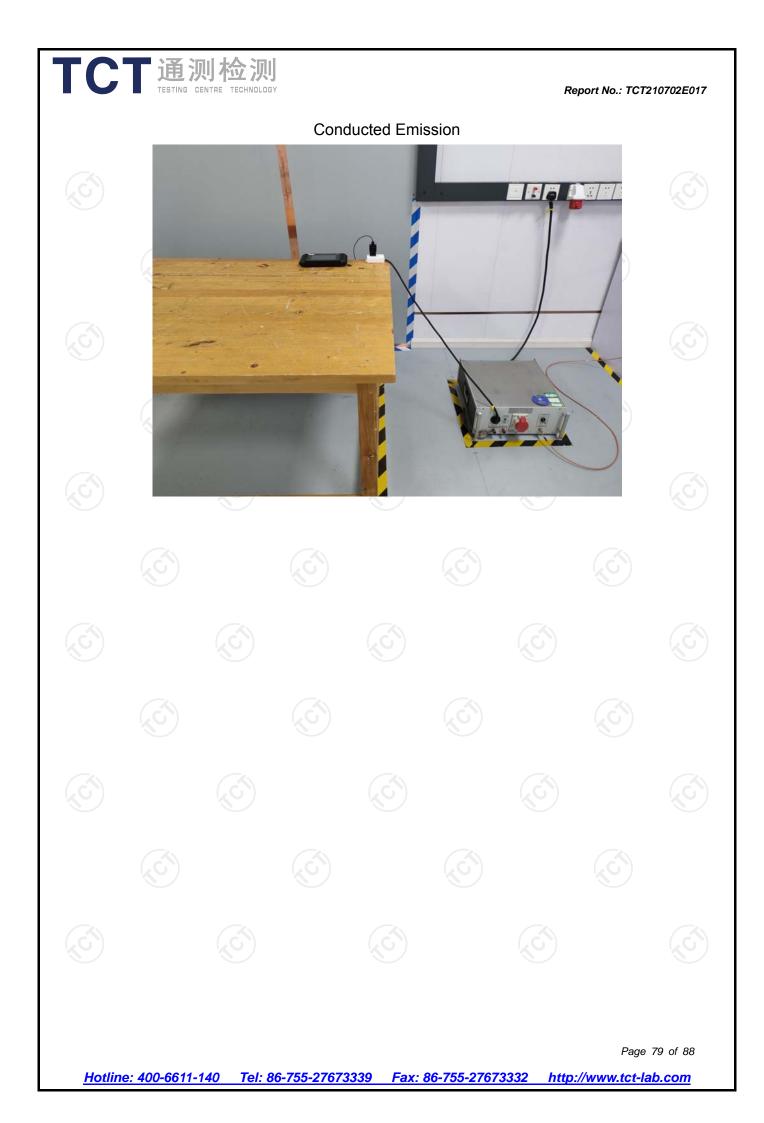


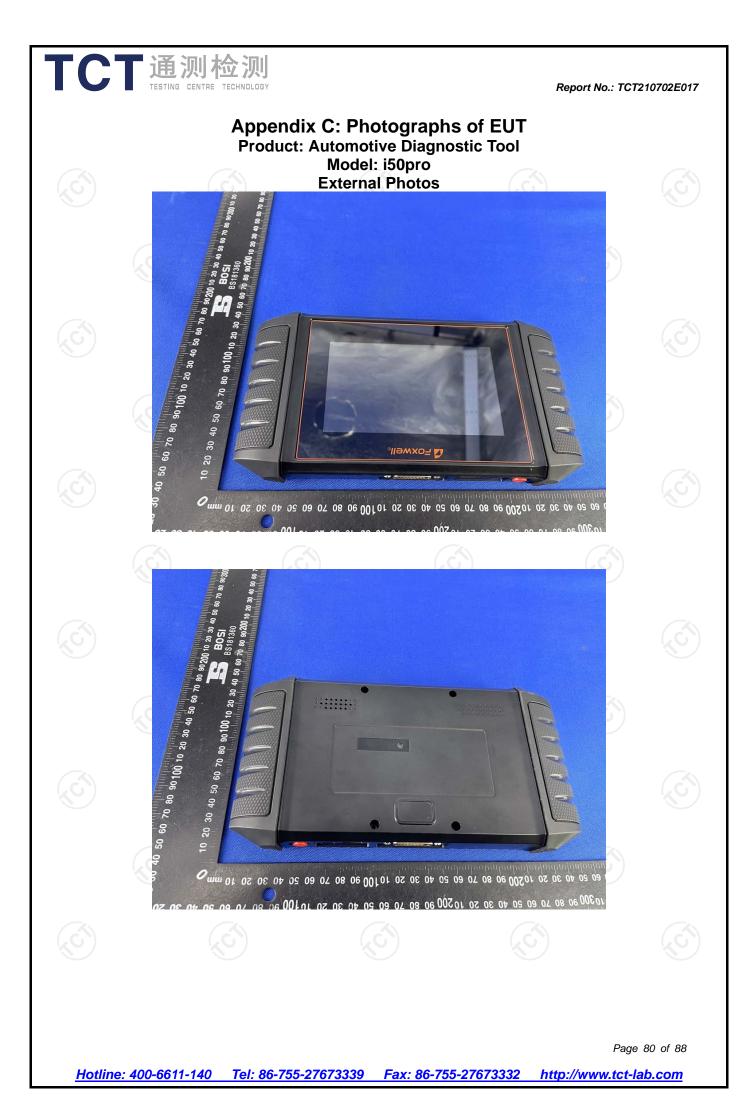



Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com









Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

