

TEST REPORT

Applicant:	Augury systems Ltd.		
Address of Applicant:	Haazmaut 39, Haifa 3303320, Israel		
Manufacturer 1:	R.H. Electronics Ltd.		
Address of Manufacturer 1: Manufacturer 2:	5 Hatzoref St. Har-Yona Industrial Area, Nof Hagalil, Nazeret Illit P.O 1700, Israel Ionics EMS Inc.		
Address of Manufacturer 2: Equipment Under Test (B	Ionics-EMS PlantSEPZ, 5/6 Circuit St.,LISP,Cabuyao 4025, Philippines EUT)		
Product Name:	Halo Node v2.0		
Model No.:	Halo Node v2.0		
Trade Mark:	AC00013		
FCC ID:	2A3XG-AC00013		
Applicable standards:	47 CFR Part 15.407		
Date of sample receipt:	July 24, 2023		
Date of Test:	July 25, 2023-September 20, 2023		
Date of report issued:	September 20, 2023		
Test Result :	PASS *		

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

*

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 32

2 Version

Version No.	Date	Description
00	September 20, 2023	Original

Prepared By:

Asmillu

Date:

September 20, 2023

Project Engineer

Check By:

othinson lund Date:

Reviewer

September 20, 2023

3 Contents

		Pa	ge
1	cov		1
2	VER	SION	2
3	CON	ITENTS	2
З	CON	11 EN 15	
4	TES	T SUMMARY	5
5	GEN	ERAL INFORMATION	6
	5.1	GENERAL DESCRIPTION OF EUT	6
	5.2	CARRIER FREQUENCY AND CHANNEL	7
	5.3	TEST FACILITY	
	5.4	TEST LOCATION	
	5.5 5.6	DESCRIPTION OF SUPPORT UNITS	
	5.0 5.7	ABNORMALITIES FROM STANDARD CONDITIONS	
	5.8	Additional Instructions	
~		T INSTRUMENTS LIST	
6	IES		9
7	TES	T CONFIGURATION OF EQUIPMENT UNDER TEST	10
	7.1	TEST SETUP DFS DETECTION THRESHOLDS FOR MASTER DEVICES AND CLIENT DEVICES WITH RADAR DETECTION	
	7.2	DFS DETECTION THRESHOLDS FOR MASTER DEVICES AND CLIENT DEVICES WITH RADAR DETECTION DFS DETECTION THRESHOLDS	
8	REQ	UIREMENTS AND PARAMETERS FOR DFS TEST	
	8.1	APPLICABILITY OF DFS REQUIREMENTS	
	8.2	DFS RESPONSE REQUIREMENT VALUES	
	8.3	SHORT PULSE RADAR TEST WAVEFORMS	
	8.3.1 8.3.2		
	8.3.3		
9	DES	TEST RESULTS	
	9.1	CALIBRATION OF RADAR WAVEFORM	
	9.1.1	가지 때 귀엽 집에서 지하는 것이 아니지 않아요. 이 아이는 것이 아이에 가지 않아요. 이 아이는 것이 나가 있는 것이 아이는 것이 아이에 가지 않아요. 이 아이에 가지 않아요. 이 아이에 가지 않아.	
	9.2	U-NII DETECTION BANDWIDTH	
	9.2.1 9.2.2		
	9.3	CHANNEL AVAILABILITY CHECK	
	9.3.1		
	9.3.2	2 Test Procedure	
	9.4	IN-SERVICE MONITORING: CHANNEL MOVE TIME, CHANNEL CLOSING TRANSMISSION TIME AND NON-	
		ANCY PERIOD	
	9.4.1 9.4.2		
	9.4.2 9.4.3		
		Slient Beacon Test	
	9.4.4		
	Bead	con Test Plots	
10) TES	Т SETUP PHOTO	22
11	EUT	CONSTRUCTIONAL DETAILS	.22
12	2 APPE	NDIX	.23

GTS

12.1 RADAR WAVEFORM CALIBRATION RESULT	Report No.: GTS2023070316F05
12.1 RADAR WAVEFORM CALIBRATION RESULT	
12.2 CHANNEL AVAILABILITY CHECK	
12.3 U-NII DETECTION BANDWIDTH	
12.4 CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION T	-IME 20
12.4 CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION T	IWE
12.5 NON-OCCUPANCY PERIOD	30
12.6 STATISTICAL PERFORMANCE CHECK	

4 Test Summary

UNII	Bandwidth and Channel	Description	Limit	Result
		Channel Availability Check Time	≥ 60sec	Pass
		U-NII Detection Bandwidth	> 100% of the U-NII 99% transmission power bandwidth	Pass
UNII Band 2-A 5250-5350MHz &	20MHz (CH52) 5260MHz	Statistical Performance Check	Type 1 ~ 4 ≥ 60% Type 1 ~ 4 and 5 ≥ 80% Type 6 ≥ 70%	Pass
α UNII Band 2-C 5470-5725MHz	(CH52) 5500MHz	Channel Move Time	< 10s	Pass
		Channel Closing Transmission time	< 260ms	Pass
		Non-Occupancy Period and Client Beacon Test		Pass

5 General Information

5.1 General Description of EUT

Product Name:	Halo Node v2.0		
Model No.:	Halo Node v2.0		
Test sample(s) ID:	GTS2023070316-1		
Sample(s) Status	Engineer sample		
S/N:	100-113-171		
Hardware Version:	AC00013 Node Type 2 Rev. C		
Software Version:	1		
Modulation Type:	802.11a/n : OFDM		
Operating Frequency:	U-NII-2A:5250~5350MHz		
Operating Frequency:	U-NII-2C:5470~5725MHz		
Operation Mode:	Master		
Sample Type:	Mobile Portable Fix Location		
Antenna Type:	External Omni Antenna		
Antenna Gain:	5dBi(declare by applicant)		
Power supply:	AC 100-240V, 50/60Hz		
	Or		
	Power by POE		
Demerly			

Remark:

1. Antenna gain information provided by the customer

2. The relevant information of the sample is provided by the entrusting company, and the laboratory is not responsible for its authenticity.

5.2 Carrier Frequency and Channel

U-NII-1			
CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
36	5180 MHz	44	5220 MHz
40	5200 MHz	48	5240 MHz

U-NII-2A			
CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
52	5260 MHz	60	5300 MHz
56	5280 MHz	64	5320 MHz

U-NII-2C

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
100	5500 MHz	116	5580 MHz
104	5520 MHz	132	5660 MHz
108	5540 MHz	136	5680 MHz
112	5560 MHz	140	5700 MHz

U-NII-3

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
149	5745 MHz	161	5805 MHz
153	5765 MHz	165	5825 MHz
157	5785 MHz		

TDWR

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
120	5600 MHz	126	5630 MHz
106	5530 MHz	128	5640 MHz

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Registration No.: 381383

Designation Number: CN5029

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files.

• ISED—Registration No.: 9079A

CAB identifier: CN0091

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of ISED for radio equipment testing.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP).

5.4 Test Location

All other tests were performed at:

Global United Technology Services Co., Ltd. Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number/FCC ID
SISCO	WIFI Router	AIR-CAP3702E-A-K9	FCC ID: LDK102087
Lenovo Thinkpad	Notebook PC	E4-II L287	LR0CS1SH

5.6 Deviation from Standards

None.

5.7 Abnormalities from Standard Conditions

None.

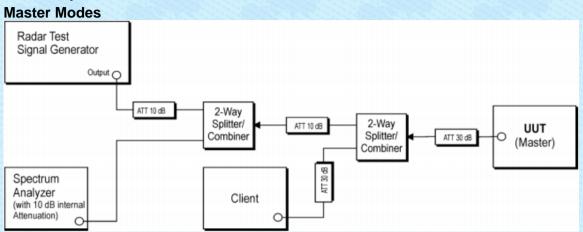
5.8 Additional Instructions

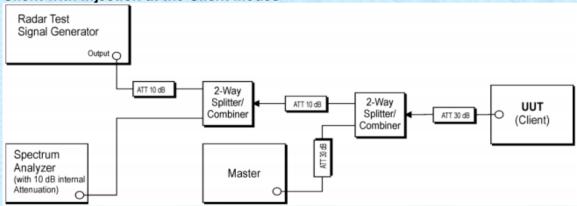
Software (Used for test) from client

Built-in by manufacturer, power set default.

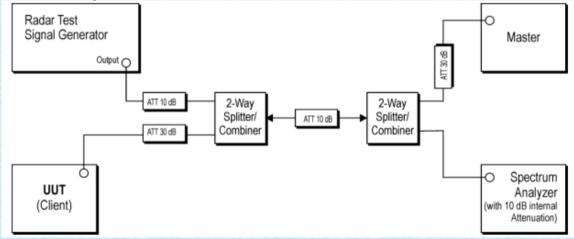
6 Test Instruments list

RF Co	onducted Test:					
Item Test Equipment		Manufacturer Model No. S		Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	April 14, 2023	April 13, 2024
2	EMI Test Receiver	R&S	ESCI 7	GTS552	April 14, 2023	April 13, 2024
3	PSA Series Spectrum Analyzer	Agilent	E4440A	GTS536	April 14, 2023	April 13, 2024
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	April 14, 2023	April 13, 2024
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	April 14, 2023	April 13, 2024
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	April 14, 2023	April 13, 2024
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	April 14, 2023	April 13, 2024
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	April 14, 2023	April 13, 2024
9	Thermo meter	JINCHUANG	GSP-8A	GTS641	April 19, 2023	April 18, 2024
10	EXA Signal Analyzer	Keysight	N9010B	MY60241168	Nov. 04, 2022	Nov. 03, 2023


Gen	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Barometer	KUMAO	SF132	GTS647	April 19, 2023	April 18, 2024		



7 Test Configuration of Equipment Under Test


7.1 Test Setup

Client with injection at the Client Modes

Client with injection at the Master Modes

7.2 DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)				
EIRP ≥ 200 milliwatt	-64 dBm				
EIRP < 200 milliwatt and power spectral density < 10	-62 dBm				
dBm/MHz					
EIRP < 200 milliwatt that do not meet the power	-64 dBm				
spectral density requirement					
Note 1: This is the level at the input of the receiver ass	suming a 0 dBi receive antenna.				
Note 2: Throughout these test procedures an additiona	al 1 dB has been added to the amplitude of the test				
transmission waveforms to account for variations in measurement equipment. This will ensure that the test					
signal is at or above the detection threshold level to trigger a DFS response.					
Note3: EIRP is based on the highest antenna gain.					

NOLES. is based on the highest antenna gain

7.3 DFS Detection Thresholds

Table 3 below provides the DFS Detection Thresholds for Master Devices as well as Client Devices incorporating In-Service Monitoring.

Maximum Transmit Power	Value (See Notes 1, 2, and 3)			
EIRP ≥ 200 milliwatt	-64 dBm			
EIRP < 200 milliwatt and	-62 dBm			
power spectral density < 10 dBm/MHz				
EIRP < 200 milliwatt that do not meet the power	-64 dBm			
spectral density requirement				
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna.				
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test				

Table 3: DFS Detection Thresholds for Master Devices and Client Devices with Radar Detection

the test signal is at or above the detection threshold level to trigger a DFS response. Note 3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911

transmission waveforms to account for variations in measurement equipment. This will ensure that

D01.

8 Requirements and Parameters for DFS Test

8.1 Applicability of DFS Requirements

Table 1: Applicability of DFS Requirements Prior to Use of a Channel

	Operational Mode					
Requirement	Master	Client Without Radar Detection	Client With Radar Detection			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
U-NII Detection Bandwidth	Yes	Not required	Yes			

Table 2: Applicability of DFS requirements during normal operation

		Operational Mode	
Requirement	Master	Client Without Radar Detection	Client With Radar Detection
DFS Detection Threshold	Yes	Not required	Yes
Channel Closing Transmission Time	Yes	Yes	Yes
Channel Move Time	Yes	Yes	Yes
U-NII Detection Bandwidth	Yes	Not required	Yes
Client Beacon Test	N/A	Yes	Yes

	Operational Mode				
Additional requirements for devices with multiple bandwidth modes	Master or Client With Radar Detection	Client Without Radar Detection			
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required			
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link			
All other tests	Any single BW mode	Not required			

Note

Frequencies selected for statistical performance check should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in each of the bonded 20 MHz channels and the channel center frequency.

8.2 DFS Response requirement values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over
	remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 100% of the 99% power bandwidth
	See Note 3.

Note 1: The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

- For the Short pulse radar Test Signals this instant is the end of the Burst.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated.
- For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

8.3 Short Pulse Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

8.3.1 Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Trials
0	1	1428	18	60%	30
1	1	Test A Test B	$\operatorname{Roundup} \left\{ \begin{array}{l} \left(\frac{1}{360}\right) \\ \left(\frac{19 \cdot 10^{6}}{\operatorname{PRI}_{\mu \operatorname{sec}}}\right) \end{array} \right\}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate	e (Radar Type	es 1-4)		80%	120

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and channel closing time tests.

Test A: 15 unique PRI values randomly selected from the list of 23 PRI values in Table 5a Test B: 15 unique PRI values randomly selected within the range of 518-3066 µsec, with a minimum increment of 1 µsec, excluding PRI values selected in Test A

A minimum of 30 unique waveforms are required for each of the short pulse radar types 2 through 4. For short pulse radar type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for short pulse radar types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms.

If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B.

The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Radar Type	Pulse Width (µsec)	Chirp Width (MHz)	PRI (µsec)	Number of Pulses per Burst	Number of Bursts	Minimum Percentag e of Successful Detection	Minimum Number of Trials
	5	50-100	5-20	1000-2000	1-3	8-20	80%	30

8.3.2 Long Pulse Radar Test Waveform

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse Radar Type waveforms. If more than 30 waveforms are used for the Long Pulse Radar Type waveforms, then each additional waveform must also be unique and not repeated from the previous waveforms.

8.3.3 Frequency Hopping Radar Test Waveform

Radar Type	Pulse Width (µsec)	PRI (µsec)	Pulses per Hop	Hopping Rate (kHz)	Hopping Sequence Length (msec)	Minimum Percentag e of Successful Detection	Minimum Number of Trials
6	1	333	9	0.333	300	70%	30

For the Frequency Hopping Radar Type, the same Burst parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

The first frequency in a hopping sequence is selected randomly from the group of 475 integer frequencies from 5250 – 5724 MHz. Next, the frequency that was just chosen is removed from the group and a frequency is randomly selected from the remaining 474 frequencies in the group. This process continues until all 475 frequencies are chosen for the set. For selection of a random frequency, the frequencies remaining within the group are always treated as equally likely.

9 DFS Test Results

9.1 Calibration of Radar Waveform

9.1.1 Radar Waveform Calibration Procedure

1) A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to place of the master

2) The interference Radar Detection Threshold Level is -62dBm + 0dBi + 1dB = -61dBm that had been taken into account the output power range and antenna gain.

3) The following equipment setup was used to calibrate the conducted radar waveform. A vector signal generator was utilized to establish the test signal level for radar type 0. During this process, there were no transmissions by either the master or client device. The spectrum analyzer was switched to the zero spans (time domain) at the frequency of the radar waveform generator. Peak detection was used. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz. The spectrum analyzer had offset -1.0dB to compensate RF cable loss 1.0dB.

4) The vector signal generator amplitude was set so that the power level measured at the spectrum analyzer was -62dBm + 0dBi + 1dB = -61dBm. Capture the spectrum analyzer plots on short pulse radar waveform.

Measurement Data: The detailed test data see Appendix

9.2 U-NII Detection Bandwidth

9.2.1 Limit of U-NII Detection Bandwidth

The U-NII Detection Bandwidth shall contain minimum 100% of the 99% power bandwidth

9.2.2 . Test Procedure

1. Adjust the equipment to produce a single Burst of any one of the Short Pulse Radar Types 0 - 4 in Table 5 at the center frequency of the UUT Operating Channel at the specified DFS Detection Threshold level found in Table 3.

2. Set the UUT up as a standalone device (no associated Client or Master, as appropriate) and no traffic. Frame based systems will be set to a talk/listen ratio reflecting the worst case (maximum) that is user configurable during this test.

3. Generate a single radar Burst, and note the response of the UUT. Repeat for a minimum of 10 trials. The UUT must detect the Radar Waveform within the DFS band using the specified U-NII Detection Bandwidth criterion shown in Table 4. In cases where the channel bandwidth may exceed past the DFS band edge on specific channels (i.e., 802.11ac or wideband frame based systems) select a channel that has the entire emission bandwidth within the DFS band. If this is not possible, test the detection BW to the DFS band edge.

4. Starting at the center frequency of the UUT operating Channel, increase the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion specified in Table 4. Repeat this measurement in 1MHz steps at frequencies 5 MHz below where the detection rate begins to fall. Record the highest frequency (denote as FH) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies above FH is not required to demonstrate compliance.

5. Starting at the center frequency of the UUT operating Channel, decrease the radar frequency in 5 MHz steps, repeating the above test sequence, until the detection rate falls below the U-NII Detection Bandwidth criterion specified in Table 4. Repeat this measurement in 1MHz steps at frequencies 5 MHz above where the detection rate begins to fall. Record the lowest frequency (denote as FL) at which detection is greater than or equal to the U-NII Detection Bandwidth criterion. Recording the detection rate at frequencies below FL is not required to demonstrate compliance.

The U-NII Detection Bandwidth is calculated as follows: U-NII Detection Bandwidth = FH - FL**Measurement Data**: The detailed test data see Appendix

9.3 Channel Availability Check

9.3.1 Limit of Channel Availability Check

The Initial Channel Availability Check Time tests that the UUT does not emit beacon, control, or data signals on the test Channel until the power-up sequence has been completed and the U-NII device checks for Radar Waveforms for one minute on the test Channel.

9.3.2 Test Procedure

This test does not use any Radar Waveforms and only needs to be performed one time.

1. The U-NII devices will be powered on and be instructed to operate on the appropriate U-NII Channel that must incorporate DFS functions. At the same time the UUT is powered on, the spectrum analyzer will be set to zero span mode with a 3 MHz RBW and 3 MHz VBW on the Channel occupied by the radar (Chr) with a 2.5 minute sweep time. The spectrum analyzer's sweep will be started at the same time power is applied to the U-NII device.

2. The UUT should not transmit any beacon or data transmissions until at least 1 minute after the completion of the power-on cycle.

3. Confirm that the UUT initiates transmission on the channel

A) Radar Burst at the Beginning of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1 dB occurs at the beginning of the Channel Availability Check Time. This is illustrated in Figure 15.

1. The Radar Waveform generator and UUT are connected using the applicable test setup described in the sections on configuration for Conducted Tests (7.2) or Radiated Tests (7.3) and the power of the UUT is switched off.

2. The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The Channel Availability Check Time commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.

3. A single Burst of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window starting at T1. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

4. Visual indication or measured results on the UUT of successful detection of the radar Burst will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar Burst has been generated.

5. Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The Channel Availability Check results will be recorded.

B) Radar Burst at the End of the Channel Availability Check Time

The steps below define the procedure to verify successful radar detection on the test Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold + 1dB occurs at the end of the Channel Availability Check Time. This is illustrated in Figure 16.

1. The Radar Waveform generator and UUT are connected using the applicable test setup described in the sections for Conducted Tests (7.2) or Radiated Tests (7.3) and the power of the UUT is switched off.

2. The UUT is powered on at T0. T1 denotes the instant when the UUT has completed its power-up sequence (Tpower_up). The Channel Availability Check Time commences on Chr at instant T1 and will end no sooner than T1 + Tch_avail_check.

3. A single Burst of one of the Short Pulse Radar Types 0-4 will commence within a 6 second window starting at T1 + 54 seconds. An additional 1 dB is added to the radar test signal to ensure it is at or above the DFS Detection Threshold, accounting for equipment variations/errors.

4. Visual indication or measured results on the UUT of successful detection of the radar Burst will be recorded and reported. Observation of Chr for UUT emissions will continue for 2.5 minutes after the radar Burst has been generated.

5. Verify that during the 2.5 minute measurement window no UUT transmissions occurred on Chr. The Channel Availability Check results will be recorded.

Measurement Data: The detailed test data see Appendix

9.4 In-Service Monitoring: Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

9.4.1 Limit of In-Service Monitoring

The EUT has In-Service Monitoring functioc Time plus any additional intermittent control signals required to facilitate Channel changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Non-Occupancy Period time is 30 minute during which a Channel will not be utilized after a Radar Waveform is detected on that Channel. The non-associated Client Beacon Test is during the 30 minutes observation time. The EUT should not make any transmissions in the DFS band after EUT power up.

9.4.2 Test Procedures

- 1. The radar pulse generator is setup to provide a pulse at frequency that the Master and Client are operating. A type 0 radar pulse with a 1us pulse width and a 1428 us PRI is used for the testing.
- 2. The vector signal generator is adjusted to provide the radar burst (18 pulses) at a level of approximately -62dBm at the antenna of the Master device.
- 3. A trigger is provided from the pulse generator to the DFS monitoring system in order to capture the traffic and the occurrence of the radar pulse.
- 4. A U-NII device operating as a Client Device will associate with the Master at Channel. The MPEG file "TestFile.mpg" specified by the FCC is streamed from the "file computer" through the Master to the Client Device and played in full motion video using Media Player Classic Ver. 6.4.8.6 in order to properly load the network for the entire period of the test.
- 5. When a radar Burst with a level equal to the DFS Detection Threshold + 1dB is generated on the Operating Channel of the U-NII device. At time T0 the Radar Waveform generator sends a Burst of pulse of the radar waveform at Detection Threshold + 1dB.
- 6. Observe the transmissions of the EUT at the end of the radar Burst on the Operating Channel. Measure and record the transmissions from the EUT during the observation time (Channel Move Time). One 12 seconds plot is reported for the Short Pulse Radar Types 1. The plot for the Short Pulse Radar Types start at the end of the radar burst. The Channel Move Time will be calculated based on the zoom in 600ms plot of the Short Pulse Radar Type.

7. Measurement of the aggregate duration of the Channel Closing Transmission Time method. With the spectrum analyzer set to zero span tuned to the center frequency of the EUT operating channel at the radar simulated frequency, peak detection, and max hold, the dwell time per bin is given by: Dwell (0.4ms)= S (12000ms) / B (30000); where Dwell is the dwell time per spectrum analyzer sampling bin, S is the sweep time and B is the number of spectrum analyzer sampling bins. An upper bound of the aggregate duration of the intermittent control signals of Channel Closing Transmission Time is calculated by: C (ms)= N X Dwell (0.4 ms); where C is the Closing Time, N is the number of spectrum analyzer sampling bins (intermittent control signals) showing a U-NII transmission and Dwell is the dwell time per bin.

Measure the EUT for more than 30 minutes following the channel move time to verify that no transmissions or beacons occur on this Channel.

9.4.3 Result of Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period for Client Beacon Test

Measurement Data: The detailed test data see Appendix

9.4.4 Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period for Client Beacon Test Plots

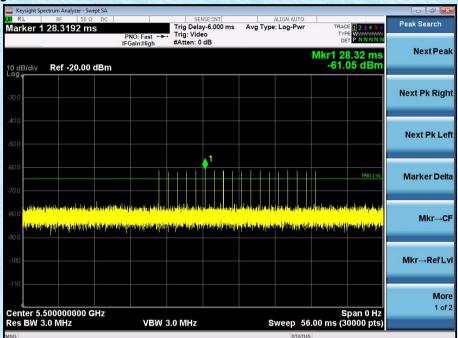
Measurement Data: The detailed test data see Appendix.

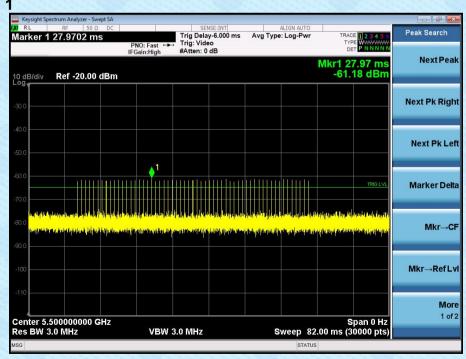
10 Test Setup Photo

Reference to the appendix I for details.

11 EUT Constructional Details

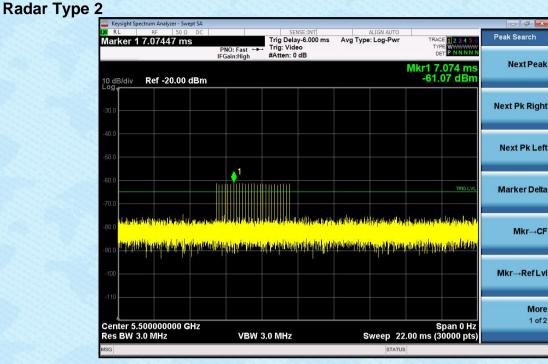
Reference to the appendix II for details.

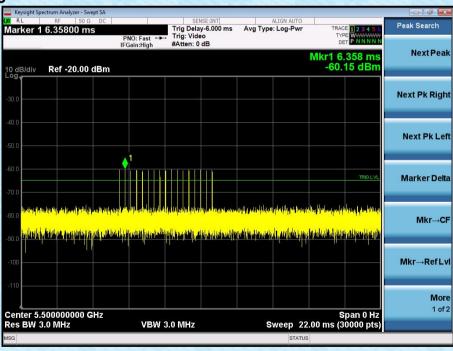



12 Appendix

12.1 Radar Waveform Calibration Result

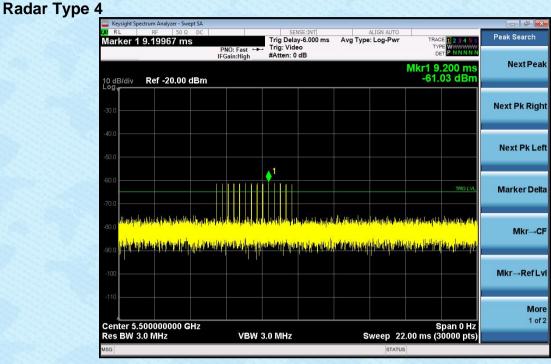
Radar Type 0

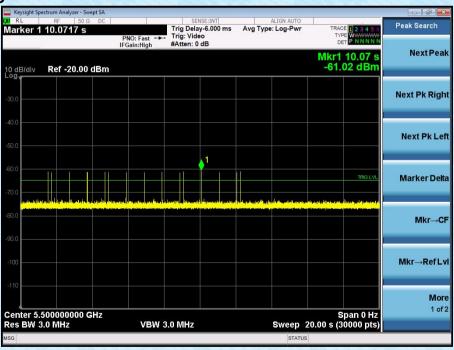

Radar Type 1



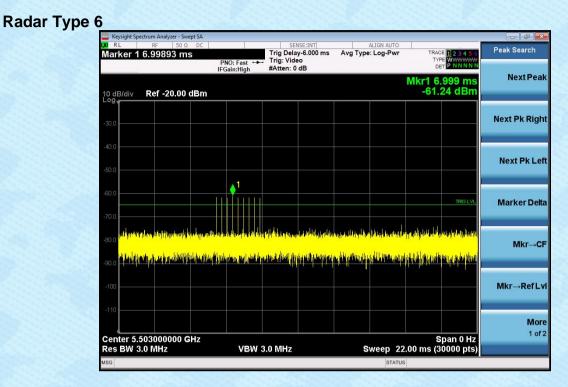
GTS

Report No.: GTS2023070316F05

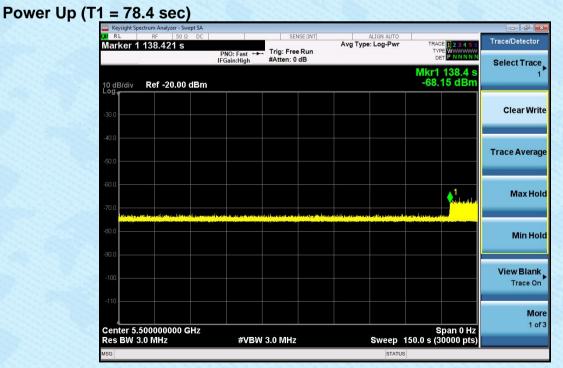

Radar Type 3



GTS

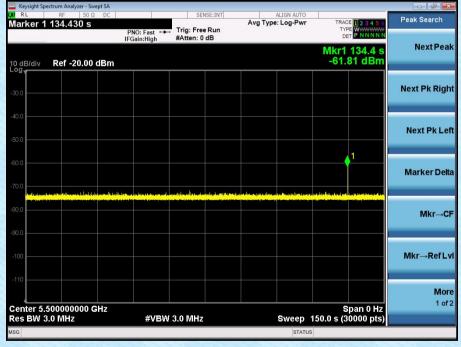

Report No.: GTS2023070316F05

Radar Type 5



12.2 Channel Availability Check

Test Result



Radar Burst at the Beginning of the Channel Availability Check Time

Keysight Spectrum Analyzer - Swept SA					
Marker 1 83.4933 s	PNO: Fast +++ Trig: Free	Run	ALIGN AUTO g Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE WWWWWW DET P N N N N N	Peak Search
10 dB/div Ref -20.00 dBm	IFGain:High #Atten: 0 c	iΒ		Mkr1 83.49 s -62.17 dBm	Next Peak
-30.0					Next Pk Right
-40.0					Next Pk Left
-60.0		● ¹			Marker Delta
-70.0 sta-alcdered of redealers from street as to all -80.0	Notes the second se	i - dalar bayındar. Ba	e de facto de la construcción de la	n stinder, mede specie halfe geter f	Mkr→CF
-100					Mkr→RefLv
-110					MKI→KEILVI
Center 5.500000000 GHz Res BW 3.0 MHz	#VBW 3.0 MHz		Sweep 1	Span 0 Hz 50.0 s (30000 pts)	1 of 2
MSG			STATUS		

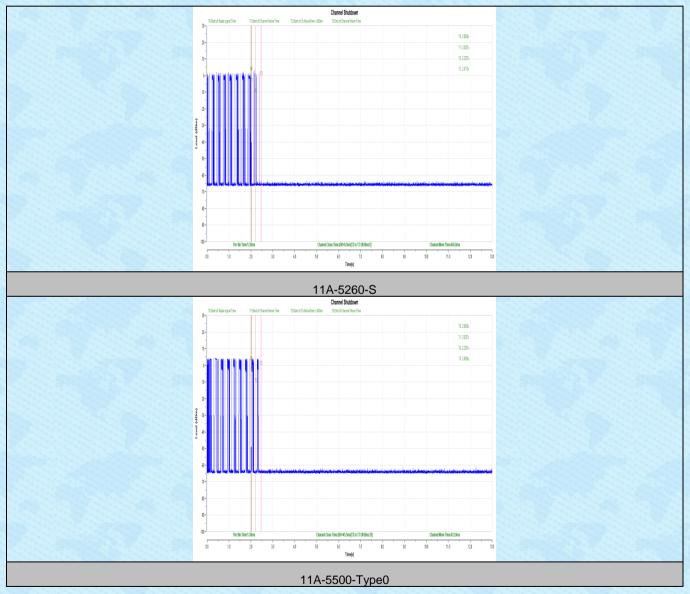
Radar Burst at the End of the Channel Availability Check Time

12.3 U-NII Detection Bandwidth

Test Result

Test Channel:	5260	MHz	Char	nnel Bar	ndwidth:	20)MHz				Radar Type:	0
Frequency	Tri	al Nu	mber		etecti Ion-de		sult (Y d)	: Dete	ected;	N:	Detection	F _L /F _H
(MHz)	0	1	2	3	4	5	6	7	8	9	Rate (%)	
5250	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	FL
5255	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	
5260	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	
5265	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	
5270	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	F _H
Detection Ba	andwi	dth =	F _H - F _I	= 52	70MH	z - 52	50MHz	z = 20	MHz			
EUT 99% Ba	ndwid	lth = 1	6.44N	IHz								

Test Channel:	5500	MHz	Char	nnel Bar	ndwidth:	20)MHz				Radar Type:	0
Frequency	Tri	al Nu	mber	nber and Detection result (Y: Detected; N: Non-detected)						Detection	F _L /F _H	
(MHz)	0	1	2	3	4	5	6	7	8	9	Rate (%)	
5490	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	FL
5495	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	
5500	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	
5505	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	
5510	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	100	F _H
Detection Ba	ndwi	dth =	F _H - F _I	_ = 55	10MH	z - 549	OMH	z = 20	MHz			
EUT 99% Bar	ndwid	lth = 1	6.60N	IHz								

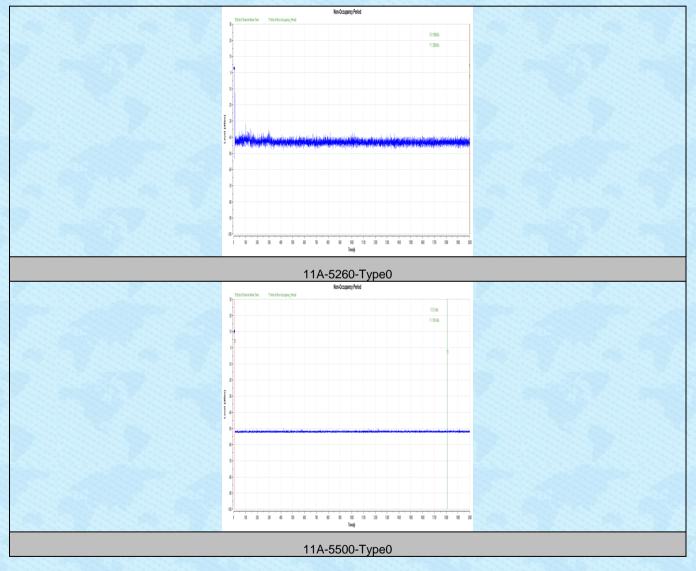


12.4 Channel Move Time and Channel Closing Transmission Time

Test Result

Test Mode	Frequency[MHz]	CCTT[ms]	Limit[ms]	CMT[ms]	Limit[ms]	Verdict
11A	5260	200+6.5	200+60	445.5	10000	PASS
11A	5500	200+45.5	200+60	433.8	10000	PASS

Test Graphs



12.5 Non-Occupancy Period

Test Result

Test Mode	Frequency[MHz]	Result	Limit[s]	Verdict
11A	5260	see test graph	≥1800	PASS
11A	5500	see test graph	≥1800	PASS

Test Graphs

12.6 Statistical Performance Check

Test Result

	and a state of the second	20MHz	Dadar Ci			
				gnal Type	-	-
Trial No.	1	2	3	4	5	6
0	Y	Y	Y	Y	Y	Y
1	N	Y	Y	Y	Y	Y
2	Y	Y	Y	Y	Y	Y
3	Y	N	Y	Y	N	Y
4	Y	Y	Y	Y	Y	Y
5	Y	Y	Y	N	Y	Y
6	Y	Y	Y	Y	Y	Y
7	N	Y	N	Y	Y	Y
8	Y	Y	Y	Y	Y	Y
9	Y	Y	Y	Y	Y	Y
10	Y	N	Y	Y	Y	N
11	Y	Y	Y	Y	Y	Y
12	Y	Y	N	Y	Y	Y
13	Y	Y	Y	Y	Y	Y
14	Y	N	Y	N	Y	Y
15	Y	Y	Y	Y	Y	Y
16	Y	Y	Y	Y	N	Y
17	Y	Y	Y	Y	Y	Y
18	Y	Y	Y	Y	Y	Y
19	Y	Y	Y	Y	Y	Y
20	Y	Y	Y	Y	N	Y
21	Y	Y	Y	Y	N	Y
22	Y	Y	Y	Y	Y	Y
23	Y	Y	Y	Y	Y	Y
24	Y	Y	Y	Y	Y	Y
25	Y	Y	Y	Y	Y	Y
26	Y	Y	Y	Y	Y	Y
27	Y	Y	Y	Y	Y	Y
28	Y	Y	Y	N	Y	Y
29	Y	Y	Y	Y	Y	Y
Detection Probability (%)	93.33	90.00	93.33	90.00	86.67	96.67
Aggregate Detection Probability of Type 1 ~ Type 4 (%)			.67			
Result	Pass	Pass	Pass	Pass	Pass	Pass

Remark: Y: Detected; N: Non-detected.

			Radar Si	gnal Type		2-2-2-1
Trial No.	1	2	3	4	5	6
0	Y	Y	Y	Y	Y	Y
1	Y	Y	Y	Y	Y	Y
2	Y	Y	Y	Y	Y	Y
3	Y	Y	Y	Y	Y	Y
4	Y	Y	Y	Y	Y	Y
5	Y	Y	Y	Y	Y	Y
6	Y	Y	Y	Y	Y	Y
7	Y	Y	Y	Y	Y	Y
8	Y	Y	Y	Y	Y	Y
9	Y	Y	Y	Y	Y	Y
10	Y	Y	Y	Y	Y	Y
11	Y	Y	Y	Y	Y	Y
12	Y	Y	Y	Y	Y	Y
13	Y	Y	Y	Y	Y	Y
14	Y	Y	Y	Y	Y	Y
15	Y	Y	Y	Y	Y	Y
16	Y	Y	Y	Y	Y	Y
17	Y	Y	Y	Y	Y	Y
18	Y	Y	Y	Y	Y	Y
19	Y	Y	Y	Y	Y	Y
20	Y	Y	Y	Y	Y	Y
21	Y	Y	Y	Y	Y	Y
22	Y	Y	Y	Y	Y	Y
23	Y	Y	Y	Y	Y	Y
24	Y	Y	Y	Y	Y	Y
25	Y	Y	Y	Y	Y	Y
26	Y	Y	Y	Y	Y	Y
27	Y	Y	Y	Y	Y	Y
28	Y	Y	Y	Y	Y	Y
29	Y	Y	Y	Y	Y	Y
Detection Probability (%)	100	100	100	100	100	100
Aggregate Detection Probability of Type 1 ~ Type 4 (%)			00			
Result	Pass	Pass	Pass	Pass	Pass	Pass

Remark: Y: Detected; N: Non-detected.

----End----