

Test report No.: 11355753S-A Page: 1 of 121

Issued date : December 2, 2016 Revised date : December 16, 2016 (-r02)

FCC ID : AZDBM72065

SAR TEST REPORT

Test Report No.: 11355753S-A

Applicant : Canon Inc.

Type of Equipment : Wireless LAN module in Digital Radiography

 $\begin{tabular}{ll} Model No. & : BM72065 (Wireless LAN module) (*. Installed into the platform (1)) \\ \end{tabular}$

FCC ID : AZDBM72065

Test Standard : FCC 47CFR §2.1093

Test Result : Complied

Highest F	Reported SAR	R Value [W/kg]	SA	R Lin	nit		Platfor	m]	Remarks	Output power	
Tune-u	p value	(Meas	sured)	Туре	1g	Limit	No.	Tymo	Model	Band	Frequency	Mode	(average)	[dBm]
DTS band	UNII band	DTS	UNII	Турс	/10g	[W/kg]	110.	Type	Model	Danu	[MHz]	Mode	Measured	Max.
0.32	0.67	0.205	0.498	Body-	10	1g 1.6				DTS	2462	11b (1Mbps, DSSS)	12.07	14
0.32	0.07	0.203	0.498	worn	ıg				CXDI-710C	UNII	JNII 5825	11n(20HT) (MCS0, OFDM)	11.74	13
0.35	0.66	0.222	0.400	Next-of-	1	1.6	#1	µ1 Digital	Wireless	DTS 246	2462	11b (1Mbps, DSSS)	12.07	14
0.33	0.00	0.223	0.490	head	lg	1.0	#1	Radiography	(WM5A11)	UNII	5825	11n(20HT) (MCS0, OFDM)	11.74	13
0.62	0.91	0.204	0.601	Hand	10~	0g 4			(WWISAII)	DTS	2462	11g (6Mbps, OFDM)	12.03	14
0.02	0.91	0.394	0.691	папа	rog					UNII	5240	11a (6Mbps, OFDM)	11.78	13

*. Highest reported SAR of this device for body-worn, next-of-head and hand holding are "0.67 W/kg", "0.66 W/kg" and "0.91 W/kg".

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 6. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan has been accredited.
- 7. This test report covers Radio technical requirements. It does not cover administrative issues such as Manual or non-Radio test related Requirements. (if applicable)

Date of test: October 19~November 21, 2016

Test engineer:

Hiroshi Naka

Engineer, Consumer Technology Division

Approved by: /- by munification /- by manufacture /- by manufactur

Toyokazu Imamura

Leader, Consumer Technology Division

The testing in which "Non-accreditation" is displayed is outside the accreditation scopes in UL Japan.

extstyle ext

^{*.} Since highest reported SAR on this EUT's platform obtained in accordance with KDB447498 D01 (v06) was kept under 50% of SAR limit, this EUT was approved to operate multi-platform.

Test report No. : 11355753S-A Page : 2 of 121 Issued date : December 2, 2016

Issued date : December 2, 2016 Revised date : December 16, 2016 (-r02)

FCC ID : AZDBM72065

REVISION HISTORY

Revision	Test report No.	Date	Page revised	Contents
Original	11355753S-A	December 2, 2016	-	-
-r01	11355753S-A	December 14, 2016	P1,2,3	(p3) Error correction.
-r02	11355753S-A	December 16, 2016	P1,2,25,28,35~37,46,47,72~74	(p1,25,28,35~37,46,47,72~74) Error correction.

*. By issue of new revision report, the report of an old revision becomes invalid.

CONTENTS		PAGE
REVISION HISTO	RY	2
CONTENTS		2
SECTION 1:	Customer information	2
SECTION 1: SECTION 2:		
	Equipment under test (EUT)	3
2.1	Identification of EUT	3
2.2 2.3	Product Description (Wireless LAN Module: BM72065)	
	SAR test consideration of this platform: CXDI-710C Wireless (WM5A11)	
SECTION 3:	Test specification, procedures and results	
3.1	Test specification	
3.2	Exposure limit	
3.3	Procedure and result	
3.4	Test location	0
3.5	Confirmation before SAR testing	0
3.6	Confirmation after SAR testing	0
3.7	Test setup of EUT and SAR measurement procedure	
SECTION 4:	Uncertainty assessment (SAR measurement)	
SECTION 5:	Operation of EUT during SAR testing	
SECTION 6:	Confirmation before testing	10
6.1	Assessment for the antenna terminal port conducted power of EUT	10
SECTION 7:	SAR Measurement results	12
7.1	Liquid measurement	12
7.2	SAR measurement results (2.4GHz, SAR for Body/Head/Hand)	13
7.3	SAR measurement results (5GHz band, SAR for Body/Head/Hand)	
Contents of app	nendives	
APPENDIX 1:	Photographs of test setup	16
Appendix 1-1	Photograph of Platform, EUT and antenna position	16
Appendix 1-1 Appendix 1-2	EUT, platform and support equipment	10
Appendix 1-2 Appendix 1-3	Usage example	17
Appendix 1-3 Appendix 1-4	Photograph of SAR test setup	
APPENDIX 2:	SAR Measurement data	10
Appendix 2-1	Evaluation procedure	
Appendix 2-2	Measurement data	
APPENDIX 3:	Test instruments	
Appendix 3-1	Equipment used	
Appendix 3-2	Configuration and peripherals	76
Appendix 3-3	Test system specification	
Appendix 3-4	Simulated tissues composition and parameter confirmation	78
Appendix 3-5	Daily check results	
Appendix 3-6	Daily check uncertainty	
Appendix 3-7	Daily check measurement data	
Appendix 3-8	Calibration certificate: E-Field Probe (EX3DV4)	
Appendix 3-9	Calibration certificate: Dipole (D2450V2)	
Appendix 3-10	Calibration certificate: Dipole (D5GHzV2)	105

Test report No.: 11355753S-A Page: 3 of 121 Issued date: December 2, 20

Issued date : December 2, 2016 Revised date : December 14, 2016 (-r01)

FCC ID : AZDBM72065

SECTION 1: Customer information

Company Name	Canon Inc.
Address	9-1, Imaikami-cho, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8501, Japan
Telephone Number	81-3-3758-2111
Facsimile Number	81-44-739-5495
Contact Person	Yasuhiko Minakawa

SECTION 2: Equipment under test (EUT)

2.1 Identification of EUT

	TIV III	DI 4C						
	EUT	Platform						
Type of Equipment	Wireless LAN Module	Platform (1): Digital Radiography						
Model Number	BM72065	CXDI-710C Wireless (WM5A11)						
Serial Number	60128BCC1DCA	16DR-272						
Condition of EUT	Engineering prototype	Engineering prototype						
Condition of Le i	(*. Not for sale: These samples are equivalent to mass-produced items.)							
Receipt Date of Sample	September 20, 2016 (*. EUT for power measurement.) *. No modification by the Lab. October 18, 2016 (*. EUT for SAR test.) *. No modification by the Lab. (*. The EUT that had been measured the power of SAR test reference, was installed into the platform from the beginning. After power measurement, the EUT was returned to the customer and was installed into a platform which SAR tested by the customer.)							
Country of Mass-production	Japan	Japan						
Category Identified	Portable device							
Rating	DC3.3V supplied form the platform *. The EUT is installed into the specified the platform that was operated by the re-chargeable Li-ion battery. Therefore, each SAR test, the platform which had built-in EUT was operated with full-charged battery.							
Feature of EUT	The EUT is a Wireless Module which ins	stalls into the specified platform: Digital Radiography.						
SAR Accessory	None							

2.2 Product Description (Wireless LAN Module: BM72065)

European ary hourd	1	.4GHz band			5GHz	band					
Frequency band		.4GHZ Dana	-	U-NII-1 (W52)	U-NII-2A (W53)	U-NII-2C (W56)	U-NII-3 (W58)				
	11b,g,	2412~2462	11a,	5180~5240	5260~5320	5500~5700	5745~5825				
Frequency of operation	n(20HT)	(ch.1~11)	n(20HT)	(ch.36~48)	(ch.52~64)	(ch.100~140)	(ch.149~165)				
(MHz) (*.ch.: channel)	n(40HT)	2412~2452	n(40HT)	5190~5230	5270~5310	5510~5670	5755, 5795				
Channel spacing (MHz)	(ch.1~9) 5 (11b,g,n(20HT))			(ch.38~46) (ch.54~62) (ch.102~134) (ch.151,159) 20 (11b,g,n(20HT)) / 40 (11n(40HT))							
Bandwidth (MHz)		(11b,g,n(20HT)) 40 (11n(40HT))			20 (11b,g,n(20HT))	/ 40 (11n(40HT))					
Type of modulation		DSSS: DBPSK,	DQPSK	C, CCK (11b), OFDM:	: BPSK, QPSK, 16Q	AM, 64QAM (11g,a,n(20	HT),n(40HT))				
Transmit power (typical,	11b	12.0 ±2 (ch.1-11, 1-11Mbps)	11a:	11.0 ±2 (ch.36-48, 6-54Mbps)	11.0 ±2 (ch.52-64, 6-54Mbps)	11.0 ±2 (ch.100-140, 6-54Mbps)	11.0 ±2 (ch.149-165, 6-54Mbps)				
maximum channel and data rate)	11g,	12.0 ±2 (ch1-11,	n(20HT)	11.0±2	11.0 ±2	11.0 ±2	11.0±2				
and tolerance (as manufacture	n(20HT)	6-54Mbps, MCS0-7)	H(20H1)	(ch.36-48, MCS0-7)	(ch.52-64, MCS0-7)	(ch.100-140, MCS07)	(ch.149-165, MCS0-7)				
variation) (dBm) (*.ch.: channel)	n(40HT)	11.0 ±2 (ch.3-9, MCS07)	n(40HT)	11.0 ±2 (ch.38,46, MCS0-7)	11.0 ±2 (ch.54,62, MCS0-7)	11.0 ±2 (ch.102-134, MCS0-7)	11.0 ±2 (ch.151,159, MCS0-7)				
(dBiii) (iciai ciadalci)	*. The r	*. The measured Tx output power (conducted) refers to Section 6 in this report.									
Power supply	DC 3.3	V *.The dc power of]	BM7206	55 is supplied from the	constant voltage circui	t of the platform.					
Radio type					Transceiver						
Antenna quantity / model	1 pc.	146153-100 (cable	length: 1	00 mm) <molex></molex>							
Antenna type / connector type	Pattern	antenna (34.9mm ×	9mm)/	Connector; RF modu	ale side: U-FL connec	ctor compatible, Antenna	side: soldered				
Antenna gain (max.peak)	3.0 dBi	(2.4GHz ~ 2.5 GHz)	/4.5 dBi	i (5.15GHz ~ 5.85 GHz	z), *.including cable le	OSS.					

^{*.} The EUT do not use the special transmitting technique such as "beam-forming" and "time-space code diversity."

Test report No.: 113557538-A
Page: 4 of 121
Issued date: December 2, 2016

FCC ID : AZDBM72065

2.3 SAR test consideration of this platform: CXDI-710C Wireless (WM5A11)

This platform is a large-sized transportable equipment and has a part coming in contact directly with a patient. An operator (a patient become an operator uncommonly) maintains EUT by hand. (Refer to photographs of Appendix 1-3: Usage example)

Because there is not the KDB for the product which is such a design specifications, we decide the SAR test method in below.

Physical characteristics of platform: CXDI-710C Wireless (WM5A11)

Dimensions: $384 \times 460 \times 15.7$ mm, Weight: 2.3 kg

- This platform is a transportable equipment, but, because it is a large-sized equipment, an operator (or a patient) fixes the edge of platform to stands and pushes or supports platform to a patient's body part (head, body, arm, hand, foot, etc.) by hand at the time of use.
 - The X-ray imaging by platform changes the imaging part of the patient's body at every imaging after having needed several minutes for setting.
- The image transfer time (continuous transfer time) per one imaging is two or three seconds, it is short enough. The imaging of the same part can be performed consecutively several times.
 - In the case of serial imaging, the image transfer time (continuous transfer time) occupies two or three seconds among the image intervals of 15 seconds. (Duty Cycle: < 20 %)
- On this account, the time when an operator (or patient) is really exposed to RF energy is short.
- In addition, an operator is only a doctor or a legally certified person because platform is medical equipment.
 Explanatory note in the manual-
 - "Only a physician or a legally certified operation should use the product."

In consideration of the terms of use mentioned above, we decide the SAR examination as the following contents.

- a) The front (imaging area side) and side edge of platform carries out the Partial-body SAR examination. The front of platform comes in contact with a patient directly. In addition, consecutive RF energy may be exposed to the same neighborhood part of the patient although duty cycle is less than 20%. Because the front of platform comes in contact with a patient directly, we measure the Partial-body SAR at the position of the touch to a phantom around the antenna of the front and side-edge of platform with continuous transmission in 100% duty cycle as a worse condition.
- b) The back of platform carries out the Hand SAR examination.
 - An operator (or a patient) fixes the edge of platform to stands and pushes or supports platform to a patient's body part (head, body, arm, hand, foot, etc.) by hand and by holding back of platform at the time of use. In addition, consecutive RF energy may be exposed to the same neighborhood part of the patient although duty cycle is less than 20%.
 - We measure the Hand SAR at the position of the touch to a phantom around the antenna of the back of platform with continuous transmission in 100% duty cycle as a worse condition.
- *. In addition, because the following instructions for the operator are mentioned in a manual, the physical part of the operator does not touch directly the antenna part of the back.
 - Explanatory note in the manual -
 - "Please do not adhere to your hands and body to an antenna part to restrain exposure of the RF energy when conducting an X-ray examination."

Test report No.: 11355753S-A : 5 of 121 Page

FCC ID

Issued date : December 2, 2016

: AZDBM72065

SECTION 3: Test specification, procedures and results

3.1 **Test specification**

The US Federal Communications Commission has released the report and order "Guidelines for Evaluating the Environmental Effects of RF Radiation", ET Docket No. 93-62 in August 1996. The order requires routine SAR evaluation prior to equipment authorization of portable transmitter devices, including portable telephones. For consumer products, the applicable limit is 1.6 mW/g for an uncontrolled environment and 8.0 mW/g for an occupational/controlled environment as recommended by the ANSI/IEEE standard C95.1-1992. The device should be evaluated at maximum output power (radiated from the antenna) under "worst-case" conditions for normal or intended use, incorporating normal antenna operating positions, device peak performance frequencies and positions for maximum RF energy coupling in accordance with the following measurement procedures..

KDB 447498 D01 (v06): General RF exposure guidance

SAR Guidance for IEEE 802.11 (Wi-Fi) transmitters KDB 248227 D01 (v02r02):

KDB 865664 D01 (v01r04): SAR measurement 100MHz to 6GHz

IEEE Std. 1528-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in

the Human Head from Wireless Communications Devices: Measurement Techniques.

3.2 **Exposure limit**

Environments of exposure limit	Whole-Body (averaged over the entire body)	Partial-Body (averaged over any 1g of tissue)	Hands, Wrists, Feet and Ankles (averaged over any 10g of tissue)
(A) Limits for Occupational /Controlled Exposure (W/kg)	0.4	8.0	20.0
(B) Limits for General population /Uncontrolled Exposure (W/kg)	0.08	1.6	4.0

^{*.} Occupational/Controlled Environments:

The limit applied in this test report is;

General population / uncontrolled exposure, Partial-Body (averaged over any 1g of tissue) limit: 1.6 W/kg General population / uncontrolled exposure, Hands (averaged over any 10g of tissue) limit: 4 W/kg

3.3 **Procedures and Results**

Band (Frequency [MHz])	Wi-Fi (2412-			U-NII-1) 40)(W52)		I-NII-2A) 20)(W53)	Wi-Fi (U - (5500~570	,	,	i (U-NII-3) -5825)(W 58)		
Test Procedure			SAR measu	rement; KDB								
Category		FCC 47CFR §2.1093 (Portable device)										
Results (SAR(1g) limit)	ults (SAR(1g) limit) Complied (≤ 1.6 W/kg)		Complied	(≤ 1.6 W/kg)	Complied	(≤1.6 W/kg)	Complied	Complied (≤ 1.6 W/kg) Complied (≤				
SAR type	Body touch	Next of head	Body touch	Next of head	Body touch	Next of head	Body touch	Next of head	Body touch	Next of head		
Liquid type	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head		
Reported SAR value	0.32 W/kg	0.35 W/kg	0.42 W/kg	0.39 W/kg	0.39 W/kg	0.39 W/kg	0.45 W/kg	0.42 W/kg	0.67 W/kg	<mark>0.66</mark> W/kg		
Measured SAR value	0.205 W/kg	0.223 W/kg	0.326 W/kg	0.302 W/kg	0.291 W/kg	0.289 W/kg	0.407 W/kg	0.407 W/kg	0.498 W/kg	0.490 W/kg		
Operation mode,	11b(1Mbps),	11b(1Mbps),	n40(MCS0),	n40(MCS0),	n40(MCS0),	n40(MCS0),	n20(MCS0),	11a(6Mbps),	n20(MCS0),	n20(MCS0),		
frequency[MHz]	2462	2462	5190	5230	5310	5310	5700	5700	5825	5825		
Duty cycle [%] (scaled factor)	ty cycle [%] (scaled factor) 100 (×1.00) 100 (×1.00)		100 (×1.00)	100 (×1.00)	100 (×1.00)	100 (×1.00)	100 (×1.00)	100 (×1.00)	100 (×1.00)	100 (×1.00)		
Output power [dBm]	12.07	12.07	11.86	11.88	11.70	11.70	12.84	12.84	11.74	11.74		
(max. power, scaled factor)	$(14, \times 1.56)$	$(14, \times 1.56)$	$(13, \times 1.30)$	$(13, \times 1.29)$	$(13, \times 1.35)$	$(13, \times 1.35)$	$(13, \times 1.04)$	$(13, \times 1.04)$	$(13, \times 1.34)$	$(13, \times 1.34)$		

Results (SAR(10g) limit)	Complied (≤4 W/kg)	Complied (≤4 W/kg)	Complied (≤4 W/kg)	Complied (≤4 W/kg)	Complied (≤4 W/kg)
SAR type	Hand holding	Hand holding	Hand holding	Hand holding	Hand holding
Liquid type	Body	Body	Body	Body	Body
Reported SAR value	0.62 W/kg	<mark>0.91</mark> W/kg	0.89 W/kg	0.74 W/kg	0.75 W/kg
Measured SAR value	0.394 W/kg	0.691 W/kg	1.04 W/kg	0.651 W/kg	0.563 W/kg
Operation mode, frequency[MHz]	11g(6Mbps), 2462	11a(6Mbps), 5240	11a(6Mbps), 5300	n40(MCS0), 5510	11a(6Mbps), 5825
Duty cycle [%] (scaled factor)	100 (×1.00)	100 (×1.00)	100 (×1.00)	100 (×1.00)	100 (×1.00)
Output power [dBm] (max. power, scaled factor)	12.03 (14,×1.57)	11.78 (13,×1.32)	11.81 (13,×1.32)	12.43 (13,×1.14)	11.76 (13, ×1.33)

Note: UL Japan's SAR Work Procedures No.13-EM-W0429 and 13-EM-W0430. No addition, deviation nor exclusion has been made from standards

Test outline: Where this product is built into a platform (1), it was verified whether multiplatform conditions can be suited in according with section 2) of 5.2.2 in KDB447498 D01 (v06).

Consideration of the test results: The highest reported SAR (1g) of this platform (1) was kept; ≤ 0.8 W/kg (SAR(1g)), ≤ 2 W/kg (SAR(10g)). Since highest reported SAR on this EUT's platform obtained in accordance with KDB447498 D01 (v06) was kept under 50% of SAR limit, this EUT was approved to operate multi-platform.

UL Japan, Inc. Shonan EMC Lab.

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

^{*.} General Population/Uncontrolled Environments: are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

⁽Calculating formula) Corrected SAR to max power $(W/kg) = (Measured SAR (W/kg)) \times (Duty scaled) \times (Tune-up factor)$ where; Tune-up factor $[-] = 1/(10^{\circ}(\Delta \max (\max power - burst average power), dB"/10))$, Duty scaled factor [-] = 100(%)/(duty cycle, %)

Test report No. : 11355753S-A Page : 6 of 121

Issued date : December 2, 2016

FCC ID : AZDBM72065

3.4 Test Location

No.7 shielded room (2.76m (Width) × 3.76m (Depth) × 2.4m (Height)) for SAR testing.

UL Japan, Inc., Shonan EMC Lab.

1-22-3 Megumigaoka, Hiratsuka-shi, Kanagawa-ken 259-1220 JAPAN Telephone number: +81 463 50 6400 / Facsimile number: +81 463 50 6401

3.5 Confirmation before SAR testing

3.5.1 Average power for SAR tests

Before SAR test, the RF wiring for the sample had been switched to the antenna conducted power measurement line from the antenna line and the average power was measured. The result is shown in Section 6.

*. The platform transmission power was verified that it was within 2dB lower than the maximum tune-up tolerance limit when it was set the rated power. (Clause 4.1, KDB447498 D01 (v06))

Step.1 Data rate check (*. The platform supported the following data rate in each operation mode.)

11	11b		11g		la	1	1n(20I	HT)	1	1n(40I	HT)
Mod	Data	Mod	Data	Mod	Data	MCS	Spatial	Mod	MCS	Spatial	Mod
(DSSS)	rate	(OFDM)	rate	(OFDM)	rate	Index	Stream	(OFDM)	Index	Stream	(OFDM)
DBPSK	1 Mbps	BPSK	6 Mbps	BPSK	6 Mbps	MCS0	1	BPSK	MCS0	1	BPSK
DQPSK	2 Mbps	BPSK	9 Mbps	BPSK	9 Mbps	MCS1	1	QPSK	MCS1	1	QPSK
CCK	5.5 Mbps	QPSK	12 Mbps	QPSK	12 Mbps	MCS2	1	QPSK	MCS2	1	QPSK
CCK	11 Mbps	QPSK	18 Mbps	QPSK	18 Mbps	MCS3	1	16QAM	MCS3	1	16QAM
*.Mod; Mo	dulation	16QAM	24 Mbps	16QAM	24 Mbps	MCS4	1	16QAM	MCS4	1	16QAM
	dumion	16QAM	36 Mbps	16QAM	36 Mbps	MCS5	1	64QAM	MCS5	1	64QAM
		64QAM	48 Mbps	64QAM	48 Mbps	MCS6	1	64QAM	MCS6	1	64QAM
		64QAM	54 Mbps	64QAM	54 Mbps	MCS7	1	64QAM	MCS7	1	64QAM

Step.2 Consideration of SAR test channel

For the SAR test reference, on each operation band, the average output power was measured on the lower/middle/upper and specified channels with the worst data rate condition in step 1 in the above.

3.6 Confirmation after SAR testing

It was checked that the power drift [W] is within $\pm 5\%$ in the evaluation procedure of SAR testing. The verification of power drift during the SAR test is that DASY5 system calculates the power drift by measuring the e-filed at the same location at beginning and the end of the scan measurement for each test position.

The result is shown in APPENDIX 2.

*. DASY5 system calculation Power drift value[dB] =20log(Ea)/(Eb) (where, Before SAR testing: Eb[V/m] / After SAR testing: Ea[V/m])

Limit of power drift[W] = $\pm 5\%$

Power drift limit (X) [dB] = $10\log(P_{drift})=10\log(1.05/1)=10\log(1.05)-10\log(1)=0.21dB$

from E-filed relations with power.

S=E×H=E²/ η =P/(4× π ×r²) (η : Space impedance) \rightarrow P=(E²×4× π ×r²)/ η

Therefore, The correlation of power and the E-filed

Power drift limit (X) dB=10log(P_drift)=10log(E_drift)^2=20log(E_drift)

From the above mentioned, the calculated power drift of DASY5 system must be the less than ±0.21dB.

Test report No.: 11355753S-A Page : 7 of 121

Issued date : December 2, 2016

FCC ID : AZDBM72065

3.7 Test setup of platform and SAR measurement procedure

After considering the outline of Flat Panel Sensor, the SAR test was carried out on the following setup conditions.

Setup	Explanation of platform setup position (*. Refer to Appendix 1 for test setup photographs.)	Antenna separation [mm]	SAR Tested /Reduced	SAR type
Front	When test is required, the front surface (patient side) of platform was touched to the Flat phantom.	10.8	Tested	
L ANG SIGE (Right)	When test is required, the long side edge surface (right, near an antenna side) of platform was touched to the Flat phantom.	10	Tested	D.I
Long side (Left)	When test is required, the long side edge surface (left) of platform was touched to the Flat phantom.	365	Reduced (>200 mm)	Body /Head
Short side (Top)	When test is required, the short side edge surface (top) of platform was touched to the Flat phantom.	168	Reduced (>150 mm)	touch
Short side (Bottom)	When test is required, the short side edge surface (bottom) of platform was touched to the Flat phantom.	257	Reduced (>200 mm)	
Back	When test is required, the back surface (operator side) of platform was touched to the Flat phantom.	2.1	Tested	Hand holding

Separation: Antenna separation distance. It is the distance from the antenna to the outer surface of platform which a human may touch.

Consideration for SAR evaluation exemption

KDB 447498 D01 (v06) was taken into consideration to reduce SAR test.

	Considerati	on of S	AR test i	reduction	n by th	ne ante	nna sepa	ration dist	ance ((100MHz	~6GHz,≤50mn	1)
Band,		Minimu	ım distance	Upper	Ma	ximum	power	Calculation		SAR	test exclusion	
Mode	Setup Position	[mm]	[mm]	frequency	[dBm]	[m\/]	[mW]	of exclusion	type	Judge for	Standalone SAR	Remarks
Wiode		. ,	(rounded)	[GHz]	[dDill]	[IIIVV]	(rounded)	(*1)	typc	Exclusion	test required?	
WLAN	Front	10.8	11					3.9	1g	≤3.0	Required	-
2.4GHz	Long side (Right)	10	10	2.462	14.0	25.12	25	3.6	1g	≤3.0	Required	-
b,g,n(20HT)	Back	2.1	2 (≤5)					7.8	10g	≤7.5	Required	-
WLAN	Front	10.8	11					4.6	1g	≤3.0	Required	-
W52&53	Long side (Right)	10	10	5.32	13.0	19.95	20	4.2	1g	≤3.0	Required	=
a,n(20/40HT)	Back	2.1	2 (≤5)					23.1	10g	≤7.5	Required	=
WLAN	Front	10.8	11					4.8	1g	≤3.0	Required	=
W56	Long side (Right)	10	10	5.7	13.0	19.95	20	4.3	1g	≤3.0	Required	=
a,n(20/40HT)	Back	2.1	2 (≤5)					23.9	10g	≤7.5	Required	=
WLAN	Front	10.8	11					4.8	1g	≤3.0	Required	-
W58	Long side (Right)	10	10	5.825	13.0	19.95	20	4.4	1g	≤3.0	Required	
a,n(20/40HT)	Back	2.1	2 (≤5)					24.1	10g	≤7.5	Required	-

^{*1.} Parenthesis 1), Clause 4.3.1, KDB 447498 D01 (v06) gives the following formula to calculate the SAR(1g) test exclusion thresholds for 100MHz-6GHz at test separation distance ≤50mm. [(max,power of channel, including tune-up tolerance, mW) / (min.test separation distance, mm)] \times [\sqrt{f} (GHz)] \leq 3.0 (for SAR(1g)), 7.5 (for SAR(10g)) ··· formula (1) If power is calculated from the upper formula (1); [SAR(1g) test exclusion thresholds, mW] = $3 \times$ [test separation distance, mm] / [\sqrt{f} (GHz)] ··· formula (2a) [SAR(10g) test exclusion thresholds, mW] = $7.5 \times$ [test separation distance, mm] / [\sqrt{f} (GHz)] ··· formula (2b)

By the determined test setup shown above, the SAR test was applied in the following procedures.

Step 1	On 2.4GHz band, in body liquid, worst SAR (for both body touching and for hand-holding) search by DSSS mode. Add test for OFDM
	mode, if it's necessary. Repeat test in head liquid for SAR of head touching.
Step 2	On W52/53 band, in body liquid, worst SAR (for both body touching and for hand-holding) search by largest channel bandwidth mode with highest power. Repeat test in head liquid for SAR of head touching.
Step 2	with highest power. Repeat test in head liquid for SAR of head touching.
Step 3	On W56 band, in body liquid, worst SAR (for both body touching and for hand-holding) search by largest channel bandwidth mode
Step 3	On W56 band, in body liquid, worst SAR (for both body touching and for hand-holding) search by largest channel bandwidth mode with highest power. Repeat test in head liquid for SAR of head touching.
Gt 4	On W58 band, in body liquid, worst SAR (for both body touching and for hand-holding) search by largest channel bandwidth mode
Step 4	with highest power. Repeat test in head liquid for SAR of head touching.

^{*.} During SAR test, the radiated power is always monitored by Spectrum Analyzer.

Size of platform: 460 (W) × 384 (D) × 15.7 (thickness) [mm] (*. Size of EUT: 28 (W) × 32 (D) × 2.8 (thickness) [mm])

Test report No.: 11355753S-A
Page: 8 of 121
Issued date: December 2, 2016

FCC ID : AZDBM72065

SECTION 4: Uncertainty Assessment (SAR measurement)

Uncertainty of SAR measurement (2.4-6GHz) (*.ε&σ:≤±5%, DAK3.5, Tx:≈100% duty cycle) (v08)	1g SAR	10g SAR
Combined measurement uncertainty of the measurement system (k=1)	± 13.7%	± 13.6%
Expanded uncertainty (k=2)	± 27.4%	± 27.2%

	Error Description (2.4-6GHz) (v08)	Uncertainty Value	Probability distribution	Divisor	ci (1g)	ci (10g)	ui (1g)	ui (10g)	Vi, veff
A	Measurement System (DASY5)	v aiuc	uisu ibuuoii		(1g)	(10g)	(std. uncertainty)	(std. uncertainty)	
1	Probe Calibration Error	±6.55 %	Normal	1	1	1	±6.55 %	±6.55 %	∞
2	Axial isotropy Error	±4.7 %	Rectangular	√3	√0.5	√0.5	±1.9 %	±1.9 %	∞
3		±9.6 %	Rectangular	√3	√0.5	√0.5	±3.9 %	±3.9 %	∞
4		±4.7 %	Rectangular	√3	1	1	±2.7 %	±2.7 %	∞
5	Probe modulation response	±2.4 %	Rectangular	√3	1	1	±1.4%	±1.4 %	× ×
6	Sensitivity Error (detection limit)	±1.0 %	Rectangular	√3	1	1	±0.6 %	±0.6 %	∞
7	Boundary effects Error	±4.3%	Rectangular	√3	1	1	±2.5 %	±2.5 %	∞
8	Readout Electronics Error(DAE)	±0.3 %	Rectangular	√3	1	1	±0.3 %	±0.3 %	∞
9	Response Time Error	±0.8 %	Normal	1	1	1	±0.8 %	±0.8 %	∞
10	Integration Time Error (≈100% duty cycle)	±0 %	Rectangular	$\sqrt{3}$	1	1	0%	0%	∞
11	RF ambient conditions-noise	±3.0 %	Rectangular	$\sqrt{3}$	1	1	±1.7 %	±1.7 %	∞
12	RF ambient conditions-reflections	±3.0 %	Rectangular	√3	1	1	±1.7 %	±1.7 %	∞
13	Probe positioner mechanical tolerance	±3.3 %	Rectangular	√3	1	1	±1.9 %	±1.9 %	∞
14	Probe Positioning with respect to phantom shell	±6.7 %	Rectangular	$\sqrt{3}$	1	1	±3.9 %	±3.9 %	∞
15	Max. SAR evaluation (Post-processing)	±4.0 %	Rectangular	$\sqrt{3}$	1	1	±2.3 %	±2.3 %	∞
В	Test Sample Related								
16	Device Holder or Positioner Tolerance	±3.6 %	Normal	1	1	1	±3.6 %	±3.6 %	5
17	Test Sample Positioning Error	±5.0 %	Normal	1	1	1	±5.0%	±5.0 %	145
	Power scaling	±0%	Rectangular	$\sqrt{3}$	1	1	±0 %	±0 %	∞
19	Drift of output power (measured, <0.2dB)	±2.3%	Rectangular	$\sqrt{3}$	1	1	±2.9 %	±2.9 %	∞
C	Phantom and Setup								
20	Phantom uncertainty (shape, thickness tolerances)	±7.5 %	Rectangular	$\sqrt{3}$	1	1	±4.3 %	±4.3 %	∞
21	Algorithm for correcting SAR (e',σ: ≤5%)	±1.2 %	Normal	1	1	0.84	±1.2 %	±0.97 %	∞
22	Measurement Liquid Conductivity Error (DAK3.5)	±3.0 %	Normal	1	0.78	0.71	±2.3 %	±2.1 %	7
23		±3.1 %	Normal	1	0.23	0.26	±0.7 %	±0.8 %	7
24		±5.3 %	Rectangular	$\sqrt{3}$	0.78	0.71	±2.4 %	±2.2 %	∞
25	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	±0.9 %	Rectangular	$\sqrt{3}$	0.23	0.26	±0.1 %	±0.1 %	∞
-	Combined Standard Uncertainty						±13.7 %	±13.6 %	733
	Expanded Uncertainty (k=2)						±27.4 %	±27.2 %	

^{*.} Table of uncertainties are listed for ISO/IEC 17025.

SECTION 5: Operation of platform during testing

5.1 Operating modes for SAR testing

The EUT has IEEE 802.11b, g, a, n(20HT) and n(40HT) continuous transmitting modes. The frequency and the modulation used in the SAR testing are shown as a following.

Operation 1	mode	b	g	n20	n40	a	n20	n40	a	n20	n40	a	n20	n40	a	n20	n40
band			D	TS		U-1	NII-1(W52	2)	U-N	II-2A(W:	53)	U-1	NII-2C(W	(56)	U-NII-3(W58)		
Tx band [MHz]		2	412~246	52	2422 ~2452	5180~5240		5190, 5230	5260~5320		5270, 5310	5500~5700		5510 ~5670	5745~5825		5755, 5795
Bandwidth [MHz]		20	20	20	40	20	20	40	20 20		40	20	20	40	20	20	40
Max.power	[dBm]	14	14	14	13	13	13	13	13	13	13	13	13	13	13	13	13
Modulati	ion	DSSS	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM	OFDM
Data rate [N	/Ibps]	1	6	MCS0	MCS0	6	MCS0	MCS0	6	MCS0	MCS0	6	MCS0	MCS0	6	MCS0	MCS0
Frequency S	Body	*1	*1	*1	*1	*1	*1	*1	*1	*1	*1	*1	*1	*1	*1	*1	*1
tested A	Head	*2	*2	*2	*2	Reduced	Reduced	*2	Reduced	Reduced	*2	*2	*2	*2	*2	*2	*2
[MHz] R	Hand	*3	*3	*3	*3	*3	*3	*3	*3	*3	*3	*3	*3	*3	*3	*3	*3
							btool" mo								mathad	Dece/0	DEDMO"

Set Tx parameters which includes; 'Dand (2.4G/5G)', 'band width (20MHz/40MHz)', 'channel', 'Power', 'modulation method(DSSS/OFDM)', 'data rate', ''start/stop'' by host PC via SD card board.

"rftest" mode (for SAR test)

Set Tx parameters which includes; "antenna# (1)", "channel", "BW(0:20MHz, 1:40MHz)", "Power(dBm, 12 or 11)", "data rate (0: 1Mbps, 5:6Mbps, 14:MCS0)", "on/off(2:on/18:off)" by host PC via LAN cable.

(cont'd)

^{*.} This measurement uncertainty budget is suggested by IEEE Std.1528(2013) and determined by Schmid & Partner Engineering AG (DASY5 Uncertainty Budget). Per KDB 865664 D01 (v01r04) SAR Measurement 100 MHz to 6 GHz Section 2.8.1., when the highest measured SAR(1g) within a frequency band is < 1.5W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std.1528 (2013) is not required in SAR reports submitted for equipment approval.

Test report No.: 11355753S-A : 9 of 121 Page **Issued date** : December 2, 2016

FCC ID : AZDBM72065

5.1 Operating modes for SAR testing (cont'd)

SAR test reduction consideration

*1. [Table 1. Output power and Body-SAR test channel selection and Reported SAR(1g) [W/kg] (Results) and test reduction plan

1. I and 1. Outp	at ponici and bot	iy-54 iix icst ci	amma saccuoi	i ana reporta	Diricia, Mine (resum)	and use reduction plans	
802.11 Modes	b	g	n(20HT)	n(40HT)	a	n(20HT)	n(40HT)
Data rate [Mbps]	1 (lowest)	6 (lowest)	MCS0 (lowest)	MCS0 (lowest)	6 (lowest)	MCS0 (lowest)	MCS0 (lowest)
2.4GHz, Ch.	1/6/11	1/6/11	16/11	16/11			
Max. power [mW]	25/25/25	25/25/25	25/25/25	20/20/20			
Measured Ave. [mW]	18/17/16	18/17/ <mark>16</mark>	17/17/ <mark>16</mark>	15/15/14			
Reported SAR 1g	0.18 /0.29 /0.32	0.32 (*1)	0.32 (*1)	0.24 (*1)			
W52, Ch.					36/40/44/48	36/40/44/48	38/46
Max. power [mW]					20/20/20/20	20/20/20/20	20/20
Measured Ave. [mW]					15/15/16/15	15/15/16/15	15/ <mark>15</mark>
Reported SAR 1g					Reduced (W53:≤1.2W/kg)	0.39	0.42 / 0.35
W53, Ch.					52/56/60/64	52/56/60/64	54/62
Max. power [mW]					20/20/20/20	20/20/20/20	20/205
Measured Ave. [mW]					15/15/15/ <mark>16</mark>	16/16/ <mark>16</mark> /16	15 / <mark>15</mark>
Reported SAR 1g					0.31	0.41/ <mark>0.40</mark> / <mark>0.41</mark>	0.29 / 0.39
W56, Ch.					100/116/120/140	100/116/120/140	102/110/118/134
Max. power [mW]					20/20/20/20	20/20/20/20	20/20/20/20
Measured Ave. [mW]					18/19/18/ <mark>19</mark>	18/ <mark>19</mark> / <mark>18</mark> / <mark>19</mark>	18/ <mark>17</mark> / <mark>18/20</mark>
Reported SAR 1g					0.31	0.27 / <mark>0.30</mark> / <mark>0.32</mark> / <mark>0.45</mark>	0.28 / <mark>0.29</mark> / <mark>0.32</mark> / <mark>0.24</mark>
W58, Ch.					149/157/165	149/157/165	151/159
Max. power [mW]					20/20/20	20/20/20	20/20
Measured Ave. [mW]					17/15/ <mark>15</mark>	16/ <mark>15</mark> /15	16/ <mark>14</mark>
Reported SAR 1g					0.66	0.51 / 0.42 / 0.67	0.32 / 0.57

*2. [Table 2. Output power and Head-SAR test channel selection and Reported SAR(1g) [W/kg] (Results) and test reduction plan

802.11 Modes	b	g	n(20HT)	n(40HT)	a	n(20HT)	n(40HT)
Data rate [Mbps]	1 (lowest)	6 (lowest)	MCS0 (lowest)	MCS0 (lowest)	6 (lowest)	MCS0 (lowest)	MCS0 (lowest)
2.4GHz, Ch.	1/6/11	1/6/11	16/11	16/11			
Max. power [mW]	25/25/25	25/25/25	25/25/25	20/20/20			
Measured Ave. [mW]	18/ <mark>17</mark> /16	18/17/ <mark>16</mark>	17/17/ <mark>16</mark>	15 / 15 / <mark>14</mark>			
Reported SAR 1g	0.24 /0.31 /0.35	0.34	0.34	0.26			
W52, Ch.					36/40/44/48	36/40/44/48	38/46
Max. power [mW]					20/20/20/20	20/20/20/20	20/20
Measured Ave. [mW]					15/15/16/15	15/15/16/15	15/ <mark>15</mark>
Reported SAR 1g					Reduced (W53:≤1.2W/kg)	Reduced (W53:≤1.2W/kg)	0.39 / 0.38
W53, Ch.					52/56/60/64	52/56/60/64	54/62
Max. power [mW]					20/20/20/20	20/20/20/20	20/205
Measured Ave. [mW]					15/15/15/16	16/16/16/16	15 / <mark>15</mark>
Reported SAR 1g					Reduced (n(40HT)::≤0.8W/kg, I	Head SAR(1g) < Body SAR(1g)	0.26 / 0.39
W56, Ch.					100/116/120/140	100/116/120/140	102/110/118/134
Max. power [mW]					20/20/20/20	20/20/20/20	20/20/20/20
Measured Ave. [mW]					18/ <mark>19</mark> / <mark>18</mark> / <mark>19</mark>	18/19/18/ <mark>19</mark>	18/ <mark>17</mark> / <mark>18/20</mark>
Reported SAR 1g					0.23 / <mark>0.28</mark> / <mark>0.29</mark> / <mark>0.42</mark>	0.39	0.24 / <mark>0.26</mark> / <mark>0.28</mark> / <mark>0.30</mark>
W58, Ch.					149/157/165	149/157/165	151/159
Max. power [mW]					20/20/20	20/20/20	20/20
Measured Ave. [mW]					17/15/ <mark>15</mark>	<mark>16</mark> / <mark>15</mark> / <mark>15</mark>	16/ <mark>14</mark>
Reported SAR 1g					0.50	0.51 / <mark>0.58</mark> / <mark>0.66</mark>	0.51 / 0.61

*3. [Table 3. Output power and Hand-SAR test channel selection and Reported SAR(10g) [W/kg] (Results) and test reduction plan

802.11 Modes	b	g	n(20HT)	n(40HT)	a	n(20HT)	n(40HT)
Data rate [Mbps]	1 (lowest)	6 (lowest)	MCS0 (lowest)	MCS0 (lowest)	6 (lowest)	MCS0 (lowest)	MCS0 (lowest)
2.4GHz, Ch.	1/6/11	1/6/11	16/11	16/11			
Max. power [mW]	25/25/25	25/25/25	25/25/25	20/20/20			
Measured Ave. [mW]	18/ <mark>17</mark> /16	18/17/ <mark>16</mark>	17/17/ <mark>16</mark>	15 / 15 / <mark>14</mark>			
Reported SAR 10g	0.35 / <mark>0.50</mark> / <mark>0.62</mark>	<mark>0.62</mark>	<mark>0.62</mark>	<mark>0.47</mark>			
W52, Ch.					36/40/44/48	<i>36/40/44/48</i>	38/46
Max. power [mW]					20/20/20/20	20/20/20/20	20/20
Measured Ave. [mW]					<mark>15</mark> /15/ <mark>16</mark> / <u>15</u>	15/15/16/15	15/ <mark>15</mark>
Reported SAR 10g					<mark>0.85/</mark>	Reduced (W53:≤3w/kg)	<mark>0.83</mark> / <mark>0.90</mark>
W53, Ch.					52/56/60/64	52/56/60/64	54/62
Max. power [mW]					20/20/20/20	20/20/20/20	20/205
Measured Ave. [mW]					15/15/ <mark>15</mark> /16	16/16/16/ <mark>16</mark>	15 / <mark>15</mark>
Reported SAR 10g					<mark>0.87/</mark>	<mark>0.72</mark>	<mark>0.80</mark> / <mark>0.61</mark>
W56, Ch.					100/116/120/140	100/116/120/140	102/110/118/134
Max. power [mW]					20/20/20/20	20/20/20/20	20/20/20/20
Measured Ave. [mW]					18/19/18/19	18/ <mark>19</mark> / <mark>18</mark> /19	18/ <mark>17</mark> / <mark>18</mark> / <mark>20</mark>
Reported SAR 10g					0.72	<mark>0.74</mark> / <mark>0.45</mark> / <mark>0.60</mark> / 0.61	0.74 / <mark>0.68</mark> / <mark>0.51</mark> / <mark>0.37</mark>
W58, Ch.					149/157/165	149/157/165	151/159
Max. power [mW]					20/20/20	20/20/20	20/20
Measured Ave. [mW]					17/15/15	16/15/ <mark>15</mark>	<mark>16</mark> / <mark>14</mark>
Reported SAR 10g					0.64 / <mark>0.65</mark> / <mark>0.75</mark>	0.62	0.53 / <mark>0.53</mark>

^{*.} Ch: Chamnel, Max: Maximum power in specification, AT: Antenna terminal conducted average power measured, SAR(1g): Reported SAR(1g) [W/kg] with tuned-up *1. (KDB248227 D01) Since the reported SAR(1g) value of 11b mode was ≤0.8 W/kg, SAR test was only applied the worst SAR channel of 11b for OFDM mode.

*. The SAR testing was applied to lower, middle and upper channels for the worst SAR condition in each operation band.

Test report No.: 11355753S-A
Page: 10 of 121
Issued date: December 2, 2016

FCC ID : AZDBM72065

SECTION 6: Confirmation before testing

6.1 Assessment for the antenna terminal port conducted power of platform (Worst data rate, worst channel determination)

*. Antenna gain (peak): 3.0 dBi (2.4~2.5 GHz)/4.5 dBi (5.15~5.85 GHz)

*. Antenna gain (peak): 3.0 dBi (2.4~2.5 GHz)/4.5 dBi (5.15~5								average po	ower	Power tole	erance & cor	rection	Day	
Mode	Frequency	Data rate	Power Setting	Duty cycle	Duty factor	scaled		sult	PAR	Target &	Deviation	Tune-up	Power Tune-	Remarks
wiode	n av al ess	****	Ū	,		factor			[dB]	(+)tolerance	from max	factor	up?	IXIIIAI NS
	[MHz] CH	[Mbps]	[dBm]	[%]	[dB]	[-]	[dBm]	[mW]		[dBm]	(-2≤x<0)[dB]	[-]	•	
11b	2412 1 2437 6	<u>l</u>	12	100	0.00	×1.00 ×1.00	12.50 12.30	17.78 16.98	2.56	12.0+2 12.0+2	-1.50 -1.70	×1.41 ×1.48	default default	-
110	2462 11	} 	12 12	100	0.00	×1.00	12.07	16.11	2.62	12.0+2	-1.70 -1.93	×1.46 ×1.56	default	
	2412 1	6	12	100	0.00	×1.00	12.44	17.54	9.67	12.0+2	-1.56	×1.43	default	<u> </u>
11g	2437 6	6	12	100	0.00	×1.00	12.37	17.26	9.74	12.0+2	-1.63	×1.46	default	
	2462 11	6	12	100	0.00	×1.00	12.03	15.96	9.84	12.0+2	-1.97	×1.57	default	-
11n	2412 1	MCS0	12	100	0.00	×1.00	12.36	17.22	8.56	12.0+2	-1.64	×1.46	default	_
(20HT)	2437 6	MCS0	12 12	100	0.00	×1.00	12.23	16.71	8.55	12.0+2	-1.77	×1.50	default	-
(-)	2462 11	MCS0		100	0.00	×1.00	12.03	15.96	8.12	12.0 +2	-1.97	×1.57	default	-
11n	2422 3 2437 6	MCS0 MCS0	11 11	100	0.00	×1.00 ×1.00	11.81 11.81	15.17 15.17	8.91 8.83	11.0+2 11.0+2	-1.19 -1.19	×1.32 ×1.32	default default	-
(40HT)	2452 9	MCS0	111	100	0.00	×1.00	11.31	13.52	8.57	11.0+2	-1.19 -1.69	×1.48	default	
	5180 36	6	11	100	0.00	×1.00	11.86	15.35	9.52	11.0+2	-1.14	×1.30	default	-
	5200 40	6	11	100	0.00	×1.00	11.68	14.72	9.46	11.0+2	-1.32	×1.36	default	-
	5220 44	6	11	100	0.00	×1.00	11.95	15.67	9.65	11.0+2	-1.05	×1.27	default	-
	5240 48	6	11	100	0.00	×1.00	11.78	15.07	9.47	11.0+2	-1.22	×1.32	default	-
	5260 52	6	11	100	0.00	×1.00	11.89	15.45	9.35	11.0+2	-1.11	×1.29	default	-
	5280 56	66	11	100	0.00	×1.00	11.86	15.35	9.50	11.0+2	-1.14	×1.30	default	-
11-	5300 60 5320 64	66	. 11 11	100 100	0.00	×1.00 ×1.00	11.81 12.00	15.17 15.85	9.54 9.78	11.0+2 11.0+2	-1.19 -1.00	×1.32 ×1.26	default	-
11a	5500 100	6	11	100	0.00	×1.00	12.60	18.20	9.78	11.0+2	-0.40	×1.26	default default	-
	5580 116	6	111	100	0.00	×1.00	12.68	18.54	9.20	11.0+2	-0.32	×1.08	default	
	5600 120	ĕ	11	100		×1.00	12.59	18.16	9.26	11.0+2	-0.41	×1.10	default	
	5700 140	6	11	100	0.00	×1.00	12.84	19.23	9.12	11.0+2	-0.16	×1.04	default	-
	5745 149	6	11	100	0.00	×1.00	12.26	16.83	9.06	11.0+2	-0.74	×1.19	default	-
	5785 157	6	11	100	0.00	×1.00	11.84	15.28	9.29	11.0+2	-1.16	×1.31	default	-
ļ	5825 165	6	11	100	0.00	×1.00	11.76	15.00	9.20	11.0+2	-1.24	×1.33	default	-
	5180 36 5200 40	MCS0 MCS0	11	100	0.00	×1.00	11.89 11.74	15.45	8.70	11.0+2	-1.11 -1.26	×1.29	default	-
	5220 44	MCS0	11 11	100	0.00	×1.00 ×1.00	12.00	14.93 15.85	8.73 8.87	11.0+2 11.0+2	-1.26 -1.00	×1.34 ×1.26	default default	-
	5240 48	MCS0	111	100	0.00	×1.00	11.78	15.07	8.86	11.0+2	-1.22	×1.32	default	<u> </u>
	5260 52	MCS0	11	100	0.00	×1.00	12.02	15.92	8.82	11.0+2	-0.98		default	
	5280 56	MCS0	11	100	0.00	×1.00	12.04	16.00	8.88	11.0+2	-0.96	×1.25 ×1.25	default	
11n	5300 60	MCS0	11	100	0.00	×1.00	11.95	15.67	8.59	11.0+2	-1.05	×1.27	default	-
(20HT)	5320 64	MCS0	11	100	0.00	×1.00	12.09	16.18	8.82	11.0+2	-0.91	×1.23	default	-
(20111)	5500 100	MCS0	11	100	0.00	×1.00	12.48	17.70	8.68	11.0+2	-0.52	×1.13	default	-
	5580 116	MCS0	11	100	0.00	×1.00	12.72	18.71	8.45	11.0+2	-0.28	×1.07	default	-
	5600 120 5700 140	MCS0 MCS0	11	100 100	0.00	×1.00 ×1.00	12.64 12.84	18.37 19.23	8.61 8.53	11.0+2 11.0+2	-0.36 -0.16	×1.09 ×1.04	default	-
	5745 149	MCS0	11 11	100	0.00	×1.00	12.14	16.37	8.55	11.0+2	-0.16	×1.04	default default	-
	5785 157	MCS0	11	100	0.00	×1.00	11.79	15.10	8.44	11.0+2	-1.21	×1.32	default	
	5825 165	MCS0	11	100	0.00	×1.00	11.74	14.93	8.42	11.0+2	-1.26	×1.34	default	-
	5190 38	MCS0	11	100	0.00	×1.00	11.86	15.35	9.10	11.0+2	-1.14	×1.30	default	-
	5230 46	MCS0	11	100	0.00	×1.00	11.88	15.42	9.02	11.0+2	-1.12	×1.29	default	
	5270 54	MCS0	11	100	0.00	×1.00	11.89	15.45	8.83	11.0+2	-1.11	×1.29	default	-
	5310 62	MCS0	11	100	0.00	×1.00	11.70	14.79	8.85	11.0+2	-1.30	×1.35	default	
11n	5510 102	MCS0	11	100	0.00	×1.00	12.43	17.50	8.90	11.0+2	-0.57	×1.14	default	-
(40HT)	5550 110 5590 118	MCS0 MCS0	11 11	100	0.00	×1.00 ×1.00	12.36 12.54	17.22 17.95	8.81 8.84	11.0+2 11.0+2	-0.64 -0.46	×1.16	default	-
	5670 134	MCS0	11. 11	100	0.00	×1.00 ×1.00	12.54	17.95	8.62	11.0+2	-0.46 -0.08	×1.11 ×1.02	default default	- L
	5745 149	MCS0	11	100	0.00	×1.00	12.15	16.41	8.36	11.0+2	-0.08	×1.02	default	<u> </u>
	5825 165	MCS0	11	100		×1.00	11.58	14.39	8.52	11.0+2	-1.42	×1.39	default	-

*	Preliminary tests were performed in different data rate and data rate associated with the highest power were chosen for full test in following tables.

<u> </u>	Data rate (D/R) vs Time average power (dBm)														
	(2112) 577			I						I					
116	(2412MHz)	11g(24	12MHz)	11n(20H1) (2412MHz)	11n(40H1) (2422MHz)	11a(5	500MHz)	11n(20H1) (5500MHz)	11n(40HT) (5510MHz)			
Duty	cycle: 100%	Duty cyc	ele: 100%	Duty cy	cle: 100%	Duty cy	/cle: 100%	Duty cy	/cle: 100%	Duty cy	/cle: 100%	Duty cy	cle: 100%		
D/R	Power	D/R Power		D/R	Power	D/R	Power	D/R Power		D/R	Power	D/R	Power		
1	12.50	6	12.44	MCS0	12.36	6	11.81	MCS0	12.60	MCS0	12.48	MCS0	12.49		
2	12.48	9	12.34	MCS1	12.12	9	11.70	MCS1	12.54	MCS1	12.46	MCS1	12.42		
5.5	12.36	12	12.30	MCS2	12.32	12	11.62	MCS2	12.55	MCS2	12.45	MCS2	12.39		
11	12.34	18	12.38	MCS3	12.34	18	11.58	MCS3	12.56	MCS3	12.46	MCS3	12.35		
		24	12.23	MCS4	12.31	24	11.68	MCS4	12.57	MCS4	12.45	MCS4	12.37		
	36		12.24	MCS5	12.35	36	11.68	MCS5	12.44	MCS5	12.45	MCS5	12.36		
		48	12.34	MCS6	12.33	48	11.64	MCS6	12.54	MCS6	12.45	MCS6	12.41		
		56	12.29	MCS7	12.32	56	11.59	MCS7	12.39	MCS7	12.46	MCS7	12.36		

Test report No.: 11355753S-A
Page: 11 of 121
Issued data: 1 December 2, 20

FCC ID

Issued date : December 2, 2016

: AZDBM72065

*. The EUT (Wireless LAN module) used in SAR test (serial number: 42) is identical with the one in which EMC (Radio) was measured.

*. PAR: Peak average ratio ("Peak power"-"Average power", in dBm), CH: channel, Max: Maximum.

*. Calculating formula: Time average power-result: Results (dBm) = (P/M Reading, dBm)+(Cable loss, dB)+(Attenuator, dB)+(duty factor, dB)

Duty factor: (duty factor, dBm) = 10 × log (100/(duty cycle, %))

Deviation form max.: (Power deviation, dB) = (results power (average, dBm)) - (Max.-specification output power (average, dBm)) Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%)/(duty cycle, %) Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = $1/(10 \land (\text{`Coeviation from max., dB''}/10))$

- *. Date measured: September 30, 2016 / Measured by: Hiroshi Naka / Place: preparation room of No. 7 shielded room. (24 deg.C. / 58 %RH)
- *. Uncertainty of antenna port conducted test; Power measurement uncertainty above 1GHz for this test was: (±) 0.76 dB(Average)/(±) 0.79 dB(Peak).
- *. Uncertainty of antenna port conducted test; Duty cycle and time measurement: (\pm) 0.012 %.

Test report No.: 11355753S-A
Page: 12 of 121
Issued date: December 2, 2016

FCC ID : AZDBM72065

SECTION 7: SAR Measurement results

Measurement date: October 19 ~ November 21, 2016 Measurement by: Hiroshi Naka

7.1 Liquid measurement

T4					Liq	uid paraı	neters (*a	1)				ΔSA	AR Coeffic	cients(*b)	
Target	Liquid	P	Permittivi	ty (εr) [-		(Conductiv	ity [S/m	1]	Т	D4b	ΔS	AR	G .	Data magginged
Frequency [MHz]	type	Т4	Meas	ured	T ::4	T4	Meas	ured	T ::4	Temp.	Depth	1g	10g	Correction	Date measured
[MITZ]		Target	Meas.	Δεr [%]	Limit	Target	Meas.	Δσ [%]	Limit	[deg.C.]	[mm]	[%]	{%]	required?	
2412		52.75	50.48	-4.3	-5%≤	1.914	1.954	+2.1	00/ <			+2.00	+1.24	not required.	
2437	Body	52.72	50.39	-4.4		1.938	1.963	+2.4	0%≤	22.4	152	+2.13	+1.32	not required.	November 15, 2016,
2452	Bouy	52.70	50.33	-4.5	ET-meas. $\leq 0\%$	1.953	2.005	+2.7	σ-meas. ≤+5%	22.4	132	+2.28	+1.40	not required.	before SAR test
2462		52.68	50.29	-4.5	≥0/0	1.967	2.015	+2.4	S 13/0			+2.19	+1.35	not required.	
5180		49.04	47.18	-3.8		5.276	5.416	+2.7				+0.70	+0.83	not required.	
5190		49.03	47.21	-3.7		5.288	5.414	+2.4				+0.69	+0.82	not required.	
5220		48.99	47.04	-4.0		5.323	5.485	+3.1				+0.72	+0.86	not required.	
5230		48.99	46.91	-4.2	-5%≤	5.334	5.483	+2.8	0%≤			+0.77	+0.93	not required.	
5240	Body	48.96	46.96	-4.1	ET-meas.	5.346	5.489	+2.7	σ-meas.	23.8	151	+0.74	+0.90	not required.	November 8~9, 2016,
5260	Body	48.93	46.93	-4.1	≤0%	5.369	5.501	+2.5	≤+5%	25.0	131	+0.75	+0.92	not required.	before SAR test (*1)
5270		48.92	47.01	-3.9	_0/0	5.381	5.535	+2.9	,			+0.70	+0.85	not required.	
5300		48.88	46.98	-3.9		5.416	5.539	+2.3				+0.71	+0.88	not required.	
5310		48.87	46.83	-4.2		5.428	5.561	+2.5				+0.76	+0.94	not required.	
5320		48.85	46.88	-4.0		5.439	5.601	+3.0				+0.71	+0.88	not required.	
5500		48.61	46.54	-4.3		5.650	5.786	+2.4				+0.75	+0.98	not required.	
5510		48.59	46.53	-4.3		5.661	5.852	+3.4				+0.71	+0.93	not required.	
5550		48.54	46.42	-4.4 -4.5	-5%≤	5.708	5.855 5.921	+2.6	0%≤			+0.76	+1.00	not required.	N. 1 0.2016
5580 5590	Body	48.50 48.49	46.33 46.40	-4.5 -4.3	ET-meas.	5.743 5.755	5.948	+3.1	σ-meas.	23.8	151	+0.75	+1.01		November 8, 2016,
5600		48,47	46.39	-4.3	≤0%	5.766	5.978	+3.7	≤+5%			+0.69	+0.94	not required.	before SAR test
5670		48.38	46.24	-4 .5		5.848	6.057	+3.6				+0.09	+0.94	not required.	
5700		48,34	46.29	-4.4		5.883	6.092	+3.5				+0.72	+0.95	not required.	
5745		48.27	46.07	-4.6		5.936	6.143	+3.5				+0.75	+1.04	not required.	
5755		48.26	46.23	-4.2	-5%≤	5.947	6.179	+3.9	0%≤			+0.66	+0.94	not required.	
5785	Body	48.22	46.04	-4.5	ET-meas.	5.982	6.209	+3.8	σ-meas.	23.8	151	+0.73	+1.03	not required.	November 7, 2016,
5795	Bouj	48.21	46.07	-4.4	≤0%	5.994	6.221	+3.8	≤+5%	25.0	101	+0.71	+1.01	not required.	before SAR test
5825		48.17	46.07	-4.4		6.029	6.312	+4.7				+0.65	+0.96	not required.	
2412		39.27	37.91	-3.5	-5%≤	1.766	1.823	+3.2	0%≤			+2.35	+1.40	not required.	0 + 1 - 10 2016
2437	Head	39.22	37.84	-3.5	ET-meas.	1.788	1.850	+3.5	σ-meas.	23.4	152	+2.47	+1.47	not required.	October 19, 2016,
2462		39.18	37.67	-3.9	≤0%	1.813	1.874	+3.3	≤+5%			+2.47	+1.48	not required.	before SAR test
2412		39.27	38.05	-3.1	-5%≤	1.766	1.832	+3.7	0%≤			+2.51	+1.48	not required.	
2437	Head	39.22	37.90	-3.4		1.788	1.858	+3.9		23.8	152	+2.64	+1.56	not required.	November 21, 2016,
2452	Heau	39.20	37.85	-3.4	ET-meas. ≤ 0%	1.802	1.870	+3.8	σ -meas. ≤+5%	23.6	132	+2.58	+1.52	not required.	before SAR test
2462		39.18	37.82	-3.5	3070	1.813	1.884	+3.9	= 1370			+2.65	+1.56	not required.	
5190		36.00	35.89	-0.3	-5%≤	4.645	4.477	-3.6	-5%≤			+0.15	+0.26	not required.	
5230	Head	35.95	35.86	-0.3	ET-meas.	4.686	4.522	-3.5	σ-meas.	22.8	151	+0.15	+0.25	not required.	November 16~17, 2016,
5270	11000	35.91	35.75	-0.4	≤+5%	4.727	4.590	-2.9	≤+5%	22.0	131	+0.18	+0.27	not required.	before SAR test (*2)
5310		35.86	35.74	-0.3		4.768	4.606	-3.4				+0.18	+0.26	not required.	
5500		35.64	35.43	-0.6		4.963	4.777	-3.8				+0.28	+0.34	not required.	
5510		35.63	35.47	-05		4.973	4.800	-3.5				+0.24	+0.28	not required.	
5550		35.59	35.55	-0.1	-5%≤	5.014	4.866	-3.0	-5%≤			+0.15	+0.16	not required.	N. 1 10 2016
5580	Head	35.55	35.40	-0.4	ET-meas.	5.045	4.887	-3.1	σ-meas.	22.8	151	+0.22	+0.25	not required.	November 18, 2016,
5590		35.54	35.32	-0.6 -0.7	≤+5%	5.055	4.860 4.899	-3.9 -3.3	≤+5%			+0.29	+0.33	not required.	before SAR test
5600 5670		35.53	35.29 35.22	-0.7		5.065 5.137	4.899	-3.3				+0.28	+0.31	not required.	
5700		35.45 35.41	35.16	-0.7		5.168	5.014	-3.0	-			+0.28	+0.28	not required.	
5745		35.36	35.10	-0.7		5.108	5.014	-3.5	-			+0.28	+0.29	not required.	
5755		35.35	35.29	-0.2	-5%≤	5.224	5.054	-3.3	-5%≤			+0.18	+0.16	not required.	
5785	Head	35.32	35.16	-0.2	-370 ≤ ET-meas.	5.255	5.039	-4.1	-370 ≤ σ-meas.	22.8	151	+0.13	+0.16	not required.	October 21, 2016,
5795	1 ICAU	35.31	35.10	-0.3	≤+5%	5.265	5.053	4.0	≤+5%	22.0	1.01	+0.27	+0.20	not required.	before SAR test
5825	1	35.27	35.16	-0.3	570	5.296	5.059	-4.5	- 13/0			+0.26	+0.21	not required.	

^{5825 | 35.27 | 35.16 | -0.3 | 5.296 | 5.059 | -4.5 | +0.26 | +0.21 |} not required. |
*1. On Nov.9, it was within 24 hours from measurement on Nov. 8 and same liquid temperature, so measured parameters of Nov.8 were used continuously

^{*2.} On Nov.17, it was within 24 hours from measurement on Nov. 16 and same liquid temperature, so measured parameters of Nov.16 were used continuously

^{*}a. The target value is a parameter defined in Appendix A of KDB865664 D01 (v01r04), the dielectric parameters suggested for head and body tissue simulating liquid are given at 2000, 2450, 3000 and 5800MHz. (*.The parameters of the head liquid are the same value as IEEE Std. 1528-2013.) Parameters for the frequencies between 2000-3000, 3000-5800MHz were obtained using linear interpolation. Above 5800MHz were obtained using linear extrapolation.

^{*}b. Calculating formula: $\Delta SAR(1g) = Cer \times \Delta er + C\sigma \times \Delta \sigma, Cer = 7.854E + 4x^3 + 9.402E - 3x^2 - 2.742E - 2x + 60.2026 / C\sigma = 9.804E - 3x^3 - 8.661E - 2x^2 + 2.981E - 2x + 10.7829$ $\Delta SAR(10g) = Cer \times \Delta er + C\sigma \times \Delta \sigma, Cer = 3.456 \times 10^{-3} \times x^3 - 3.531 \times 10^{-2} \times x^2 + 7.675 \times 10^{-2} \times x^2 + 0.1860 / C\sigma = 4.479 \times 10^{-3} \times x^3 - 1.586 \times 10^{-2} \times x^2 + 0.7717$

Test report No.: 11355753S-A
Page : 13 of 121
Issued date : December 2, 2016

FCC ID : AZDBM72065

7.2 SAR measurement results (2.4GHz band, SAR for Body/Head/Hand)

[Measured and Reported (Scaled) SAR results]

			SARm	easur	emen	t results												
	Freg.	Data	platfo	rm set	tup		4R [W/I	O1	SAR		y cycle		put av			SAR		
Mode	[MHz]	rate		Gap	Bty.	Max. va		ulti-peak	plot#in		ection		er corr		Corrected			
	(Channel)	[Mbps]	Position	[mm]	ID	Meas.	ASAR [%]	ASAR corrected	Appendix 2-2	Duty [%]	Duty scaled	Meas. [dBm].	Max.	Tune-up factor	(Scaled) (*b)	(1g /10g)	limit	Remarks
Sten 1a	: 2.4GHz I	Rand (F	Rody-SAI	R. by l	ody l	ianid)	[/0]	corrected		[/4]	Schica	[diDitij.	[CIDIII]	nector	(0)	8,		
	2412(1)	(=		0	352	0.125	+2.00	n/a (*a)	Plot 1a-1	100	×1.00	12.50	14	×1.41	0.176	1g	1.6	_
	2437(6)		Right	0	352	0.194	+2.13	n/a (*a)	Plot 1a-2	100	×1.00	12.30	14	×1.48	0.287	1g	1.6	-
11b	2462(11)	1		0	352	0.205	+2.19	n/a (*a)	Plot 1a-3	100	×1.00	12.07	14	×1.56	0.320	1g	1.6	body-worst,2.4GHz
	2462(11)		Front	0	351	0.010	+2.19	n/a (*a)	Plot 1a-4	100	×1.00	12.07	14	×1.56	0.016	1g	1.6	-
11g	2462(11)	6		0	352	0.202	+2.19	n/a (*a)	Plot 1a-5	100	×1.00	12.03	14	×1.57	0.317	1g	1.6	-
n (20HT)	2462(11)	MCS0	Right	0	352	0.201	+2.19	n/a (*a)	Plot 1a-6	100	×1.00	12.01	14	×1.58	0.318	1g	1.6	-
n (40HT)	2452(9)	MCS0		0	352	0.162	+2.28	n/a (*a)	Plot 1a-7	100	×1.00	11.31	13	×1.48	0.240	1g	1.6	-
Step 1b	: 2.4GHz l	Band (F	lead-SAI	R, by l	head l	iquid)							•	•				
	2412(1)			0	350	0.172	+2.51	n/a (*a)	Plot 1b-1	100	×1.00	12.50	14	×1.41	0.243	1g	1.6	-
11b	2437(6)	1	Right	0	350	0.212	+2.64	n/a (*a)	Plot 1b-2	100	×1.00	12.30	14	×1.48	0.314	1g	1.6	-
110	2462(11)	1		0	350	0.223	+2.65	n/a (*a)	Plot 1b-3	100	×1.00	12.07	14	×1.56	0.348	1g	1.6	head-worst,2.4GHz
	2462(11)		Front	0	350	0.014	+2.65	n/a (*a)	Plot 1b-4	100	×1.00	1207	14	×1.56	0.022	1g	1.6	1
11g	2462(11)	6		0	350	0.218	+2.65	n/a (*a)	Plot 1b-5	100	×1.00	12.03	14	×1.57	0.342	1g	1.6	
n (20HT)	2462(11)	MCS0	Right	0	350	0.218	+2.65	n/a (*a)	Plot 1b-6	100	×1.00	12.01	14	×1.58	0.344	1g	1.6	-
n (40HT)	2452(9)	MCS0		0	351	0.175	+2.58	n/a (*a)	Plot 1b-7	100	×1.00	11.31	13	×1.48	0.259	1g	1.6	-
Step 1c	: 2.4GHz I	Band (H	Iand-SAI	R, by l	body l	1 /												
	2412(1)			0	350	0.252	+1.24	n/a (*a)	Plot 1c-1	100	×1.00	12.50	14	×1.41	0.355	10g	4	-
11b	2437(6)	1		0	350	0.336	+1.32	n/a (*a)	Plot 1c-2	100	×1.00	12.30	14	×1.48	0.497	10g	4	-
	2462(11)		Back	0	350	0.394	+1.35	n/a (*a)	Plot 1c-3	100	×1.00	12.07	14	×1.56	0.615	10g	4	-
11g	2462(11)	6	Dack	0	350	0.394	+1.35	n/a (*a)	Plot 1c-4	100	×1.00	12.03	14	×1.57	0.619	10g		hand-worst,2.4GHz
n (20HT)	2462(11)	MCS0		0	350	0.392	+1.35	n/a (*a)	Plot 1c-5	100	×1.00	12.03	14	×1.57	0.617	10g	4	
n (40HT)	2452(9)	MCS0		0	350	0.317	+1.40	n/a (*a)	Plot 1c-6	100	×1.00	11.31	13	×1.48	0.469	10g	4	-

Notes:

- * Gap: It is the separation distance between the platform outer surface and the bottom outer surface of phantom; Freq.: Frequency; Max.: Maximum; Meas.: Measured value; n/a: not applied; Bty.ID: Battery ID (*. Battery ID No.350, 351 and 352 are same. Refer to Appendix 1 for more detail.)
- *. During test, the platform was operated with full charged battery and was connected a control interface cable to host PC.

*. Calibration frequency of the SAR measurement probe (and used conversion factors)

Liquid	SAR test frequency	Probe calibration frequency	Validity	Conversion factor	Uncertainty
Body	2412, 2437, 2452, 2462 MHz	2450 MHz	within ±50MHz of calibration frequency	7.30	±12.0%
Head	2412, 2437, 252, 2462 MHz	2450 MHz	within ±50MHz of calibration frequency	7.15	±12.0%

^{*} The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Calculating formula: $\triangle SAR$ corrected SAR (W/kg) = (Meas. SAR (W/kg)) × (100 - ($\triangle SAR$ (%))/100

*b. Calculating formula: Reported SAR $(W/kg) = (Measured SAR (W/kg)) \times (Duty scaled) \times (Tune-up factor)$

Duty scaled = Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%)/(duty cycle, %) Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor [-] = $1/(10^{\circ}(\text{"Deviation from max., dB"}/10))$

(Clause 5.2, 2.4GHz SAR Procedures for 2.4GHz band DSSS and OFDM, in KDB248227 D01 (v02r02))

5.2.1 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel (section 3.1) for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.
- 5.2.2 2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3, including sub-sections). SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.
- *. Result of hand SAR was judged after "0.8 W/kg" in the document above-mentioned was changed for "2 W/kg" and "1.2 W/kg" in the document above-mentioned was changed for "3 W/kg".

^{*}a. Since the calculated Δ SAR values of the tested liquid had shown positive correction, the measured SAR was not converted by Δ SAR correction.

Test report No. : 11355753S-A Page : 14 of 121 Issued date : December 2, 2016

FCC ID : AZDBM72065

7.3 SAR measurement results (5GHz band, SAR for Body/Head/Hand)

[Measured and Reported (Scaled) SAR results]

			SAR m	easui	remen	t results						R	eporte	d SAR [W/kg]			
Freq. Data		platfo	platform set					SAR	Duty cycle			put ave		SAR	SAR			
Mode	[MHz]	rate	Dooldon	Gap	Bty.	Max. va			plot#in Appendix		ection	power correction					SAR limit	
	(Channel)	[Mbps]	Position	[mm]		Meas.	ASAR [%]	ASAR corrected	2-2	Duty [%]	Duty scaled	Meas. [dBm].	Max. [dBm]	Tune-up factor	(Scaled) (*b)	(1g /10g)	шш	Remarks
Sten 2a	a: W52/53 I	Band (F	Body-SAF	R. by	body l	iauid)	[/0]	corrected		[/0]	scatcu	[uDiii].	lanii	iactor	(0)	- 8/		
	5270(54)	(-		0	351	0.226	+0.70	n/a (*a)	Plot 2a-1	100	×1.00	11.89	13	×1.29	0.292	1g	1.6	-
	5310(62)		Diaht	0	351	0.291	+0.76	n/a (*a)	Plot 2a-2	100	×1.00	11.70	13	×1.35	0.393	1g	1.6	
n (40HT)	5230(46)	MCS0	Right	0	351	0.270	+0.77	n/a (*a)	Plot 2a-3	100	×1.00	11.88	13	×1.29	0.348	1g	1.6	-
	5190(38)			0	351	0.326	+0.69	n/a (*a)	Plot 2a-4	100	×1.00	11.86	13	×1.30	0.424	1g	1.6	body-worst, W52.
	5270(54)		Front	0	350	0.017	+0.70	n/a (*a)	Plot 2a-5	100	×1.00	11.89	13	×1.29	0.022	1g	1.6	(Patient side)
11a	5320(64)	6		0	352	0.244	+0.71	n/a (*a)	Plot 2a-6	100	×1.00	12.00	13	×1.26	0.307	1g	1.6	a < n(20HT)
	5320(64)			0	352	0.332	+0.71	n/a (*a)	Plot 2a-7	100	×1.00	12.09	13	×1.23	0.408	1g	1.6	body-worst, W53.
n (20HT)	5300(60)	MCS0	Right	0	352	0.313	+0.71	n/a (*a)	Plot 2a-8	100	×1.00	11.95	13	×1.27	0.398	1g	1.6	-
(' /	5260(52)			0	352	0.324	+0.75	n/a (*a)	Plot 2a-9	100	×1.00	12.02	13	×1.25	0.405	1g	1.6	-
C4 21	5180(36)	D1 (I	I J CAI	0	352	0.300	+0.70	n/a (*a)	Plot 2a-10	100	×1.00	11.89	13	×1.29	0.387	lg	1.6	-
Step 2t	5270(54)	Bana (1	1eau-SAI	0	352	0.198	+0.18	n/a (*a)	Plot 2b-1	100	×1.00	11.89	13	×1.29	0.255	1g	1.6	
	5310(62)			0	352	0.198	+0.18	n/a (*a)	Plot 2b-2	100	×1.00	11.70	13	×1.29	0.233	1g	1.6	head-worst,W53.
n (40HT)	5230(46)	MCS0	Right	0	352	0.302	+0.15	n/a (*a)	Plot 2b-3	100	×1.00	11.88	13	×1.29	0.3896	1g	1.6	head-worst,W52.
11(40111)	5190(38)	IVICOU		0	352	0.293	+0.15	n/a (*a)	Plot 2b-4	100	×1.00	11.86	13	×1.30	0.381	1g	1.6	11cad=w015t, w52.
	5270(54)		Front	0	351	0.00524	+0.18	n/a (*a)	Plot 2b-5	100	×1.00	11.89	13	×1.29	0.007	1g		(Patient side)
Step 20	:: W52/53 I	Band (F				liquid)	- 0.10	Tru (u)	1101200	100	7.12.00	11.09	15		0.007	- 5	1.0	(Tuderit state)
	5270(54)			0	352	0.476	+0.85	n/a (*a)	Plot 2c-1	100	×1.00	11.89	13	×1.29	0.614	10g	4	=
	5310(62)	1.000		0	352	0.590	+0.94	n/a (*a)	Plot 2c-2	100	×1.00	11.70	13	×1.35	0.797	10g	4	-
n (40HT)	5230(46)	MCS0		0	352	0.698	+0.93	n/a (*a)	Plot 2c-3	100	×1.00	11.88	13	×1.29	0.900	10g	4	
	5190(38)			0	352	0.639	+0.82	n/a (*a)	Plot 2c-4	100	×1.00	11.86	13	×1.30	0.831	10g	4	-
n (20HT)	5300(60)	MCS0		0	350	0.683	+0.88	n/a (*a)	Plot 2c-5	100	×1.00	11.95	13	×1.27	0.867	10g	4	a>n(20HT)
	5300(60)		Back	0	352	0.672	+0.88	n/a (*a)	Plot 2c-6	100	×1.00	11.81	13	×1.32	0.887	10g	4	hand-worst,W53.
	5320(64)			0	352	0.641	+0.88	n/a (*a)	Plot 2c-7	100	×1.00	12.00	13	×1.26	0.808	10g	4	-
11a	5260(52)	6		0	352	0.675	+0.92	n/a (*a)	Plot 2c-8	100	×1.00	11.89	13	×1.29	0.871	10g	4	-
114	5240(48)	ľ		0	352	0.691	+0.90	n/a (*a)	Plot 2c-9	100	×1.00	11.78	13	×1.32	0.912	10g	4	hand-worst,W52.(5GHz
	5220(44)	_		0	350	0.672	+0.86	n/a (*a)	Plot 2c-10	100	×1.00	11.95	13	×1.27	0.853	10g	4	-
	5180(36)			0	350	0.656	+0.83	n/a (*a)	Plot 2c-11	100	×1.00	11.86	13	×1.30	0.853	10g	4	-
Step 3a	a: W56 Bar	ıd (Bod	y-SAR, b	_					1	100					0.0.10			
	5670(134)			0	351	0.238	+0.72	n/a (*a)		100	×1.00	12.92	13	×1.02	0.243	1g	1.6	-
	5590(118)		Right	0	351	0.291	+0.96	n/a (*a)	Plot 3a-2	100	×1.00	12.54	13	×1.11	0.323	1g	1.6	-
n (40HT)		MCS0		0	351	0.248	+1.00	n/a (*a)	Plot 3a-3	100	×1.00	12.36	13	×1.16	0.288	1g	1.6	-
	5510(102)		Front	0	351 350	0.241	+0.93	n/a (*a)	Plot 3a-4	100	×1.00	12.43	13	×1.14 ×1.02	0.275 0.027	lg	1.6	(D-tit-i-l-)
11a	5670(134) 5700(140)	6	Front	0	350	0.026	+0.72	n/a (*a) n/a (*a)	Plot 3a-5 Plot 3a-6	100	×1.00	12.92	13	×1.02	0.027	lg lg		(Patient side) a < n(20HT)
11a	5700(140)	0		0	350	0.432	+0.95	n/a (*a)	Plot 3a-7	100	×1.00	12.84	13	×1.04	0.307	lg	1.6	body-worst,W56.
	5600(120)		Right	0	350	0.432	+0.94	n/a (*a)	Plot 3a-8	100	×1.00	12.64	13	×1.09	0.315	1g	1.6	- Cody-worst, W 50.
n (20HT)	5580(116)	MCS0	rugiit	0	350	0.283	+1.01	n/a (*a)	Plot 3a-9	100	×1.00	12.72	13	×1.07	0.303	1g	1.6	-
	5500(100)			0	350	0.237	+0.98	n/a (*a)	Plot 3a-10	100	×1.00	12.48	13	×1.13	0.268	1g	1.6	-
Step 31	o: W56 Bar	nd (Hea	d-SAR. F	-														
•	5670(134)			y nez	ւս ույս	ud)								U Company	0.200	15		
1	3070(134)		52114,		351		+0.26	n/a (*a)	Plot 3b-1	100			13	×1.02	0.295	1g	1.6	-
n (40LET)	5590(118)		D. H.G.						Plot 3b-1 Plot 3b-2		×1.00	12.92		×1.02 ×1.11				-
n (40HT)	5590(118)		32 Hy.	0	351	0.289 0.254 0.220		n/a (*a)			×1.00	12.92	13		0.295	1g		-
Ì	5590(118) 5550(110) 5510(102)	MCS0	Ź	0	351 351	0.289 0.254 0.220 0.210	+0.29 +0.15	n/a (*a) n/a (*a) n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4	100	×1.00 ×1.00	12.92 12.54 12.36	13 13 13 13	×1.11	0.295 0.282 0.255 0.239	lg lg	1.6	- - -
n (40HT) n (20HT)	5590(118) 5550(110) 5510(102) 5700(140)	MCS0	Ź	0 0	351 351 351	0.289 0.254 0.220 0.210 0.373	+0.29 +0.15	n/a (*a) n/a (*a) n/a (*a) n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5	100 100	×1.00 ×1.00 ×1.00	12.92 12.54 12.36 12.43 12.84	13 13 13 13 13	×1.11 ×1.16	0.295 0.282 0.255 0.239 0.388	lg lg	1.6 1.6 1.6	- - - a > n(20HT)
Ì	5590(118) 5550(110) 5510(102) 5700(140) 5700(140)	MCS0	Ź	0 0 0 0 0	351 351 351 351 352 351	0.289 0.254 0.220 0.210 0.373 0.407	+0.29 +0.15 +0.24 +0.28 +0.28	n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5 Plot 3b-6	100 100 100 100 100	×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00	12.92 12.54 12.36 12.43 12.84 12.84	13 13 13 13 13 13	×1.11 ×1.16 ×1.14 ×1.04 ×1.04	0.295 0.282 0.255 0.239 0.388 0.423	1g 1g 1g 1g 1g 1g	1.6 1.6 1.6 1.6	- - - a > n(20HT) head-worst, W56.
n (20HT)	5590(118) 5550(110) 5510(102) 5700(140) 5700(140) 5600(120)	MCS0	Ź	0 0 0 0 0 0	351 351 351 351 352 351 352	0.289 0.254 0.220 0.210 0.373 0.407 0.263	+0.29 +0.15 +0.24 +0.28 +0.28	n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5 Plot 3b-6 Plot 3b-7	100 100 100 100 100 100	×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00	12.92 12.54 12.36 12.43 12.84 12.84 12.59	13 13 13 13 13 13	×1.11 ×1.16 ×1.14 ×1.04 ×1.04 ×1.10	0.295 0.282 0.255 0.239 0.388 0.423 0.289	1g 1g 1g 1g 1g 1g 1g	1.6 1.6 1.6 1.6 1.6	. ,
, ,	5590(118) 5550(110) 5510(102) 5700(140) 5700(140) 5600(120) 5580(116)	MCS0	Ź	0 0 0 0 0 0 0	351 351 351 351 352 351 352 352 352	0.289 0.254 0.220 0.210 0.373 0.407 0.263 0.257	+0.29 +0.15 +0.24 +0.28 +0.28 +0.28 +0.22	n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5 Plot 3b-6 Plot 3b-7 Plot 3b-8	100 100 100 100 100 100 100	×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00	12.92 12.54 12.36 12.43 12.84 12.84 12.59 12.68	13 13 13 13 13 13 13 13	×1.11 ×1.16 ×1.14 ×1.04 ×1.04 ×1.10 ×1.08	0.295 0.282 0.255 0.239 0.388 0.423 0.289 0.278	1g 1g 1g 1g 1g 1g 1g 1g	1.6 1.6 1.6 1.6 1.6 1.6	. ,
n (20HT)	5590(118) 5550(110) 5510(102) 5700(140) 5700(140) 5600(120) 5580(116) 5500(100)	MCS0 MCS0	Right	0 0 0 0 0 0 0 0	351 351 351 351 352 351 352 352 352	0.289 0.254 0.220 0.210 0.373 0.407 0.263 0.257 0.208	+0.29 +0.15 +0.24 +0.28 +0.28 +0.28 +0.28 +0.22	n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5 Plot 3b-6 Plot 3b-7 Plot 3b-8 Plot 3b-9	100 100 100 100 100 100 100	×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00	12.92 12.54 12.36 12.43 12.84 12.84 12.59 12.68 12.60	13 13 13 13 13 13 13 13 13	×1.11 ×1.16 ×1.14 ×1.04 ×1.04 ×1.10 ×1.08 ×1.10	0.295 0.282 0.255 0.239 0.388 0.423 0.289 0.278 0.229	1g 1g 1g 1g 1g 1g 1g 1g	1.6 1.6 1.6 1.6 1.6 1.6 1.6	head-worst,W56.
n (20HT) 11a	5590(118) 5550(110) 5510(102) 5700(140) 5700(140) 5600(120) 5580(116) 5500(100) 5700(140)	MCS0 MCS0	Right	0 0 0 0 0 0 0 0	351 351 351 351 352 352 352 352 352 352	0.289 0.254 0.220 0.210 0.373 0.407 0.263 0.257 0.208 0.00572	+0.29 +0.15 +0.24 +0.28 +0.28 +0.28 +0.22	n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5 Plot 3b-6 Plot 3b-7 Plot 3b-8	100 100 100 100 100 100 100	×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00	12.92 12.54 12.36 12.43 12.84 12.84 12.59 12.68	13 13 13 13 13 13 13 13	×1.11 ×1.16 ×1.14 ×1.04 ×1.04 ×1.10 ×1.08	0.295 0.282 0.255 0.239 0.388 0.423 0.289 0.278	1g 1g 1g 1g 1g 1g 1g 1g	1.6 1.6 1.6 1.6 1.6 1.6 1.6	. ,
n (20HT) 11a	5590(118) 5550(110) 5510(102) 5700(140) 5700(140) 5600(120) 5580(116) 5500(100) 5700(140) 2.2. W56 Ban	MCS0 MCS0	Right	0 0 0 0 0 0 0 0 0	351 351 351 351 352 351 352 352 352 350 dy liqu	0.289 0.254 0.220 0.210 0.373 0.407 0.263 0.257 0.208 0.00572 uid)	+0.29 +0.15 +0.24 +0.28 +0.28 +0.28 +0.22 +0.28 +0.28	n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5 Plot 3b-6 Plot 3b-7 Plot 3b-8 Plot 3b-9 Plot 3b-10	100 100 100 100 100 100 100 100	×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00	12.92 12.54 12.36 12.43 12.84 12.84 12.59 12.68 12.60 12.84	13 13 13 13 13 13 13 13 13 13	×1.11 ×1.16 ×1.14 ×1.04 ×1.04 ×1.10 ×1.08 ×1.10 ×1.04	0.295 0.282 0.255 0.239 0.388 0.423 0.289 0.278 0.229 0.006	1g	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	head-worst,W56.
n (20HT) 11a	5590(118) 5550(110) 5510(102) 5700(140) 5700(140) 5600(120) 5580(116) 5500(100) 5700(140) :: W56 Ban 5670(134)	MCS0 MCS0 6	Right	0 0 0 0 0 0 0 0 0 0	351 351 351 351 352 352 352 352 352 350 dy liqu 351	0.289 0.254 0.220 0.210 0.373 0.407 0.263 0.257 0.208 0.00572 iid)	+0.29 +0.15 +0.24 +0.28 +0.28 +0.22 +0.28 +0.22 +0.28 +0.28	n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a) n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5 Plot 3b-6 Plot 3b-7 Plot 3b-8 Plot 3b-9 Plot 3b-10	100 100 100 100 100 100 100 100	×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00	12.92 12.54 12.36 12.43 12.84 12.84 12.59 12.68 12.60 12.84	13 13 13 13 13 13 13 13 13 13	×1.11 ×1.16 ×1.14 ×1.04 ×1.00 ×1.10 ×1.08 ×1.10 ×1.04 ×1.04	0.295 0.282 0.255 0.239 0.388 0.423 0.289 0.278 0.229 0.006	1g 1	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	head-worst,W56.
n (20HT) 11a Step 3c	5590(118) 5550(110) 5510(102) 5700(140) 5700(140) 5600(120) 5580(116) 5500(100) 5700(140) : W56 Bar 5670(134) 5590(118)	MCS0 6	Right	0 0 0 0 0 0 0 0 0 0 0 0	351 351 351 351 352 352 352 352 352 350 dy liqu 351	0.289 0.254 0.220 0.210 0.373 0.407 0.263 0.257 0.208 0.00572 iid) 0.358 0.459	+0.29 +0.15 +0.24 +0.28 +0.28 +0.22 +0.22 +0.28 +0.28 +0.29 +0.99 +0.96	n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5 Plot 3b-5 Plot 3b-6 Plot 3b-7 Plot 3b-7 Plot 3b-9 Plot 3b-10 Plot 3c-1 Plot 3c-2	100 100 100 100 100 100 100 100 100	×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00	12.92 12.54 12.36 12.43 12.84 12.84 12.59 12.68 12.60 12.84	13 13 13 13 13 13 13 13 13 13 13	×1.11 ×1.16 ×1.14 ×1.04 ×1.00 ×1.08 ×1.10 ×1.04 ×1.04 ×1.10 ×1.04	0.295 0.282 0.255 0.239 0.388 0.423 0.289 0.278 0.278 0.292 0.006	1g 1g 1g 1g 1g 1g 1g 1g 1g 1g 1g 1g 1g 1	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 4 4	head-worst,W56.
n (20HT) 11a Step 3c	5590(118) 5550(110) 5510(102) 5700(140) 5700(140) 5600(120) 5580(116) 5500(100) 5700(140) : W56 Ban 5670(134) 5590(118) 5550(110)	MCS0 MCS0 6	Right	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	351 351 351 351 352 352 352 352 352 350 dy liqu 351 351	0.289 0.254 0.220 0.210 0.373 0.407 0.263 0.257 0.208 0.00572 iid) 0.358 0.459 0.582	+0.29 +0.15 +0.24 +0.28 +0.28 +0.22 +0.22 +0.28 +0.29 +0.99 +0.99 +1.00	n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5 Plot 3b-6 Plot 3b-7 Plot 3b-8 Plot 3b-10 Plot 3c-1 Plot 3c-2 Plot 3c-2	100 100 100 100 100 100 100 100 100 100	x1.00 x1.00 x1.00 x1.00 x1.00 x1.00 x1.00 x1.00 x1.00 x1.00 x1.00 x1.00 x1.00 x1.00 x1.00	12.92 12.54 12.36 12.43 12.84 12.89 12.68 12.60 12.84 12.92 12.54 12.36	13 13 13 13 13 13 13 13 13 13 13 13	×1.11 ×1.16 ×1.14 ×1.04 ×1.00 ×1.08 ×1.10 ×1.04 ×1.02 ×1.11 ×1.16	0.295 0.282 0.255 0.239 0.388 0.423 0.289 0.278 0.229 0.006	1g 1	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 4 4	head-worst, W56
n (20HT) 11a Step 3c n (40HT)	5590(118) 5550(110) 5510(102) 5700(140) 5700(140) 5580(116) 5500(100) 5500(100) 5500(100) 5590(134) 5590(118) 5550(110) 5510(102)	MCS0 6 MCS0 MCS0	Right Front	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	351 351 351 352 352 352 352 352 352 350 dy liqu 351 351 351	0.289 0.254 0.220 0.210 0.373 0.407 0.263 0.257 0.20872 0.358 0.459 0.582 0.651	+0.29 +0.15 +0.24 +0.28 +0.28 +0.22 +0.22 +0.28 +0.28 +0.29 +0.99 +0.96 +1.00 +0.93	n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5 Plot 3b-6 Plot 3b-7 Plot 3b-8 Plot 3b-9 Plot 3c-1 Plot 3c-2 Plot 3c-3 Plot 3c-3	100 100 100 100 100 100 100 100 100 100	×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00	12.92 12.54 12.36 12.43 12.84 12.89 12.60 12.84 12.92 12.54 12.36 12.36 12.43	13 13 13 13 13 13 13 13 13 13 13 13 13 1	×1.11 ×1.16 ×1.14 ×1.04 ×1.08 ×1.10 ×1.04 ×1.02 ×1.11 ×1.16 ×1.14	0.295 0.282 0.255 0.239 0.388 0.423 0.289 0.278 0.229 0.006 0.365 0.509 0.675 0.742	1g 1g 1g 1g 1g 1g 1g 1g 1g 1g 1g 1g 1g 1	1.6 1.6 1.6 1.6 1.6 1.6 1.6 4 4 4	head-worst, W56
n (20HT) 11a Step 3c	5590(118) 5550(110) 5510(102) 5700(140) 5700(140) 5580(116) 5500(100) 5500(100) 55700(140) 55700(140) 5500(100) 5510(102) 5500(100)	MCS0 MCS0 6	Right	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	351 351 351 352 351 352 352 352 352 350 dy liqu 351 351 351	0.289 0.254 0.220 0.210 0.373 0.407 0.263 0.257 0.208 0.00572 iid) 0.358 0.459 0.582 0.651 0.656	+0.29 +0.15 +0.24 +0.28 +0.28 +0.22 +0.28 +0.29 +0.99 +0.99 +1.00 +0.93 +0.98	n/a (*a) n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5 Plot 3b-6 Plot 3b-7 Plot 3b-9 Plot 3b-10 Plot 3c-1 Plot 3c-2 Plot 3c-3 Plot 3c-3 Plot 3c-3 Plot 3c-3	100 100 100 100 100 100 100 100 100 100	×1.00 ×1	12.92 12.54 12.36 12.43 12.84 12.84 12.59 12.68 12.60 12.84 12.92 12.54 12.36 12.36 12.43 12.60	13 13 13 13 13 13 13 13 13 13 13 13 13 1	×1.11 ×1.16 ×1.14 ×1.04 ×1.00 ×1.08 ×1.10 ×1.04 ×1.02 ×1.11 ×1.16 ×1.14 ×1.10	0.295 0.282 0.255 0.239 0.388 0.423 0.289 0.278 0.229 0.006 0.365 0.509 0.675 0.742 0.722	1g 1	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 4 4 4 4	head-worst,W56.
n (20HT) 11a Step 3c n (40HT)	5590(118) 5550(110) 5510(102) 5700(140) 5700(140) 5500(100) 5700(140) 5700(140) 5700(140) 5700(140) 5700(140) 5700(140) 5700(140) 5700(140) 5700(140) 5500(100) 5500(100) 5500(100)	MCS0 6 MCS0 6 MCS0	Right Front	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	351 351 351 352 352 352 352 352 352 350 351 351 351 351	0.289 0.254 0.220 0.210 0.373 0.407 0.263 0.257 0.208 0.00572 iid) 0.358 0.459 0.582 0.656 0.656	+0.29 +0.15 +0.24 +0.28 +0.28 +0.22 +0.28 +0.28 +0.29 +0.99 +0.96 +1.00 +0.93 +0.98 +0.98	n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5 Plot 3b-6 Plot 3b-7 Plot 3b-9 Plot 3b-10 Plot 3c-1 Plot 3c-2 Plot 3c-3 Plot 3c-3 Plot 3c-3 Plot 3c-3 Plot 3c-3 Plot 3c-3	100 100 100 100 100 100 100 100 100 100	×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00 ×1.00	12.92 12.54 12.36 12.43 12.84 12.84 12.59 12.68 12.60 12.84 12.92 12.54 12.36 12.43 12.60 12.48	13 13 13 13 13 13 13 13 13 13 13 13 13 1	×1.11 ×1.16 ×1.14 ×1.04 ×1.00 ×1.08 ×1.10 ×1.04 ×1.02 ×1.11 ×1.16 ×1.14 ×1.10 ×1.13	0.295 0.282 0.255 0.239 0.388 0.423 0.289 0.278 0.229 0.006 0.365 0.509 0.675 0.742 0.722 0.741	1g 1	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 4 4 4 4 4	head-worst, W56
n (20HT) 11a Step 3c n (40HT)	5590(118) 5550(110) 5510(102) 5700(140) 5700(140) 5580(116) 5500(100) 5500(100) 55700(140) 55700(140) 5500(100) 5510(102) 5500(100)	MCS0 6 MCS0 MCS0	Right Front	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	351 351 351 352 351 352 352 352 352 350 dy liqu 351 351 351	0.289 0.254 0.220 0.210 0.373 0.407 0.263 0.257 0.208 0.00572 iid) 0.358 0.459 0.582 0.651 0.656	+0.29 +0.15 +0.24 +0.28 +0.28 +0.22 +0.28 +0.29 +0.99 +0.99 +1.00 +0.93 +0.98	n/a (*a) n/a (*a)	Plot 3b-2 Plot 3b-3 Plot 3b-4 Plot 3b-5 Plot 3b-6 Plot 3b-7 Plot 3b-9 Plot 3b-10 Plot 3c-1 Plot 3c-2 Plot 3c-3 Plot 3c-3 Plot 3c-3 Plot 3c-6 Plot 3c-6 Plot 3c-6 Plot 3c-7	100 100 100 100 100 100 100 100 100 100	×1.00 ×1	12.92 12.54 12.36 12.43 12.84 12.89 12.60 12.84 12.92 12.54 12.36 12.43 12.60 12.48 12.72	13 13 13 13 13 13 13 13 13 13 13 13 13 1	×1.11 ×1.16 ×1.14 ×1.04 ×1.00 ×1.08 ×1.10 ×1.04 ×1.02 ×1.11 ×1.16 ×1.14 ×1.10	0.295 0.282 0.255 0.239 0.388 0.423 0.289 0.278 0.229 0.006 0.365 0.509 0.675 0.742 0.722	1g 1	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 4 4 4 4	head-worst, W56

(cont'd)

Test report No. : 113557538-A Page : 15 of 121 Issued date : December 2, 2016

: AZDBM72065

FCC ID

7.3 SAR measurement results (5GHz band, SAR for Body/Head/Hand) (cont'd)

[Measured and Reported (Scaled) SAR results] (cont'd)

SAR measurement results								Reported SAR [W/kg]												
	Freq. [MHz]	Data rate	platform setup		tup	SAR [W/kg]		SAR	Duty cycle		Output average		SAR	SAR						
Mode				Com	D67	Max. va	lue of m	ulti-peak	plot#in	corr	ection	pow	er corr	ection			SAR			
Mode	(Channel)	[Mbps]	Position	[mm]	Gap [mm]		Meas.	VIESS	Duty [%]	Duty scaled		Max. [dBm]	Tune-up factor	(Scaled) (*b)	(1g /10g)	limit	Remarks			
Step 4a	Step 4a: W58 Band (Body-SAR, by body liquid)																			
n (40HT)	5755(151)	MCS0		0	350	0.260	+0.66	n/a (*a)	Plot 4a-1	100	×1.00	12.15	13	×1.22	0.317	1g	1.6	-		
II (40H1)	5795(159)	MCSU		0	350	0.407	+0.71	n/a (*a)	Plot 4a-2	100	×1.00	11.58	13	×1.39	0.566	1g	1.6	-		
11a	5825(165)	6	Right	0	350	0.495	+0.65	n/a (*a)	Plot 4a-3	100	×1.00	11.76	13	×1.33	0.658	1g	1.6	a < n(20HT)		
	5825(165)		Kigit	0	350	0.498	+0.65	n/a (*a)	<u>Plot 4a-4</u>	100	×1.00	11.74	13	×1.34	0.667	1g	1.6	body-worst,W58.(5GHz)		
n (2011T)	5785(157)	MCS0		0	351	0.320	+0.71	n/a (*a)	Plot 4a-5	100	×1.00	11.79	13	×1.32	0.422	1g	1.6	-		
n (20HT)	5745(149)	MCSU	icsu	0	351	0.414	+0.75	n/a (*a)	Plot 4a-6	100	×1.00	12.14	13	×1.22	0.505	1g	1.6	_		
	5825(165)		Front	0	351	0.031	+0.65	n/a (*a)	Plot 4a-7	100	×1.00	11.74	13	×1.34	0.042	1g	1.6	(Patient side)		
Step 4h	: W58 Ban	d (Hea	d-SAR, b	y hea	d liqu	id)														
n (40HT)	5755(151)		MCSO	MCSO		0	350	0.420	+0.18	n/a (*a)	Plot 4b-1	100	×1.00	12.15	13	×1.22	0.512	1g	1.6	-
II (40H1)	5795(159)			0	350	0.440	+0.23	n/a (*a)	Plot 4b-2	100	×1.00	11.58	13	×1.39	0.612	1g	1.6	-		
11a	5825(165)	6	Right	0	351	0.378	+0.26	n/a (*a)	Plot 4b-3	100	×1.00	11.76	13	×1.33	0.503	1g	1.6	a < n(20HT)		
	5825(165)		Right	0	351	0.490	+0.26	n/a (*a)	<u>Plot 4b-4</u>	100	×1.00	11.74	13	×1.34	0.657	1g	1.6	head-worst, W58.(5GHz)		
n (20HT)	5785(157)	MCS0		0	351	0.439	+0.27	n/a (*a)	Plot 4b-5	100	×1.00	11.79	13	×1.32	0.579	1g	1.6	-		
II (20H1)	5745(149)	MCSU		0	351	0.420	+0.20	n/a (*a)	Plot 4b-6	100	×1.00	12.14	13	×1.22	0.512	1g	1.6	-		
	5825(165)		Front	0	351	0.020	+0.26	n/a (*a)	Plot 4b-7	100	×1.00	11.74	13	×1.34	0.027	1g	1.6	(Patient side)		
Step 4c	: W58 Ban	d (Han	d-SAR, b	y bod	ły liqu															
n (40HT)	5755(151)	MCCO	MCS0		0	352	0.434	+0.94	n/a (*a)	Plot 4c-1	100	×1.00	12.15		×1.22	0.529	10g	4	-	
11(40111)	5795(159)	WCSO		0	352	0.381	+1.01	n/a (*a)	Plot 4c-2	100	×1.00	11.58	13	×1.39	0.530	10g	4	-		
n (20HT)	5825(165)	MCS0	Back	0	350	0.461	+0.96	n/a (*a)	Plot 4c-3	100	×1.00	11.74	13	×1.34	0.618	10g	4	a>n(20HT)		
	5825(165)		DACK	0	351	0.563	+0.96	n/a (*a)	<u>Plot 4c-4</u>	100	×1.00	11.76	13	×1.33	0.749	10g	4	hand-worst,W58.		
11a	5785(157)	6		0	350	0.496	+1.03	n/a (*a)	Plot 4c-5	100	×1.00	11.84	13	×1.31	0.650	10g	4	-		
	5745(149)	9)		0	351	0.534	+1.04	n/a (*a)	Plot 4c-6	100	×1.00	12.26	13	×1.19	0.635	10g	4	-		

Notes:

- *. Gap: It is the separation distance between the platform outer surface and the bottom outer surface of phantom; Freq.: Frequency; Max.: Maximum; Meas.: Measured value; n/a: not applied; Bty.ID: Battery ID (*. Battery ID No.350, 351 and 352 are same. Refer to Appendix 1 for more detail.)
- *. During test, the platform was operated with full charged battery and was connected a control interface cable to host PC.
- *. Calibration frequency of the SAR measurement probe (and used conversion factors)

Liquid	SAR test frequency [MHz]	Probe calibration frequency [MHz]	Validity	Conversion factor	Uncertainty
	5180, 5190, 5220, 5230, 5240, 5260, 5270, 5300, 5310, 5320	5250	within ±110 MHz of calibration frequency	4.30	±13.1 %
Body	5500, 5510, 5550, 5580, 5590, 5600, 5670, 5700	5600	within ±110 MHz of calibration frequency	3.52	±13.1 %
	5745, 5755, 5785, 5795, 5825	5750	within ±110 MHz of calibration frequency	3.74	±13.1 %
	5190, 5270, 5310, 5320	5250	within ±110 MHz of calibration frequency	4.67	±13.1 %
Head	5500, 5510, 5550, 5580, 5590, 5600, 5670, 5700	5600	within ±110 MHz of calibration frequency	4.17	±13.1 %
	5745, 5755, 5785, 5795, 5825	5800	within ±110 MHz of calibration frequency	4.10	±13.1 %

^{*.} The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Calculating formula: $\triangle SAR$ corrected SAR (W/kg) = (Meas. SAR (W/kg)) × (100 - ($\triangle SAR$ (%)) / 100

*b. Calculating formula: Reported SAR $(W/kg) = (Measured SAR (W/kg)) \times (Duty scaled) \times (Tune-up factor)$

Duty scaled = Duty scaled factor: Duty cycle correction factor for obtained SAR value, Duty scaled factor [-] = 100(%)/(duty cycle, %) Tune-up factor: Power tune-up factor for obtained SAR value, Tune-up factor $[-] = 1/(10 ^{(*)})$ ("Deviation from max., dB" / 10))

(Clause 5: SAR TEST PROCEDURE for 5GHz OFDM band, in KDB248227 D01 (v02r02))

- 5.1.1 Initial Test Position SAR Test Reduction Procedure
- 1) When the reported SAR of the initial test position is ≤ 0.4 W/kg, further SAR measurement is not required for the other (remaining) test positions in that exposure configuration and 802.11 transmission mode combination within the frequency band or aggregated band. SAR is also not required for that exposure configuration in the subsequent test configuration(s).
- 2) When the reported SAR of the initial test position is > 0.4 W/kg, SAR is repeated for the 802.11 transmission mode configuration tested in the initial test position using subsequent highest extrapolated or estimated 1-g SAR conditions determined by area scans or next closest/smallest test separation distance and maximum RF coupling test positions based on manufacturer justification, on the highest maximum output power channel, until the reported SAR is ≤ 0.8 W/kg or all required test positions (left, right, touch, tilt or subsequent surfaces and edges) are tested.
- 3) For all positions/configurations tested using the initial test position and subsequent test positions, when the reported SAR is > 0.8 W/kg. SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the reported SAR is ≤ 1.2 W/kg or all required channels are tested
- *. Result of hand SAR was judged after "0.4 W/kg" in the document above-mentioned was changed for "1 W/kg", "0.8 W/kg" in the document above-mentioned was changed for "2 W/kg" and "1.2 W/kg" in the document above-mentioned was changed for "3 W/kg".

^{*}a. Since the calculated Δ SAR values of the tested liquid had shown positive correction, the measured SAR was not converted by Δ SAR correction.