

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE200700605

FCC REPORT

Applicant: b mobile HK Limited

Address of Applicant: Flat 18, 14/F Block 1, Golden Industrial Building, 16-26 Kwai Tak

Street, Kwai Chung, New Territories, Hong Kong

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: B50 PRO, B50, B50 LITE

Trade mark: Bmobile

FCC ID: ZSW-30-096

Applicable standards: FCC CFR Title 47 Part 15 Subpart B

Date of sample receipt: 02 Jul., 2020

Date of Test: 02 Jul., to 20 Jul., 2020

Date of report issued: 23 Jul., 2020

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

Version

Version No.	Date	Description
00	23 Jul., 2020	Original

23 Jul., 2020 Tested by: Date:

Winner Thang
Project Engineer Reviewed by: Date: 23 Jul., 2020

3 Contents

			Page
1	C	OVER PAGE	1
2	VI	ERSION	2
3	C	ONTENTS	3
4	Ti	EST SUMMARY	4
5	G	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST MODE AND TEST SAMPLES PLANS	5
	5.4	MEASUREMENT UNCERTAINTY	6
	5.5	DESCRIPTION OF SUPPORT UNITS	6
	5.6	RELATED SUBMITTAL(S) / GRANT (S)	
	5.7	DESCRIPTION OF CABLE USED	
	5.8	ADDITIONS TO, DEVIATIONS, OR EXCLUSIONS FROM THE METHOD	
	5.9	LABORATORY FACILITY	
	5.10		
	5.11	TEST INSTRUMENTS LIST	7
6	TE	EST RESULTS AND MEASUREMENT DATA	8
	6.1	CONDUCTED EMISSION	8
	6.2	RADIATED EMISSION	11
7	TE	EST SETUP PHOTO	17
R	FI	LIT CONSTRUCTIONAL DETAILS	18

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part 15.107	Pass
Radiated Emission	Part 15.109	Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: The EUT not applicable of the test item.

Test Method: ANSI C63.4:2014

5 General Information

5.1 Client Information

Applicant:	b mobile HK Limited
Address:	Flat 18, 14/F Block 1, Golden Industrial Building, 16-26 Kwai Tak Street, Kwai Chung, New Territories, Hong Kong
Manufacturer:	b mobile HK Limited
Address:	Flat 18, 14/F Block 1, Golden Industrial Building, 16-26 Kwai Tak Street, Kwai Chung, New Territories, Hong Kong

5.2 General Description of E.U.T.

Product Name:	Mobile Phone
Model No.:	B50 PRO, B50, B50 LITE
Power supply:	Rechargeable Li-ion Battery DC3.8V, 2000mAh
AC adapter:	Input: AC100-240V, 50/60Hz, 0.15A
	Output: DC 5V, 0.5A
Remark:	Model No.: B50 PRO, B50, B50 LITE were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name.
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

5.3 Test Mode and test samples plans

Operating mode	Detail description	
PC mode	Keep the EUT in Downloading mode(Worst case)	
Charging+Recording mode	Keep the EUT in Charging+Recording mode	
Charging+Playing mode	Keep the EUT in Charging+Playing mode	
FM mode	Keep the EUT in FM receiver mode	
GPS mode	Keep the EUT in GPS receiver mode	

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

Report No: CCISE200700605

5.4 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.20 dB (k=2)

5.5 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
DELL	PC	OPTIPLEX7070	2J8XSZ2	DoC
DELL	MONITOR	SE2018HR	3M7QPY2	DoC
DELL	KEYBOARD	KB216d	N/A	DoC
DELL	MOUSE	MS116t1	N/A	DoC
HP	Printer	HP LaserJet P1007	VNFP409729	DoC

5.6 Related Submittal(s) / Grant (s)

This is an original grant, no related submittals and grants.

5.7 Description of Cable Used

Cable Type	Description	Length	From	То
Detached USB Cable	Shielding	1.0m	EUT	PC/Adapter
Detached headset cable	Unshielded	1.2m	EUT	Headset

5.8 Additions to, deviations, or exclusions from the method

No

5.9 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.10 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

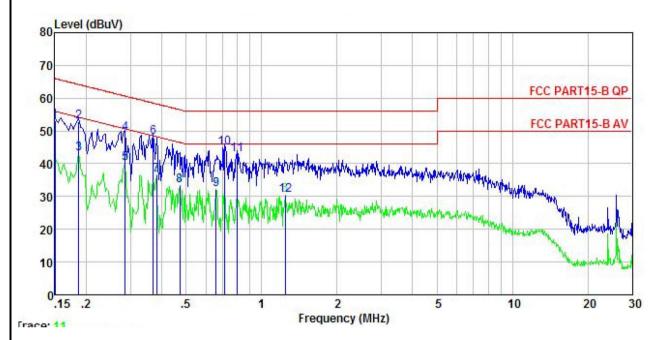
Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.11 Test Instruments list

Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020	
SIII SAC	SAEIVIC	9111 0111 0111	900	07-22-2020	07-21-2023	
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-07-2020	03-06-2021	
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021	
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2020	06-21-2021	
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-18-2019	11-17-2020	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b	
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021	
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021	
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021	
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-18-2019	11-17-2020	
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021	
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021	
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021	
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021	
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021	
LION	Dalada 0 Calassa	F0110.75	0.4000004/040	07-21-2017	07-20-2020	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2023	
Cable	HP	10503A	N/A	03-05-2020	03-04-2021	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

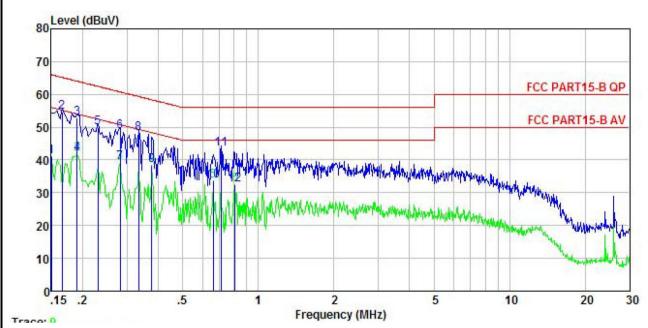
6 Test results and Measurement Data


6.1 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.107				
Test Frequency Range:	150kHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9kHz, VBW=30kHz				
Limit:	Frequency range (MHz) Quasi-peak Average				
		0.15-0.5 66 to 56* 56 to 46*			
	0.5-5	56	46		
	0.5-30	60	50		
	* Decreases with the logarithm	of the frequency.			
Test procedure	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4(latest version) on conducted measurement. 				
Test Instruments:	Refer to section 5.11 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data:

Product name:	Mobile Phone	Product model:	B50 PRO
Test by:	Janet	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
<u>1</u>	MHz	dBu∜	<u>db</u>		<u>ab</u>	—dBu∜	—dBu∀	<u>ab</u>	
1	0.150	42.95	-0.57	10.78	-0.05	53.11		-12.89	410 E 101
2	0.186	42.67	-0.59	10.76	-0.13	52.71	64.20	-11.49	QP
3	0.186	32.93	-0.59	10.76	-0.13	42.97	54.20	-11.23	Average
4	0.286	39.22	-0.55	10.74	-0.25	49.16	60.63	-11.47	QP
5	0.286	30.35	-0.55	10.74	-0.25	40.29	50.63	-10.34	Average
1 2 3 4 5 6	0.369	37.56	-0.50	10.73	0.23	48.02	58.52	-10.50	QP
	0.381	26.03	-0.49	10.72	0.31	36.57	48.25	-11.68	Average
8	0.471	23.21	-0.44	10.75	-0.15	33.37	46.49	-13.12	Average
7 8 9	0.658	22.22	-0.51	10.77	-0.39	32.09	46.00	-13.91	Average
10	0.712	35.00	-0.53	10.78	-0.36	44.89	56.00	-11.11	QP
11	0.796	32.71	-0.56	10.81	-0.09	42.87	56.00	-13.13	QP
12	1.242	19.77	-0.59	10.90	0.22	30.30	46.00	-15.70	Äverage

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	Mobile Phone	Product model:	B50 PRO
Test by:	Janet	Test mode:	PC mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%
_	•	•	_

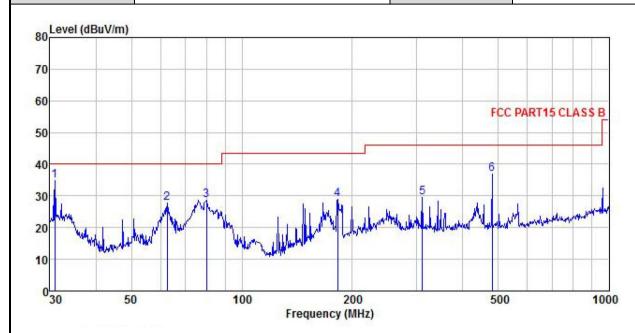
	Freq	Read Level	LISN Factor	Cable Loss	Aux Factor	Level	Limit Line	Over Limit	Remark
<u> </u>	MHz	dBu∜	<u>dB</u>		<u>dB</u>	dBu₹	dBu∇	<u>ab</u>	
1	0.150	30.92	-0.69	10.78	0.01	41.02	56.00	-14.98	Average
2	0.166	44.39	-0.68	10.77	0.01	54.49	65.16	-10.67	QP
3	0.190	42.76	-0.67	10.76	0.00	52.85	64.02	-11.17	QP
1 2 3 4 5 6 7 8 9	0.190	31.75	-0.67	10.76	0.00	41.84	54.02	-12.18	Average
5	0.230	39.95	-0.67	10.75	0.00	50.03	62.44	-12.41	QP
6	0.282	38.56	-0.67	10.74	0.01	48.64	60.76	-12.12	QP
7	0.282	29.21	-0.67	10.74	0.01	39.29	50.76	-11.47	Average
8	0.334	37.96	-0.66	10.73	-0.02	48.01	59.35	-11.34	QP
9	0.377	28.28	-0.64	10.72	-0.04	38.32	48.34	-10.02	Average
10	0.661	23.57	-0.64	10.77	0.04	33.74	46.00	-12.26	Average
11	0.712	33.23	-0.64	10.78	0.04	43.41	56.00	-12.59	QP
12	0.809	22.19	-0.66	10.81	0.06	32.40	46.00	-13.60	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.2 Radiated Emission

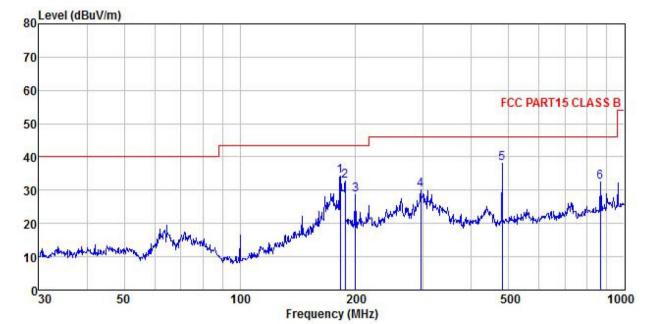
Test Requirement:	FCC Part 15 B Se	ection 15.10)9			
Test Frequency Range:	30MHz to 6000MI	Hz				
Test site:	Measurement Dis	tance: 3m ((Sem	i-Anechoic (Chamber)	
Receiver setup:	Frequency	Detecto	or	RBW	VBW	Remark
, , , , , , , , , , , , , , , , , , ,	30MHz-1GHz Quasi-p		ak	120kHz	300kHz	Quasi-peak Value
	Above 1GHz	Peak		1MHz	3MHz	Peak Value
	Above 1GHZ	RMS		1MHz	3MHz	Average Value
Limit:	Frequenc		Lim	it (dBuV/m	@3m)	Remark
	30MHz-88N			40.0		Quasi-peak Value
	88MHz-216			43.5		Quasi-peak Value
	216MHz-960			46.0		Quasi-peak Value
					Quasi-peak Value	
	Above 1GI	Hz		74.0		Average Value Peak Value
Test setup:	Below 1GHz > 3m	*			Antenna Tower Search Antenna	
	Antenna RF Test Receiver Ground Plane Above 1GHz Horn Antenna Tower Test Receiver					
Test Procedure:	ground at a 3 ndegrees to detect 2. The EUT was swhich was mound 3. The antenna hours ground to detect to detect the second state of the second st	neter semi- ermine the p set 3 meters unted on the eight is vari rmine the m	anecl positi s awa e top ed fro naxim	hoic camber on of the hig by from the in of a variable om one mete um value of	The table the table of ta	ce-receiving antenna, ntenna tower. meters above the


	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Instruments:	Refer to section 5.11 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed
Remark:	All of the observed value above 6GHz ware the niose floor , which were no recorded

Measurement Data:

Below 1GHz:

Product Name:	Mobile Phone	Product Model:	B50 PRO
Test By:	Janet	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

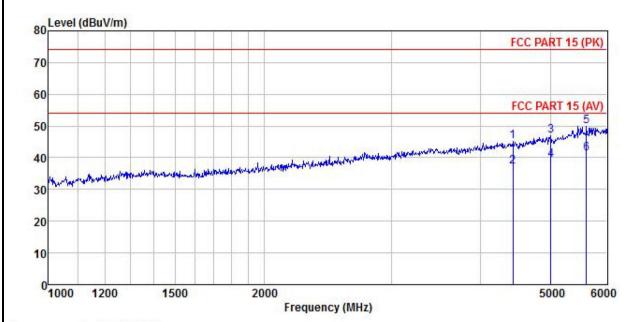

	Freq		ntenna Factor			Preamp Factor	Level	Limit Line		Remark
-	MHz	dBu₹			<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>ab</u>	
1	30.962	52.39	11.96	0.39	0.00	29.97	34.77	40.00	-5.23	QP
2	62.651	46.94	10.25	0.43	0.00	29.76	27.86	40.00	-12.14	QP
3	80.081	45.05	12.80	0.47	0.00	29.64	28.68	40.00	-11.32	QP
2 3 4 5 6	182.559	40.14	17.05	0.69	0.00	28.95	28.93	43.50	-14.57	QP
5	309.998	38.51	18.72	0.87	0.00	28.47	29.63	46.00	-16.37	QP
6	480.528	45.38	19.33	1.08	0.00	28.92	36.87	46.00	-9.13	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	Mobile Phone	Product Model:	B50 PRO
Test By:	Janet	Test mode:	PC mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

	Freq		Antenna Factor					Limit Line		Remark
_	MHz	dBu∜	<u>dB</u> /m		<u>ab</u>	<u>dB</u>	$\overline{\mathtt{dBuV/m}}$	dBuV/m	<u>dB</u>	
1	182.559	45.38	17.05	0.69	0.00	28.95	34.17	43.50	-9.33	QP
2	187.753	43.61	17.31	0.70	0.00	28.92	32.70	43.50	-10.80	QP
3	199.986	38.31	18.30	0.72	0.00	28.83	28.50	43.50	-15.00	QP
4	295.147	38.91	18.68	0.86	0.00	28.46	29.99	46.00	-16.01	QP
5	480.528	46.73	19.33	1.08	0.00	28.92	38.22	46.00	-7.78	QP
6	866.088	37.21	21.77	1.45	0.00	27.96	32.47	46.00	-13.53	QP


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Above 1GHz:

Product Name:	Mobile Phone	Product Model:	B50 PRO
Test By:	Janet	Test mode:	PC mode
Test Frequency:	1 GHz ~ 6 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

	Freq		Intenna Factor					Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>dB</u> /m		<u>ab</u>	<u>ab</u>	$\overline{dBuV/m}$	dBuV/m	<u>ab</u>	
1	4432.448	48.62	30.00	6.09	2.33	41.99	45.05	74.00	-28.95	Peak
2	4432.448	40.83	30.00	6.09	2.33	41.99	37.26	54.00	-16.74	Average
2	5006.774	48.49	31.20	6.56	2.50	41.88	46.87	74.00	-27.13	Peak
4	5006.774	40.87	31.20	6.56	2.50	41.88	39.25	54.00	-14.75	Average
5	5615.128	49.62	32.35	7.05	2.69	41.81	49.90	74.00	-24.10	Peak
6	5615.128	41.14	32.35	7.05	2.69	41.81	41.42			Average

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

roduct Name: est By: est Frequency: est Voltage:		Mob	Mobile Phone Janet 1 GHz ~ 6 GHz AC 120/60Hz					Product Model: Test mode: Polarization: Environment:		B50 PF	B50 PRO PC mode Horizontal			
		Jane								PC mo				
		1 GH								Horizor				
		AC 1								Temp: 24°C Huni: 57		57%		
	Level (dBu\	//m)												
80										FCC	PART 1	5 (PK)		
70												7/		
60														
00											FCC PART 15		(AV)	
50										1	3	5 mynth grate		
40							March 191	- Market and Market	A property Code and	and the second second	4	6		
			1. 10 dates a 11 date	word by what	hunderend		Winam .			1				
	much melling	a trades productions	Anti-Babby car dead.											
30	May the many the the same	a de la companya de l	Litter Company											
30		a de la companya de l	AND MANAGEMENT											
20		a the second second												
		and the section of th	3 4 4 4 11 1											
20 10)		1500		2000						5000	600	0	
20 10					2000	equency							0	
20 10	1000 120	00 Read		Cable	2000 Fr		(MHz)	Limit	Over	Remark			0	
20 10	1000 120	00 Read 1 Level	1500 Antenna	Cable Loss	2000 Fr	<mark>equency</mark> Preamp Factor	(MHz) Level	Limit	Over Limit				0	

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.