

6 Randolph Way Hillsborough, NJ 08876 Tel: (732) 560-9010

Fax: (732) 560-9173

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

of

RF DESKTOP IN/OUTDOOR THERMOMETER MODEL: 0615TX FCC ID: L5C0615TX

NOVEMBER 17, 2000

This report concerns (check one): Equipment type: Low Power Intent	Original grant x Class II changetional Radiator
Company agrees to notify the Com	F 0.457(d)(1)(ii)? yes nox
Transition Rules Request per 15.37 If no, assumed Part 15, Subpart B [10-1-90 Edition] provision.	7? yes nox for unintentional radiators - the new 47 CFR
Report prepared for: Report prepared by: Report number:	ANSEN ELECTRONICS COMPANY Advanced Compliance Lab 0048-2K1107-02

The test result in this report IS supported and covered by the NVLAP accreditation

Table of Contents

Report Cover Page	1
Table of Contents	2
Figures	3
1. GENERAL INFORMATION	4
1.1 Verification of Compliance	4
1.2 Equipment Modifications	5
1.3 Product Information	
1.4 Test Methodology	6
1.5 Test Facility	
1.6 Test Equipment	6
1.7 Statement of the Document Use	7
2. PRODUCT LABELING	8
3. SYSTEM TEST CONFIGURATION	9
3.1 Justification	9
3.2 Special Accessories	9
3.3 Configuration of Tested System	
4. SYSTEM SCHEMATICS	13
5. RADIATED EMISSION DATA	14
5.1 Field Strength Calculation	14
5.2 Test Methods and Conditions	
5.3 Test Data	
6 PHOTOS OF TESTED EUT	17

Figures

Figure 2.1 FCC ID Label	. 8
Figure 2.2 Location of Label on Back of the EUT	.8
Figure 3.1 Radiated Test Setup, X Axis	. 10
Figure 3.2 Radiated Test Setup, Y Axis	. 11
Figure 3.3 Radiated Test Setup, Z Axis	. 12
Figure 4.1 EUT Schematics	. 13
Figure 6.1 Occupied Bandwidth	. 18
Figure 6.2 Front View	. 19
Figure 6.3 Rear View	. 20
Figure 6.4 Inside View	. 21
Figure 6.5 Component Side	. 22
Figure 6.6 Foil Side	. 23
Figure 6.7 Pulse Train Timing Plot	. 24
Figure 6.8 Block Diagram	. 25
Figure 6.9 Schematic (Main Board)	. 26
Figure 6.10 Schematic (Daughter Board)	. 27

Date: November 17, 2000

1. GENERAL INFORMATION

1.1 Verification of Compliance

EUT: RF DESKTOP IN/OUTDOOR THERMOMETER

Model: 0615TX

Alternate Brand Royal Consumer Business Products

Name and Mode: WS22

Applicant: ANSEN ELECTRONICS COMPANY

Test Type: FCC Part 15C CERTIFICATION

Result: PASS

Tested by: ADVANCED COMPLIANCE LABORATORY

Test Date: NOVEMBER 15, 2000

Report Number: 0048-2K1107-02

The above equipment was tested by Advanced Compliance Laboratory, for compliance with the requirement set forth in the FCC rules and regulations Part 15, subpart C. This said equipment in the configuration described in the report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

The estimated uncertainty of the test result is given as following. The method of uncertainty calculation is provided in Advanced Compliance Lab. Doc. No. 0048-01-01.

	Prob. Dist.	Uncertainty(dB)	Uncertainty(dB)	Uncertainty(dB)
		30-1000MHz	1-6.5GHz	Conducted
Combined Std. Uncertainty u_c	norm.	±2.36	±2.99	±1.83

Wei Li

Lab Manager

Advanced Compliance Lab

1	.2	Eq	ui	pment	M_0	difi	icat	ions
•	•-	LY	u	Pilicit	TATO	· uiii	cui	

N/A

1.3 Product Information

System Configuration

ITEM	DESCRIPTION	FCC ID	CABLE
Product	RF DESKTOP IN/OUTDOOR	L5C0615TX	
	THERMOMETER 0615TX (1)		
Housing	PLASTICS		
Power Supply	9V DC		
Clock/OSC Freq.	433.9 MHz		
Receiver	0615RX		
	(FCC Part15 Class B DOC)		

(1) EUT submitted for grant.

1.4 Test Methodology

Radiated tests were performed according to the procedures in ANSI C63.4-1992 at an antenna to EUT distance of 3 meters.

1.5 Test Facility

The open area test site and conducted measurement facility used to collect the radiated and conducted data are located at 50 Randolph Road, Somerset, New Jersey. This site has been accepted by FCC to perform measurements under Part 15 or 18 in a letter dated May 19, 1997 (Refer to: 31040/PRV 1300F2). The NVLAP Lab code for accreditation of FCC EMC Test Method is: 200101-0.

1.6 Test Equipment

Manufacture	Model	Serial No.	rate E		Cal Due
				dd/mm/yy	dd/mm/yy
Hewlett-Packard	HP8546A	3625A00341	EMI Receiver	15/12/99	15/12/00
Fischer Custom	LISN-2	900-4-008	Line Impedance Stabilization Networks	20/05/00	20/05/01
Fischer Custom	LISN-2	900-4-009	Line Impedance Stabilization Networks	26/04/00	26/04/01
EMCO	3115	4945	Double Ridge Guide Horn Antenna	05/12/99	05/12/00
EMCO	3104C	4396	30-200MHz Biconical Antenna	02/05/00	02/05/01
EMCO	3146	3350	200-1000MHz Log-Periodic Antenna	02/05/00	02/05/01

All Test Equipment Used are Calibrated Traceable to NIST Standards.

1.7 Statement for the Document Use

This report shall not be reproduced except in full, without the written approval of the laboratory. And this report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government.

2. PRODUCT LABELING

FCC ID:L5C0615TX

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) This device must accept any interference received, including interference that may cause undesired operation.

Figure 2.1 FCC ID Label

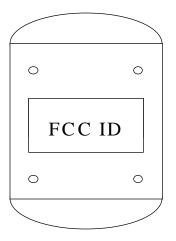


Figure 2.2 Location of label on the Rear of EUT

3. SYSTEM TEST CONFIGURATION

3.1 Justification

The system was configured for testing in a typical fashion (as a customer would normally use it). And its antenna was built on board permanently. Fresh batteries are used during the test in order to generate maximum emission from EUT.

The minimum interval between each transmission is no less than 10 seconds. Each transmission is less than 1 second per CFR47:15.231(e) requirement.

Testing was performed in "ON" mode. It is the worst case.

3.2 Special Accessories

N/A

3.3 Configuration of Tested System

Figure 3.1 and Figure 3.3 illustrate this system, which is tested standing along.

Figure 3.1 Radiated Test Setup, X Axis

Figure 3.2 Radiated Test Setup, Y Axis

Figure 3.3 Radiated Test Setup, Z Axis

4. SYSTEM SCHEMATICS

(Please see attachments: Figure 6.9 & Figure 6.10)

Figure 4.1 System Schematics

5. RADIATED EMISSION DATA

5.1 Field Strength Calculation

The corrected field strength is automatically calculated by EMI Receiver using following:

FS = RA - AF - CF - AG

where FS: Corrected Field Strength in dBµV/m

RA: Amplitude of EMI Receiver before correction in $dB\mu V$

AF: Antenna Factor in dB/m

CF: Cable Attenuation Factor in dB

AG: Built-in Preamplifier Gain in dB (Stored in receiver as part of the calibration data)

The pulse train timing plot (w/ max. occupied signal energy) is showed in Figure 6.7. The maximum setting for high voltage is

(30x0.64)/100ms = 0.192

The maximum average field strength should be 0.192 of the peak field strength measured. So we use peak value minus 14.3dB as calculated maximum average field strength

5.2 Test Methods and Conditions

The EUT exercise program was loaded during the radiated emission test. The initial step in collecting radiated data is a EMI Receiver scan of the measurement range 30MHz - 5GHz using peak detector. IF bandwidth is 120kHz and video bandwidth is 300kHz for measuring 30MHz-1GHz. Both bandwidth are 1MHz for above 1GHz measurement.

5.3 Test Data

The following data lists the significant emission frequencies, polarity and position, peak reading of the EMI Receiver, calculated average reading, the FCC limit, and the difference between the peak reading and the limit. Explanation of the correction and calculation are given in section 5.1.

Test Personnel:

Tester Signature: Date: 11-15-2000

Typed/Printed Name: David Tu

Radiated Test Data

Frequency	Polarity [H, V] Position	Height	Azimuth	Peak Reading	Calculated Average	Class B(1) 3m Limit	Difference from limit
(MHz)	[X,Y,X](1)	(m)	(Degree)	(dBµV/m)	Reading (dBµV/m	(dBµV/m)	(dB)
433.9	XH	1.6	235	75.8	61.5	72.8(3)	-11.3
867.9	XH	1.5	235	65.3	51.0	52.8(4)	-1.8
1301.8	XH	2.6	180	52.8	38.5	54.0 (2)	-15.5
1735.7	XH	1.3	180	58.1	43.8	54.0(4)	-10.2
2169.6	XH	1.2	270	58.8	44.5	54.0	-9.5
2603.5	XH	2.4	090	60.5	46.2	54.0	-7.8
433.9	XV	2.0	175	69.7	55.4	72.8	-17.4
867.9	XV	1.7	330	65.4	51.1	52.8	-1.7
1301.8	XV	2.4	270	56.8	42.5	54.0	-11.5
1735.7	XV	2.3	045	62.4	48.1	54.0	-5.9
2169.6	XV	2.4	235	62.7	48.4	54.0	-5.6
2603.5	XV	2.4	000	65.5	51.2	54.0	-2.8
433.9	YH	1.7	225	73.9	59.6	72.8	-13.2
867.9	YH	1.6	265	65.9	51.6	52.8	-1.2
1301.8	YH	2.1	180	52.9	38.6	54.0	-15.4
1735.7	YH	2.1	180	58.5	44.2	54.0	-9.8
2169.6	YH	1.7	180	61.0	46.7	54.0	-7.3
2603.5	YH	1.4	235	66.2	51.9	54.0	-2.1
433.9	YV	1.9	1.9	69.8	55.5	72.8	-17.3
867.9	YV	1.2	1.2	65.7	51.4	52.8	-1.4
1301.8	YV	1.8	1.8	54.4	40.1	54.0	-13.9
1735.7	YV	2.5	2.5	59.1	44.8	54.0	-9.2
2169.6	YV	2.5	2.5	58.7	44.4	54.0	-9.6
2603.5	YV	2.1	2.1	63.3	49.0	54.0	-5.0
433.9	ZH	1.8	180	68.3	54.0	72.8	-18.8
867.9	ZH	1.3	180	65.3	51.0	52.8	-1.8
1301.8	ZH	1.0	260	59.8	45.5	54.0	-8.5
1735.7	ZH	1.5	180	61.3	47.0	54.0	-7.0
2169.6	ZH	2.2	225	59.1	44.8	54.0	-9.2
2603.5	ZH	1.9	300	60.4	46.1	54.0	-7.9
433.9	ZV	1.3	180	82.3	68.0	72.8	-4.8
867.9	ZV	1.2	180	65.4	51.1	52.8	-1.7
1735.7	ZV	2.4	180	58.3	44.0	54.0	-10.0
2169.6	ZV	2.3	180	58.9	44.6	54.0	-9.4
2603.5	ZV	1.9	000	63.9	49.6	54.0	-4.4

⁽¹⁾ See Figure 3.1, 3.2 and 3.3 for definition of position X-1, Y-2, Z-3.

5.4 Occupied Bandwidth

⁽²⁾ Restricted band.

⁽³⁾ Fundamental limit is 1500-5000 microvolts/meter linear interpolations (15.231e).

⁽⁴⁾ Spurious limit is 150-500 microvolts/meter linear interpolations.(15.231 b &e).

The bandwidth of the emission shall be no wider than 0.25% of the center frequency, in this case, 1.085MHz. Bandwidth is determined at the points 20dB down from the modulated carrier. Fig.6.1 shows the occupied bandwidth plot.

6. PHOTOS OF TESTED EUT

The following photos show the inside details of the EUT.

See Attachments: occupied bandwidth, front.jpg, rear.jpg, inside.jpg, compnt.jpg, foil.jpg, pulse train plot, block diagram and schematic(main board and daughter board).