FCC TEST REPORT

FCC ID: 2BE42-WLYING

Report No. : SSP24100057-1E

Applicant: Jiangxi Deva Electronic Industry Co., Ltd.

Product Name: High Speed USB Receiver

Model Name : WLYING

Test Standard: FCC Part 15.249

Date of Issue : 2025-01-13

Shenzhen CCUT Quality Technology Co., Ltd.

1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)

This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.

FCC Test Report Page 1 of 26

Test Report Basic Information

Applicant..... Jiangxi Deva Electronic Industry Co., Ltd. Address of Applicant..... 1F,6B,Phase II,Dexing high-tech industrial park,Dexing City,Jiangxi, China Jiangxi Deva Electronic Industry Co., Ltd. Manufacturer....: Address of Manufacturer.....: 1F,6B,Phase II,Dexing high-tech industrial park,Dexing City,Jiangxi, China Product Name..... High Speed USB Receiver Brand Name....: Main Model..... WLYING Series Models....: FCC Part 15 Subpart C ANSI C63.4-2014 **Test Standard**...... ANSI C63.10-2013 Test Result..... PASS (Lahm Peng) Authorized Signatory.....

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.. All test data presented in this test report is only applicable to presented test sample.

FCC Test Report Page 2 of 26

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	
1.3 Compliance Standards	
1.4 Test Facilities	7
1.5 List of Measurement Instruments	8
1.6 Measurement Uncertainty	9
2. Summary of Test Results	10
3. Antenna Requirement	11
3.1 Standard and Limit	
3.2 Test Result	
4. Conducted Emissions	
4.1 Standard and Limit	12
4.2 Test Procedure	
4.3 Test Data and Results	13
5. Radiated Emissions	16
5.1 Standard and Limit	16
5.2 Test Procedure	16
5.3 Test Data and Results	18
6. Band-edge Emissions	23
6.1 Standard and Limit	23
6.2 Test Procedure	23
6.3 Test Data and Results	23
7. Occupied Bandwidth	25
7.1 Standard and Limit	25
7.2 Test Procedure	
7.3 Test Data and Results	

Report No: SSP24100057-1E

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2025-01-13	Initial Release	Lahm Peng

FCC Test Report Page 4 of 26

1. General Information

1.1 Product Information

Product Name:	High Speed USB Receiver	
Trade Name:	1 /	
Main Model:	WLYING	
Series Models:	-	
Rated Voltage:	DC 5V by USB	
Battery:	-	
Test Sample No:	SSP24100057-1	
Hardware Version:	V1.0	
Software Version:	V1.0	
Note 1: The test data is gathered from a production sample, provided by the manufacturer.		

Report No: SSP24100057-1E

Wireless Specification	
Wireless Standard:	2.4GHz RF
Operating Frequency:	2402MHz ~ 2478MHz
Max. Field Strength:	95.2dBuV/m
Quantity of Channel:	77
Channel Separation:	1MHz
Modulation:	GFSK
Antenna Gain:	2.51dBi
Type of Antenna:	PCB Antenna
Type of Device:	

FCC Test Report Page 5 of 26

1.2 Test Setup Information

List of Test Mo	odes					
Test Mode	De	escription		Remark		
TM1	Tra	nsmitting		2402/2440/24	78MHz	
TM2		-		-		
TM3		-		-		
List and Details of Auxiliary Cable						
Descrip	otion	Length (cm)		Shielded/Unshielded	With/Without Ferrite	
-		-		-	-	
-		-		-	-	
List and Detai	List and Details of Auxiliary Equipment					
Descrip	Description Manufacturer		r	Model	Serial Number	
Noteb	Notebook Notebook ThlnkPad E15 Gen 2		ThlnkPad E15 Gen 2	SPPOP39975		
-		-		-	-	

Report No: SSP24100057-1E

List of Chanr	nels						
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	21	2422	41	2442	61	2462
02	2403	22	2423	42	2443	62	2463
03	2404	23	2424	43	2444	63	2464
04	2405	24	2425	44	2445	64	2465
05	2406	25	2426	45	2446	65	2466
~	~	~	~	~	~	~	~
16	2417	36	2437	56	2457	74	2475
17	2418	37	2438	57	2458	75	2476
18	2419	38	2439	58	2459	76	2477
19	2420	39	2440	59	2460	77	2478
20	2421	40	2441	60	2461		

FCC Test Report Page 6 of 26

1.3 Compliance Standards

Compliance Standards		
ECC Dout 15 Cubnout C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,	
FCC Part 15 Subpart C	Intentional Radiators	
All measurements contained in	this report were conducted with all above standards	
According to standards for to	est methodology	
ECC Dout 15 Culomout C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,	
FCC Part 15 Subpart C	Intentional Radiators	
	American National Standard for Methods of Measurement of Radio-Noise Emissions	
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40	
GHz.		
ANCI ((2) 10 2012	American National Standard of Procedures for Compliance Testing of Unlicensed	
ANSI C63.10-2013	Wireless Devices	
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which		
result is lowering the emission, should be checked to ensure compliance has been maintained.		

Report No: SSP24100057-1E

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,
	Guangming District, Shenzhen, Guangdong, China
CNAS Laboratory No.:	L18863
A2LA Certificate No.:	6893.01
FCC Registration No:	583813
ISED Registration No.:	CN0164

All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.

FCC Test Report Page 7 of 26

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date	
	Conducted Emissions					
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06	
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06	
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A	
		Radiated Emission	is			
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06	
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06	
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06	
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06	
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06	
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06	
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02	
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02	
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02	
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 8	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 9	N/A	2024-08-07	2025-08-06	
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A	
Conducted RF Testing						
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06	
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06	
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A	
Laptop	Lenovo	ThlnkPad E15 Gen 3	SPPOZ22485	N/A	N/A	

Report No: SSP24100057-1E

FCC Test Report Page 8 of 26

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
Dadioted Emissions	30MHz ∼ 1GHz	±3.32 dB
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %

Report No: SSP24100057-1E

FCC Test Report Page 9 of 26

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.249(a)&(d)	Radiated Emissions	Passed
FCC Part 15.249(d)	Band-edge Emissions	Passed
FCC Part 15.215(c)	Occupied Bandwidth	Passed

Report No: SSP24100057-1E

Passed: The EUT complies with the essential requirements in the standard

Failed: The EUT does not comply with the essential requirements in the standard

N/A: Not applicable

FCC Test Report Page 10 of 26

3. Antenna Requirement

3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No: SSP24100057-1E

3.2 Test Result

This product has an PCB antenna, fulfill the requirement of this section.

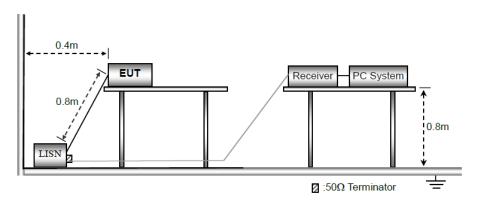
FCC Test Report Page 11 of 26

4. Conducted Emissions

4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	


Report No: SSP24100057-1E

Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz

Note 2: The lower limit applies at the band edges

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

- a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.
- b) The following is the setting of the receiver

Attenuation: 10dB

Start Frequency: 0.15MHz Stop Frequency: 30MHz IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

FCC Test Report Page 12 of 26

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No: SSP24100057-1E

- e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f) LISN is at least 80 cm from nearest part of EUT chassis.
- g) For the actual test configuration, please refer to the related Item photographs of the test setup.

4.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 13 of 26

Test P	Test Plots and Data of Conducted Emissions																						
Teste	ed Mode: TM1																						
Test V	oltage:			AC	120	7/60	0Hz																
Test P	ower Line	wer Line: Neutral																					
Rema	ark:																						
90.0	dBuV			I.																			
								Τ															
80		_				+	+	+										+					-
70																							
																	FC	C Pa	et15 C	E-Clas	s B_(QР	
60			_	_		+	\Box	+															
50		+															FC	C Pa	et15 C	E-Clas	ss B_/	Ve	\dashv
40 2	Wy.	А		ر آر در ر	\square			5 X			7					9 *		_			X.		_
30	m w	יעיי	h	WYU.	may	W.	MHW	,	Aphy24j	Media	<u> </u>				W _U	W	L		A 161 J	JUNE OF STREET			
30	* 4~W	Wh	ww	W	Valva	V	والمدامات	5	سالسهم	1	8	WW	Malur	Water British	erijur J	(O	N _{yl}	M	Museul.	Ju	1 2	du.	
20						+				Marchille	X WAY	\		and the same of th	AV MAY	land.	1	444,0	Lann Ma	Hodel"		A A A PARAMA	peak
10						_		\parallel				orah	Morris	,							Wh	May And	AVG
0																							
-10																							
	150			0.	.500			-			(MHz)	1		5	.000						_	30.	000
								_	1						_								
No.	Frequer (MHz			ading BuV)		acto (dB)			evel BuV)	1	mit BuV)		rgin B)	Detecto	or P	/F	F	Rem	ark				
1	0.150	0	38	3.11	1	9.25		47	7.36	66	6.00	-18	.64	QP		Р							
2	0.150	0	-	'.81	_	9.25	\rightarrow	37	7.06	56	6.00	_	.94	AVG	_	Р							
3	0.492			2.71		9.39	_		2.10		5.13		.03	QP	_	P							
4 *				2.95		9.39	_		2.34		5.13		.79	AVG	_	Р							
5 6	0.964 0.964		_	3.23 3.05	_	9.41 9.41	\rightarrow		7.64 5.46	_	3.00 3.00		.36	QP AVG	_	P P							
7	1.905			5.92		9.41 9.46	_		5.38		3.00 3.00		.62	QP	_	P							
8	1.905		_	.54		9.46	_		1.00		5.00	_	.00	AVG		P							
9	6.135			0.89		9.57	_		9.46		0.00		.54	QP	_	P							
10	6.135			5.91	_	9.57	\rightarrow		5.48	_	0.00	_	.52	AVG	_	P							
11	16.539			3.44		9.67	_		3.11		0.00		.89	QP	_	Р							
12	16.539	90	12	2.52	1	9.67		22	2.19	50	0.00	-27	'.81	AVG		Р							

FCC Test Report Page 14 of 26

Test Plots and Data of Conducted Emissions																				
Teste	d Mod	de:		TM	1															
Test \	/oltag	e:	AC 120V/60Hz																	
Test F	ower	Line:		Live	ive															
Rema	ark:																			
90.0	dBu	N		1																
80																				
70																				
60			_												FC	C Pa	rt15 CE-Clas	s B_Q	P	
50	\ 8		_		3		-		7						FC	C Pa	t15 CE-Clas	s B_A 11 X	/e	
40	\\\\ \\\\	my	W	γ γγγ	May	Note	, nebhal	Mary Mary	Mw	Muli	. u.l		9				N. April	M		
30	₩	Mww.	Myn	M	N. N.	Ada	,when	hardopharile		ishi di		Mald.	10		W.	What	May James May James	****	MANAMANA	
20										, will		W. Kerner	Mr III	YW)	VI VISAN	hannen.	A STATE OF THE STA	**************************************	When	peak AVG
10																				
-10																				
	150			0.	500				(h	(Hz)			5.	000					30.0] 00
No.		equency (MHz)		ading BuV)		actor dB)		Level (dBuV)	Lim (dBu		Marı (dE		Detector	P/F	R	Rem	ark			
1	0).1995	35	.94	9	.39		45.33	63.6	53	-18.	30	QP	Р						
2).1995	+	2.17	+	.39	\perp	31.56	53.6		-22.	\rightarrow	AVG	Р						
3).5100		2.36		.58	_	41.94	56.0		-14.		QP	P						
4).5100		.94		.58		27.52	46.0		-18.	_	AVG	Р						
5 *).9735	_	3.28		.60	_	42.88	56.0		-13.	\rightarrow	QP	P						
6	_	0.9735		0.45		.60	_	29.05	46.0		-16.		AVG	P						
7		.6035		.27		.65	_	40.92	56.0		-15.		QP	P						
8		.6035	_	0.78		.65	_	29.43	46.0		-16.		AVG	P						
9		1.7850		3.33		.75	+	36.08	56.0		-19.		QP	P						
10		.7850		.75		.75	+	24.50	46.0		-21.	\rightarrow	AVG	P	_					
11 12	_	6.9800 6.9800	_	.36 .47		.85 .85		45.21 30.32	60.0 50.0		-14. -19.	$\overline{}$	QP AVG	P P						

FCC Test Report Page 15 of 26

5. Radiated Emissions

5.1 Standard and Limit

According to §15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

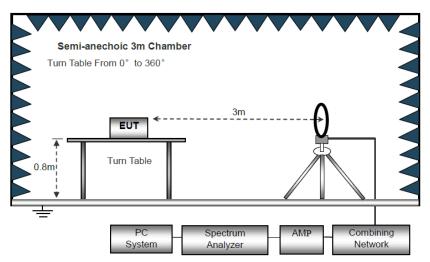
Report No: SSP24100057-1E

Eundamental fraguency	Field strength of fundamental	Field strength of Harmonics
Fundamental frequency	(milli-volts/meter)	(micro-volts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

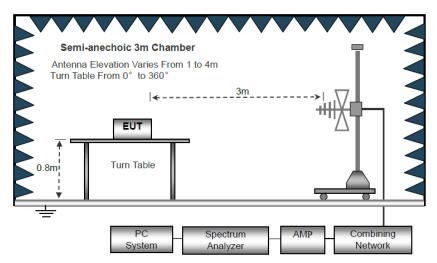
According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

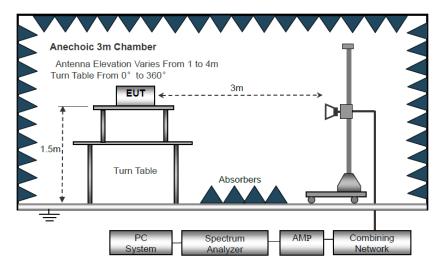
Engage are of omiggion (MHz)	Radiated emissions (3m)						
Frequency of emission (MHz)	Quasi-peak (dBuV/m)						
30-88	40						
88-216	43.5						
216-960	46						
Above 960	54						
Note: The more stringent limit applies at transition frequencies.							


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


5.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.


FCC Test Report Page 16 of 26

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

FCC Test Report Page 17 of 26

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

Report No: SSP24100057-1E

- b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- c) Use the following spectrum analyzer settings:

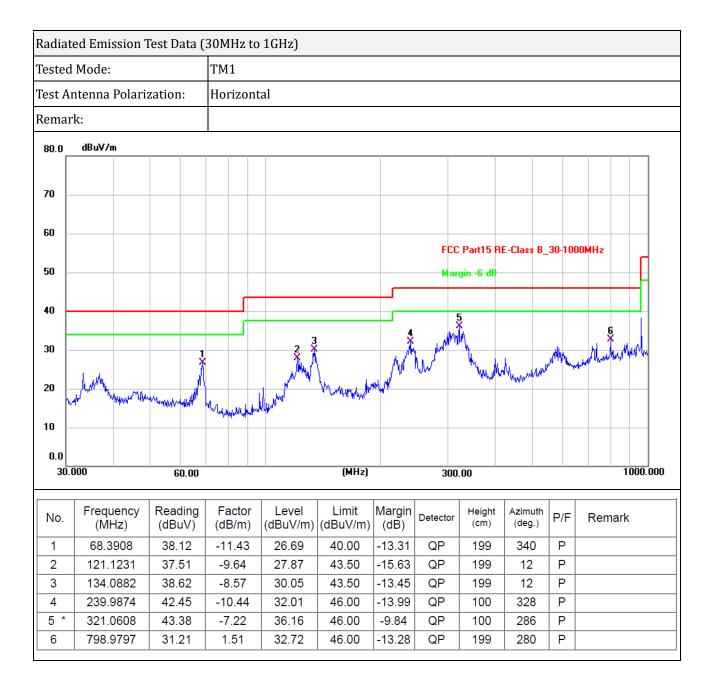
Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz

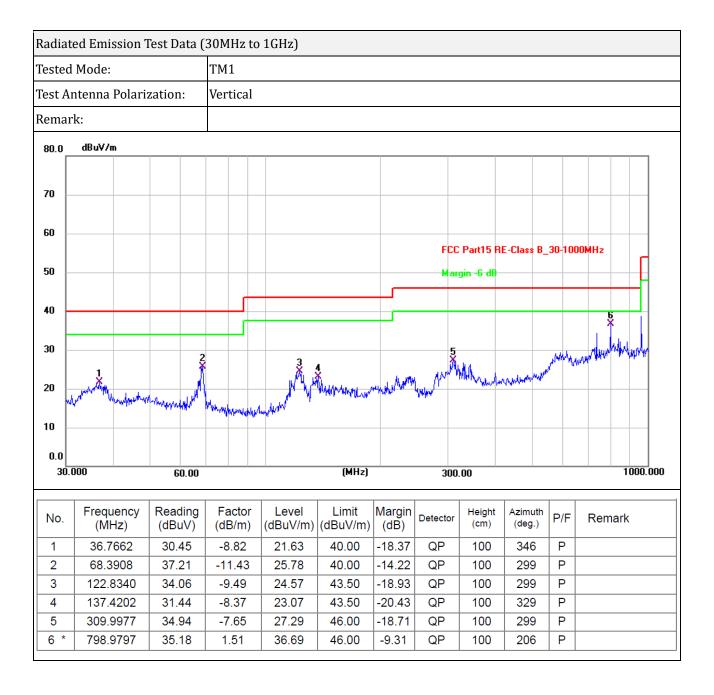
VBW ≥ RBW, Sweep = auto

Detector function = peak

Trace = max hold


- d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.
- f) For the actual test configuration, please refer to the related item EUT test photos.

5.3 Test Data and Results


All of the modes have been tested, the EUT complied with the FCC Part 15.249 standard limit for a wireless device, and with the worst case 2402MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 18 of 26

FCC Test Report Page 19 of 26

FCC Test Report Page 20 of 26

1	ission Test Dat												
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector						
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV						
	Lowest Channel (2402MHz)												
2402	104.92	-20.89	84.03	114	-29.97	Н	PK						
2402	87.34	-20.89	66.45	94	-27.55	Н	AV						
4804	78.14	-14.72	63.42	74	-10.58	Н	PK						
4804	60.93	-14.72	46.21	54	-7.79	Н	AV						
7206	62.56	-8.41	54.15	74	-19.85	Н	PK						
7206	46.44	-8.41	38.03	54	-15.97	Н	AV						
2402	113.5	-20.89	92.61	114	-21.39	V	PK						
2402	89.59	-20.89	68.7	94	-25.3	V	AV						
4804	78.71	-14.72	63.99	74	-10.01	V	PK						
4804	57.43	-14.72	42.71	54	-11.29	V	AV						
7206	64.29	-8.41	55.88	74	-18.12	V	PK						
7206	49.88	-8.41	41.47	54	-12.53	V	AV						
			Middle Chann	nel (2440MHz)									
2440	102.53	-20.7	81.83	114	-32.17	Н	PK						
2440	99.86	-20.7	79.16	94	-14.84	Н	AV						
4880	76.37	-14.64	61.73	74	-12.27	Н	PK						
4880	62.89	-14.64	48.25	54	-5.75	Н	AV						
7320	62.27	-8.28	53.99	74	-20.01	Н	PK						
7320	45.3	-8.28	37.02	54	-16.98	Н	AV						
2440	115.9	-20.7	95.2	114	-18.8	V	PK						
2440	92.3	-20.7	71.6	94	-22.4	V	AV						
4880	77.68	-14.64	63.04	74	-10.96	V	PK						
4880	59.06	-14.64	44.42	54	-9.58	V	AV						
7320	62.66	-8.28	54.38	74	-19.62	V	PK						
7320	49.97	-8.28	41.69	54	-12.31	V	AV						

FCC Test Report Page 21 of 26

Report No: SSP24100057-1E

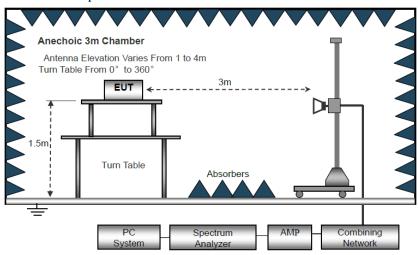
Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.

FCC Test Report Page 22 of 26

6. Band-edge Emissions


6.1 Standard and Limit

According to §15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

Report No: SSP24100057-1E

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.249 standard limit, and with the worst case as below:

FCC Test Report Page 23 of 26

Test Mode	Frequency	Limit	Result	
rest Mode	MHz	dBuV/dBc	Nesuit	
	2310.00	<54 dBuV	Pass	
Lowest	2390.00	<54 dBuV	Pass	
	2400.00	<54 dBuV	Pass	
Highest	2483.50	<54 dBuV	Pass	
Highest	2500.00	<54 dBuV	Pass	

Radiated Emission Test Data (Band edge emissions)													
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector						
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV						
	Lowest Channel (2402MHz)												
2310	67.82	-21.34	46.48	74	-27.52	Н	PK						
2310	52.25	-21.34	30.91	54	-23.09	Н	AV						
2390	68.09	-20.96	47.13	74	-26.87	Н	PK						
2390	52.58	-20.96	31.62	54	-22.38	Н	AV						
2400	72.01	-20.91	51.1	74	-22.9	Н	PK						
2400	56.18	-20.91	35.27	54	-18.73	Н	AV						
2310	68.58	-21.34	47.24	74	-26.76	V	PK						
2310	52.16	-21.34	30.82	54	-23.18	V	AV						
2390	66.42	-20.96	45.46	74	-28.54	V	PK						
2390	50.03	-20.96	29.07	54	-24.93	V	AV						
2400	68.49	-20.91	47.58	74	-26.42	V	PK						
2400	56.55	-20.91	35.64	54	-18.36	V	AV						
			Highest Chann	nel (2478MHz)									
2483.50	71.77	-20.51	51.26	74	-22.74	Н	PK						
2483.50	54.95	-20.51	34.44	54	-19.56	Н	AV						
2500	68.63	-20.43	48.2	74	-25.8	Н	PK						
2500	51	-20.43	30.57	54	-23.43	Н	AV						
2483.50	68.22	-20.51	47.71	74	-26.29	V	PK						
2483.50	53.72	-20.51	33.21	54	-20.79	V	AV						
2500	69.54	-20.43	49.11	74	-24.89	V	PK						
2500	49.66	-20.43	29.23	54	-24.77	V	AV						

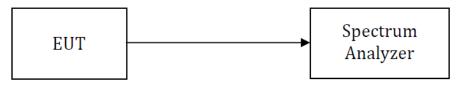
Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 24 of 26

7. Occupied Bandwidth

7.1 Standard and Limit

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.


Report No: SSP24100057-1E

7.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 30kHz, VBW = 100kHz, Sweep = Auto.
- 4) Set a reference level on the measuring instrument equal to the highest peak value.
- 5) Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- 6) Repeat the above procedures until all frequencies measured were complete.

All the trace to stabilize, use the marker-to-peak function to set the marker to the peak of the emission, use the marker-delta function to measure and record the 20dB down and 99% bandwidth of the emission.

Test Setup Block Diagram

7.3 Test Data and Results

Test Channel	Test Frequency	20dB Bandwidth (MHz)	99% Bandwidth (MHz)
Lowest Channel	2402MHz	0.510	0.832
Middle Channel	2440MHz	0.618	0.832
Highest Channel	2478MHz	0.618	0.838

FCC Test Report Page 25 of 26

***** END OF REPORT *****

FCC Test Report Page 26 of 26