ANNEX G Probe Calibration Certificate #### **Probe 7307 Calibration Certificate** Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Calibration procedure(s) CTTL (Auden) Certificate No: EX3-7307_May20 #### **CALIBRATION CERTIFICATE** EX3DV4 - SN:7307 QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v5, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes May 29, 2020 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 31-Mar-20 (No. 217-03106) | Apr-21 | | DAE4 | SN: 660 | 27-Dec-19 (No. DAE4-660_Dec19) | Dec-20 | | Reference Probe ES3DV2 | SN: 3013 | 31-Dec-19 (No. ES3-3013_Dec19) | Dec-20 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-18) | In house check: Jun-20 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-18) | In house check: Jun-20 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | Function Signature Name Laboratory Technician Calibrated by: Technical Manager Katja Pokovic Approved by: Issued: June 2, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-7307_May20 Page 1 of 22 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - Techniques", June 2013 b) IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media, VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7307_May20 Page 2 of 22 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7307 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.43 | 0.56 | 0.62 | ± 10.1 % | | DCP (mV) ^B | 100.0 | 98.2 | 100.3 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |--------|--|---|---------|------------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 153.0 | ± 3.0 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | 0.00 | 151.6 | | 90 54.0 0 | | | A CONTRACTOR OF THE PARTY TH | Z | 0.00 | 0.00 | 1.00 | | 158.4 | | | | 10352- | Pulse Waveform (200Hz, 10%) | X | 1.84 | 62.62 | 7.81 | 10.00 | 60.0 | ± 4.6 % | ± 9.6 % | | AAA | A SECTION OF SECTION AND PROPERTY OF | Y | 6.38 | 76.27 | 14.75
| | 60.0 | | 1 3 1 1 1 1 | | | | Z | 1.45 | 61.01 | 7.00 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 0.81 | 60.00 | 5.70 | 6.99 | 80.0 | ± 3.2 % | ±9.6 % | | AAA | 10.200 00.000000000000000000000000000000 | Y | 20.00 | 88.66 | 17.39 | | 80.0 | 78 | | | | | Z | 0.86 | 60.00 | 5.68 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 0.45 | 60.00 | 4.93 | 3.98 | 95.0 | ± 1.7 % | ± 9.6 % | | AAA | Complete Com | Y | 20.00 | 91.41 | 17.41 | | 95.0 | | | | | | Z | 0.51 | 60.00 | 5.04 | | 95.0 | 5 | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 0.29 | 60.62 | 5.22 | 2.22 | 120.0 | ± 1.2 % | ±9.6 % | | AAA | Legistrative Committee | Y | 20.00 | 96.26 | 18.63 | | 120.0 | | -1 | | | | Z | 38.00 | 82.00 | 11.00 | | 120.0 | | | | 10387- | QPSK Waveform, 1 MHz | X | 1.69 | 67.29 | 15.38 | 1.00 | 150.0 | ±1.8% | ± 9.6 % | | AAA | The second secon | Y | 1.57 | 65.07 | 14.15 | | 150.0 | | | | | | Z | 1.73 | 66.94 | 15.28 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 2.20 | 68.11 | 15.92 | 0.00 | 150.0 | ± 1.1 % | ± 9.6 % | | AAA | The second second second | Y | 2.08 | 66.56 | 14.89 | **** | 150.0 | | 7 4 544 | | | | Z | 2.29 | 68.47 | 15.98 | | 150.0 | 1 | | | 10396- | 64-QAM Waveform, 100 kHz | X | 2.35 | 68.48 | 18.03 | 3.01 | 150.0 | ± 0.8 % | ± 9.6 % | | AAA | A CONTRACTOR OF THE PROPERTY O | Y | 2.51 | 68.48 | 17.79 | D | 150.0 | | | | | | Z | 2.53 | 69.19 | 18.31 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 3.38 | 66.64 | 15.59 | 0.00 | 150.0 | ±0.9% | ±9.6 % | | AAA | The state of s | Y | 3.47 | 66.68 | 15.44 | 1000 | 150.0 | 12000 | 2200 | | | | Z | 3.45 | 66.86 | 15.65 | | 150.0 | | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 4.67 | 65.35 | 15.39 | 0.00 | 150.0 | ±1.9% | ± 9.6 % | | AAA | The state of s | Y | 4.64 | 64.85 | 15.04 | 1 | 150.0 | | | | | | Z | 4.77 | 65,48 | 15.43 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-7307_May20 Page 3 of 22 A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). B Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7307 #### **Sensor Model Parameters** | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | X | 35.6 | 260.75 | 34.45 | 5.76 | 0.00 | 4.90 | 1.28 | 0.00 | 1.00 | | Υ | 41.0 | 304.44 | 35.07 | 7.30 | 0.00 | 5.01 | 1.33 | 0.09 | 1.01 | | Z | 40.7 | 299.93 | 34.68 | 9.21 | 0.00 | 4.91 | 0.98 | 0.11 | 1,00 | #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | 23.6 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Certificate No: EX3-7307_May20 Page 4 of 22 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7307 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 64 | 54.2 | 0.75 | 14.38 | 14.38 | 14.38 | 0.00 | 1.00 | ± 13.3 % | | 150 | 52.3 | 0.76 | 13.49 | 13.49 | 13.49 | 0.00 | 1.00 | ± 13.3 % | | 300 | 45.3 | 0.87 | 11.83 | 11.83 | 11.83 | 0.10 | 1.20 | ± 13.3 % | | 450 | 43.5 | 0.87 | 11.16 | 11.16 | 11.16 | 0.12 | 1.30 | ± 13.3 % | | 750 | 41.9 | 0.89 | 10.41 | 10.41 | 10.41 | 0.55 | 0.80 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.20 | 10.20 | 10.20 | 0.47 | 0.80 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.95 | 9.95 | 9.95 | 0.44 | 0.87 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.85 | 8.85 | 8.85 | 0.40 | 0.80 | ± 12.0 % | | 1640 | 40.2 | 1.31 | 8.74 | 8.74 | 8.74 | 0.39 | 0.86 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.64 | 8.64 | 8.64 | 0.39 | 0.86 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 8.39 | 8.39 | 8.39 | 0.38 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.33 | 8.33 | 8.33 | 0.35 | 0.86 | ± 12.0 9 | | 2000 | 40.0 | 1.40 | 8.31 | 8.31 | 8.31 | 0.35 | 0.88 | ± 12.0 % | | 2100 | 39.8 | 1.49 | 8.29 | 8.29 | 8.29 | 0.30 | 0.88 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.15 | 8.15 | 8.15 | 0.33 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.77 | 7.77 | 7.77 | 0.34 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.61 | 7.61 | 7.61 | 0.35 | 0.90 | ± 12.0 % | | 3300 | 38.2 | 2.71 | 7.09 | 7.09 | 7.09 | 0.35 | 1.30 | ± 13.1 % | | 3500 | 37.9 | 2.91 | 6.72 | 6.72 | 6.72 | 0.35 | 1.30 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 6.50 | 6.50 | 6.50 | 0.35 | 1.30 | ± 13.1 % | | 3900 | 37.5 | 3.32 | 6.60 | 6.60 | 6.60 | 0.40 | 1.60 | ± 13.1 9 | | 4100 | 37.2 | 3.53 | 6.50 | 6.50 | 6.50 | 0.40 | 1.60 | ± 13.1 9 | | 4200 | 37.1 | 3.63 | 6.40 | 6.40 | 6.40 | 0.40 | 1.70 | ± 13.1 9 | | 4400 | 36.9 | 3.84 | 6.30 | 6.30 | 6.30 | 0.40 | 1.70 | ± 13.1 9 | | 4600 | 36.7 | 4.04 | 6.22 | 6.22 | 6.22 | 0.40 | 1.70 | ± 13.1 9 | | 4800 | 36.4 | 4.25 | 6.18 | 6.18 | 6.18 | 0.40 | 1.80 | ± 13.1 9 | | 4950 | 36.3 | 4.40 | 5.90 | 5.90 | 5.90 | 0.40 | 1.80 | ± 13.1 9 | | 5200 | 36.0 | 4.66 | 5.72 | 5.72 | 5.72 | 0.40 | 1.80 | ± 13.1 9 | | 5250 | 35.9 | 4.71 | 5.61 | 5.61 | 5.61 | 0.40 | 1.80 | ± 13.1 9 | | 5300 | 35.9 | 4.76 | 5.51 | 5.51 | 5.51 | 0.40 | 1.80 | ± 13.1 9 | | 5500 | 35.6 | 4.96 | 5.20 | 5.20 | 5.20 | 0.40 | 1.80 | ± 13.1 9 | | 5600 | 35.5 | 5.07 | 5.10 | 5.10 | 5.10 | 0.40 | 1.80 | ± 13.1 9 | | 5750 | 35.4 | 5.22 | 5.05 | 5.05 | 5.05 | 0.40 | 1.80 | ± 13.1 9 | | 5800 | 35.3 | 5.27 | 4.95 | 4.95 | 4.95 | 0.40 | 1.80 | ± 13.1 9 | Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty, for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. \mp 110 MHz. \pm 110 MHz, \pm 110 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. \pm 110 MHz. \pm 110 MHz, and ConvF assessed at 13 MHz is 9-19 MHz, above 5 GHz frequency validity can be extended to \pm 110 MHz. \pm 110 MHz. \pm 110 MHz, and ConvF assessed at 13 MHz is 9-19 MHz, above 5 GHz frequency validity compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. \pm 110 MHz, and \pm 110 MHz, and \pm 110 MHz, and \pm 111 Certificate No: EX3-7307_May20 Page 5 of 22 May 29, 2020 EX3DV4-SN:7307 #### DASY/EASY - Parameters of Probe: EX3DV4 - SN:7307 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 150 | 61.9 | 0.80 | 13.01 | 13.01 | 13.01 | 0.00 | 1.00 | ± 13.3 % | | 300 | 58.2 | 0.92 | 11.81 | 11.81 | 11.81 | 0.06 | 1.20 | ± 13.3 % | | 450 | 56.7 | 0.94 | 11.33 | 11.33 | 11.33 | 0.07 | 1.30 | ± 13.3 % | | 750 | 55.5 | 0.96 | 10.47 | 10.47 | 10.47 | 0.34 | 0.95 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.12 | 10.12 | 10.12 | 0.51 | 0.80 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.88 | 9.88 | 9.88 | 0.43 | 0.88 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.90 | 8.90 | 8.90 | 0.34 | 0.80 | ± 12.0 % | | 1640 | 53.7 | 1.42 | 8.70 | 8.70 | 8.70 | 0.39 | 0.86 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.41 | 8.41 | 8.41 | 0.45 | 0.86 | ± 12.0 % | | 1810 | 53.3 | 1.52 | 8.34 | 8.34 | 8.34 | 0.45 | 0.86 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.30 | 8.30 | 8.30 | 0.32 | 0.88 | ± 12.0 9 | | 2000 | 53.3 | 1.52 | 8.27 | 8.27 | 8.27 | 0.32 | 0.88 | ± 12.0 9 | | 2100 | 53.2 | 1.62 | 8.24 | 8.24 | 8.24 | 0.42 | 0.88 | ± 12.0 9 | | 2300 | 52.9 | 1.81 | 7.91 | 7.91 | 7.91 | 0.40 | 0.90 | ± 12.0 9 | | 2450 | 52.7 | 1.95 | 7.79 | 7.79 | 7.79 | 0.34 | 0.90 | ± 12.0 9 | | 2600 | 52.5 | 2.16 | 7.63 | 7.63 | 7.63 | 0.27 | 0.90 | ± 12.0 9 | | 3300 | 51.6 | 3.08 | 6.66 | 6.66 | 6.66 | 0.40 | 1.30 | ± 13.1 9 | | 3500 | 51.3 | 3.31 | 6.36 | 6.36 | 6.36 | 0.40 | 1.40 | ± 13.1 9 | | 3700 | 51.0 | 3.55 | 6.27 | 6.27 | 6.27 | 0.40 | 1.40 | ± 13.1 9 | | 3900 | 51.2 | 3.78 | 6.24 | 6.24 | 6.24 | 0.40 | 1.60 | ± 13.1 9 | | 4100 | 50.5 | 4.01 | 6.20 | 6.20 | 6.20 | 0.40 | 1.60 | ± 13.1 9 | | 4200 | 50.4 | 4.13 | 6.10 | 6.10 | 6.10 | 0.40 | 1.60 | ± 13.1 9 | | 4400 | 50.1 | 4.37 | 6.02 | 6.02 | 6.02 | 0.40 | 1.70 | ± 13.1 9 | | 4600 | 49.8 | 4.60 | 5.81 | 5.81 | 5.81 | 0.40 | 1.70 |
± 13.1 9 | | 4800 | 49.6 | 4.83 | 5.50 | 5.50 | 5.50 | 0.50 | 1.90 | ± 13.1 9 | | 4950 | 49.4 | 5.01 | 5.30 | 5.30 | 5.30 | 0.50 | 1.90 | ± 13.1 9 | | 5200 | 49.0 | 5.30 | 4.85 | 4.85 | 4.85 | 0.50 | 1.90 | ± 13.1 9 | | 5250 | 48.9 | 5.36 | 4.81 | 4.81 | 4.81 | 0.50 | 1.90 | ± 13.1 9 | | 5300 | 48.9 | 5.42 | 4.80 | 4.80 | 4.80 | 0.50 | 1.90 | ± 13.1 5 | | 5500 | 48.6 | 5.65 | 4.47 | 4.47 | 4.47 | 0.50 | 1.90 | ± 13.1 9 | | 5600 | 48.5 | 5.77 | 4.37 | 4.37 | 4.37 | 0.50 | 1.90 | ± 13.1 ° | | 5750 | 48.3 | 5.94 | 4.45 | 4.45 | 4.45 | 0.50 | 1.90 | ± 13.1 9 | | 5800 | 48.2 | 6.00 | 4.31 | 4.31 | 4.31 | 0.50 | 1.90 | ± 13.1 | Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No: EX3-7307_May20 Page 6 of 22 EX3DV4- SN:7307 May 29, 2020 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-7307_May20 Page 7 of 22 ### Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-7307_May20 Page 8 of 22 ### Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-7307_May20 Page 9 of 22 ### **Conversion Factor Assessment** ### Deviation from Isotropy in Liquid Certificate No: EX3-7307_May20 Page 10 of 22 #### **Appendix: Modulation Calibration Parameters** | UID | Rev | Communication System Name | Group | PAR
(dB) | Unc ^E
(k=2) | |----------------|-----|--|-----------|-------------|---------------------------| | 0 | | CW | CW | 0.00 | ±4.7 % | | 10010 | CAA | SAR Validation (Square, 100ms, 10ms) | Test | 10.00 | ±9.6 % | | 0011 | CAB | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ± 9.6 % | | 0012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ± 9.6 % | | 10013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps) | WLAN | 9.46 | ± 9.6 % | | 10021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ± 9.6 % | | 10023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ± 9.6 % | | 10024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ± 9.6 % | | 10025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ± 9.6 % | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ± 9.6 % | | 10027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ± 9.6 % | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ±9.6 % | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ± 9.6 % | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ±9.6 % | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1.87 | ± 9.6 % | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Bluetooth | 1.16 | ± 9.6 % | | 10033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ± 9.6 % | | 10034 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH3) | Bluetooth | 4.53 | ±9.6 % | | 10035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ± 9.6 % | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ± 9.6 % | | 10037 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ± 9.6 % | | 10038 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | Bluetooth | 4.10 | ± 9.6 % | | 10039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | 4.57 | ±9.6 % | | 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Halfrate) | AMPS | 7.78 | ±9.6 % | | 10044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ± 9.6 % | | 10048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ± 9.6 % | | 10049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ± 9.6 % | | 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ± 9.6 % | | 10058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | ± 9.6 % | | 10059 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ±9.6 % | | 10060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ± 9.6 % | | 10061 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ± 9.6 % | | 10062 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ± 9.6 % | | 10063 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ± 9.6 % | | 10064 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ± 9.6 % | | 10065 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ± 9.6 % | | 10066 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ± 9.6 % | | 10067 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ± 9.6 % | | 10068 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ± 9.6 % | | 10069 | CAC | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ± 9.6 % | | 10071 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ± 9.6 % | | 10072 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ± 9.6 % | | 10073 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ± 9.6 % | | 10074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ± 9.6 % | | 10075 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ±9.6 % | | 10076 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ± 9.6 % | | 10077 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps) | WLAN | 11.00 | ±9.6 % | | 10081 | CAB | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ±9.6 % | | 10082 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ±9.6 % | | 10090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | GSM | 6.56 | ± 9.6 % | | 10097 | CAB | UMTS-FDD (HSDPA) | WCDMA | 3.98 | ± 9.6 % | | 10097 | CAB | UMTS-FDD (HSUPA, Subtest 2) | WCDMA | 3.98 | ±9.69 | | 10099 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ±9.69 | | 10100 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ± 9.6 9 | | 10100 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDD | | | | 10102 | CAE | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 10-QAM) | LTE-FDD | 6.42 | ±9.6 9 | | 10102 | CAE | | | 6.60 | ± 9.6 9 | | | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TOD | 9.29 | ± 9.6 9 | | 10104
10105 | CAG | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 9.97 | ± 9.6 % | | | | 1 LTE-TOD (SC-FDMA, 100% KB, 20 MFIZ, 04-QAM) | LIE-IDD | 10.01 | ± 9.6 9 | Certificate No: EX3-7307_May20 Page 11 of 22 | 10109 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 % | |----------------|-----|--|---------|-------|---------| | 10110 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-FDD | 5.75 | ± 9.6 % | | 0111 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.44 | ± 9.6 % | | 0112 | CAG | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.59 | ± 9.6 % | | 0113 | CAG | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 % | | 0114 | CAC | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ± 9.6 % | | 0115 | CAC | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ±9.69 | | 0116 | CAC | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ± 9.6 9 | | 0117 | CAC | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ± 9.6 9 | | 0118 | CAC | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ± 9.6 % | | 0119 | CAC | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ± 9.6 % | | 0140 | CAE | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 9 | | 0141 | CAE | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.53 | ± 9.6 9 | | 0142 | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 9 | | 0143 | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.35 | ± 9.6 9 | | 0144 | CAE | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ± 9.6 9 | | 0145 | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ± 9.6 | | 0146 | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.41 | ± 9.6 9 | | 0147 | CAF | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ± 9.6 9 | | 0149 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ± 9.6 | | 0150 | CAE | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ± 9.6 | | 0151 | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TDD | 9.28 | ± 9.6 | | 0152 | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 | | 0153 | CAG | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.05 | ± 9.6 | | 10154 | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75
| ± 9.6 | | 10155 | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 | | 10156 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ± 9.6 | | 0157 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ± 9.6 | | 0158 | CAG | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ± 9.6 | | 10159 | CAG | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ± 9.6 | | 10160 | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5,82 | ± 9.6 | | 10161 | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ± 9.6 | | 10162 | CAE | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.58 | ± 9.6 | | 10166 | CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.46 | ±9.6 | | 10167 | CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ± 9.6 | | 10168 | CAF | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.79 | ± 9.6 | | 10169 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 | | 10170 | CAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 | | 10171 | AAE | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ± 9.6 | | 10172 | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 | | 10173 | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 | | 10174 | CAG | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 | | 10175 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 | | 10176 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 | | 10177 | CAI | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-FDD | 5.73 | ± 9.6 | | 10178 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ± 9.6 | | 10179 | CAG | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 | | 10180 | CAG | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 | | 10181 | CAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-FDD | 5.72 | ± 9.6 | | 10182 | CAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 10183
10184 | AAD | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ± 9.6 | | 10184 | CAE | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 5.73 | ± 9.6 | | 10185 | AAE | | LTE-FDD | 6.51 | ± 9.6 | | | | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 6.50 | ± 9.6 | | 10187 | CAF | | LTE-FDD | 5.73 | _ | | 10188 | CAF | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.52 | ± 9.6 | | 10189 | _ | | LTE-FDD | 6.50 | ± 9.6 | | 10193
10194 | CAC | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.09 | ± 9.6 | | 10194 | CAC | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ±9.6 | | 10195 | CAC | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.21 | ±9.6 | | 10196 | CAC | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.10 | ±9.6 | | 10197 | CAC | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 | | 10100 | UNU | TELE GOZ. I III (ITT WIXEG, OF WIDES, D4-GAW) | WLAN | 8.27 | ±9.6 | Certificate No: EX3-7307_May20 Page 12 of 22 | 10220 | CAC | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ± 9.6 % | |-------|-----|---|----------|-------|---------| | 10221 | CAC | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ± 9.6 % | | 10222 | CAC | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ± 9.6 % | | 10223 | CAC | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ± 9.6 % | | 10224 | CAC | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ±9.6 % | | 10225 | CAB | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ±9.6 % | | 10226 | CAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.49 | ± 9.6 % | | 10227 | CAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.26 | ±9.6 % | | 10228 | CAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | ± 9.6 % | | 10229 | CAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10230 | CAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TDD | 10.25 | ± 9.6 % | | 10231 | CAD | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TDD | 9.19 | ± 9.6 % | | 10232 | CAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10233 | CAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 % | | 10234 | CAG | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 % | | 10235 | CAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | 10236 | CAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 % | | 10237 | CAG | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 9.21 | ± 9.6 % | | 10237 | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM) | LTE-TDD | 9.48 | ± 9.6 % | | | CAF | | LTE-TDD | | | | 10239 | | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | | 10,25 | ± 9.6 % | | 10240 | CAF | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 % | | 10241 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.82 | ±9.6 % | | 10242 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ±9.6 % | | 10243 | CAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.46 | ±9.6 % | | 10244 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10245 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TDD | 10.06 | ± 9.6 % | | 10246 | CAD | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TDD | 9.30 | ±9.6 % | | 10247 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.91 | ± 9.6 % | | 10248 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.09 | ± 9.6 % | | 10249 | CAG | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDD | 9.29 | ± 9.6 % | | 10250 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.81 | ±9.6 % | | 10251 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ±9.6 % | | 10252 | CAG | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TDD | 9.24 | ±9.6 % | | 10253 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-TDD | 9.90 | ±9.6 % | | 10254 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-TDD | 10.14 | ±9.6% | | 10255 | CAF | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-TDD | 9.20 | ±9.6 % | | 10256 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.96 | ±9.6 % | | 10257 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 10.08 | ±9.6% | | 10258 | CAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ±9.6 % | | 10259 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-TDD | 9.98 | ± 9.6 % | | 10260 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-TDD | 9.97 | ± 9.6 % | | 10261 | CAD | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TDD | 9.24 | ± 9.6 % | | 10262 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM) | LTE-TDD | 9.83 | ± 9.6 % | | 10263 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-TDD | 10.16 | ± 9.6 % | | 10264 | CAG | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TDD | 9.23 | ± 9.6 % | | 10265 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TDD | 9.92 | ± 9.6 % | | 10266 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.07 | ± 9.6 % | | 10267 | CAG | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TDD | 9.30 | ± 9.6 % | | 10268 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.06 | ±9.6 % | | 10269 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TDD | 10.06 | ±9.6 % | | 10269 | CAF | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-GAM) | LTE-TDD | 9.58 | ± 9.6 % | | | | | WCDMA | | | | 10274 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | 4.87 | ± 9.6 % | | 10275 | CAB | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | | 3.96 | ± 9.6 % | | 10277 | CAA | PHS (QPSK) | PHS | 11.81 | ± 9.6 % | | 10278 | CAA | PHS (QPSK, BW 884MHz, Rolloff 0.5) | PHS | 11.81 | ± 9.6 % | | 10279 | CAA | PHS (QPSK, BW 884MHz, Rolloff 0.38) | PHS | 12.18 | ± 9.6 % | | 10290 | AAB | CDMA2000, RC1, SO55, Full Rate | CDMA2000 | 3.91 | ± 9.6 % | | 10291 | AAB | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ± 9.6 % | | 10292 | AAB | CDMA2000, RC3, SO32, Full Rate | CDMA2000 | 3.39 | ± 9.6 % | | 10293 | AAB | CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ± 9.6 % | | 10295 | AAB | GDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ± 9.6 % | | 10297 | AAD | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ± 9.6 % | | 10298 | AAD | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-FDD | 5.72 | ±9.6 % | | 10299 | AAD | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.39 | ± 9.6 % | Certificate No: EX3-7307_May20 Page 13 of 22 | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC) IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3CTRL) IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 IEEE 802.11e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (DFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (DFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 10 MHz G4-QAM Waveform, 10 MHz IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE
802.11ac WiFi (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WIMAX UTE-FDD IDEN IDEN IDEN IDEN IDEN IDEN IDEN ID | 12.03
12.57
12.52
11.86
15.24
14.67
14.49
14.46
14.58
14.57
6.06
10.51
13.48
1.71
8.36
8.36
10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53
8.53 | ±9.6 % | |--|---|--|--| | IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) IDEN 1:3 IDEN 1:6 IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) IEEE 802.11g WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 10 MHz G4-QAM Waveform, 10 MHz G4-QAM Waveform, 40 MHz IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WiMAX LTE-FDD IDEN IDEN WLAN WLAN WLAN Generic | 12.52
11.86
15.24
14.49
14.46
14.48
14.57
6.06
10.51
13.48
1.71
8.36
8.36
10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53
3.76 | ±9.6 % | | IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) IDEN 1:3 IDEN 1:6 IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) IEEE 802.11g WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 10 MHz G4-QAM Waveform, 10 MHz G4-QAM Waveform, 40 MHz IEEE 802.11ac
WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WiMAX UTE-FDD IDEN IDEN WLAN WLAN WLAN WLAN Generic | 11.86
15.24
14.67
14.49
14.46
14.58
14.57
6.06
10.51
13.48
1.71
8.36
8.36
10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.36
8.37
8.37
8.38
8.36
8.36
8.36
8.36
8.36
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.37
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8.57
8. | ±9.6 %
±9.6 % | | IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK, AMC 2x3 LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) IDEN 1:3 IDEN 1:6 IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) IEEE 802.11g WiFi 2.4 GHz (CFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 10 MHz G4-QAM Waveform, 10 MHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WiMAX WiMAX WiMAX WiMAX WiMAX WiMAX WiMAX WiMAX WIMAX LTE-FDD IDEN IDEN WLAN WLAN WLAN Generic COMAN WLAN WLAN WLAN WLAN WLAN WLAN CDMA2000 | 15.24
14.67
14.49
14.46
14.58
14.57
6.06
10.51
13.48
1.71
8.36
8.36
10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.36
8.36 | ±9.6 %
±9.6 % | | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM, AMC 2x3) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK, AMC 2x3 IDEN 1:3 IDEN 1:6 IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) IEEE 802.11g WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) IEEE 802.11g WiFi 2.4 GHz (CFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 10 MHz G4-QAM Waveform, 10 MHz G4-QAM Waveform, 10 MHz IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WiMAX WiMAX WiMAX WiMAX WiMAX WiMAX WIMAX LTE-FDD IDEN IDEN WLAN WLAN WLAN Generic | 14.67
14.49
14.46
14.58
14.57
6.06
10.51
13.48
1.71
8.36
8.36
10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53 | ±9.6 % | | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 160AM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 160AM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 160AM, AMC 2x3) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK, AMC 2x3 IDEN 1:3 IDEN 1:6 IEEE 802.11b WiFI 2.4 GHz (DSSS, 1 Mbps, 96pc dc) IEEE 802.11g WiFI 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 10 MHz GPSK Waveform, 10 MHz G4-QAM Waveform, 40 MHz IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WiMAX WiMAX WiMAX WiMAX WiMAX LTE-FDD iDEN iDEN WLAN WLAN WLAN Generic | 14.49
14.46
14.57
6.06
10.51
13.48
1.71
8.36
8.36
10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53 | ±9.6 %
±9.6 %
±9 | | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 160AM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 160AM, PUSC) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 160AM, AMC 2x3) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK, AMC 2x3 IDEN 1:3 IDEN 1:6 IEEE 802.11b WiFI 2.4 GHz (DSSS, 1 Mbps, 96pc dc) IEEE 802.11g WiFI 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 10 MHz GPSK Waveform, 10 MHz G4-QAM Waveform, 40 MHz IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WiMAX WiMAX WiMAX WiMAX WIMAX LTE-FDD IDEN IDEN WLAN WLAN WLAN Generic | 14.46 14.58 14.57 6.06 10.51 13.48 1.71 8.36 8.36 10.00 6.99 3.98 2.22 0.97 5.10 5.22 6.27 6.27 8.37 8.60 8.53 3.76 | ±9.6 %
±9.6 % | | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 16QAM,AMC 2x3) IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) IDEN 1:3 IDEN 1:6 IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) IEEE 802.11g WiFi 2.4 GHz (DFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 60%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 1 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 100 KHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WiMAX WiMAX LTE-FDD iDEN iDEN WLAN WLAN WLAN Generic WLAN WLAN WLAN WLAN WLAN WLAN WLAN WLAN | 14.58
14.57
6.06
10.51
13.48
1.71
8.36
8.36
10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53 | ±9.6 %
±9.6 % | | IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, QPSK, AMC 2x3 LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) IDEN 1:3 IDEN 1:6 IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) IEEE 802.11g WiFi 2.4 GHz (DFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 80%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 10 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WiMAX LTE-FDD IDEN IDEN WLAN WLAN WLAN Generic WLAN WLAN WLAN WLAN WLAN WLAN CDMA2000 | 14.57
6.06
10.51
13.48
1.71
8.36
8.36
10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53 | ±9.6 %
±9.6 % | | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK) iDEN 1:3 iDEN 1:6 IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 80%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 10 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 100 kHz 64-QAM Waveform, 40
MHz IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | LTE-FDD IDEN IDEN WLAN WLAN WLAN Generic WLAN WLAN WLAN WLAN WLAN WLAN WLAN CDMA2000 | 6.06 10.51 13.48 1.71 8.36 8.36 10.00 6.99 3.98 2.22 0.97 5.10 5.22 6.27 6.27 8.37 8.60 8.53 3.76 | ±9.6 %
±9.6 % | | IDEN 1:3 IDEN 1:6 IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 80%) Pulse Waveform (200Hz, 80%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 1 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | IDEN IDEN IDEN WLAN WLAN WLAN Generic WLAN WLAN WLAN WLAN WLAN CDMA2000 | 10.51
13.48
1.71
8.36
8.36
10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53
3.76 | ±9.6 %
±9.6 % | | IDEN 1:6 IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 60%) Pulse Waveform (200Hz, 60%) Pulse Waveform (200Hz, 80%) QPSK Waveform (200Hz, 80%) QPSK Waveform, 1 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 100 kHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | iDEN WLAN WLAN WLAN Generic WLAN WLAN WLAN WLAN WLAN WLAN WLAN CDMA2000 | 13.48
1.71
8.36
8.36
10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53
3.76 | ±9.6 %
±9.6 % | | IEEE 802.11a WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc dc) IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 60%) Pulse Waveform (200Hz, 80%) QPSK Waveform (200Hz, 80%) QPSK Waveform, 1 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 100 kHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WLAN WLAN WLAN Generic WLAN WLAN WLAN WLAN CDMA2000 | 1.71
8.36
8.36
10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53
3.76 | ±9.6 %
±9.6 % | | IEEE 802.11a WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc dc) IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 60%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 10 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 100 kHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WLAN WLAN Generic WLAN WLAN WLAN WLAN CDMA2000 | 8.36
8.36
10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53 | ±9.6 %
±9.6 % | | IEEE 802.11a WiFi 5 GHz (QFDM, 6 Mbps, 96pc dc) Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 60%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 1 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 100 kHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WLAN Generic WLAN WLAN WLAN WLAN CDMA2000 | 8.36
10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53
3.76 | ±9.6 %
±9.6 % | | Pulse Waveform (200Hz, 10%) Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 60%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 1 MHz QPSK Waveform, 1 MHz G4-QAM Waveform, 10 MHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WIFI (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (40MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | Generic WLAN WLAN WLAN WLAN CDMA2000 | 10.00
6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53
3.76 | ±9.6 %
±9.6 % | | Pulse Waveform (200Hz, 20%) Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 60%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 10 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 100 kHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | Generic Generic Generic Generic Generic Generic Generic Generic Generic WLAN WLAN WLAN WLAN CDMA2000 | 6.99
3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 60%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 10 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 100 kHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WIFI (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (40MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | Generic Generic Generic Generic Generic Generic Generic Generic WLAN WLAN WLAN CDMA2000 | 3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53
3.76 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | Pulse Waveform (200Hz, 40%) Pulse Waveform (200Hz, 60%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 10 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 100 kHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WIFI (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (40MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | Generic Generic Generic Generic Generic Generic Generic WLAN WLAN WLAN WLAN CDMA2000 | 3.98
2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53
3.76 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | Pulse Waveform (200Hz, 60%) Pulse Waveform (200Hz, 80%) QPSK Waveform, 1 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 100 kHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WIFI (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (40MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | Generic
Generic
Generic
Generic
Generic
WLAN
WLAN
WLAN
WLAN
CDMA2000 | 2.22
0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53
3.76 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | Pulse Waveform (200Hz, 80%) QPSK Waveform, 1 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 100 kHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WIFI (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | Generic
Generic
Generic
Generic
Generic
WLAN
WLAN
WLAN
WLAN
CDMA2000 | 0.97
5.10
5.22
6.27
6.27
8.37
8.60
8.53
3.76 | ± 9.6 %
± % | | QPSK Waveform, 1 MHz QPSK Waveform, 10 MHz 64-QAM Waveform, 100 kHz 64-QAM Waveform, 100 kHz 64-QAM Waveform, 400 MHz IEEE 802.11ac WiFi (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | Generic
Generic
Generic
WLAN
WLAN
WLAN
CDMA2000 | 5.10
5.22
6.27
6.27
8.37
8.60
8.53
3.76 | ±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 %
±9.6 % | | QPSK Waveform, 10 MHz 64-QAM Waveform, 100 kHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WIFI (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | Generic
Generic
WLAN
WLAN
WLAN
CDMA2000 | 5.22
6.27
6.27
8.37
8.60
8.53
3.76 | ± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 %
± 9.6 % | | 64-QAM Waveform, 100 kHz 64-QAM Waveform, 40 MHz IEEE 802.11ac WIFI (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | Generic
Generic
WLAN
WLAN
WLAN
CDMA2000 | 6.27
6.27
8.37
8.60
8.53
3.76 | ±9.6 %
±9.6 %
±9.6 %
±9.6 % | | 64-QAM Waveform, 40 MHz IEEE 802.11ac WIFI (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | Generic
WLAN
WLAN
WLAN
CDMA2000 | 6.27
8.37
8.60
8.53
3.76 | ±9.6 %
±9.6 %
±9.6 %
±9.6 % | | IEEE 802.11ac WIFI (20MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WIFI (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WLAN
WLAN
WLAN
CDMA2000 | 8.37
8.60
8.53
3.76 | ±9.6 %
±9.6 %
±9.6 % | | IEEE 802.11ac WiFi (40MHz, 64-QAM, 99pc dc) IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WLAN
WLAN
CDMA2000 | 8.60
8.53
3.76 | ±9.6 %
±9.6 % | | IEEE 802.11ac WiFi (80MHz, 64-QAM, 99pc dc) CDMA2000 (1xEV-DO, Rev. 0) | WLAN
CDMA2000 | 8.53
3.76 | ±9.6 % | | CDMA2000 (1xEV-DO, Rev. 0) | CDMA2000 | 3.76 | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | ±9.6 % | | CDMA2000, RC3, SO32, SCH0, Full Rate | CDMA2000 | 5.22 | ±9.6 % | | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub=2,3,4,7,8,9) | LTE-TDD | 7.82 | ± 9.6 % | | WLAN CCDF, 64-QAM, 40MHz | Generic | 8.54 | ±9.6 % | | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc dc) | WLAN | 1.54 | ± 9.6 % | | IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Long) | WLAN | 8.14 | ± 9.6 % | | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc, Short) | WLAN | 8.19 | ± 9.6 % | | IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK) | WLAN | 8.32 | ± 9.6 % | | IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM) | WLAN | 8.47 | ±9.6 % | | IEEE
802.11n (HT Greenfield, 72.2 Mbps, 64-QAM) | WLAN | 8.40 | ± 9.6 % | | IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK) | WLAN | 8.41 | ± 9.6 % | | IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM) | WLAN | 8.45 | ± 9.6 % | | IEEE 802.11n (HT Greenfield, 150 Mbps, 16-QAM) | WLAN | 8.41 | ±9.6 % | | LTE-FDD (OFDMA, 5 MHz, E-TM 3.1) | LTE-FDD | 8.28 | ± 9.6 % | | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.38 | ± 9.6 % | | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | LTE-FDD (OFDMA, 13 MHz, E-TM 3.1) | LTE-FDD | 8.34 | ± 9.6 % | | W-CDMA (BS Test Model 1, 64 DPCH) | WCDMA | 8.60 | ± 9.6 % | | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | | | | ± 9.6 % | | | | | ± 9.6 % | | | | | ± 9.6 % | | | | | ± 9.6 % | | | | | | | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | | | ± 9.6 % | | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)
W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) | | | ±9.6 % | | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1ms) | | | ± 9.6 % | | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) | | | ± 9.6 % | | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1rms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) | | | ± 9.6 % | | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | CDIVIA2000 | | ± 9.6 % | | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 (1xEV-DO, Rev. B, 3 carriers) | INCOMA | 2.39 | ±9.6 % | | LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 (1xEV-DO, Rev. B, 3 carriers) UMTS-FDD (WCDMA, AMR) | WCDMA | | ± 9.6 % | | | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) Validation (Square, 10ms, 1ms) IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) UMTS-FDD (DC-HSDPA) CDMA2000 (1xEV-DO, Rev. B, 2 carriers) | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Cliping 44%) LTE-FDD LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA Validation (Square, 10ms, 1ms) Test IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) WLAN UMTS-FDD (DC-HSDPA) WCDMA CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 | LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clippin 44%) LTE-FDD 7.53 LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.51 LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) LTE-FDD 7.48 W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%) WCDMA 7.59 Validation (Square, 10ms, 1rms) Test 10.00 IEEE 802.11ac WiFi (160MHz, 64-QAM, 99pc dc) WLAN 8.63 UMTS-FDD (DC-HSDPA) WCDMA 6.62 CDMA2000 (1xEV-DO, Rev. B, 2 carriers) CDMA2000 6.55 CDMA2000 (1xEV-DO, Rev. B, 3 carriers) CDMA2000 8.25 | Page 14 of 22 Certificate No: EX3-7307_May20 | 10463 | AAB | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ±9.6 % | |-------|-----|---|---------|------|---------| | 10464 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ±9.6 % | | 10465 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10466 | AAC | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ±9.6% | | 10467 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ±9.6 % | | 10468 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ±9.6 % | | 10469 | AAF | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.56 | ± 9.6 % | | 10470 | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ±9.6 % | | 10471 | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ± 9.6 % | | 10472 | AAF | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ± 9.6 % | | 10473 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.82 | ± 9.6 % | | 10474 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ±9.6 % | | 10475 | AAE | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ±9.6 % | | 10477 | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.32 | ±9.6 % | | 10478 | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.57 | ±9.6 % | | 10479 | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10480 | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.18 | ± 9.6 % | | 10481 | AAB | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 % | | 10482 | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.71 | ± 9.6 % | | 10483 | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) | LTE-TDD | 8.39 | ± 9.6 % | | 10484 | AAC | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, Sub) | LTE-TDD | 8.47 | ± 9.6 % | | 10485 | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.59 | ± 9.6 % | | 10485 | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, 0L Sub) | LTE-TDD | 8.38 | ±9.6 % | | 10486 | AAF | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TOD | 8.60 | ± 9.6 % | | | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Sub) | LTE-TOD | 7.70 | ± 9.6 % | | 10488 | | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, GFSK, 0L Sta) | LTE-TDD | 8.31 | ± 9.6 % | | 10489 | AAF | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | | - | | 10490 | AAF | | | 8.54 | ± 9.6 % | | 10491 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10492 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.41 | - | | 10493 | AAE | LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ± 9.6 % | | 10494 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Sub) | LTE-TOD | 7.74 | ± 9.6 % | | 10495 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.37 | ±9.6 % | | 10496 | AAF | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10497 | AAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ±9.6 % | | 10498 | AAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.40 | ± 9.6 % | | 10499 | AAB | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.68 | ±9.6 % | | 10500 | AAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Sub) | LTE-TDD | 7.67 | ±9.6 % | | 10501 | AAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.44 | ±9.6 % | | 10502 | AAC | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.52 | ±9.6 % | | 10503 | AAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Sub) | LTE-TDD | 7.72 | ±9.6 % | | 10504 | AAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.31 | ±9.6 % | | 10505 | AAF | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.54 | ± 9.6 % | | 10506 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10507 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.36 | ±9.6 % | | 10508 | AAF | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.55 | ±9.6 % | | 10509 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Sub) | LTE-TDD | 7.99 | ± 9.6 % | | 10510 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.49 | ±9.6 % | | 10511 | AAE | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.51 | ± 9.6 % | | 10512 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Sub) | LTE-TDD | 7.74 | ± 9.6 % | | 10513 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Sub) | LTE-TDD | 8.42 | ± 9.6 % | | 10514 | AAF | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Sub) | LTE-TDD | 8.45 | ± 9.6 % | | 10515 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10516 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc dc) | WLAN | 1.57 | ± 9.6 % | | 10517 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc dc) | WLAN | 1.58 | ± 9.6 % | | 10518 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc dc) | WLAN | 8.23 | ± 9.6 % | | 10519 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10520 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc dc) | WLAN | 8.12 | ±9.6 % | | 10521 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc dc) | WLAN | 7.97 | ± 9.6 % | | 10522 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10523 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc dc) | WLAN | 8.08 | ± 9.6 % | | 10524 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc dc) | WLAN | 8.27 | ± 9.6 % | | 10525 | AAB | IEEE 802.11ac WiFi (20MHz, MCS0, 99pc dc) | WLAN | 8,36 | ± 9.6 % | | 10526 | AAB | IEEE 802.11ac WiFi (20MHz, MCS1, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10527 | AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 99pc dc) | WLAN | 8.21 | ± 9.6 % | Certificate No: EX3-7307_May20 Page 15 of 22 | 10528 | AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 99pc dc) | WLAN | 8.36 | ± 9.6 % | |-------|-----|---|------|------|---------| | 10529 | AAB | IEEE 802.11ac WiFi (20MHz,
MCS4, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 10531 | AAB | IEEE 802.11ac WiFi (20MHz, MCS6, 99pc dc) | WLAN | 8.43 | ±9.6 % | | 10532 | AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 99pc dc) | WLAN | 8.29 | ±9.6 % | | 10533 | AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 99pc dc) | WLAN | 8.38 | ±9.6 % | | 10534 | AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10535 | AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10536 | AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10537 | AAB | IEEE 802.11ac WiFi (40MHz, MCS3, 99pc dc) | WLAN | 8.44 | ±9.6 % | | 10538 | AAB | IEEE 802,11ac WiFi (40MHz, MCS4, 99pc dc) | WLAN | 8.54 | ±9.6 % | | 10540 | AAB | IEEE 802.11ac WiFi (40MHz, MCS6, 99pc dc) | WLAN | 8.39 | ±9.6 % | | 10540 | AAB | IEEE 802.11ac WiFi (40MHz, MCS7, 99pc dc) | WLAN | 8.46 | ± 9.6 % | | | AAB | IEEE 802.11ac WiFi (40MHz, MCS8, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10542 | AAB | IEEE 802.11ac WiFi (40MHz, MCS9, 99pc dc) | WLAN | 8.65 | ± 9.6 % | | 10543 | | | WLAN | 8.47 | ± 9.6 % | | 10544 | AAB | IEEE 802.11ac WiFi (80MHz, MCS0, 99pc dc) IEEE 802.11ac WiFi (80MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10545 | AAB | | | | | | 10546 | AAB | IEEE 802.11ac WiFi (80MHz, MCS2, 99pc dc) | WLAN | 8.35 | ± 9.6 % | | 10547 | AAB | IEEE 802.11ac WiFi (80MHz, MCS3, 99pc dc) | WLAN | 8.49 | ± 9.6 % | | 10548 | AAB | IEEE 802.11ac WiFi (80MHz, MCS4, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10550 | AAB | IEEE 802.11ac WiFi (80MHz, MCS6, 99pc dc) | WLAN | 8.38 | ±9.6 % | | 10551 | AAB | IEEE 802.11ac WiFi (80MHz, MCS7, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10552 | AAB | IEEE 802.11ac WiFi (80MHz, MCS8, 99pc dc) | WLAN | 8.42 | ±9.6 % | | 10553 | AAB | IEEE 802.11ac WiFi (80MHz, MCS9, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10554 | AAC | IEEE 802.11ac WiFi (160MHz, MCS0, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10555 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 99pc dc) | WLAN | 8.47 | ± 9.6 % | | 10556 | AAC | IEEE 802.11ac WiFi (160MHz, MCS2, 99pc dc) | WLAN | 8.50 | ± 9.6 % | | 10557 | AAC | IEEE 802.11ac WiFi (160MHz, MCS3, 99pc dc) | WLAN | 8.52 | ± 9.6 % | | 10558 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 99pc dc) | WLAN | 8.61 | ± 9.6 % | | 10560 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 99pc dc) | WLAN | 8.73 | ±9.6 % | | 10561 | AAC | IEEE 802.11ac WiFi (160MHz, MCS7, 99pc dc) | WLAN | 8.56 | ±9.6 % | | 10562 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 99pc dc) | WLAN | 8.69 | ±9.6 % | | 10563 | AAC | IEEE 802.11ac WiFi (160MHz, MCS9, 99pc dc) | WLAN | 8.77 | ± 9.6 % | | 10564 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc dc) | WLAN | 8.25 | ± 9.6 % | | 10565 | AAA | IEEE 802.11g WIFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc dc) | WLAN | 8.45 | ±9.6 % | | 10566 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc dc) | WLAN | 8.13 | ± 9.6 % | | 10567 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc dc) | WLAN | 8.00 | ± 9.6 % | | 10568 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc dc) | WLAN | 8.37 | ± 9.6 % | | 10569 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc dc) | WLAN | 8.10 | ± 9.6 % | | 10570 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc dc) | WLAN | 8.30 | ± 9.6 % | | 10571 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10572 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc dc) | WLAN | 1.99 | ± 9.6 % | | 10573 | AAA | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | | - | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc dc) | WLAN | 1.98 | ± 9.6 % | | 10574 | AAA | | WLAN | 8.59 | ± 9.6 % | | 10575 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc dc) | | | | | 10576 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ± 9.6 % | | 10577 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10578 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ± 9.6 % | | 10579 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ± 9.6 % | | 10580 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ±9.6 % | | 10581 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ±9.6 % | | 10582 | AAA | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ± 9.6 % | | 10583 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc dc) | WLAN | 8.59 | ±9.69 | | 10584 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc dc) | WLAN | 8.60 | ±9.6% | | 10585 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10586 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc dc) | WLAN | 8.49 | ±9.6 % | | 10587 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc dc) | WLAN | 8.36 | ±9.6 % | | 10588 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10589 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc dc) | WLAN | 8.35 | ±9.6% | | 10590 | AAB | IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc dc) | WLAN | 8.67 | ±9.69 | | 10591 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS0, 90pc dc) | WLAN | 8.63 | ± 9.6 9 | | 10592 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS1, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10593 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS2, 90pc dc) | WLAN | 8.64 | ±9.6% | | 10594 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ±9.69 | | 10595 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS4, 90pc dc) | WLAN | 8.74 | ± 9.6 9 | Certificate No: EX3-7307_May20 Page 16 of 22 | 10596 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS5, 90pc dc) | WLAN | 8.71 | ±9.6 % | |-------|-----|--|---------------------|--------------|---------| | 0597 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS6, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 0598 | AAB | IEEE 802.11n (HT Mixed, 20MHz, MCS7, 90pc dc) | WLAN | 8.50 | ± 9.6 % | | 0599 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS0, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 10600 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS1, 90pc dc) | WLAN | 8.88 | ±9.6 % | | 10601 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS2, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10602 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS3, 90pc dc) | WLAN | 8.94 | ±9.6 % | | 10603 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS4, 90pc dc) | WLAN | 9.03 | ±9.6 % | | 10604 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS5, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10605 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS6, 90pc dc) | WLAN | 8.97 | ± 9.6 % | | 10606 | AAB | IEEE 802.11n (HT Mixed, 40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10607 | AAB | IEEE 802.11ac WiFi (20MHz, MCS0, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10608 | AAB | IEEE 802.11ac WiFi (20MHz, MCS1, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10609 | AAB | IEEE 802.11ac WiFi (20MHz, MCS2, 90pc dc) | WLAN | 8.57 | ±9.6 % | | 10610 | AAB | IEEE 802.11ac WiFi (20MHz, MCS3, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10611 | AAB | IEEE 802.11ac WiFi (20MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10612 | AAB | IEEE 802.11ac WiFi (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10613 | AAB | IEEE 802.11ac WiFi (20MHz, MCS6, 90pc dc) | WLAN | 8.94 | ± 9.6 % | | 10614 | AAB | IEEE 802.11ac WiFi (20MHz, MCS7, 90pc dc) | WLAN | 8.59 | ± 9.6 % | | 10615 | AAB | IEEE 802.11ac WiFi (20MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10616 | AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10617 | AAB | IEEE 802.11ac WiFi (40MHz, MCS1, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10618 | AAB | IEEE 802.11ac WiFi (40MHz, MCS2, 90pc dc) | WLAN | 8.58 | ±9.6 % | | 10619 | AAB | IEEE 802.11ac WiFi (40MHz, MCS3, 90pc dc) | WLAN | 8.86 | ± 9.6 % | | 10620 | AAB | IEEE 802.11ac WiFi (40MHz, MCS4, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10621 | AAB | IEEE 802.11ac WiFi (40MHz, MCS5, 90pc dc) | WLAN | 8.77 | ±9.6 % | | 10622 | AAB | IEEE 802.11ac WiFi (40MHz, MCS6, 90pc dc) | WLAN | 8.68 | ± 9.6 % | | 10623 | AAB | IEEE 802.11ac WiFi (40MHz, MCS7, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10624 | AAB | IEEE 802.11ac WiFi (40MHz, MCS8, 90pc dc) | WLAN | 8.96 | ±9.6 % | | 10625 | AAB | IEEE 802.11ac WiFi (40MHz, MCS9, 90pc dc) | WLAN | 8.96 | ± 9.6 % | | 10626 | AAB | IEEE 802.11ac WiFi (40MHz, MCS0, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10627 | AAB | IEEE 802.11ac WIFI (80MHz, MCS1, 90pc dc) | WLAN | 8.88 | ± 9.6 % | | 10628 | AAB | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc) | WLAN | 8.71 | ± 9.6 % | | 10629 | AAB | IEEE 802.11ac WiFi (80MHz, MCS2, 90pc dc) | WLAN | 8.85 | ± 9.6 % | | 10630 | AAB | IEEE 802.11ac WIFI (80MHz, MCS4, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10631 | AAB | IEEE 802.11ac WiFi (80MHz, MCS5, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10632 | AAB | IEEE 802.11ac WiFi (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10633 | AAB | IEEE 802.11ac WiF1 (80MHz, MCS7, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10634 | AAB | IEEE 802.11ac WiFi (80MHz, MCS8, 90pc dc) | WLAN | 8.80 | | | 10635 | AAB | IEEE 802.11ac WiFi (80MHz, MCS9, 90pc dc) | WLAN | | ±9.6 % | | 10636 | AAC | IEEE 802.11ac WIFI (80MHz, MCS9, 90pc dc) | WLAN | 8.81 | ±9.6% | | 10637 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc) | WLAN | 8.83
8.79 | ±9.6 % | | 10638 | AAC | IEEE 802.11ac WiFi (160MHz, MCS1, 90pc dc) | WLAN | | ±9.6 % | | 10639 | AAC | | WLAN | 8.86 | ±9.6 % | | | | IEEE 802.11ac WiFi (160MHz, MCS3, 90pc dc) | | 8.85 | ±9.6 % | | 10640 | AAC | IEEE 802.11ac WiFi (160MHz, MCS4, 90pc dc) | WLAN | 8.98 | ±9.6 % | | 10641 | | IEEE 802.11ac WiFi (160MHz, MCS5, 90pc dc) | WLAN | 9.06 | ±9.69 | | 10642 | AAC | IEEE 802.11ac WiFi (160MHz, MCS6, 90pc dc) IEEE 802.11ac WiFi (160MHz, MCS7, 90pc dc) | WLAN
WLAN | 9.06 | ±9.6 % | | 10643 | AAC | | WLAN | 8.89 | ±9.69 | | 10644 | AAC | IEEE 802.11ac WiFi (160MHz, MCS8, 90pc dc) | WLAN | 9.05 | ±9.69 | | 10646 | AAG | IEEE 802.11ac WiFi
(160MHz, MCS9, 90pc dc) LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Sub=2,7) | LTE-TDD | 9.11 | ±9.6 9 | | 10647 | AAF | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Sub=2,7) | | | ±9.6 9 | | 10648 | AAA | | LTE-TDD
CDMA2000 | 11.96 | ± 9.6 9 | | 10648 | AAA | CDMA2000 (1x Advanced) | LTE-TDD | 3,45 | ±9.69 | | 10652 | AAE | LTE-TDD (OFDMA, 5 MHz, E-TM 3.1, Clipping 44%) LTE-TDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 6.91 | ±9.6 % | | 10654 | | | LTE-TDD | 7.42 | ±9.6 % | | | AAD | LTE-TDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%) | | 6.96 | ±9.69 | | 10655 | AAE | LTE-TDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%) | LTE-TDD | 7.21 | ± 9.6 9 | | 10658 | AAA | Pulse Waveform (200Hz, 10%) | Test | 10.00 | ± 9.6 9 | | 10659 | AAA | Pulse Waveform (200Hz, 20%) | Test | 6.99 | ± 9.6 | | 10660 | AAA | Pulse Waveform (200Hz, 40%) | Test | 3.98 | ± 9.6 9 | | 10661 | AAA | Pulse Waveform (200Hz, 60%) | Test | 2.22 | ± 9.6 9 | | 10662 | AAA | Pulse Waveform (200Hz, 80%) | Test | 0.97 | ±9.6 % | | 10670 | AAA | Bluetooth Low Energy | Bluetooth | 2.19 | ± 9.6 9 | | 10671 | AAA | IEEE 802.11ax (20MHz, MCS0, 90pc dc) | WLAN | 9.09 | ± 9.6 | Certificate No: EX3-7307_May20 Page 17 of 22 | 10672 | AAA | IEEE 802.11ax (20MHz, MCS1, 90pc dc) | WLAN | 8.57 | ± 9.6 % | |----------------|-------|--|--------------|--------------|--------------------| | 10673 | AAA | IEEE 802.11ax (20MHz, MCS2, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10674 | AAA | IEEE 802.11ax (20MHz, MCS3, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10675 | AAA | IEEE 802.11ax (20MHz, MCS4, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10676 | AAA | IEEE 802.11ax (20MHz, MCS5, 90pc dc) | WLAN | 8.77 | ± 9.6 % | | 10677 | AAA | IEEE 802.11ax (20MHz, MCS6, 90pc dc) | WLAN | 8.73 | ± 9.6 % | | 10678 | AAA | IEEE 802.11ax (20MHz, MCS7, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10679 | AAA | IEEE 802.11ax (20MHz, MCS8, 90pc dc) | WLAN | 8.89 | ±9.6 % | | 10680 | AAA | IEEE 802.11ax (20MHz, MCS9, 90pc dc) | WLAN | 8.80 | ± 9.6 % | | 10681 | AAA | IEEE 802.11ax (20MHz, MCS10, 90pc dc) | WLAN | 8.62 | ±9.6 % | | 10682 | AAA | IEEE 802.11ax (20MHz, MCS11, 90pc dc) | WLAN | 8.83 | ± 9.6 % | | 10683 | AAA | IEEE 802.11ax (20MHz, MCS0, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 10684 | AAA | IEEE 802.11ax (20MHz, MCS1, 99pc dc) | WLAN | 8.26 | ±9.6 % | | 10685 | AAA | IEEE 802.11ax (20MHz, MCS2, 99pc dc) | WLAN | 8.33 | ±9.6 % | | 10686 | AAA | IEEE 802.11ax (20MHz, MCS3, 99pc dc) | WLAN | 8.28 | ± 9.6 % | | 10687 | AAA | IEEE 802.11ax (20MHz, MCS4, 99pc dc) IEEE 802.11ax (20MHz, MCS5, 99pc dc) | WLAN
WLAN | 8.45 | ± 9.6 % | | 10688 | AAA | | | 8.29 | ±9.6 % | | 10689
10690 | AAA | IEEE 802.11ax (20MHz, MCS6, 99pc dc) | WLAN | 8.55 | ±9.6 % | | 10690 | AAA | IEEE 802.11ax (20MHz, MCS7, 99pc dc) IEEE 802.11ax (20MHz, MCS8, 99pc dc) | WLAN | 8.29 | ±9.6 % | | | | | | 8.25 | ±9.6 % | | 10692
10693 | AAA | IEEE 802.11ax (20MHz, MCS9, 99pc dc) IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.29
8.25 | ±9.6 % | | 10693 | AAA | IEEE 802.11ax (20MHz, MCS10, 99pc dc) | WLAN | 8.57 | ± 9.6 % | | 10695 | AAA | IEEE 802.11ax (40MHz, MCS0, 90pc dc) | WLAN | 8.78 | ± 9.6 % | | 10696 | AAA | IEEE 802.11ax (40MHz, MCS1, 90pc dc) | WLAN | 8.91 | ±9.6 % | | 10697 | AAA | IEEE 802.11ax (40MHz, MCS2, 90pc dc) | WLAN | 8.61 | ± 9.6 % | | 10698 | AAA | IEEE 802.11ax (40MHz, MCS3, 90pc dc) | WLAN | 8.89 | ± 9.6 % | | 10699 | AAA | IEEE 802.11ax (40MHz, MCS4, 90pc dc) | WLAN | 8.82 | ± 9.6 % | | 10700 | AAA | IEEE 802.11ax (40MHz, MCS5, 90pc dc) | WLAN | 8.73 | ±9.6 % | | 10701 | AAA | IEEE 802.11ax (40MHz, MCS6, 90pc dc) | WLAN | 8.86 | ±9.6 % | | 10702 | AAA | IEEE 802.11ax (40MHz, MCS7, 90pc dc) | WLAN | 8.70 | ±9.6 % | | 10703 | AAA | IEEE 802.11ax (40MHz, MCS8, 90pc dc) | WLAN | 8.82 | ±9.6 % | | 10704 | AAA | IEEE 802.11ax (40MHz, MCS9, 90pc dc) | WLAN | 8.56 | ±9.6 % | | 10705 | AAA | IEEE 802.11ax (40MHz, MCS10, 90pc dc) | WLAN | 8.69 | ±9.6 % | | 10706 | AAA | IEEE 802.11ax (40MHz, MCS11, 90pc dc) | WLAN | 8.66 | ± 9.6 % | | 10707 | AAA | IEEE 802.11ax (40MHz, MCS0, 99pc dc) | WLAN | 8.32 | ± 9.6 % | | 10708 | AAA | IEEE 802.11ax (40MHz, MCS1, 99pc dc) | WLAN | 8.55 | ± 9.6 % | | 10709 | AAA | IEEE 802.11ax (40MHz, MCS2, 99pc dc) | WLAN | 8.33 | ±9.6 % | | 10710 | AAA | IEEE 802.11ax (40MHz, MCS3, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 10711 | AAA | IEEE 802.11ax (40MHz, MCS4, 99pc dc) | WLAN | 8.39 | ± 9.6 % | | 10712 | AAA | IEEE 802.11ax (40MHz, MCS5, 99pc dc) | WLAN | 8.67 | ±9.6 % | | 10713 | AAA | IEEE 802.11ax (40MHz, MCS6, 99pc dc) | WLAN | 8.33 | ± 9.6 % | | 10714 | AAA | IEEE 802.11ax (40MHz, MCS7, 99pc dc) | WLAN | 8.26 | ± 9.6 % | | 10715 | AAA | IEEE 802.11ax (40MHz, MCS8, 99pc dc) | WLAN | 8.45 | ± 9.6 % | | 10716 | AAA | IEEE 802.11ax (40MHz, MCS9, 99pc dc) | WLAN | 8.30 | ±9.6 % | | 10717 | AAA | IEEE 802.11ax (40MHz, MCS10, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 10718 | AAA | IEEE 802.11ax (40MHz, MCS11, 99pc dc) | WLAN | 8.24 | ± 9.6 % | | 10719 | AAA | IEEE 802.11ax (80MHz, MCS0, 90pc dc) | WLAN | 8.81 | ± 9.6 % | | 10720 | AAA | IEEE 802.11ax (80MHz, MCS1, 90pc dc) | WLAN | 8.87 | ± 9.6 % | | 10721 | AAA | IEEE 802.11ax (80MHz, MCS2, 90pc dc) | WLAN | 8.76 | ± 9.6 % | | 10722 | AAA | IEEE 802.11ax (80MHz, MCS3, 90pc dc) | WLAN | 8.55 | ± 9.6 % | | 10723 | AAA | IEEE 802.11ax (80MHz, MCS4, 90pc dc) | WLAN | 8.70 | ± 9.6 % | | 10724 | AAA | IEEE 802.11ax (80MHz, MCS5, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 10725 | AAA | IEEE 802.11ax (80MHz, MCS6, 90pc dc) | WLAN | 8.74 | ± 9.6 % | | 10726 | AAA | IEEE 802.11ax (80MHz, MCS7, 90pc dc) | WLAN | 8.72 | ± 9.6 % | | 10727 | AAA | IEEE 802.11ax (80MHz, MCS8, 90pc dc) | WLAN | 8.66 | ± 9.6 % | | 10728 | AAA | IEEE 802.11ax (80MHz, MCS9, 90pc dc) | WLAN | 8.65 | ± 9.6 % | | 10729 | AAA | IEEE 802.11ax (80MHz, MCS10, 90pc dc) | WLAN | 8.64 | ± 9.6 % | | 10730
10731 | AAA | IEEE 802.11ax (80MHz, MCS11, 90pc dc) IEEE 802.11ax (80MHz, MCS0, 99pc dc) | WLAN
WLAN | 8.67 | ±9.6 % | | 10731 | AAA | IEEE 802.11ax (80MHz, MCS0, 99pc dc) | WLAN | 8.42
8.46 | ± 9.6 % | | 10732 | AAA | IEEE 802.11ax (80MHz, MCS1, 99pc dc) | WLAN | 8.40 | ±9.6 % | | 10733 | AAA | IEEE 802.11ax (80MHz, MCS2, 99pc dc) | WLAN | 8,40 | ± 9.6 %
± 9.6 % | | 10104 | LVVV. | ILLE GOZ. I TAX (GOINI IZ, INIGGO, GOPG GO) | XXLAIN | 0,23 | 1 3.0 70 | Certificate No: EX3-7307_May20 Page 18 of 22 | 0736 | AAA | IEEE 802.11ax (80MHz, MCS5, 99pc dc) | WLAN | 8.27 | ± 9.6 % | |-------|-----|--|---------------|------|---------| | 0737 | AAA | IEEE 802.11ax (80MHz, MCS6, 99pc dc) | WLAN | 8.36 | ± 9.6 % | | 0738 | AAA | IEEE 802.11ax (80MHz, MCS7, 99pc dc) | WLAN | 8.42 | ± 9.6 % | | 0739 | AAA | IEEE 802.11ax (80MHz, MCS8, 99pc dc) | WLAN | 8.29 | ± 9.6 % | | 0740 | AAA | IEEE 802.11ax (80MHz, MCS9, 99pc dc) | WLAN | 8.48 | ± 9.6 % | | 0741 | AAA | IEEE 802.11ax (80MHz, MCS10, 99pc dc) | WLAN | 8.40 | ± 9.6 % | | 0742 | AAA | IEEE 802.11ax (80MHz, MCS11, 99pc dc) | WLAN | 8.43 | ± 9.6 % | | 0743 | AAA | IEEE 802.11ax (160MHz, MCS0, 90pc dc) | WLAN | 8.94 | ±9.6 % | | 0744 | AAA | IEEE 802.11ax (160MHz, MCS1, 90pc dc) | WLAN | 9.16 | ± 9.6 % | | 0745 | AAA | IEEE 802.11ax (160MHz, MCS2, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 0746 | AAA | IEEE 802.11ax (160MHz, MCS3, 90pc dc) | WLAN | 9.11 | ± 9.6 % | | 0747 | AAA | IEEE 802.11ax (160MHz, MCS4, 90pc dc) | WLAN | 9.04 | ±9.6% | | 0748 | AAA | IEEE 802.11ax (160MHz, MCS5, 90pc dc) | WLAN | 8.93 | ± 9.6 % | | 0749 | AAA | IEEE 802.11ax (160MHz, MCS6, 90pc dc) | WLAN | 8.90 | ± 9.6 % | | 0750 | AAA | IEEE 802.11ax (160MHz, MCS7, 90pc dc) | WLAN | 8.79 | ± 9.6 % | | 0751 | AAA | IEEE 802.11ax (160MHz, MCS8, 90pc dc) | WLAN | 8.82 | ± 9.6 9 | | 0752 | AAA | IEEE 802.11ax (160MHz, MCS9, 90pc dc) | WLAN | 8.81 | ±9.6 % | | 10753 | AAA | IEEE 802.11ax (160MHz, MCS10, 90pc dc) | WLAN | 9.00 | ± 9.6 9 | | 10754 | AAA | IEEE 802.11ax (160MHz, MCS11, 90pc dc) | WLAN | 8.94 | ± 9.6 9 | | 0755 | AAA | IEEE 802.11ax (160MHz, MCS0, 99pc dc) | WLAN | 8.64 | ± 9.6 | | 0756 | AAA | IEEE 802,11ax (160MHz, MCS1, 99pc dc) | WLAN | 8.77 | ± 9.6 | | 0757 | AAA | IEEE 802.11ax (160MHz, MCS2, 99pc dc) | WLAN | 8.77 | ± 9.6 | | 0758 | AAA | IEEE 802.11ax (160MHz, MCS3, 99pc dc) | WLAN | 8.69 | ± 9.6 | | 0759 | AAA | IEEE 802.11ax (160MHz, MCS4, 99pc dc) | WLAN | 8.58 | ±9.6 | | 0760 | AAA | IEEE 802.11ax (160MHz, MCS5, 99pc dc) | WLAN | 8.49 | ±9.6 | | 10761 | AAA | IEEE 802.11ax (160MHz, MCS6, 99pc dc) | WLAN | 8.58 | ±9.6 | | 0762 | AAA | IEEE 802.11ax (160MHz, MCS7, 99pc dc) | WLAN | 8.49 | ± 9.6 | | 0763 | AAA | IEEE 802.11ax (160MHz, MCS8, 99pc dc) | WLAN | 8.53 | ± 9.6 | | 0764 | AAA | IEEE 802.11ax (160MHz, MCS9, 99pc dc) | WLAN | 8.54 | ±9.6 | | 0765 | AAA | IEEE 802.11ax (160MHz, MCS10, 99pc dc) | WLAN | 8.54 | ± 9.6 | | 0766 | AAA | IEEE 802.11ax (160MHz, MCS11, 99pc dc) | WLAN | 8.51 | ± 9.6 | | 10767 | AAC | 5G NR (CP-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 7.99 | ±9.6 | | 10768 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ±9.6 | | 10769 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.01 | ±9.6 | | 10770 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 | | 10771 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 | | 10772 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.23 | ±9.6 | | 10773 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.03 | ±9.6 | | 10774 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.02 | ±9.6 | | 10775 | AAB | 5G NR (CP-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 | | 10776 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 | | 10777 | AAB | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 | |
10778 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 | | 10779 | AAB | 5G NR (CP-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.42 | ± 9.6 | | 10779 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 | | 10781 | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.38 | ± 9.6 | | 10782 | AAC | 5G NR (CP-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 | | 10783 | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.31 | ± 9.6 | | 10784 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.29 | ± 9.6 | | 10785 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 15 KHz) | 5G NR FR1 TDD | 8.40 | ± 9.6 | | 10786 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 | | 10787 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 15 KHz) | 5G NR FR1 TDD | 8.44 | ± 9.6 | | 10788 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 | | 10789 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.37 | ± 9.6 | | 10790 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 TDD | 8.39 | ± 9.6 | | 10791 | AAC | 5G NR (CP-OFDM, 108 / 6B, 50 MHz, QPSK, 10 MHz) | 5G NR FR1 TDD | 7.83 | ± 9.6 | | 10792 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.92 | ± 9.6 | | 10793 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.95 | ± 9.6 | | 10793 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 7.82 | ± 9.6 | | | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.84 | ± 9.6 | | 10795 | | | 5G NR FR1 TDD | 7.82 | ± 9.6 | | 10796 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz)
5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.01 | ± 9.6 | | 10797 | AAC | | 5G NR FR1 TDD | | | | 10798 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz)
5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ± 9.6 | Certificate No: EX3-7307_May20 Page 19 of 22 | 10801 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.89 | ±9.6 % | |-------|-----|--|---------------|------|---------| | 10802 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.87 | ±9.6 % | | 10803 | AAC | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 7.93 | ± 9.6 % | | 10805 | AAC | 5G NR (CP-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10806 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 % | | 10809 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 % | | 10810 | AAC | 5G NR (CP-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10812 | AAC | 5G NR (CP-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10817 | AAC | 5G NR (CP-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.35 | ± 9.6 % | | 10818 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10819 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.33 | ± 9.6 % | | 10820 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.30 | ± 9.6 % | | 10821 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10822 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10823 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10824 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.39 | ±9.6 % | | | AAC | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10825 | | | 5G NR FR1 TDD | 8.42 | ± 9.6 % | | 10827 | AAC | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.43 | ± 9.6 % | | 10828 | AAC | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 30 kHz) | | | | | 10829 | AAC | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 8.40 | ±9.6 % | | 10830 | AAC | 5G NR (CP-OFDM, 1 RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.63 | ± 9.6 % | | 10831 | AAC | 5G NR (CP-OFDM, 1 RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.73 | ± 9.6 % | | 10832 | AAC | 5G NR (CP-OFDM, 1 RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.74 | ±9.6 % | | 10833 | AAC | 5G NR (CP-OFDM, 1 RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10834 | AAC | 5G NR (CP-OFDM, 1 RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.75 | ± 9.6 % | | 10835 | AAC | 5G NR (CP-OFDM, 1 RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ± 9.6 % | | 10836 | AAC | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.66 | ± 9.6 % | | 10837 | AAC | 5G NR (CP-OFDM, 1 RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.68 | ± 9.6 % | | 10839 | AAC | 5G NR (CP-OFDM, 1 RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.70 | ±9.6 % | | 10840 | AAC | 5G NR (CP-OFDM, 1 RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.67 | ± 9.6 % | | 10841 | AAC | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 7.71 | ± 9.6 % | | 10843 | AAC | 5G NR (CP-OFDM, 50% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.49 | ± 9.6 % | | 10844 | AAC | 5G NR (CP-OFDM, 50% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 % | | 10846 | AAC | 5G NR (CP-OFDM, 50% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10854 | AAC | 5G NR (CP-OFDM, 100% RB, 10 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ± 9.6 % | | 10855 | AAC | 5G NR (CP-OFDM, 100% RB, 15 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ± 9.6 % | | 10856 | AAC | 5G NR (CP-OFDM, 100% RB, 20 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 % | | 10857 | AAC | 5G NR (CP-OFDM, 100% RB, 25 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.35 | ±9.6 % | | 10858 | AAC | 5G NR (CP-OFDM, 100% RB, 30 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.36 | ±9.6 % | | 10859 | AAC | 5G NR (CP-OFDM, 100% RB, 40 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.34 | ±9.6 % | | 10860 | AAC | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10861 | AAC | 5G NR (CP-OFDM, 100% RB, 60 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.40 | ±9.6 % | | 10863 | AAC | 5G NR (CP-OFDM, 100% RB, 80 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ± 9.6 % | | 10864 | AAC | 5G NR (CP-OFDM, 100% RB, 90 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.37 | ±9.6 % | | 10865 | AAC | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 60 kHz) | 5G NR FR1 TDD | 8.41 | ±9.6 % | | 10866 | AAC | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10868 | AAC | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.89 | ± 9.6 % | | 10869 | AAD | 5G NR (DFT-s-OFDM, 100 % RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10870 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.86 | ± 9.6 % | | 10871 | AAD | 5G NR (DFT-s-OFDM, 100% KB, 100 MHz, QF3K, 120 KHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10871 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.52 | ± 9.6 % | | | AAD | | 5G NR FR2 TDD | 6.61 | ± 9.6 % | | 10873 | | 5G NR (DFT-s-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | | _ | | 10874 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6,65 | ± 9.6 % | | 10875 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ± 9.6 % | | 10876 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, QPSK, 120 kHz) | | 8.39 | ±9.6 % | | 10877 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 7.95 | ± 9.6 % | | 10878 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 10879 | AAD | 5G NR (CP-OFDM, 1 RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.12 | ± 9.6 % | | 10880 | AAD | 5G NR (CP-OFDM, 100% RB, 100 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.38 | ± 9.6 % | | 10881 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.75 | ± 9.6 % | | 10882 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 5.96 | ± 9.6 % | | 10883 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.57 | ± 9.6 % | | 10884 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 6.53 | ± 9.6 % | | 10885 | AAD | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.61 | ± 9.6 % | Certificate No: EX3-7307_May20 Page 20 of 22 | 10886 | AAD | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 6.65 | ±9.6 % | |-------|-----|---|---------------|------|---------| | 0887 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 7.78 | ±9.6 % | | 0888 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, QPSK, 120 kHz) | 5G NR FR2 TDD | 8.35 | ±9.6 % | | 0889 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.02 | ±9.6 % | | 0890 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 16QAM, 120 kHz) | 5G NR FR2 TDD | 8.40 | ± 9.6 % | | 0891 | AAD | 5G NR (CP-OFDM, 1 RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.13 | ±9.6 % | | 0892 | AAD | 5G NR (CP-OFDM, 100% RB, 50 MHz, 64QAM, 120 kHz) | 5G NR FR2 TDD | 8.41 | ± 9.6 % | | 0897 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.66 | ± 9.6 % | | 0898 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ± 9.6 % | | 0899 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.67 | ±9.6 % | | 10900 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 % | | 0901 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 0902 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 % | | 0903 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 |
± 9.6 % | | 0904 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 % | | 10905 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ± 9.6 % | | 10906 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.68 | ±9.6 % | | 10907 | AAA | 5G NR (DFT-s-OFDM, 17KB, 30 MHz, QPSK, 30 KHz) | 5G NR FR1 TDD | 5.78 | ± 9.6 % | | | AAA | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10908 | _ | | 5G NR FR1 TDD | 5.96 | ± 9.6 % | | 10909 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | | | | 10910 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ± 9.6 % | | 10911 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.93 | ± 9.6 % | | 10912 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 30 kHz) | | | | | 10913 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10914 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.85 | ±9.6 % | | 10915 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.83 | ±9.6 % | | 10916 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10917 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 100 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10918 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10919 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.86 | ± 9.6 % | | 10920 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 15 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.87 | ± 9.6 % | | 10921 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ±9.6 % | | 10922 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.82 | ± 9.6 % | | 10923 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10924 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10925 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.95 | ± 9.6 % | | 10926 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 60 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.84 | ± 9.6 % | | 10927 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 80 MHz, QPSK, 30 kHz) | 5G NR FR1 TDD | 5.94 | ± 9.6 % | | 10928 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10929 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ± 9.6 % | | 10930 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.52 | ±9.6 % | | 10931 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10932 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10933 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5,51 | ± 9.6 % | | 10934 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10935 | AAA | 5G NR (DFT-s-OFDM, 1 RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.51 | ± 9.6 % | | 10936 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10937 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.77 | ± 9.6 % | | 10938 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 15 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.90 | ± 9.6 % | | 10939 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.82 | ± 9.6 9 | | 10940 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.89 | ± 9.6 9 | | 10941 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.83 | ± 9.6 % | | 10942 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 9 | | 10942 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 40 MHz, QPSK, 15 KHz) | 5G NR FR1 FDD | 5.95 | ±9.6 % | | 10943 | AAA | 5G NR (DFT-s-OFDM, 50% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.81 | ± 9.6 9 | | | | 5G NR (DFT-s-OFDM, 100% RB, 5 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.85 | ± 9.6 % | | 10945 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 10 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | | | | 10946 | AAA | | | 5.83 | ±9.65 | | 10947 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 20 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ±9.6 9 | | 10948 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 25 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ±9.6 9 | | 10949 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 30 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.87 | ± 9.6 9 | | 10950 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 40 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.94 | ± 9.6 9 | | 10951 | AAA | 5G NR (DFT-s-OFDM, 100% RB, 50 MHz, QPSK, 15 kHz) | 5G NR FR1 FDD | 5.92 | ± 9.6 9 | | 10952 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.25 | ± 9.6 % | | 10953 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.15 | ± 9.6 | Certificate No: EX3-7307_May20 Page 21 of 22 | 10954 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.23 | ±9.6 % | |-------|-----|---|---------------|------|---------| | 10955 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 FDD | 8.42 | ± 9.6 % | | 10956 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.14 | ± 9.6 % | | 10957 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.31 | ±9.6 % | | 10958 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.61 | ± 9.6 % | | 10959 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 FDD | 8.33 | ± 9.6 % | | 10960 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.32 | ± 9.6 % | | 10961 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.36 | ± 9.6 % | | 10962 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.40 | ± 9.6 % | | 10963 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 15 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10964 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 5 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.29 | ±9.6 % | | 10965 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 10 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.37 | ± 9.6 % | | 10966 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 15 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.55 | ± 9.6 % | | 10967 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 20 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.42 | ± 9.6 % | | 10968 | AAA | 5G NR DL (CP-OFDM, TM 3.1, 100 MHz, 64-QAM, 30 kHz) | 5G NR FR1 TDD | 9.49 | ±9.6 % | ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No: EX3-7307_May20 Page 22 of 22 ### **ANNEX H** Dipole Calibration Certificate #### 750 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL-BJ (Auden) uuen) Certificate No: D750V3-1017_Jul20 | | ERTIFICATI | | | |--|---|---|--| | Object | D750V3 - SN:10 | 17 | | | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Validation Source | s between 0.7-3 GHz | | College | | | | | Calibration date: | July 24, 2020 | | | | The measurements and the uncer | tainties with confidence p | ional standards, which realize the physical ur
probability are given on the following pages are
ry facility: environment temperature $(22\pm3)^\circ$ | nd are part of the certificate. | | | | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | ID #
SN: 104778 | | Scheduled Calibration | | ower meter NRP | | Cal Date (Certificate No.)
01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100) | Apr-21 | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91 | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21
Apr-21 | | Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: 104778
SN: 103244 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100) | Apr-21 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101) | Apr-21
Apr-21
Apr-21 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator
Pype-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106) | Apr-21
Apr-21
Apr-21
Apr-21 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Pype-N mismatch combination Reference Probe EX3DV4 | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Jun-21 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Jun-21
Dec-20
Scheduled Check | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 01-Apr-20 (No. 217-03100/03101)
01-Apr-20 (No. 217-03100)
01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Power sensor NRP-Z91 Reference Probe EX3DV4 PAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Power sensor NRP-Z91 Reference Probe EX3DV4 PAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Reference 20 dB Attenuator Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Metwork Analyzer Agilent E8358A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-21
Apr-21
Apr-21
Apr-21
Apr-21
Jun-21
Dec-20 | | Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 104778
SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: US41080477 | 01-Apr-20 (No. 217-03100/03101) 01-Apr-20 (No. 217-03100) 01-Apr-20 (No. 217-03101) 31-Mar-20 (No. 217-03101) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18) | Apr-21 Apr-21 Apr-21 Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | Certificate No: D750V3-1017_Jul20 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1017_Jul20 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | VEO 10 1 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | V52.10.4 | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | Will Opacer | | Frequency | 750 MHz ± 1 MHz |
 #### Head TSL parameters The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.3 ± 6 % | 0.91 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.15 W/ka | | SAR for nominal Head TSL parameters | normalized to 1W | 8.47 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.53 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.5 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.23 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.85 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.47 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.84 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1017_Jul20 ## Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance transferred to 1 | | |--------------------------------------|-----------------| | Impedance, transformed to feed point | 53.0 Ω - 0.9 jΩ | | Return Loss | 0.0 12 0.0 152 | | | - 30.4 dB | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 49.20, 44.30 | |--------------------------------------|------------------------------| | Return Loss | 48.3 Ω - 4.1 jΩ
- 26.9 dB | | | - 26.9 dB | ### General Antenna Parameters and Design | 1 | Electrical Delay (one direction) | | |---|---|----------| | ١ | , | 1.035 ns | | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | | |-----------------|-------| | | SPEAG | Certificate No: D750V3-1017_Jul20 Page 4 of 8 ### DASY5 Validation Report for Head TSL Date: 24.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1017 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.91$ S/m; $\epsilon_r = 42.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(9.97, 9.97, 9.97) @ 750 MHz; Calibrated: 29.06.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 59.46 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.26 W/kg SAR(1 g) = 2.15 W/kg; SAR(10 g) = 1.40 W/kg Smallest distance from peaks to all points 3 dB below = 17.5 mm Ratio of SAR at M2 to SAR at M1 = 65.7% Maximum value of SAR (measured) = 2.87 W/kg Certificate No: D750V3-1017_Jul20 Page 5 of 8 ### Impedance Measurement Plot for Head TSL Certificate No: D750V3-1017_Jul20 Page 6 of 8 ### DASY5 Validation Report for Body TSL Date: 22.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1017 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.97$ S/m; $\epsilon_r = 55.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(9.98, 9.98, 9.98) @ 750 MHz; Calibrated: 29.06.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 55.53 V/m; Power Drift = -0.00 dB Peak SAR (extrapolated) = 3.31 W/kg SAR(1 g) = 2.23 W/kg; SAR(10 g) = 1.47 W/kg Smallest distance from peaks to all points 3 dB below = 18.6 mm Ratio of SAR at M2 to SAR at M1 = 67.4% Maximum value of SAR (measured) = 2.95 W/kg Certificate No: D750V3-1017_Jul20 Page 7 of 8 ### Impedance Measurement Plot for Body TSL Certificate No: D750V3-1017_Jul20 Page 8 of 8 #### 835 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL-BJ (Auden) Certificate No: D835V2-4d069_Jul20 | DALIDITATION | ERTIFICATE | | | |---|---|--|---| | Object | D835V2 - SN:4d0 | 069 | | | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Validation Sources | s between 0.7-3 GHz | | Calibration date: | July 24, 2020 | | | | The measurements and the uncert | tainties with confidence p | onal standards, which realize the physical ur
robability are given on the following pages ar
ry facility: environment temperature (22 ± 3)° | nd are part of the certificate. | | Calibration Equipment used (M&TE | | y acting environment temperature (22 ± 3) | o and numbers (70%. | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | Power sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | | SN: 310982 / 06327
SN: 7349 | 31-Mar-20 (No. 217-03104) | Apr-21 | | | | 29-Jun-20 (No. EX3-7349_Jun20) | Jun-21 | | Reference Probe EX3DV4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Type-N mismatch combination
Reference Probe EX3DV4
DAE4
Secondary Standards | 200 07 0 | | Dec-20
Scheduled Check | | Reterence Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: 601
ID #
SN: GB39512475
SN: US37292783 | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) | Scheduled Check | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Scheduled Check
In house check: Oct-20 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Scheduled Check In house check: Oct-20 In
house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477
Name | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) | Scheduled Check
In house check: Oct-20
In house check: Oct-20
In house check: Oct-20 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477
Name | 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | Certificate No: D835V2-4d069_Jul20 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: - IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No; D835V2-4d069_Jul20 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 835 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | The following parameters and salesiations were appropriate | Temperature | Permittivity | Conductivity | |--|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.2 ± 6 % | 0.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.45 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.60 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.59 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.25 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.4 ± 6 % | 1.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | (**** | | #### SAR result with Body TSL | SAR averaged over 1 cm3 (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.49 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.74 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.63 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.39 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d069_Jul20 Page 3 of 8 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 51.5 Ω - 1.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 33.0 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.1 Ω - 5.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.1 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.392 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D835V2-4d069_Jul20 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 24.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d069 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.93 S/m; ϵ_r = 42.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(9.69, 9.69, 9.69) @ 835 MHz; Calibrated: 29.06.2020 - · Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial:
1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.14 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 3.65 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.59 W/kg Smallest distance from peaks to all points 3 dB below = 16 mm Ratio of SAR at M2 to SAR at M1 = 66.9% Maximum value of SAR (measured) = 3.26 W/kg The state of s Certificate No: D835V2-4d069_Jul20 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d069_Jul20 Page 6 of 8 #### **DASY5 Validation Report for Body TSL** Date: 22.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d069 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1.00$ S/m; $\varepsilon_r = 55.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(9.65, 9.65, 9.65) @ 835 MHz; Calibrated: 29.06.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.60 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.68 W/kg SAR(1 g) = 2.49 W/kg; SAR(10 g) = 1.63 W/kg Smallest distance from peaks to all points 3 dB below = 16.6 mm Ratio of SAR at M2 to SAR at M1 = 67.5% Maximum value of SAR (measured) = 3.30 W/kg 0 dB = 3.30 W/kg = 5.19 dBW/kg Certificate No: D835V2-4d069_Jul20 Page 7 of 8 #### Impedance Measurement Plot for Body TSL Certificate No: D835V2-4d069_Jul20 Page 8 of 8 #### 1750 MHz Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdiens C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CTTL-BJ (Auden) Certificate No: D1750V2-1003 Jul20 | Object | D1750V2 - SN:10 | 003 | | |---|---|--|---| | Calibration procedure(s) | QA CAL-05.v11
Calibration Proce | edure for SAR Validation Sources | s between 0.7-3 GHz | | Calibration date: | July 24, 2020 | | | | This calibration certificate docume
The measurements and the uncert | nts the traceability to nati | ional standards, which realize the physical un
rrobability are given on the following pages ar | nits of measurements (SI). | | All calibrations have been conduct | ed in the closed laborato | ry facility: environment temperature (22 ± 3)° | C and humidity < 70%. | | Calibration Equipment used (M&TE | E critical for calibration) | | | | Primary Standards | 1D # | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 01-Apr-20 (No. 217-03100/03101) | Apr-21 | | Power sensor NRP-Z91 | SN: 103244 | 01-Apr-20 (No. 217-03100) | Apr-21 | | | | | | | Oower sensor NRP-Z91 | SN: 103245 | 01-Apr-20 (No. 217-03101) | Apr-21 | | Power sensor NRP-Z91
Reference 20 dB Attenuator | SN: BH9394 (20k) | 01-Apr-20 (No. 217-03101)
31-Mar-20 (No. 217-03106) | Apr-21
Apr-21 | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination | SN: BH9394 (20k)
SN: 310982 / 06327 | | | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4 | SN: BH9394 (20k) | 31-Mar-20 (No. 217-03106) | Apr-21 | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4 | SN: BH9394 (20k)
SN: 310982 / 06327 | 31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104) | Apr-21
Apr-21 | | Power sensor NRP-Z91
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe EX3DV4
DAE4 | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349 | 31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20) | Apr-21
Apr-21
Jun-21 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Fype-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19) | Apr-21
Apr-21
Jun-21
Dec-20
Scheduled Check | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601 | 31-Mar-20 (No. 217-03106)
31-Mar-20 (No. 217-03104)
29-Jun-20 (No. EX3-7349_Jun20)
27-Dec-19 (No. DAE4-601_Dec19)
Check Date (in house) | Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) | Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) | Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter E4419B Power sensor HP 8481A Regenerator R&S SMT-06 | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 In house check: Oct-20 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) | Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: 100972
SN: US41080477 | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 Signature | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: US41080477
Name | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in
house check Oct-18) 31-Mar-14 (in house check Oct-19) | Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 Signature | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: BH9394 (20k)
SN: 310982 / 06327
SN: 7349
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41092317
SN: US41080477
Name | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) | Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 Signature | | Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A Calibrated by: | SN: BH9394 (20k) SN: 310982 / 06327 SN: 7349 SN: 601 ID # SN: GB39512475 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name Michael Weber | 31-Mar-20 (No. 217-03106) 31-Mar-20 (No. 217-03104) 29-Jun-20 (No. EX3-7349_Jun20) 27-Dec-19 (No. DAE4-601_Dec19) Check Date (in house) 30-Oct-14 (in house check Feb-19) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-19) Function Laboratory Technician | Apr-21 Apr-21 Jun-21 Dec-20 Scheduled Check In house check: Oct-20 | Certificate No: D1750V2-1003_Jul20 Page 1 of 8 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - EC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1750V2-1003 Jul20 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | | | Frequency | 1750 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.1 | 1.37 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.4 ± 6 % | 1.35 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 36.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.75 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 19.1 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.4 | 1.49 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 54.0 ± 6 % | 1.47 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.31 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 37.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 4.95 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 19.9 W/kg ± 16.5 % (k=2) | Certificate No: D1750V2-1003_Jul20 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $50.7 \Omega + 0.8 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 39.7 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 45.7 Ω + 0.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 27.0 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.213 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| | | | Certificate No: D1750V2-1003_Jul20 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 22.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1003 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.35$ S/m; $\varepsilon_r = 40.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.58, 8.58, 8.58) @ 1750 MHz; Calibrated: 29.06.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) #### Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.1 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 16.8 W/kg SAR(1 g) = 9.02 W/kg; SAR(10 g) = 4.75 W/kg Smallest distance from peaks to all points 3 dB below = 10 mm Ratio of SAR at M2 to SAR at M1 = 54.1% Maximum value of SAR (measured) = 14.1 W/kg 0 dB = 14.1 W/kg = 11.49 dBW/kg Certificate No: D1750V2-1003_Jul20 Page 5 of 8 #### Impedance Measurement Plot for Head TSL Certificate No: D1750V2-1003_Jul20 Page 6 of 8 ####
DASY5 Validation Report for Body TSL Date: 24.07.2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1003 Communication System: UID 0 - CW; Frequency: 1750 MHz Medium parameters used: f = 1750 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 54$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.36, 8.36, 8.36) @ 1750 MHz; Calibrated: 29.06.2020 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.6 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 16.7 W/kg SAR(1 g) = 9.31 W/kg; SAR(10 g) = 4.95 W/kg Smallest distance from peaks to all points 3 dB below = 9.8 mm Ratio of SAR at M2 to SAR at M1 = 56.5% Maximum value of SAR (measured) = 14.1 W/kg 0 dB = 14.1 W/kg = 11.49 dBW/kg Certificate No: D1750V2-1003_Jul20 Page 7 of 8 #### Impedance Measurement Plot for Body TSL Certificate No: D1750V2-1003_Jul20 Page 8 of 8