

CTC Laboratories, Inc.

1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China Tel: +86-755- 27521059 Fax: +86-755- 27521011 Http://www.sz-ctc.org.cn

TEC:	ГО		D	Т
IEO	ΙК	U	П	ı

Report No...... CTC20210601E04

FCC ID...... 2AR24-AIBOX30M

Applicant: Shenzhen Absen Optoelectronic Co.,Ltd

Shenzhen, China

Manufacturer...... Shenzhen Absen Optoelectronic Co.,Ltd

Shenzhen, China

Product Name: LED Multimedia Processor

Trade Mark /

Model/Type reference..... Ai Box3.0 M

Listed Model(s) /

Standard FCC Part 15, Subpart E 15. 407

Date of receipt of test sample...: Apr. 08, 2021

Date of testing...... Apr. 08, 2021 to Apr. 26, 2021

Date of issue...... Apr. 26, 2021

Result..... PASS

Compiled by:

(Printed name+signature) Jim Jiang

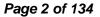
Supervised by:

(Printed name+signature) Miller Ma

Approved by:

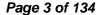
(Printed name+signature) Walter Chen

Testing Laboratory Name: CTC Laboratories, Inc.


Address...... 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park,

Shenzhen, Guangdong, China

Jim Jiang


water ch

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CTC. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CTC within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

		Table of Contents	Page
1. TE	ST SUMMARY		
1.1.	TEST STANDARDS		
1.2.			
1.3.	TEST DESCRIPTION		
1.4.	TEST FACILITY		5
1.5.	MEASUREMENT UNCERTAINTY		5
1.6.	ENVIRONMENTAL CONDITIONS		6
2. GE	NERAL INFORMATION		
2.1.	CLIENT INFORMATION		-
2.2.			
2.3.			
2.4.			
2.5.			
3. TE	ST ITEM AND RESULTS		
3.1.	CONDUCTED EMISSION		
3.2.			
3.3.			
3.4.	BANDWIDTH TEST		121
3.5.	OUTPUT POWER TEST		123
3.6.	POWER SPECTRAL DENSITY TEST		125
3.7.	FREQUENCY STABILITY MEASUREMENT		127
3.8.	Antenna Requirement		128
3 9	DYNAMIC FREQUENCY SELECTION (DES)		120

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Part 15, Subpart E(15.407) — for 802.11a/n/ac, the test procedure follows the FCC KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

Report No.: CTC20210601E04

RSS-247 Issue 2 February 2017 — Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

RSS-Gen — General Requirements for Compliance of Radio Apparatus

1.2. Report Version

Revised No.	Date of issue	Description
01	Apr. 26, 2021	Original

1.3. Test Description

FCC Part 15 Subpart E (15.407) / RSS-247 Issue 2 February 2017					
Test Item	Test r	equire	Result	Test	
rest item	FCC	IC	Resuit	Engineer	
Antenna Requirement	15.203	/	Pass	Rod Luo	
Conducted Emission	15.207	RSS-Gen 8.8	Pass	Rod Luo	
Band Edge Emissions	15.407(b)	RSS-247 6.2.1.2 RSS-247 6.2.2.2 RSS-247 6.2.4.2	Pass	Rod Luo	
26dB Bandwidth & 99% Bandwidth	15.407(a) (5)	RSS-247 6.2.1.2	Pass	Rod Luo	
6dB Bandwidth (only for UNII-3)	15.407(e)	RSS-247 6.2.4.1	Pass	Rod Luo	
Peak Output Power	15.407(a)	RSS-247 6.2.1.1 RSS-247 6.2.4.1	Pass	Rod Luo	
Power Spectral Density	15.407(a)	RSS-247 6.2	Pass	Rod Luo	
Transmitter Radiated Spurious Emission	15.407(b) &15.209	RSS-Gen 8.9 RSS-247 6.2.1.2 RSS-247 6.2.4.2	Pass	Rod Luo	
Frequency Stability	15.407(g)	/	Pass	Rod Luo	
Dynamic Frequency Selection (DFS)	15.407(h)	RSS-247 6.3	N/A	N/A	
Automatically DiscontinueTransmission	15.407(c)	/	Pass	Note(3)	

Note:

- (1)"N/A" is not applicable.
- (2) The measurement uncertainty is not included in the test result.
- (3)During no any information transmission, the EUT can automatically discontinue transmission and become standby mode for power saving. the EUT can detect the controlling sianal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.
- (4)The test data except AC conducted emission and Radiated emission below 1GHz refer to CTC20210599E04(FCC ID: 2AR24-AIBOX30XS; Equipment code: NII). The EUT wireless module, antenna, PCB layout and electrical circuit are the same, the difference is EUT size.

Page 5 of 134

Report No.: CTC20210601E04

1.4. Test Facility

CTC Laboratories, Inc.

Add: 1-2/F., Building 2, Jiaquan Building, Guanlan High-Tech Park, Shenzhen, Guangdong, China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5365

CTC Laboratories, Inc. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation. Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 4340.01

CTC Laboratories, Inc. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

Industry Canada (Registration No.: 9783A, CAB Identifier: CN0029)

CTC Laboratories, Inc. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 9783A on Jan, 2016.

FCC (Registration No.: 951311, Designation Number CN1208)

CTC Laboratories, Inc. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 951311, Aug. 26, 2017.

1.5. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the CTC Laboratories, Inc. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Test Items Measurement Uncertainty Notes Transmitter power conducted 0.42 dB (1) Transmitter power Radiated 2.14 dB (1) Conducted spurious emissions 9kHz~40GHz 1.60 dB (1) Radiated spurious emissions 9kHz~40GHz 2.20 dB (1) Conducted Emissions 9kHz~30MHz 3.08 dB (1) Radiated Emissions 30~1000MHz 4.51 dB (1) Radiated Emissions 1~18GHz 5.84 dB (1) Radiated Emissions 18~40GHz 6.12 dB (1) Occupied Bandwidth (1)

1.6. Environmental Conditions

	Temperature	21°C~27°C
Normal Condition	Relative humidity	40%~60%
Voltage		The equipment shall be the nominal voltage for which the equipment was designed.
Extreme	Temperature	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer.
Condition	Voltage	Measurements shall be made over the extremes of the operating temperature range as declared by the manufacturer.

Normal Condition	T _N =Normal Temperature	21°C~27°C
Extreme Condition	T _L =Lower Temperature	-10 °C
Extreme Condition	T _H =Higher Temperature	40 °C

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

2. GENERAL INFORMATION

2.1. Client Information

Applicant:	Shenzhen Absen Optoelectronic Co.,Ltd
Address:	18-20F Building 3A, Cloud Park, Bantian, Longgang District, Shenzhen, China
Manufacturer:	Shenzhen Absen Optoelectronic Co.,Ltd
Address:	18-20F Building 3A, Cloud Park, Bantian, Longgang District, Shenzhen, China

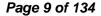
2.2. General Description of EUT

Product Name:	LED Multimedia Processor						
Trade Mark:	/	1					
Model/Type reference:	Ai B	Ai Box3.0 M					
Listed Model(s):	/						
Model Difference:	/						
Power supply:	100	-240V~ 50/60I	Hz 23W				
RF Module Model:	ZK-	7668U					
Hardware version:	V1.0)					
Software version:	V1.0)					
Remark:	EUT is a fixed point-to-point access points operating device. According to the power limit for 5150~5250MHz band, ZK-7612U can operating in client mode.				2U can		
Technical index for 5G WIF	1						
Operation Band:		⊠U-NII-1	□U-NII-2A	□U-NII-2C		⊠U-NII-	-3
Operation Frequency Range		U-NII-1:	5150MHz~52	50MHz			
- Operation requestey realige		U-NII-3:	5725MHz~58	50MHz			Т
		802.11a	⊠ 20MHz				
Support bandwidth:		802.11n	⊠ 20MHz	⊠ 40MHz			
		802.11ac	☑ 20MHz	☑ 40MHz		80MHz	☐ 160MHz
Modulation:	802.11a: OFDM (BIT/SK, QPSK, BPSK, 16QAM) 802.11n: OFDM (BIT/SK, QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (BIT/SK, QPSK, BPSK, 16QAM, 64QAM, 256QAM)						
Bit Rate of Transmitter:	802.11a: 6/9/12/18/24/36/48/54 Mbps 802.11n: up to 300Mbps 802.11ac: at most 866.7 Mbps						
Antenna 1 or 2 type:	PCB Antenna						
Antenna 1 or 2 gain:		5dBi					

Accreditation Administration of the People's Republic of China: yz.cnca.cn

2.3. Accessory Equipment Information

Equipment Information				
Name	Model	odel S/N		
Notebook	X220	/	Lenovo	
Cable Information				
Name	Shielded Type	Ferrite Core	Length	
USB Cable	Unshielded	NO	150cm	
AC Cable	Unshielded	NO	120cm	
Test Software Information				
Name	Software version	/	1	
QA Tool	0.0.1.88	/	/	


2.4. Operation State

Operation Frequency List:

	20MHz E	20MHz Bandwidth 40MHz Bandwidth 80MHz Ban		Bandwidth				
Band (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
	36	5180	38	5190				
U-NII-1	40	5200	36	30	5190	42	5210	
O-INII-1	44	5220	16	46	46	5230	42	3210
	48 5240	40	3230					
	149	5745	151	5755				
	153	5765	151	3733				
U-NII-3	157	5785	159		155	5775		
	161	5805		159	5795			
	165	5825						

Test channel is below:

Operating	Test	20MHz		40MHz		80MHz	
Band	Channel	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	CH∟	36	5180	38	5190	/	/
U-NII-1	CH _M	40	5200	/	/	42	5210
	СНн	48	5240	46	5230	/	/
	CHL	149	5745	151	5755	/	/
U-NII-3	CH _M	157	5785	/	/	155	5775
	CH _H	165	5825	159	5795	/	/

Data Rated

Preliminary tests were performed in different data rate, and found which the below bit rate is worst case mode, so only show data which it is a worst case mode.

Mode	Data rate (worst mode)
802.11a	6Mbps
802.11n(HT20)/ 802.11n(HT40)	HT-MCS0
802.11ac(VHT20)/ 802.11ac(VHT40)/ 802.11ac(VHT80)	VHT-MCS0

Report No.: CTC20210601E04

Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

2.5. Measurement Instruments List

Tonsce	nd JS0806-2 Test system									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until					
1	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 25, 2021					
2	Spectrum Analyzer	Rohde & Schwarz	FUV40-N	101331	Mar. 15, 2022					
3	MXG Vector Signal Generator	Agilent	N5182A	MY47420864	Dec. 25, 2021					
4	Signal Generator	Agilent	E8257D	MY46521908	Dec. 25, 2021					
5	Power Sensor	Agilent	U2021XA	MY5365004	Dec. 25, 2021					
6	Power Sensor	Agilent	U2021XA	MY5365006	Dec. 25, 2021					
7	Simultaneous Sampling DAQ	Agilent	U2531A	TW54493510	Dec. 25, 2021					
8	Climate Chamber	TABAI	PR-4G	A8708055	Dec. 25, 2021					
9	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	116410	Dec. 25, 2021					
10	Climate Chamber	ESPEC	MT3065	/	Dec. 25, 2021					
11	300328 v2.2.2 test system	TONSCEND	v2.6	/	/					

Radiate	ed Emission and Transmi	tter spurious emissior	ns			
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until	
1	EMI Test Receiver	Rohde & Schwarz	ESCI	100658	Dec. 25, 2021	
2	High pass filter	micro-tranics	HPM50111	142	Dec. 25, 2021	
3	Log-Bicon Antenna	Schwarzbeck	CBL6141A	4180	Dec. 25, 2021	
4	Ultra-Broadband Antenna	ShwarzBeck	BBHA9170	25841	Dec. 25, 2021	
5	Loop Antenna	LAPLAC	RF300	9138	Dec. 25, 2021	
6	Spectrum Analyzer	Rohde & Schwarz	FSU26	100105	Dec. 25, 2021	
7	Horn Antenna	Schwarzbeck	BBHA 9120D	647	Dec. 25, 2021	
8	Pre-Amplifier	HP	8447D	1937A03050	Dec. 25, 2021	
9	Pre-Amplifier	EMCI	EMC051835	980075	Dec. 25, 2021	
10	Antenna Mast	UC	UC3000	N/A	N/A	
11	Turn Table	UC	UC3000	N/A	N/A	
12	Cable Below 1GHz	Schwarzbeck	AK9515E	33155	Dec. 25, 2021	
13	Cable Above 1GHz	Hubersuhner	SUCOFLEX 102	DA1580	Dec. 25, 2021	
14	Splitter	Mini-Circuit	ZAPD-4	400059	Dec. 25, 2021	
15	RF Connection Cable	HUBER+SUHNER	RE-7-FL	N/A	Dec. 25, 2021	
16	RF Connection Cable	Chengdu E-Microwave			Dec. 25, 2021	
17	High pass filter	Compliance	BSU-6	34202	Dec. 25, 2021	

CTC Laboratories, Inc.

Page 11 of 134

		Direction systems			
18	Attenuator	Chengdu E-Microwave	EMCAXX-10 RNZ-3		Dec. 25, 2021
19	High and low temperature box	ESPEC	MT3065	12114019	Dec. 25, 2021

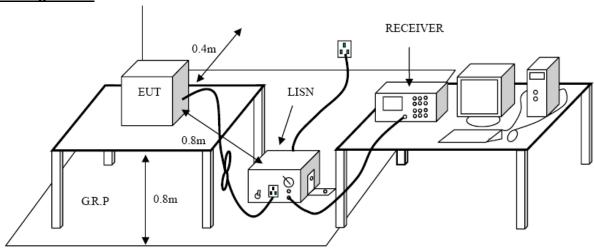
Conduc	Conducted Emission									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibrated until					
1	LISN	R&S	ENV216	101112	Dec. 25, 2021					
2	LISN	R&S	ENV216	101113	Dec. 25, 2021					
3	EMI Test Receiver	R&S	ESCI	100658	Dec. 25, 2021					

Note: 1. The Cal. Interval was one year.

2. The cable loss has calculated in test result which connection between each test instruments.

3. TEST ITEM AND RESULTS

3.1. Conducted Emission


Limit

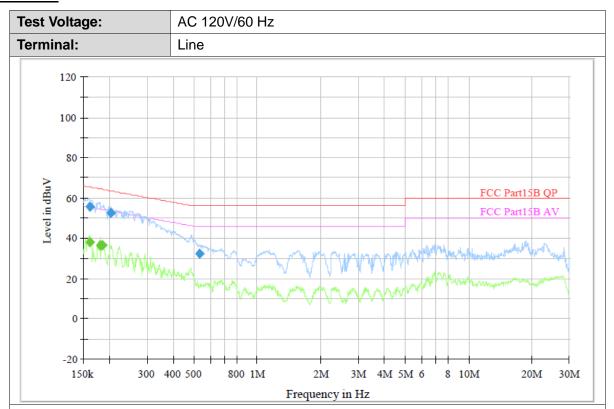
FCC CFR Title 47 Part 15 Subpart C Section 15.207/ RSS – Gen 8.8:

Fraguency range (MHZ)	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

^{*} Decreases with the logarithm of the frequency.

Test Configuration

Test Procedure

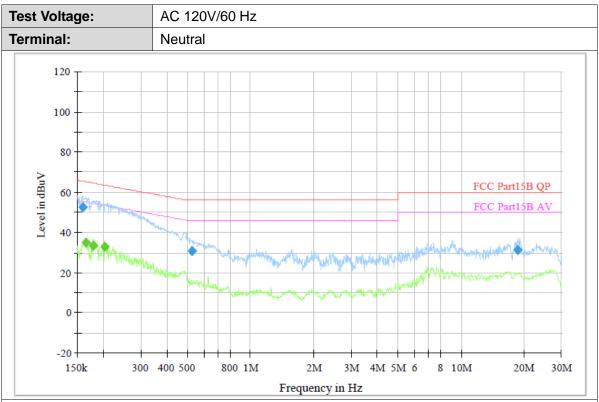

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
 - The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Mode

Please refer to the clause 2.4.

Test Results

Final Measurement Detector 1


Frequency (MHz)	QuasiPeak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.159890	55.7	1000.00	9.000	On	L1	10.4	9.8	65.5	
0.202360	52.7	1000.00	9.000	On	L1	10.4	10.8	63.5	
0.531710	32.3	1000.00	9.000	On	L1	10.4	23.7	56.0	

Final Measurement Detector 2

	Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
	0.160530	38.3	1000.00	9.000	On	L1	10.4	17.1	55.4	
	0.180240	36.8	1000.00	9.000	On	L1	10.4	17.7	54.5	
[0.183870	36.8	1000.00	9.000	On	L1	10.4	17.5	54.3	

Emission Level= Read Level+ Correct Factor

Final Measurement Detector 1

	Frequency (MHz)	QuasiPeak (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
Γ	0.157990	52.7	1000.00	9.000	On	N	10.7	12.9	65.6	
	0.523290	31.0	1000.00	9.000	On	N	10.7	25.0	56.0	
Γ	18.638740	31.3	1000.00	9.000	On	N	10.9	28.7	60.0	

Final Measurement Detector 2

Frequency (MHz)	Average (dB μ V)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dB µ V)	Comment
0.164420	35.1	1000.00	9.000	On	N	10.7	20.1	55.2	
0.178800	33.3	1000.00	9.000	On	N	10.7	21.2	54.5	
0.202360	33.1	1000.00	9.000	On	N	10.7	20.4	53.5	

Emission Level= Read Level+ Correct Factor

3.2. Radiated Emission

Limit

FCC CFR Title 47 Part 15 Subpart C Section 15.209/ RSS-Gen 8.9

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
960~1000	500	3

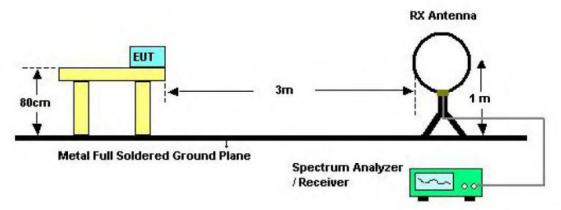
Fraguency (MILT)	dB(uV/m) (a	at 3 meters)
Frequency (MHz)	Peak	Average
Above 1000	74	54

Note:

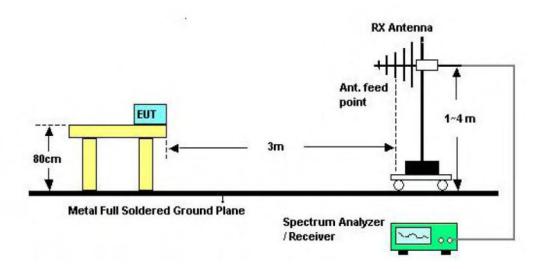
- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)= 20log Emission Level (uV/m).

Limits of unwanted emission out of the restricted bands

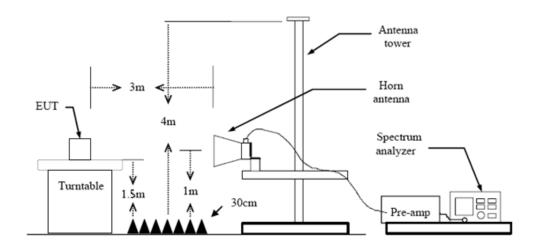
FCC CFR Title 47 Part 15 Subpart C Section 15.407(b)/ RSS-247 6.2.1.2 & RSS-247 6.2.4.2


Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.2
5250~5350	-27	68.2
5470~5725	-27	68.2
	-27(Note 2)	68.2
E70E E00E	10(Note 2)	105.2
5725~5825	15.6(Note 2)	110.8
	27(Note 2)	122.2

Note: 1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field $\frac{1000000\sqrt{30P}}{1000000\sqrt{30P}}$


strength: $E = \frac{1000000\sqrt{30P}}{3}$ uV/m, where P is the eirp (Watts)

2. According to FCC 16-24, All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.



Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.

CTC Laboratories, Inc.

3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.

Report No.: CTC20210601E04

- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW≥1/T Peak detector for Average value.

Note 1: For the 1/T& Duty Cycle please refer to clause Duty Cycle.

Test Mode

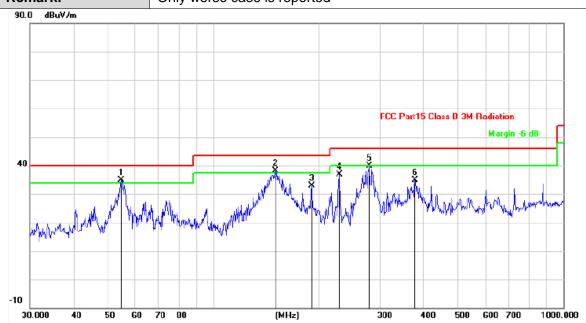
Please refer to the clause 2.4.

Test Result

9 KHz~30 MHz

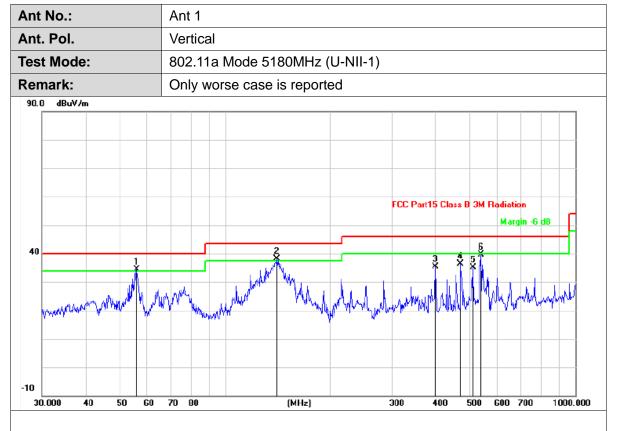
From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Pre-scan all antenna, only show the test data for worse case antenna on the test report.

CTC Laboratories, Inc.

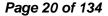
Ant No.:	Ant 1
Ant. Pol.	Horizontal
Test Mode:	802.11a Mode 5180MHz (U-NII-1)
Remark:	Only worse case is reported


No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	54.6428	-18.12	52.94	34.82	40.00	-5.18	QP
2	151.0663	-16.87	55.03	38.16	43.50	-5.34	QP
3	191.0738	-20.21	53.07	32.86	43.50	-10.64	QP
4	230.0985	-19.85	56.70	36.85	46.00	-9.15	QP
5	280.0237	-18.36	58.33	39.97	46.00	-6.03	QP
6	377.2590	-16.22	51.13	34.91	46.00	-11.09	QP

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value



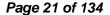
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	56.0007	-18.21	52.55	34.34	40.00	-5.66	QP
2	140.8350	-17.57	55.73	38.16	43.50	-5.34	QP
3	399.0300	-15.80	51.26	35.46	46.00	-10.54	QP
4	470.5230	-14.24	50.54	36.30	46.00	-9.70	QP
5	510.0434	-13.69	48.79	35.10	46.00	-10.90	QP
6	537.5891	-13.25	52.92	39.67	46.00	-6.33	QP

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Accreditation Administration of the People's Republic of China: yz.cnca.cn

Ant No.:	Ant 1
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11a Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

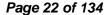

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	10359.872	6.64	35.71	42.35	54.00	-11.65	AVG
2	10360.199	6.64	50.05	56.69	74.00	-17.31	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

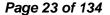


Ant No.:	Ant 1
Ant. Pol.:	Vertical
Test Mode:	TX 802.11a Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	10359.880	6.64	49.47	56.11	74.00	-17.89	peak
2	10359.905	6.64	35.97	42.61	54.00	-11.39	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

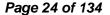


Ant No.:	Ant 1
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11a Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	10399.144	6.75	49.48	56.23	74.00	-17.77	peak
2	10399.282	6.75	35.26	42.01	54.00	-11.99	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



Ant No.:	Ant 1
Ant. Pol.:	Vertical
Test Mode:	TX 802.11a Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	10400.186	6.76	48.98	55.74	74.00	-18.26	peak
2	10400.388	6.76	35.37	42.13	54.00	-11.87	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11a Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	10480.131	6.99	35.04	42.03	54.00	-11.97	AVG
2	10480.824	6.99	49.11	56.10	74.00	-17.90	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



Ant No.:	Ant 1
Ant. Pol.:	Vertical
Test Mode:	TX 802.11a Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	10479.388	6.99	48.72	55.71	74.00	-18.29	peak
2	10480.048	6.99	35.10	42.09	54.00	-11.91	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

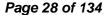
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	10360.362	6.64	49.53	56.17	74.00	-17.83	peak
2	10360.917	6.64	35.77	42.41	54.00	-11.59	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	10360.349	6.64	35.71	42.35	54.00	-11.65	AVG
2	10360.837	6.64	48.84	55.48	74.00	-18.52	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

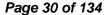
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	10400.548	6.76	49.67	56.43	74.00	-17.57	peak
2	10400.699	6.76	35.26	42.02	54.00	-11.98	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

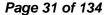


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	_	Level (dBuV/m)		Margin (dB)	Detector
1	10399.317	6.75	48.84	55.59	74.00	-18.41	peak
2	10400.343	6.76	35.25	42.01	54.00	-11.99	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	_	Level (dBuV/m)	I	Margin (dB)	Detector
1	10480.298	6.99	35.04	42.03	54.00	-11.97	AVG
2	10480.317	6.99	49.13	56.12	74.00	-17.88	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	I	Margin (dB)	Detector
1	10479.623	6.99	35.09	42.08	54.00	-11.92	AVG
2	10479.747	6.99	48.81	55.80	74.00	-18.20	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	10359.135	6.64	35.69	42.33	54.00	-11.67	AVG
2	10359.260	6.64	49.16	55.80	74.00	-18.20	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	10360.183	6.64	49.50	56.14	74.00	-17.86	peak
2	10360.574	6.64	35.70	42.34	54.00	-11.66	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	10399.567	6.76	35.20	41.96	54.00	-12.04	AVG
2	10400.455	6.76	49.07	55.83	74.00	-18.17	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	10399.282	6.75	49.52	56.27	74.00	-17.73	peak
2	10400.417	6.76	35.72	42.48	54.00	-11.52	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2			
Ant. Pol.:	Horizontal			
Test Mode:	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.			

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	10479.782	6.99	35.23	42.22	54.00	-11.78	AVG
2	10480.503	6.99	48.70	55.69	74.00	-18.31	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	10480.006	6.99	48.16	55.15	74.00	-18.85	peak
2	10480.776	6.99	34.99	41.98	54.00	-12.02	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

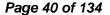
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	10379.413	6.70	35.42	42.12	54.00	-11.88	AVG
2	10380.317	6.70	48.90	55.60	74.00	-18.40	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

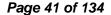


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	10379.099	6.70	48.92	55.62	74.00	-18.38	peak
2	10379.119	6.70	35.56	42.26	54.00	-11.74	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

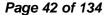


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	10459.500	6.94	35.17	42.11	54.00	-11.89	AVG
2	10459.824	6.94	48.59	55.53	74.00	-18.47	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

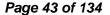


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	10460.340	6.94	48.68	55.62	74.00	-18.38	peak
2	10460.907	6.95	35.13	42.08	54.00	-11.92	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

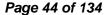


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)		_	Level (dBuV/m)	l	Margin (dB)	Detector
1	10379.093	6.70	49.17	55.87	74.00	-18.13	peak
2	10380.208	6.70	35.36	42.06	54.00	-11.94	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

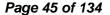


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	10379.804	6.70	49.04	55.74	74.00	-18.26	peak
2	10380.718	6.70	35.39	42.09	54.00	-11.91	AVG

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

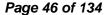


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	10459.812	6.94	35.19	42.13	54.00	-11.87	AVG
2	10460.362	6.94	48.50	55.44	74.00	-18.56	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value



Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No	Ο.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	1	10459.237	6.93	35.20	42.13	54.00	-11.87	AVG
2	2	10459.465	6.94	48.66	55.60	74.00	-18.40	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

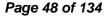
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	l	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	10419.173	6.82	36.18	43.00	54.00	-11.00	AVG
2	10421.226	6.82	49.92	56.74	74.00	-17.26	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

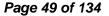


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	10419.327	6.82	36.31	43.13	54.00	-10.87	AVG
2	10419.668	6.82	50.52	57.34	74.00	-16.66	peak

Note: The chart shows Limits 74dBuV for Peak, 54dBuV for AVG, but Unwanted Emissions that fall Outside of the Restricted Bands is 68.2dBuV for Peak. No limit for AVG. All test results are in t compliance with the limits. After calculation, the Peak measurement value meets the limit requirements.

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

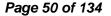


Ant No.:	Ant 1
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11a Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

1	No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
	1	11490.314	7.44	49.02	56.46	74.00	-17.54	peak
	2	11490.474	7.44	35.68	43.12	54.00	-10.88	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

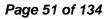


Ant No.:	Ant 1
Ant. Pol.:	Vertical
Test Mode:	TX 802.11a Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	11489.375	7.44	48.46	55.90	74.00	-18.10	peak
2	11489.375	7.44	35.72	43.16	54.00	-10.84	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

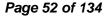


Ant No.:	Ant 1
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11a Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	11569.606	7.39	35.39	42.78	54.00	-11.22	AVG
2	11569.817	7.39	48.89	56.28	74.00	-17.72	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant No.:	Ant 1
Ant. Pol.:	Vertical
Test Mode:	TX 802.11a Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	11569.974	7.39	47.68	55.07	74.00	-18.93	peak
2	11570.904	7.39	35.29	42.68	54.00	-11.32	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant No.:	Ant 1
Ant. Pol.:	Horizontal
Test Mode: TX 802.11a Mode 5825MHz (U-NII-3)	
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	_	Level (dBuV/m)		Margin (dB)	Detector
1	11649.819	7.34	48.86	56.20	74.00	-17.80	peak
2	11650.147	7.33	35.24	42.57	54.00	-11.43	AVG

Remarks:

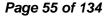
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1
Ant. Pol.:	Vertical
Test Mode:	TX 802.11a Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	11649.734	7.34	47.97	55.31	74.00	-18.69	peak
2	11650.234	7.33	35.21	42.54	54.00	-11.46	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	11490.135	7.44	49.24	56.68	74.00	-17.32	peak
2	11490.369	7.44	35.72	43.16	54.00	-10.84	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	11489.939	7.44	49.27	56.71	74.00	-17.29	peak
2	11490.551	7.44	35.79	43.23	54.00	-10.77	AVG

Remarks:

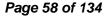
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	11569.692	7.39	35.31	42.70	54.00	-11.30	AVG
2	11570.853	7.39	48.73	56.12	74.00	-17.88	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	ı	_	Level (dBuV/m)	l	Margin (dB)	Detector
1	11569.160	7.39	35.43	42.82	54.00	-11.18	AVG
2	11570.022	7.39	48.69	56.08	74.00	-17.92	peak

Remarks:

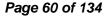
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	11649.365	7.34	48.27	55.61	74.00	-18.39	peak
2	11650.490	7.33	35.15	42.48	54.00	-11.52	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

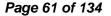


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	11650.327	7.33	35.02	42.35	54.00	-11.65	AVG
2	11650.542	7.33	48.47	55.80	74.00	-18.20	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

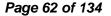


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	_	Level (dBuV/m)	l	Margin (dB)	Detector
1	11489.567	7.44	35.75	43.19	54.00	-10.81	AVG
2	11490.526	7.44	49.45	56.89	74.00	-17.11	peak

Remarks:

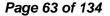
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	10360.183	6.64	49.50	56.14	74.00	-17.86	peak
2	10360.574	6.64	35.70	42.34	54.00	-11.66	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

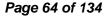


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	11569.128	7.39	35.40	42.79	54.00	-11.21	AVG
2	11570.763	7.39	48.42	55.81	74.00	-18.19	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

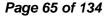


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5785MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	11569.558	7.39	48.50	55.89	74.00	-18.11	peak
2	11569.952	7.39	35.22	42.61	54.00	-11.39	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	11649.667	7.34	35.26	42.60	54.00	-11.40	AVG
2	11650.333	7.33	48.68	56.01	74.00	-17.99	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)		_	Level (dBuV/m)	ı	Margin (dB)	Detector
1	11649.356	7.34	35.22	42.56	54.00	-11.44	AVG
2	11650.417	7.33	48.62	55.95	74.00	-18.05	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

2.Margin value = Level -Limit value

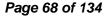
For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Ant No.:	Ant 1 + Ant 2		
Ant. Pol.:	Horizontal		
Test Mode: TX 802.11n(HT40) Mode 5755MHz (U-NII-3)			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.		

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	11509.657	7.43	35.76	43.19	54.00	-10.81	AVG
2	11509.903	7.43	48.92	56.35	74.00	-17.65	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

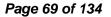


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11n(HT40) Mode 5755MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	11509.359	7.42	35.67	43.09	54.00	-10.91	AVG
2	11509.487	7.42	48.51	55.93	74.00	-18.07	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

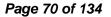


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	11590.282	7.37	48.53	55.90	74.00	-18.10	peak
2	11590.734	7.37	35.30	42.67	54.00	-11.33	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

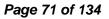


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode: TX 802.11n(HT40) Mode 5795MHz (U-NII-3)	
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	_	Level (dBuV/m)		Margin (dB)	Detector
1	11589.612	7.37	35.68	43.05	54.00	-10.95	AVG
2	11590.096	7.37	48.73	56.10	74.00	-17.90	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

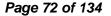


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)			Level (dBuV/m)	ı	Margin (dB)	Detector
1	11509.526	7.42	35.59	43.01	54.00	-10.99	AVG
2	11510.413	7.43	48.82	56.25	74.00	-17.75	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

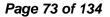


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	11509.080	7.42	48.97	56.39	74.00	-17.61	peak
2	11509.288	7.42	35.64	43.06	54.00	-10.94	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

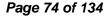


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	11589.593	7.37	49.25	56.62	74.00	-17.38	peak
2	11590.487	7.37	35.33	42.70	54.00	-11.30	AVG

Remarks:

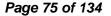
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	11589.465	7.37	35.38	42.75	54.00	-11.25	AVG
2	11590.452	7.37	48.40	55.77	74.00	-18.23	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	11650.000	7.33	50.22	57.55	74.00	-16.45	peak
2	11650.000	7.33	36.26	43.59	54.00	-10.41	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	I	Margin (dB)	Detector
1	11649.995	7.34	36.40	43.74	54.00	-10.26	AVG
2	11649.996	7.34	50.14	57.48	74.00	-16.52	peak

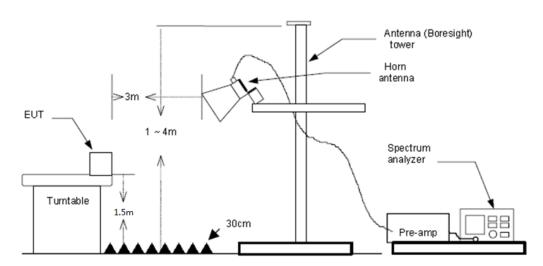
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

3.3. Band Edge Emissions

Limit

Limits of unwanted emission out of the restricted bands


FCC CFR Title 47 Part 15 Subpart C Section 15.407(b)/ RSS-247 6.2.1.2 & RSS-247 6.2.4.2

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)			
5150~5250	-27	68.2			
5250~5350	-27	68.2			
5470~5725	-27	68.2			
	-27(Note 2)	68.2			
E70E E00E	10(Note 2)	105.2			
5725~5825	15.6(Note 2)	110.8			
	27(Note 2)	122.2			

Note: 1. The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: $E = \frac{1000000\sqrt{30P}}{\text{uV/m}}$, where P is the eirp (Watts)

2. According to FCC 16-24, All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.

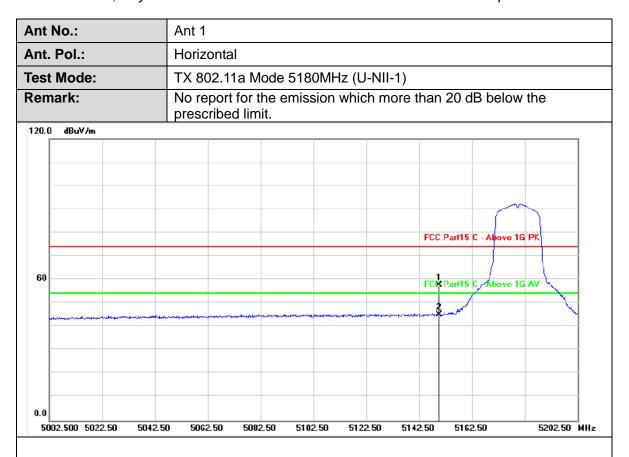
EN 中国国家认证认可监督管理委员会

5. The receiver set as follow:

RBW=1MHz. VBW=3MHz PEAK detector for Peak value.

RBW=1MHz, VBW see note 1 with Peak Detector for Average Value.

Note 1: For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause Appendix E: Duty Cycle

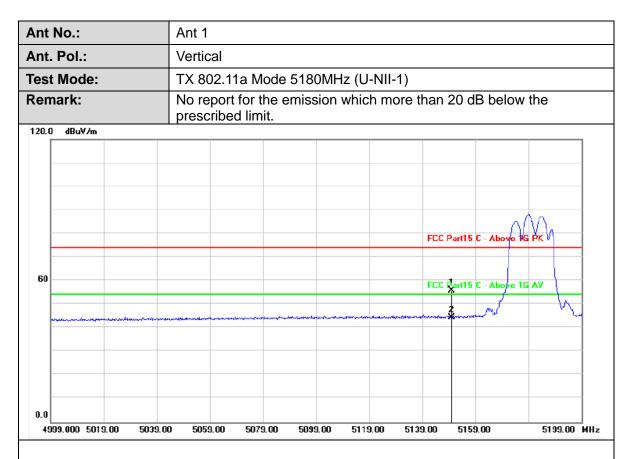

Report No.: CTC20210601E04

Test Mode

Please refer to the clause 2.4.

Test Results

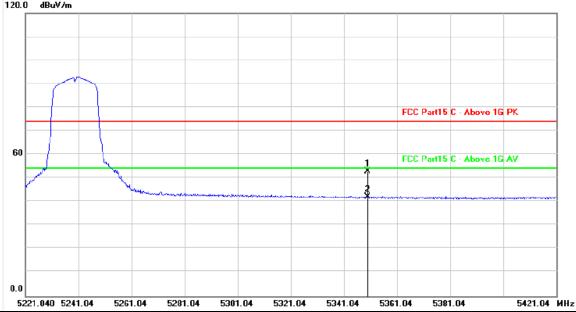
Pre-scan all antenna, only show the test data for worse case antenna on the test report.


No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	37.15	20.48	57.63	74.00	-16.37	peak
2	5150.000	37.15	7.90	45.05	54.00	-8.95	AVG

Remarks

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Page 78 of 134


No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	5150.000	37.15	18.77	55.92	74.00	-18.08	peak
2	5150.000	37.15	7.34	44.49	54.00	-9.51	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11a Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.
120.0 dBuV/m	

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	5350.000	37.41	15.55	52.96	74.00	-21.04	peak
2	5350.000	37.41	4.70	42.11	54.00	-11.89	AVG

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: <u>yz.cnca.cn</u> Page 80 of 134

Ant No.:			Ant 1							
			Vertic	Vertical						
Test Mo	de:		TX 8	TX 802.11a Mode 5240MHz (U-NII-1)						
Remark:				No report for the emission which more than 20 dB below the prescribed limit.						
120.0 dE	luV/m									
0	۸۸۸									
	·							FCC Part15	C - Above 16	PK
60							FCC Part15	C - Above 10	AV	
H	- 1						×			
N/	- V	rk .								

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	37.41	14.37	51.78	74.00	-22.22	peak
2	5350.000	37.41	4.21	41.62	54.00	-12.38	AVG

5326.00

5346.00

5366.00

5386.00

5426.00 MHz

Remarks

0.0

5226.000 5246.00

5266.00

5286.00

5306.00

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

5202.50 MHz

Ant	No.:		Ant 1	+ Ant 2							
Ant	. Pol.:		Horizo	Horizontal							
Tes	t Mode:		TX 80	ΓΧ 802.11n(HT20) Mode 5180MHz (U-NII-1)							
Ren	Remark:			o report for the emission which more than 20 dB below the escribed limit.						the	
120.0	0 dBuV/m										
									MM	W ₁	
								FCC Part15 C - Above 1G PK			
60								1 FC@Part15	C Above 16	AV	
		والمستوالية		and the second s	answer and the year	manager of the second			ĮγV	M	

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	5150.000	37.15	22.17	59.32	74.00	-14.68	peak
2	5150.000	37.15	8.51	45.66	54.00	-8.34	AVG

5102.50

5122.50

5142.50

5162.50

Remarks:

0.0

5002.500 5022.50

5042.50

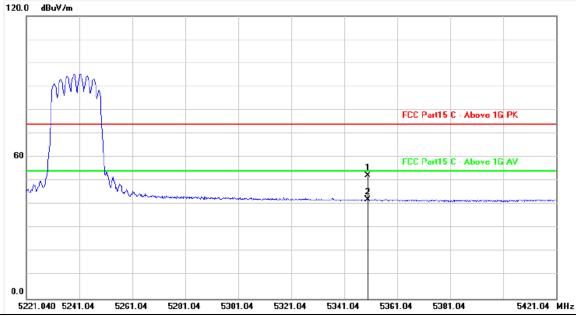
5062.50

5082.50

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant	No.:			Ant 1	nt 1 + Ant 2								
Ant	. Pol.:			Vertic	al								
Tes	t Mod	e:		TX 80	2.11	n(HT20) Mode 5	180MHz	(U-NII-	1)			
Rer	nark:				No report for the emission which more than 20 dB below the prescribed limit.								
120.0	0 dBuV	/m											
												.000	
									FCC	Part15	C - Above	, ng pk	1
60									FCC	Palits	C - Above	: 1G AV	
										Ĵ			-
			والمناه بيعلم والمهارية							man state of	المحر الواليين الريعالي		لس
0.0													
49	996.000 !	5016.00	5036.00	5056	.00	5076.00	5096.00	5116.00	5136.00	515	6.00	5190	6.00

Page 82 of 134


No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	37.15	18.57	55.72	74.00	-18.28	peak
2	5150.000	37.15	6.86	44.01	54.00	-9.99	AVG

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11n(HT20) Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.
120 0 dRuV/m	

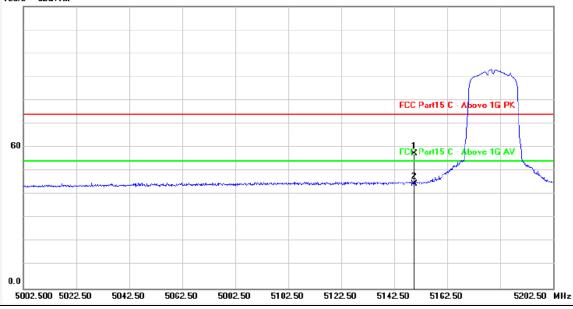
No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	37.41	14.87	52.28	74.00	-21.72	peak
2	5350.000	37.41	4.69	42.10	54.00	-11.90	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

4nt	No.:		Ant 1	+ Ant 2						
٩nt.	Pol.:		Vertic	al						
Test	Mode:		TX 80	X 802.11n(HT20) Mode 5240MHz (U-NII-1)						
Ren	nark:			No report for the emission which more than 20 dB below the prescribed limit.						w the
120.0) dBuV/m									
	^{"V} VVVV	Λ						FCC	Part15 C - Above	1G PK
60										
							1	FCC	Part15 C - Above	1G AV
	N	Lane					1			
				The state of the s	uhdend					
0.0										
	226.000 5246	.00 5266	00 528	6.00 530	6.00	5326.00	5346.00	5366.00	5386.00	5426.00

Page 84 of 134


No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	37.41	14.69	52.10	74.00	-21.90	peak
2	5350.000	37.41	4.37	41.78	54.00	-12.22	AVG

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.
120.0 dBuV/m	

Page 85 of 134

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	37.15	20.43	57.58	74.00	-16.42	peak
2	5150.000	37.15	7.48	44.63	54.00	-9.37	AVG

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2	
Ant. Pol.:	Vertical	
Test Mode:	TX 802.11ac(VHT20) Mode 5180MH	Hz (U-NII-1)
Remark:	No report for the emission which mo prescribed limit.	ore than 20 dB below the
120.0 dBuV/m	· · · · · · · · · · · · · · · · · · ·	
		FCC Part15 C - Above 1G PK
60		FCC Part15 C - Above 1G AV
		2
and the second s	angeres and any larger advantagement of the second policy of the property of the property of the second of the sec	Manager and Manage

Page 86 of 134

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	37.15	21.53	58.68	74.00	-15.32	peak
2	5150.000	37.15	7.31	44.46	54.00	-9.54	AVG

5096.00

5116.00

5136.00

5156.00

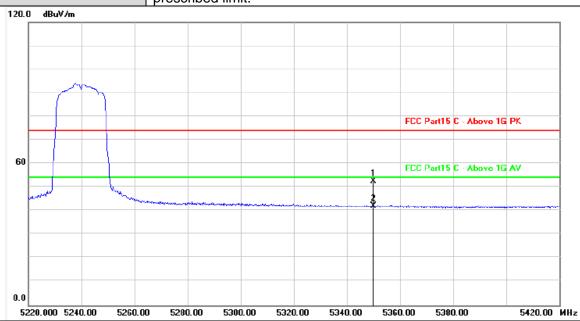
5196.00 MHz

Remarks:

4996.000 5016.00

5036.00

5056.00


5076.00

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.
400 0 ID U.I	

Page 87 of 134

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	5350.000	37.41	15.28	52.69	74.00	-21.31	peak
2	5350.000	37.41	4.77	42.18	54.00	-11.82	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant	No.:	Ant 1	+ Ant 2							
Ant	. Pol.:	Vertic	al							
Tes	t Mode:	TX 80)2.11ac(\	/HT20) N	Node 524	40MHz (U-NII-1)			
Rer	nark:		No report for the emission which more than 20 dB below the prescribed limit.							
120.	0 dBuV/m									
							FCC Part15	C - Above 1G	РК	
60						1	FCC Part15	C - Above 1G	AV	
		 and the second s	(ndebenos na jos plane)	4J.,	***************************************	***************************************	***************************************		and the second s	

Page 88 of 134

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	37.41	16.92	54.33	74.00	-19.67	peak
2	5350.000	37.41	3.88	41.29	54.00	-12.71	AVG

5325.00

5345.00

5365.00

5385.00

5425.00 MHz

0.0

5225.000 5245.00

5265.00

5285.00

5305.00

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

۱nt	No.:	Ant 1 + Ant 2							
۱nt	. Pol.:	Horizontal							
Tes:	t Mode:	TX 802.11n(HT40) Mode 5190MHz (U-NII-1)							
Ren	nark:	No report for the emission which more than 20 dB below the prescribed limit.							
120.0	0 dBuV/m								
		0000000							
		FCC Part 5 C - Above 1G PK							
60		X FCC Part 15 C - Above 1G AV							
0.0									

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	37.15	21.13	58.28	74.00	-15.72	peak
2	5150.000	37.15	8.60	45.75	54.00	-8.25	AVG

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:				Ant 1 + Ant 2										
۹nt.	Pol.:			Vertical										
Test	Mode:			TX 80)2.11n	(HT40)	Mode	5190	ИНz	(U-N	III-1)			
Remark:					port fo		missio	n whic	h mo	ore th	nan 20 d	B below	the	
120.0 dBuV/m														_
											FCC Part15		Δαλληλο	
											FUU Partis	MADOA6, 10	PRYYY	4
60										1			Ì	
00										×	FCC Part15	C · Above 16	AV	4
	ML					·	مهم مرابع مراموس	and the second second second		3	· · · · · · · · · · · · · · · · · · ·		1	ď
														1
														┨
														-
														-
0.0														
50	12.000 503	2.00 5	052.00	5072	2.00 5	092.00	5112.00	5133	2.00	5152	2.00 517	2.00	5212.00	_

Page 90 of 134

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	5150.000	37.15	21.75	58.90	74.00	-15.10	peak
2	5150.000	37.15	7.52	44.67	54.00	-9.33	AVG

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant	No.:		Ant 1	+ Ant 2	2							
۹nt.	Pol.:		Horiz	ontal								
Гest	Mode:		TX 8	02.11n(HT40)	Mode 5	230MHz	z (U-NII	l-1)			
Rem	nark:			port for		mission	which m	ore tha	an 20 dE	B below	the	
120.0	dBuV/m											_
	.00000	Μγνινινή										1
	This A.	1.1.1.1.1.1						F	CC Part15 C	- Above 1G	PK	-
			1									1
60									20 D HE 0			
	1		\					1 _]	CC Part15 C	- Above 16	AV	-
	J		MANN	Mandeman	~~~			3	;			
ı									-		National Association of the Control	1
												1
												-
												-
0.0												

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)		Limit (dBuV/m)	Margin (dB)	Detector
1	5350.000	37.41	15.66	53.07	74.00	-20.93	peak
2	5350.000	37.41	4.77	42.18	54.00	-11.82	AVG

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Page 92 of 134

Ant No.:	Ant 1 + Ant 2								
Ant. Pol.:	Vertical	Vertical							
Test Mode:	TX 802.11n(HT40	TX 802.11n(HT40) Mode 5230MHz (U-NII-1)							
Remark:	No report for the prescribed limit.	emission which mor	e than 20 dB below the	е					
120.0 dBuV/m	•								
77774444	₩		FCC Part15 C - Above 1G PK	(
1007									
60			FCC Part15 C - Above 1G AV	, ,					
			Ä						
	William Commence of the Commen	Management	3	and the second s					
0.0									

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	5350.000	37.41	15.42	52.83	74.00	-21.17	peak
2	5350.000	37.41	4.17	41.58	54.00	-12.42	AVG

5307.00

5327.00

5347.00

5367.00

5407.00 MHz

Remarks:

5207.000 5227.00

5247.00

5267.00

5287.00

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. Pol.: Horizontal Test Mode: TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1) Remark: No report for the emission which more than 20 dB below the prescribed limit. 120.0 dBuV/m FCC Part 5 C - Above 1G PK	Ant No.:	Ant 1 + Ant 2
Remark: No report for the emission which more than 20 dB below the prescribed limit. 120.0 dBuV/m FCC Part15 C · Above 1G PK	Ant. Pol.:	Horizontal
prescribed limit. 120.0 dBuV/m FCC Part15 C · Above 1G PK	est Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1)
120.0 dBuV/m FCC Part15 C · Above 1G PK X FCC Part15 C · Above 1G AV	Remark:	No report for the emission which more than 20 dB below the prescribed limit.
FCC Part 5 C · Above 1G AV	120.0 dBuV/m	
		X FCC Part15 C - Above 1G AV
0.0	0.0	

No.	Frequency		Reading		l	Margin	Detector
110.	(MHz)	(dB/m)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)	20100101
1	5150.000	37.15	18.79	55.94	74.00	-18.06	peak
2	5150.000	37.15	7.62	44.77	54.00	-9.23	AVG

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5190MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.
120.0 dBuV/m	
	FCC Part15 & Above 16 PK
60	1
	X FCC Part15 C · Above 1G AV
0.0	
5012.000 5032.00	5052.00 5072.00 5092.00 5112.00 5132.00 5152.00 5172.00 5212.00 M

Page 94 of 134

No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	5150.000	37.15	20.86	58.01	74.00	-15.99	peak
2	5150.000	37.15	7.91	45.06	54.00	-8.94	AVG

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

5406.00 MHz

Ant	No.:	Ant 1 + Ant	2								
Ant	. Pol.:	Horizontal	Horizontal								
Tes	t Mode:	TX 802.11a	c(VHT40) Mod	de 5230MHz	(U-NII-1)						
Ren	nark:	No report for prescribed		n which more	than 20 dB b	elow the					
120.0	0 dBuV/m										
	Y										
					FCC Part15 C - Al	bove 1G PK					
60	 	1			FCC Part15 C - Al	bove 1G AV					
					Y						
	"	Manneymound		andrews and a second	\$						
0.0											
0.0											

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	5350.000	37.41	16.72	54.13	74.00	-19.87	peak
2	5350.000	37.41	4.76	42.17	54.00	-11.83	AVG

5306.00

5326.00

5346.00

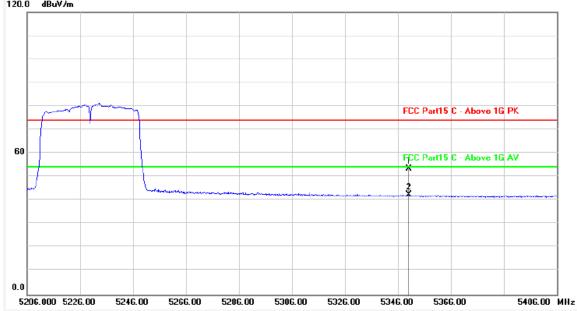
5366.00

Remarks:

5206.000 5226.00

5246.00

5266.00


5286.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.
120.0 dBuV/m	

Page 96 of 134

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	5350.000	37.41	16.27	53.68	74.00	-20.32	peak
2	5350.000	37.41	4.92	42.33	54.00	-11.67	AVG

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	Ant 1 + Ant 2							
Ant. Pol.:	Horizontal							
Test Mode:	TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1)							
Remark:	No report for the emission which more than 20 dB below the prescribed limit.							
120.0 dBuV/m	',							
	man and a second							
	FCC Part15 C - Above 1G PK							

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	37.15	20.46	57.61	74.00	-16.39	peak
2	5150.000	37.15	8.99	46.14	54.00	-7.86	AVG
3	5350.000	37.41	14.77	52.18	74.00	-21.82	peak
4	5350.000	37.41	4.83	42.24	54.00	-11.76	AVG

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

\nt	No.:		Ant 1	+ Ant	2								
۱nt.	Pol.:		Vertic	Vertical									
Test Mode: TX 802.11ac(VHT80) Mode 5210MHz (U-NII-1) Remark: No report for the emission which more than 20 dB below to prescribed limit. 120.0 dBuV/m FCC Part15 C · Above 1G F													
Rem	nark:		No re	port for	or the limit.	emis	sion whic	h r	nore tl	han 20 d	B below	the	
120.0	dBuV/m												
ŀ													
							man	~~		FCC Part15	C - Above 10	PK	
60										FCC Part15	C · Above 10	AV	3
			,	S									Ĭ
ŀ	-	***		immed					-	mandage, agentina	No.		\$
-													
-													
0.0													

Page 98 of 134

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5150.000	37.15	18.70	55.85	74.00	-18.15	peak
2	5150.000	37.15	7.63	44.78	54.00	-9.22	AVG
3	5350.000	37.41	18.30	55.71	74.00	-18.29	peak
4	5350.000	37.41	4.33	41.74	54.00	-12.26	AVG

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant. Pol.:	Horizontal					
Test Mode:	TX 802.11a Mode 5745MHz (U-NII-3)					
Remark:	No report for the emission which more than 20 dB below the prescribed limit.					
130.0 dBuV/m						
80 Marian	FCC Part15.407 U.NII.3 Margin -6 dB					

No.	Frequency (MHz)		Reading (dBuV)	l	Limit (dBuV/m)	Margin (dB)	Detector
1	5725.000	-0.23	68.65	68.42	122.20	-53.78	peak

5787.50

5815.00

5842.50

5870.00

5925.00 MHz

Remarks:

30.0

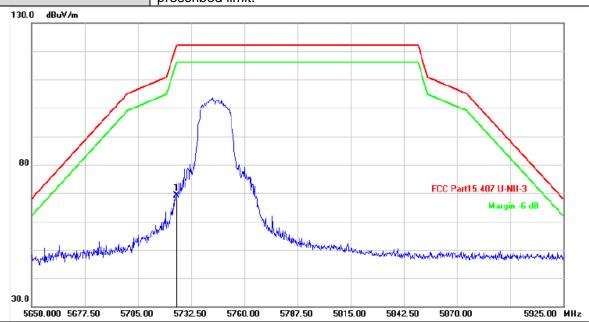
5650.000 5677.50

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

5732.50

5760.00

5705.00


Ant No.:
Ant 1

Ant. Pol.:
Vertical

Test Mode:
TX 802.11a Mode 5745MHz (U-NII-3)

Remark:
No report for the emission which more than 20 dB below the prescribed limit.

Report No.: CTC20210601E04

No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5725.000	-0.23	69.31	69.08	122.20	-53.12	peak

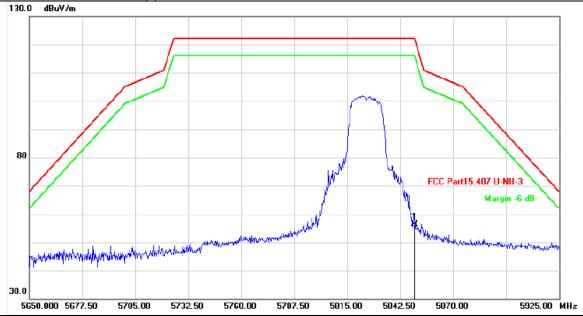
Remarks

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:

Ant 1

Ant. Pol.:


Horizontal

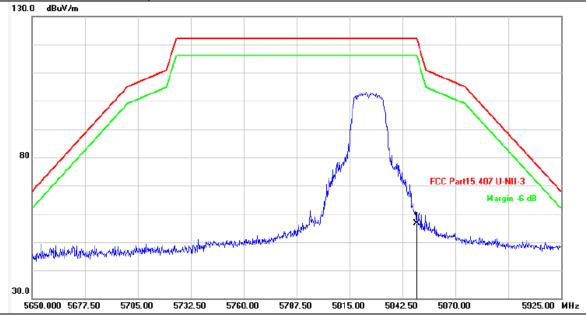
Test Mode:

TX 802.11a Mode 5825MHz (U-NII-3)

Remark:

No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	5850.000	0.26	56.06	56.32	122.20	-65.88	peak	


Remarks:

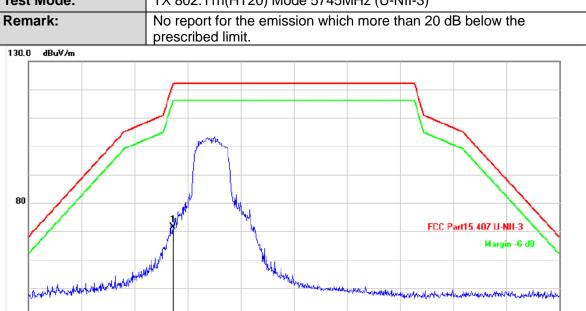
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: Ant 1 Ant. Pol.: Vertical **Test Mode:** TX 802.11a Mode 5825MHz (U-NII-3) Remark: No report for the emission which more than 20 dB below the prescribed limit.

Report No.: CTC20210601E04

No.	Frequency (MHz)			Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	5850.000	0.26	56.41	56.67	122.20	-65.53	peak	

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor



 Ant No.:
 Ant 1 + Ant 2

 Ant. Pol.:
 Horizontal

 Test Mode:
 TX 802.11n(HT20) Mode 5745MHz (U-NII-3)

Report No.: CTC20210601E04

No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5725.000	-0.23	71.54	71.31	122.20	-50.89	peak

5787.50

5815.00

5842.50

5870.00

5925.00 MHz

Remarks:

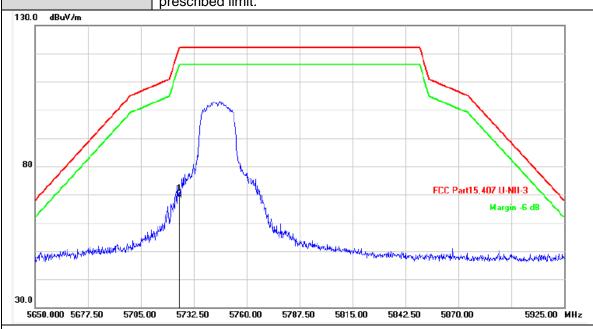
5650.000 5677.50

5705.00

5732.50

5760.00

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant No.:
Ant 1 + Ant 2

Ant. Pol.:
Vertical

Test Mode:
TX 802.11n(HT20) Mode 5745MHz (U-NII-3)

Remark:
No report for the emission which more than 20 dB below the prescribed limit.

Report No.: CTC20210601E04

No.	Frequency (MHz)	ı	Reading (dBuV)	l	Limit (dBuV/m)	Margin (dB)	Detector
1	5725.000	-0.23	69.75	69.52	122.20	-52.68	peak

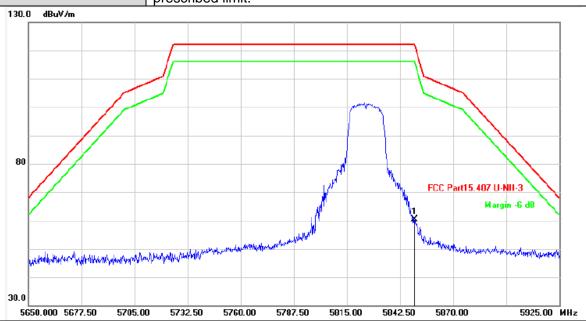
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:

Ant 1 + Ant 2

Ant. Pol.:


Horizontal

Test Mode:

TX 802.11n(HT20) Mode 5825MHz (U-NII-3)

Remark:

No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	5850.000	0.26	60.17	60.43	122.20	-61.77	peak	Ī

Remarks:

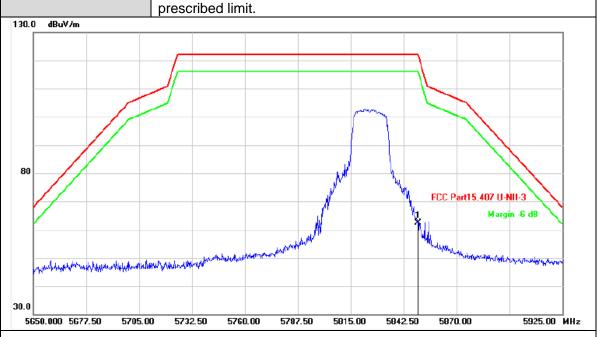
1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:

Ant 1 + Ant 2

Ant. Pol.:

Vertical


Test Mode:

TX 802.11n(HT20) Mode 5825MHz (U-NII-3)

Remark:

No report for the emission which more than 20 dB below the

Report No.: CTC20210601E04

No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	5850.000	0.26	62.09	62.35	122.20	-59.85	peak

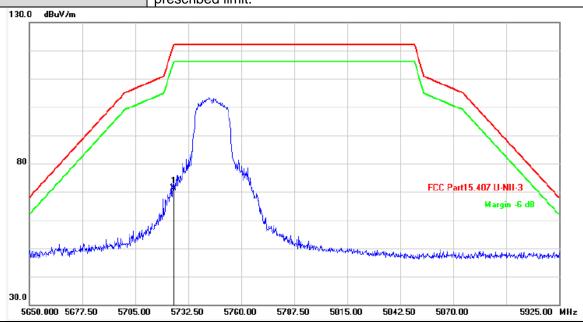
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:

Ant 1 + Ant 2

Ant. Pol.:

Horizontal

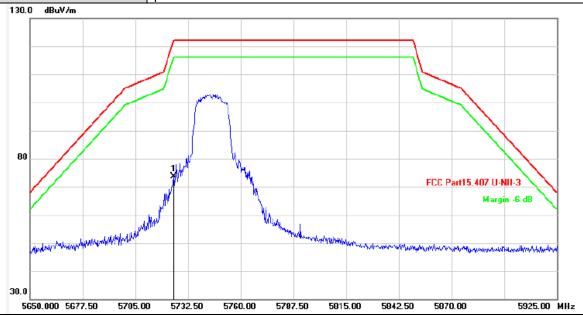

Test Mode:

TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)

Remark:

No report for the emission which more than 20 dB below the prescribed limit.

Report No.: CTC20210601E04

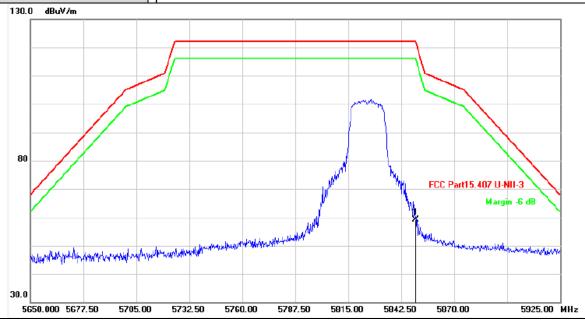

No.	Frequency (MHz)	l	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5725.000	-0.23	71.30	71.07	122.20	-51.13	peak

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3) Remark: No report for the emission which more than 20 dB below the prescribed limit.

Report No.: CTC20210601E04

No.	Frequency (MHz)		Reading (dBuV)	l	Limit (dBuV/m)	Margin (dB)	Detector
1	5725.000	-0.23	73.79	73.56	122.20	-48.64	peak


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

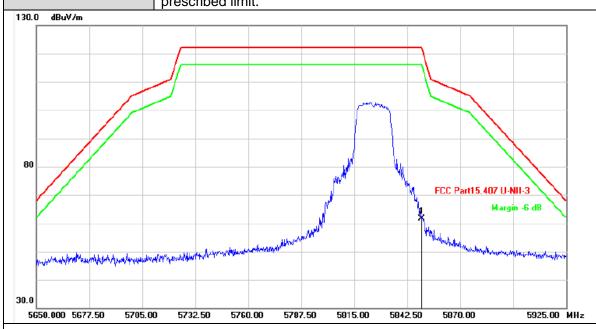
Ant No.: Ant 1 + Ant 2 Ant. Pol.: Horizontal **Test Mode:** TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3) No report for the emission which more than 20 dB below the Remark: prescribed limit.

Report No.: CTC20210601E04

No.	Frequency (MHz)		Reading (dBuV)	l	Limit (dBuV/m)	Margin (dB)	Detector
1	5850.000	0.26	58.91	59.17	122.20	-63.03	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor


Ant No.:
Ant 1 + Ant 2

Ant. Pol.:
Vertical

Test Mode:
TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3)

Remark:
No report for the emission which more than 20 dB below the prescribed limit.

Report No.: CTC20210601E04

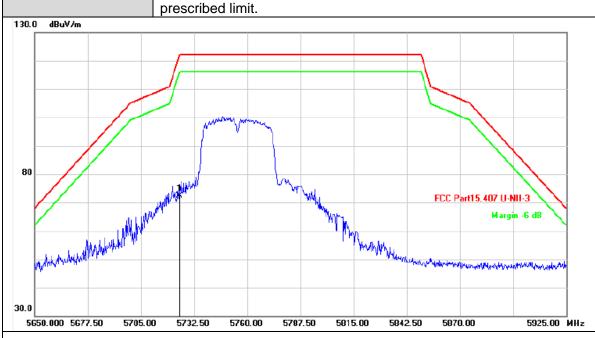
No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	5850.000	0.26	61.46	61.72	122.20	-60.48	peak	

Remarks

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.:	nt 1 + Ant 2						
Ant. Pol.:	Horizontal						
Test Mode:	TX 802.11n(HT40) Mode 5755MHz (U-NII-3)						
Remark:	No report for the emission which more than 20 dB below the prescribed limit.						
130.0 dBuV/m							
30.0							

ı	No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
	1	5725.000	-0.23	74.63	74.40	122.20	-47.80	peak


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT40) Mode 5755MHz (U-NII-3) Remark: No report for the emission which more than 20 dB below the

Report No.: CTC20210601E04

No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	5725.000	-0.23	72.51	72.28	122.20	-49.92	peak	

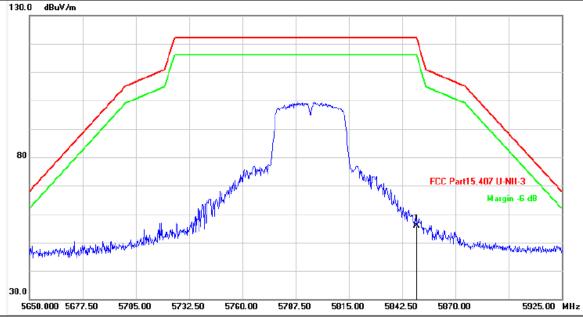
Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:

Ant 1 + Ant 2

Ant. Pol.:


Horizontal

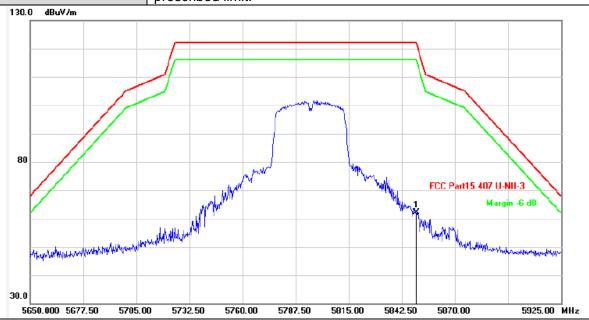
Test Mode:

TX 802.11n(HT40) Mode 5795MHz (U-NII-3)

Remark:

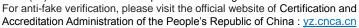
No report for the emission which more than 20 dB below the prescribed limit.

No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5850.000	0.26	55.65	55.91	122.20	-66.29	peak


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11n(HT40) Mode 5795MHz (U-NII-3) Remark: No report for the emission which more than 20 dB below the prescribed limit.


Report No.: CTC20210601E04

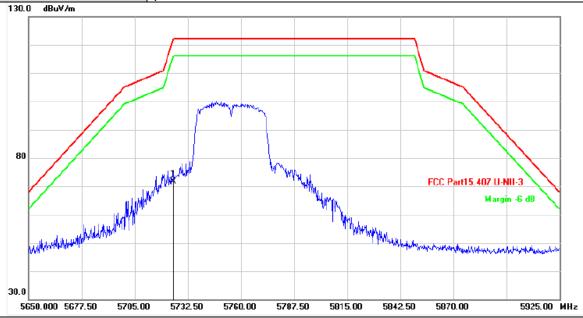
No.	Frequency (MHz)	ı	Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	5850.000	0.26	61.93	62.19	122.20	-60.01	peak

Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

int No.:	Ant 1 + Ant 2					
nt. Pol.:	Horizontal					
est Mode:	TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3)					
emark:	No report for the emission which more than 20 dB below the prescribed limit.					
130.0 dBuV/m						
80	FCC Part15. 407 U-NII-3 Margin -6 dB					
30.0 5650.000 5677.50 5705.0	00 5732.50 5760.00 5787.50 5815.00 5842.50 5870.00 5925.00 MH					

No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	
1	5725.000	-0.23	74.63	74.40	122.20	-47.80	peak	Ī


Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3) Remark: No report for the emission which more than 20 dB below the prescribed limit.

Report No.: CTC20210601E04

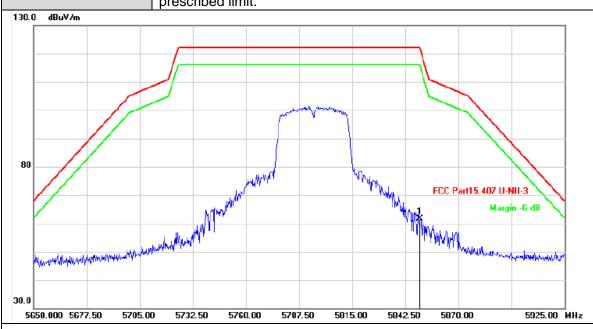
No.	Frequency (MHz)		Reading (dBuV)	Level (dBuV/m)	ı	Margin (dB)	Detector
1	5725.000	-0.23	71.92	71.69	122.20	-50.51	peak

Remarks:

1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor

Ant No.:	Ant 1 + Ant 2
Ant. Pol.:	Horizontal
Test Mode:	TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3)
Remark:	No report for the emission which more than 20 dB below the prescribed limit.
130.0 dBuV/m	
80 mily the day of the state of	FCC Part15.407 U-NII-3 Margin -6 dB
30.0 5650.000 5677.50 5705.0	

No.	Frequency (MHz)		Reading (dBuV)	l	Limit (dBuV/m)	Margin (dB)	Detector	
1	5850.000	0.26	59.49	59.75	122.20	-62.45	peak	


Remarks:

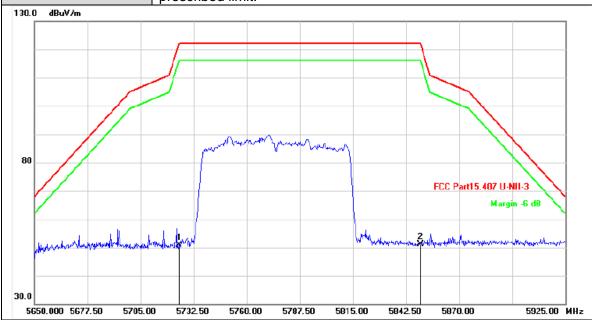
- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT40) Mode 5795MHz (U-NII-3) Remark: No report for the emission which more than 20 dB below the prescribed limit.

Report No.: CTC20210601E04

No.	Frequency (MHz)		Reading (dBuV)	l	Limit (dBuV/m)	Margin (dB)	Detector
1	5850.000	0.26	61.48	61.74	122.20	-60.46	peak

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value


Ant No.:
Ant 1 + Ant 2

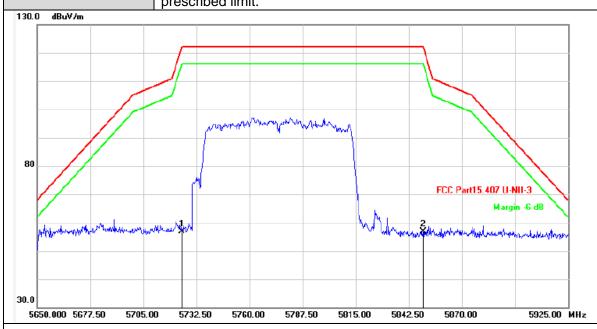
Ant. Pol.:
Horizontal

Test Mode:
TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)

Remark:
No report for the emission which more than 20 dB below the prescribed limit.

Report No.: CTC20210601E04

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)	l	Margin (dB)	Detector
1	5725.000	-0.23	51.11	50.88	122.20	-71.32	peak
2	5850.000	0.26	50.86	51.12	122.20	-71.08	peak


Remarks:

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

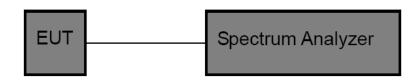
Ant No.: Ant 1 + Ant 2 Ant. Pol.: Vertical **Test Mode:** TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3) Remark: No report for the emission which more than 20 dB below the prescribed limit.

Report No.: CTC20210601E04

No.	Frequency (MHz)	Factor (dB/m)	Reading (dBuV)	Level (dBuV/m)		Margin (dB)	Detector
1	5725.000	-0.23	57.16	56.93	122.20	-65.27	peak
2	5850.000	0.26	56.56	56.82	122.20	-65.38	peak

- 1.Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)-Pre-amplifier Factor
- 2.Margin value = Level -Limit value

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn



3.4. Bandwidth Test

Limit

FCC Part 15 Subpart C(15.407)/ RSS-247				
Test Item Limit Frequency Rang (MHz)				
		5150~5250		
26 dB Bandwidth	N/A	5250~5350		
		5500~5700		
6 dB Bandwidth	>500kHz	5725~5850		

Test Configuration

Test Procedure

Please refer to According to KDB789033 D02, for the measurement methods.

The setting of the spectrum analyser as below:

26dB Bandwidth Test			
Spectrum Parameters Setting			
Attenuation	Auto		
Span	>26 dB Bandwidth		
RBW Approximately 1% of the emission bandwidth			
VBW VBW>RBW			
Detector	Peak		
Trace	Max Hold		
Sweep Time	Auto		

Page 122 of 134 Report No.: CTC20210601E04

6dB Bandwidth Test				
Spectrum Parameters	Setting			
Attenuation	Auto			
Span	>6 dB Bandwidth			
RBW	100 kHz			
VBW	VBW≥ 3*RBW			
Detector	Peak			
Trace	Max Hold			
Sweep Time	Auto			
	99% Occupied Bandwidth Test			
Spectrum Parameters	Setting			
Attenuation	Auto			
RBW	1% to 5% of the OBW			
VBW	≥ 3RBW			
Detector	Peak			
Trace	Max Hold			

Note: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

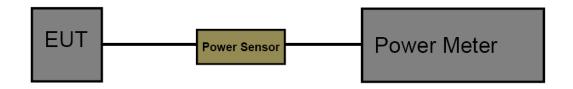
Test Mode

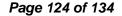
Please refer to the clause 2.4.

Test Results

Please see the Appendix A1, A2, A3.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn


3.5. Output Power Test


<u>Limit</u>

FCC Part 15 Subpart E (15.407)					
Test Item	Limit	Frequency Range(MHz)			
	Fixed: 1 Watt (30dBm) Mobile and Portable: 250mW (24dBm)	5150~5250			
Conducted Output Power	250mW (24dBm)	5250~5350			
	250mW (24dBm)	5500~5700			
	1 Watt (30dBm)	5725~5850			

				IC Power&PSD Limit			
Frequency	Type of devices	Maximum Conducted Output Power	EIRP Output Power	Conducted Power Spectral Density	EIRP Power Spectral Density		
5150MHz-5250MHz	in vehicles		30mW or 1.76 + 10 × logioB dBm, whichever is less (B=99% OBW in MHz)				
STSSWIFE SESSWIFE	Other Devices		200mW or 10 + 10 × logsoB dBm, whichever is less (B=99% OBW in MHz)		10dBm/MHz		
	in vehicles		30mW or 1.76 + 10 × logsoB dBm, whichever is less (B=99% OBW in MHz)				
5250MHz-5350MHz	Other Devices	250mW or 11 + 10 × log10B dBm, whichever is less (B=99% OBW in MHz)	1W or 17 + 10 ×log10B dBm, whichever is less (B=99% OBW in MHz)	11 dBm/Mhz			
5470MHz-5600MHz 5650MHz-5725MHz	ALL Devices	250mW or 11 + 10 × log10B dBm, whichever is less (B=99% OBW in MHz)	1W or 17 + 10 ×log10B dBm, whichever is less (B=99% OBW in MHz)	11 dBm/Mhz			
5725MHz-5850MHz	ALL Devices	1₩		30dBm/500KHz			

Test Configuration

Test Procedure

The measurement is according to section 3 of KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

Report No.: CTC20210601E04

Test Mode

Please refer to the clause 2.4.

Test Result

Please see the Appendix B.

For anti-rake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

3.6. Power Spectral Density Test

Limit

FCC Part 15 Subpart E(15.407)/ RSS-247

For the 5.15~5.25GHz band:

Outdoor AP

The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. If G_{Tx} >6dBi, then PSD =17-(G_{Tx} -6).

Indoor AP

The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. If G_{Tx} >6dBi, then PSD =17-(G_{Tx} -6).

Point-to-point AP

The peak power spectral density (PSD) shall not exceed the lesser of 17dBm/MHz. If G_{Tx} >23dBi, then PSD =17-(G_{Tx} -23).

Client devices

The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. If G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6).

For the 5.25~5.35GHz band:

The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. If G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6).

For the 5.47~5.725GHz band:

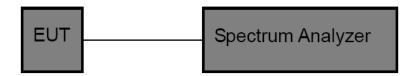
The peak power spectral density (PSD) shall not exceed the lesser of 11dBm/MHz. If G_{Tx} >6dBi, then PSD =11-(G_{Tx} -6).

For the 5.725~5.85GHz band:

Point-to-multipoint systems (P2M)

The peak power spectral density (PSD) shall not exceed the lesser of 30dBm/500kHz. If $G_{Tx}>6dBi$, then PSD = $30-(G_{Tx}-6)$.

Point-to-point systems (P2P)


The peak power spectral density (PSD) shall not exceed the lesser of 30dBm/500kHz.

Note: G_{Tx}: EUT Antenna gain.

		IC Power@PSD Lim	nit		
Frequency	Type of devices	Maximum Conducted	EIRP Output Power	Conducted Power	EIRP Power
rrequency	Type of devices	Output Power	LIAT Output rower	Conducted Power Spectral Density 10dBm/MHz 11dBm/Mhz	
5150MHz-5250MHz	in vehicles		30mW or 1.76 + 10 × log:0B dBm, whichever is less (B=99% OBW in MHz)		
	Other Devices		200mW or 10 + 10 × logioB dBm, whichever is less (B=99% OBW in MHz)		10dBm/MHz
	in vehicles		30mW or 1.76 + 10 × logioB dBm, whichever is less (B=99% OBW in MHz)		
5250MHz-5350MHz	Other Devices	250mW or 11 + 10 × logiOB dBm, whichever is less (B=99% OBW in MHz)	1W or 17 + 10 ×log10B dBm, whichever is less (B=99% OBW in MHz)	11 dBm/Mhz	
5470MHz-5600MHz 5650MHz-5725MHz	ALL Devices	250mW or 11 + 10 × log10B dBm, whichever is less (B=99% OBW in MHz)	1W or 17 + 10 ×logioB dBm, whichever is less (B=99% OBW in MHz)	11 dBm/Mhz	
5725MHz-5850MHz	ALL Devices	1₩		30 dBm/500KHz	

Test Configuration

Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General UNII Test Procedures New Rules V02r01.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyzer center frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.
- (4) RBW=1MHz for devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz RBW=500kHz for devices operating in the band 5.725-5.85 GHz
- (5) Set the VBW to: ≥ 3 RBW
- (6) Detector: AVG
- (7) Trace: Max Hold and View
- (7) Sweep time: auto
- (8) Trace average at least 100 traces in power averaging.
- (9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

NOTE: The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

Test Mode

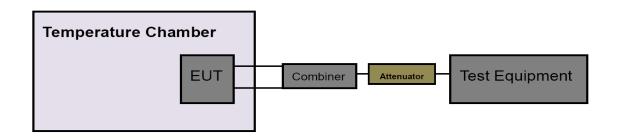
Please refer to the clause 2.4.

Test Result

Please see the Appendix C.

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: <u>vz.cnca.cn</u>



3.7. Frequency Stability Measurement

Limit

FCC Part 15 Subpart C(15.407)				
Test Item	Limit	Frequency Range(MHz)		
	Specified in the user's manual,	5150~5250		
Peak Excursion Measurement	the transmitter center frequency tolerance shall be ±20 ppm	5250~5350		
Peak Excursion Measurement	maximum for the 5 GHz band	5500~5700		
	(IEEE 802.11n specification)	5725~5850		

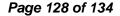
Test Configuration

Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyzer center frequency to transmitting frequency.
- (3) Set the span to encompass the entire emissions bandwidth (EBW) of the signal.
- (4) Set the RBW to: 10MHz, VBW=10MHz with peak detector and maxhold settings.
- (5) The test extreme voltage is to change the primary supply voltage from 6.66V to 8.14V percent of the nominal value.
- (6) Extreme temperature is -10°C~40°C

NOTE: The EUT was set to continuously transmitting in continuously un-modulation transmitting mode. The limit for frequency stability is maintained within the band of operation.


Test Mode

Please refer to the clause 2.4.

Test Result

Please see the Appendix D.

3.8. Antenna Requirement

Standard Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Test Result

Complies

Directional gain = G_{ANT} = 5dBi

Note: All transmit signals are completely uncorrelated with each other in MIMO transmitting modes (Manufacturer's Declaration).

3.9. Dynamic Frequency Selection(DFS)

Requirement

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Report No.: CTC20210601E04

		Operational Mode	
Requirement	Master	Client Without Radar Detection	Client With Radar Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode			
Requirement	Master Device or Client with Radar Detection	Client Without Radar Detection		
DFS Detection Threshold	Yes	Not required		
Channel Closing Transmission Time	Yes	Yes		
Channel Move Time	Yes	Yes		
U-NII Detection Bandwidth	Yes	Not required		

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

<u>LIMIT</u>

1. DFS Detection Thresholds

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Report No.: CTC20210601E04

Maximum Transmit Power	Value (See Notes 1, 2, and 3)
EIRP ≥ 200 milliwatt	-64 dBm
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm
EIRP < 200 milliwatt that do not meet the power spectral density requirement	-64 dBm

Note 1: This is the level at the input of the receiver assuming a 0dBi receive antenna.

Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01.

2. DFS Response Requirements

Table 4: DFS Response Requirement Values

Parameter	Value	
Non-occupancy period	Minimum 30 minutes	
Channel Availability Check Time	60 seconds	
Channel Move Time	10 seconds See Note 1.	
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.	
U-NII Detection Bandwidth	Minimum 100% of the U-NII 99% transmission power bandwidth. See Note 3.	

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

RADAR TEST WAVEFORMS

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

Table 5 Short Pulse Radar Test Waveforms

Report No.: CTC20210601E04

Radar Type	Pulse Width (µsec)	PRI (µsec) Number of Pulses		Minimum Percentage of Successful Detection	Minimum Number of Trials
0	1	1428	18	See Note 1	See Note 1
		Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a	$\text{Roundup} \begin{cases} \left(\frac{1}{360}\right) \cdot \\ \left(\frac{19 \cdot 10^6}{\text{PRI}_{\mu\text{sec}}}\right) \end{cases}$		
1	1	Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A		60%	30
2	1-5	150-230	150-230 23-29		30
3	6-10	200-500	16-18	60%	30
4			12-16	60%	30
	Agg	gregate (Radar Types 1	-4)	80%	120
Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time,					

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

For example if in Short Pulse Radar Type 1 Test B a PRI of 3066 μ sec is selected, the number of pulses

would be Round up
$$\left\{ \left(\frac{1}{360} \right) \cdot \left(\frac{19 \cdot 10^6}{3066} \right) \right\} = \text{Round up } \{17.2\} = 18.$$

Table 5a - Pulse Repetition Intervals Values for Test A

Pulse Repetition Frequency Number	Pulse Repetition Frequency (Pulses Per Second)	Pulse Repetition Interval (Microseconds)
1	1930.5	518
2	1858.7	538
3	1792.1	558
4	1730.1	578
5	1672.2	598
6	1618.1	618
7	1567.4	638
8	1519.8	658
9	1474.9	678
10	1432.7	698

CTC Laboratories, Inc.

For anti-fake verification, please visit the official website of Certification and Accreditation Administration of the People's Republic of China: yz.cnca.cn

11	1392.8	718
12	1355	738
13	1319.3	758
14	1285.3	778
15	1253.1	798
16	1222.5	818
17	1193.3	838
18	1165.6	858
19	1139	878
20	1113.6	898
21	1089.3	918
22	1066.1	938
23	326.2	3066

Table 6 - Long Pulse Radar Test Waveform

Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentage of Successful Detection	Minimum Number of Trials
5	50-100	5-20	1000-2000	1-3	8-20	80%	30

The parameters for this waveforms are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type wave forms, then each additional waveform must also be unique and not repeated from the previous waveforms.

Table 7 – Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentage of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each wave form. The hopping sequence is different for each wave form and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

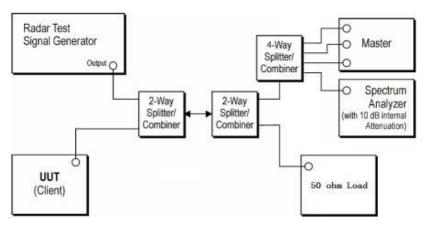
The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250–5724MHz.Next,the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

Calibration of Radar Waveform

Radar Waveform Calibration Procedure

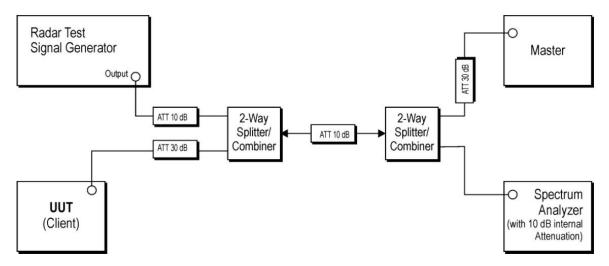
- 1) A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to place of the master
- 2) The interference Radar Detection Threshold Level is -62dBm + 0dBi +1dB = -61dBm that had been taken into account the output power range and antenna gain.
- 3) The following equipment setup was used to calibrate the conducted radar waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process there were no transmissions by either the master or client device. The spectrum analyzer was switched to the zero spans (time domain) at the frequency of the radar waveform generator. Peak detection was

Tel.: (86)755-27521059 中国国家认证认可监督管理委员会



used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz. The spectrum analyzer had offset -1.0dB to compensate RF cable loss 1.0dB.

Report No.: CTC20210601E04


4) The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was - -62dBm + 0dBi +1dB = -61dBm. Capture the spectrum analyzer plots on short pulse radar waveform.

Conducted Calibration Setup

Test Configuration

Setup for Client with injection at the Master

Radar Waveform Calibration Result

Not Applicable

Test Procedure

- 1. The radar pulse generator is setup to provide a pulse at frequency that the master and client are operating. A type 0 radar pulse with a 1us pulse width and a 1428us PRI is used for the testing.
- 2. The vector signal generator is adjusted to provide the radar burst (18 pulses) at the level of approximately -61dBm at the antenna port of the master device
- 3. A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4. EUT will associate with the master at channel. The file "iperf.exe" specified by the FCC is streamed from the PC 2 through the master and the client device to the PC 1 and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.
- 5. When radar burst with a level equal to the DFS Detection Threshold +1dB is generated on the operating channel of the U-NII device. At time T0 the radar waveform generator sends a burst of pulse of the radar waveform at Detection Threshold +1dB.
- 6. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel Measure and record the transmissions from the UUT during the observation time (Channel Move Time). One 15 seconds plot is reported for the Short Pulse Radar Type 0. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type
- 7. Measurement of the aggregate duration of the Channel Closed Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.3ms) =S (12000ms) / B (4000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.3ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.
- 8. Measurement the EUT for more than 30 minutes following the channel move time to verify that no transmission or beacons occur on this channel.

Test Mode	
Please refer to the clause 2.4.	
Test Results	
Passed	Not Applicable ■
****	**************************************

